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RESUME

En conséquence d'estimations intégrales pour trois classes d’harmoniques sphériques
quaternioniques, nous prouvons quelques minorations pour la (L?, L?) norme des projec-
teurs harmoniques quaternioniques, pour p € [1, 2].

© 2018 Published by Elsevier Masson SAS on behalf of Académie des sciences.

1. Introduction

In this note, we prove some bounds from below for the (LP ,Lz) norm of the quaternionic harmonic projectors 7y,
which are the projection operators mapping the space of square integrable functions defined on the quaternionic unit
sphere S*"—1 in H" onto the subspace HOE consisting of all quaternionic spherical harmonics of bidegree (¢, ¢’). Here
6,0 eN,0<¢ <¢ and pe|1,2].

Since the transposed operator 7{2}, SHE L9(s%—1) is the inclusion operator (here 1/p + 1/q = 1), we have

IYeerllq
[Yeer |2

Thus, to prove these inequalities, we are led to study the LY norms of the functions Y, € HE | for q = 2. Our estimates are
therefore related to the problem of size concentration of the bigraded spherical harmonics. In the real and complex context,

q=2, Yoy e HY . (11)

I7eer | (p,2) =
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where the analogous question has been largely investigated (see [11,12] and [4,5]), it is fully understood that two classes of
spherical harmonics with competing behaviours, the highest-weight vectors and the zonal functions, play a prominent role
in the analysis of the harmonic projectors and also in some related applications (see, e.g., [2,3,7]).

The quaternionic framework turns out to be more interesting: indeed, we identify three classes of spherical harmonics
with competing behaviours, giving rise, in the light of (1.1), to different bounds from below for || (p,2) On three subin-
tervals of p € [1,2]. More precisely, for p close to 1, like in the real and complex framework [11,4,5], the estimates for
[7eer[l(p,2) turn out to be sensitive to a high pointwise concentration. Thus, we obtain bounds from below by considering
the quaternionic zonal functions Z, which are highly concentrated at the North Pole. When p is close to 2, the esti-
mates are more sensitive to a sparse concentration along the Equator; in this case, we prove our bounds by considering the
highest-weight spherical harmonics, since these functions spread out in a small neighborhood around the Equator.

Anyway, in a third interval inside [1,2], more precisely when p € (4/3,2(4n — 3)/(4n — 1)), the dichotomy between
zonal and highest-weight harmonics is partially mitigated; we obtain indeed better bounds from below for |7 H(p,Z)' by
considering a third class of spherical harmonics. We refer to Section 3 for a discussion about these elements of %' which
have no analogous in the real or complex case and are related to representation-theoretic questions on S4~1,

Finally, in the light of these bounds for the spherical harmonics, in Section 4 we are able to prove LP — L2 bounds from
below for 7. The proof of the same bounds from above is already under way.

2. Notation and preliminaries

We denote by H the skew field of all quaternions q = xg + X1i + X2 j + x3k over R, where xg, X1, X2, X3 are real numbers
and the imaginary units i, j, k satisfy i = j2 = k2 = —1, ij = —ji = k, ik = —ki = —j, jk = —kj = i. The conjugate g and
the modulus |q| are defined by § = xg — x1i —X2j — x3k and |q|* = qG = Z?:o xf, respectively. For n > 1, the symbol H" will
denote the n-dimensional vector space over H. By abuse of notation, we write g also to denote (q1, ..., qn) € H". Sometimes
we will adopt a complex notation, writing q = (z1 + jzn+1, ..., 2n + jz2n), With zq,...,z2p € C.

$41=1 is the unit sphere in H", that is,

sl —{q=(q1,....qn) e H" : (g, q) = 1};

here the inner product ¢, -) on H" is defined as {q,q’) = qla—i- e+ Gngh, q,q’ € H". 4~ may be identified with K/M,
where K = Sp(n) x Sp(1) and M = Sp(n — 1) x Sp(1), Sp(n) denoting the group of n x n matrices A with quaternionic
entries, such that ATA = AAT = [,,. We introduce on S*"~! the coordinate system

{q1 = cosf (cost + gsint) 21)

qs = 0ssinf, s=2,...,n,
where 6 € [0,7/2], t € [0,%], o5 € H with >5_,|os|* = 1. Moreover, § € H with |§|> =1 and %g = 0; we will write
Gq=cosyi+siny cose j+ siny singk, with ¥ € [0, ] and ¢ € [0, 2]. We remark that (sint siny sing, sint siny cos g,
sint cosy, cost) yields a coordinate system for Sp(1).

The normalized invariant measure do = dogm—1 on S#"~1 with respect to the spherical coordinates (2.1) is, up to a
constant C = C(n),

sin®" =5 0 cos 6 ¢ sin? t dt dogan—s do () , (2.2)

do (§) denoting the measure on the unit sphere in R>.
By L%(54—1), we denote the Hilbert space of square integrable functions on S#"~!, with respect to the inner product

U£m=f f@) 2@ do.

S4n—1
Johnson and Wallach, starting from some earlier work by Kostant [10], proved in [9] that this space may be decomposed as
[2(s4-1) = D 2t (2.3)
=020
where each subspace H'

(1) is irreducible under K;
(2) is generated under K by the “highest-weight vector”

/ !/

Pr(2,2) =257 (21Zns2 — 222011)" (2.4)

(3) is finite dimensional.
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In the following, we shall use the symbols ¢ and C with 0 < ¢, C < o0 to denote constants that are not necessarily equal
at different occurrences. They depend only on the dimension n and on the Lebesgue indices p or q. The symbol ~ between
two positive expressions means that their ratio is bounded above and below by such constants. For two positive quantities
a and b, we write a < b instead of a<Ch and a = b for b <a.

Finally, we will denote by Ig the set of indices {(¢,¢')e Nx N:0< ¢ < ¢}.

3. The main estimates

In [6], we started studying the LP — L? norm of the joint spectral projectors 7y, (£, £’) € Ig, mapping LP(S4"~1) onto
HY 1< p < 2. We proved sharp bounds for these norms under the additional assumptions £ — £’ < cg or ¢’ < cq, for some
positive constants co, c1. In this note, we prove some crucial estimates from below for ||| 2y in the general case. As

illustrated in the Introduction, we are led to study the L9 norms of the eigenfunctions Y, € H', for g > 2.

Estimates for zonal functions. We call zonal function of bidegree (¢,¢’) with pole e; = (1,0...,0) a M-invariant function
in 1. An explicit formula for the zonal function Z,» with pole e is given for all (¢, ¢’) € Is by
2n—3,0—¢'+1
e Pé/n ) (cos 26)
2n—3,0—0'+1
P ‘(1)

dggl Sln((ﬂff/Jrl)t)
wan—1 (£ =42+ 1) sint

Zy (0,1) =

(cos®) (3.1)

. _p!
where t € [0, 7], 6 € [0, 5], wan—1 denotes the surface area of $4"~1, Pé,zn 3=+1)

dimension of %', given by

is the Jacobi polynomial and d is the

(C+2n—2)1 (¢ +2n—3)
(C+1)I2n=3)! ¢1\2n—1)!

We recall the Mehler-Heine formula for the so-called disk polynomials, proved in [1, p. 10]. The symbol ], denotes the
Bessel function of the first kind of order «.

dor = (€ + € +2n—1)( — € + 1) L= >0. (3.2)

Proposition 3.1. Fixne N. Let j,ke N, j <k. Then

. p(2n—=3,k—j) 20
; o NP (COS(\/Tk)> i 9y J2n=3(20)
Pl cos( 'k) 2n—3.k—j) =I'(2n-2) gm—3
k—+o0 J Pj )

This limit holds uniformly in every compact interval.

We also recall (see [1, p. 12]) that, for all j,keN, j <k,

pl2n=3k=J) (cos(20))

sup |(cos@)k—I 2 - <1 (3.3)
oe[0,m/2] ‘ P§2”_3‘k_’)(1) ’
For g > 2 set
/2 P(,2"73’Z7[/H) cos 26 4 1/q
I = (f ¢ ( )(cose)z_e ‘ (sin6)*" > (cos6)> d@) . (3.4)

0 Pé,zn_”_elﬂ)(l)

Lemma 3.2. For all ¢ > 2 and for all (¢, ¢') € Ig such that ¢’ is sufficiently great, we have

(2n—=3,—¢'+1) 26
Pz' (cos(\/w
2n—3,0—0'+1
p ‘(1)

)
) (cos(8/V/ee)) =t

P 19([0,1]; 641—5d)

Proof. Observe that

Ve p@n=3 D) (6699 q
v ( )(cose)zfll (sin6)*"=>(cos0)3 do

@)= |

o P§3n—3,e—e’+1) (1)
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_ J]/W ‘ Pé,znfwleﬂ)(cos 20) —p' 434

; (cos®) a| (sing)*>do
Pé/zn—w—z +1)(])

0

R

Jl/m ‘ Pé,znfﬂ%/ﬂ)(cos 20)

’ q
—¢"+1 . 4n—5
pCr3TH) ) (cos6) ‘ (sing)* = do,
[/

0
where the last inequality follows from the fact that 6 € (0, 1/4/¢¢’). Then, after a change of variables, we get

1 Pé,zn_u_yﬂ)(cos(29/\/ﬁﬁ’))

2n—3.4—¢"+1
P ‘(1)

f PN (cos(20/VED))

5 do
o

@)= | (cos(0/V/E0) 1" (sin(6 VT

X

(cos(9/3/£e))t—E+1 )q O/Ne) "5 do ) (Ve

) Pé/2n-3,£—e’+1)(1)
(2n73,zfe/+1)(cos(i)) q
¢ Vee 77Tyt +1
(2n—3,K—l’+1)(1) (cos(6/veE'))

el

(3.5)

~ (26/)_(2n_2)
p

19([0,1]; 64n—5dg)
For q = 2, we obtain a more precise estimate. Indeed, from standard properties of zonal harmonics, it follows that ||Zg||2 ~
(dger)V/2, that is, by means of (3.1),

sin((€ — ¢ +1)t) 2
(£—¢"+1) sint

/2 Pé,zn_”_élﬂ)(cosze)
x J |

sin® t dt

5 T
deer =~ (degr) Jo

2
(cos0)Y | (sin@)*5(cos0)3 do.

0 Pélznfwfz'ﬂ) (1)
Since
Tsin((C—£ + D)2 ., , Y
- tdt~(£ -2 +1 , 3.6
J;) (KfE/Jrl)sint‘sm ( 1 (36)
we have
(T2)? ~ (€= €'+ 1)*(dger) " (3.7)
Then, combining (3.5) and (3.7), we get, for all ¢ > 2
(2n—3,0—¢'+1) 20
I U COS( /) ’
-q > (Z 0+ 1)71 (dﬁl’)]/z (Zzl)7(2n72)/q ¢ </ Ve ) (COS(@/\/Z?))Zi[ +1
T p(n—3.t—¢ +1)(1) B
o 14([0,1]; 64n—5dg)
(2n73,457z’+1)(c05( 20 ))
> (Z/)(2n—3)/2£(2n—2)/2(Ze/)—(Zn—Z)/q v / Vel (COS(Q/W))Z—Z’+1
p(n—3.0—¢ +1)(1) -
o 19([0,1]; 64n—5d6)
(2n—3,0—¢'4+1) 20
P,
2 ()P DGE) DG ) L (,COS(W)) (cos(0//eer)yt=t'+1 . O
(2n—3,6—€'+1)
P, (1) 19([0,1]; 64 —5do)
Then, for g =2 set
Tsin((—€ + 1)) ., 1/q
= - tdt . 3.8
Ja (fo (Z—Z’—i—l)sint’ sin’ ¢de) (38)

Lemma 3.3. For all q > 2 and for all (¢, ¢") € Is such that £ — ¢’ is sufficiently great, we have:
(- +1)1-3/ forallqg>3

% ~ { (log(t — &'))'/3 forg=3
1 forallq <3.
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Proof. We start recalling that

sin((£—¢ +1)t)

11
fvi)(
sint -

—0((t—0 +1)/2p
[13, p. 60]. Thus, using some asymptotic integral estimates in [13, p. 391], we see that

()~ J”/z ‘sin((z —0+ 1))

-0+ Tsint sintdt ~ (¢ —¢ +1)73, (3.9)

for ¢ >3 and ¢ — ¢’ sufficiently great. Combining (3.6) and (3.9), we get the expected estimate for 75/, for all ¢ > 3. The
other two cases analogously follow from [13, p. 391], and (3.6). [

Combining Lemma 3.2 and Lemma 3.3 gives a bound from below for |77,/ H(p’z), with 1<p<2.

Proposition 3.4. Fixn > 2. For all (¢, ¢') € I such that ¢ and ¢ — ¢’ are sufficiently great, and for all q > 2 we have

Zoole [E-EF 1)1=3/a(ge")@n=2(12-1/0) =12 for gl q > 3
IIZM/IIZ > { (log( — €)13(ee"y@=2)(0/2=1/q) =12 for g 3 (3.10)
“ (£ @n=2)(1/2-1/q) 1=1/2 forallqg <3.

Proof. As a consequence of Lemma 3.2 for g > 3, we have:

HZN’HQ > (- 2 1)]_3/qu/IZ
[1Zger|l2
~ (z 0+ 1)173/51 (Zzl)(anl)(l/Zfl/q) (Zl)fl/Z
P (cos (20/V/ET))
Pé,zn_”_llﬂ) )

(cos(0/v/ee"))t=t'+1

L9(4"—5d,[0,1])

Then the first inequality in (3.10) follows from a slight variation of Proposition 3.1, (3.3) and some trivial asymptotics for
the Bessel function. The proof of the other two inequalities is similar. []

Estimates for the highest-weight spherical harmonics. We will estimate the norm of the highest-weight spherical harmonics
P o in H, defined in (2.4).
In [6, Lemma 5.3] we proved that for all ¢; € R, ¢; > 0, and for all £; € N one has

cnD(C1+ 0 +2)T(52+1)

> 21),.5 Z 20 —
z Z1Zn42 — 222 do = . 3.11
Jyu iz ezt~ S BT e
We also proved that, as a consequence of (3.11), the following bound holds
(€ +1)? :
Py |y ~ 3.12
H I3 H2 (E +K’)2”_2 (E Ry 1) ( )
Proposition 3.5. Let Py be the highest-weight vector defined by (2.4). For all ¢ > 2, we have:
1 1 1
o +1)2 274 |P
limsup( S g —; ) S ) " IPrerlq > 0. (3.13)
ot N+ )2 (L=l + 1) [Peerl2

Proof. Fix any q > 2 and let (¢, ¢) € Is. First of all, we choose 2¢; = (¢ — ¢')q. Then, if £/q € 2N, (3.11) applied to Py, with
205 = £'q yields:

al(de+2)rde +1)
FGe+ey+2n) Ge—-e)+1)°

Then a standard application of Stirling’s estimate leads to

IPe.er 3 =

(Le+1)3e+(+D/a(gpr 1 1)3¢'+1/20)

IPe.erlla = q / Te+en+@n—1+1y/q (q / 1/q°
(z(+2)+2n—-1)2 DA (F-0)+1)l
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which, combined with (3.12), yields:

Q=
[NE

1
IPeerly (¢ +1)°
Peelz ~ \ €+ 02 (-0 +1)

(3.14)

This proves the assertion under the assumption ¢’q € 2N.

Ifq= ’:—g for some myg, ng € N*, it suffices to replace ¢’ with 2ng¢’ and then choose ¢ = mg¢’. By considering (¢, ¢') € Ig
such that € > 2ng¢’, we get an estimate analogous to (3.14) for [Py nye[lq. vielding (3.13).

Finally, if q is not rational, the desired estimate follows from the continuity of the LY norms and the previous arguments

for rational values of q. []

Estimates for mixed spherical harmonics. We consider the function Qgg, given by

_ _p!
cosgyi—t e (cos26)

2n—3,6—¢'+1

P ‘)
for all (¢,¢') € Is, with t,4 € [0,7], ¢ € [0,2n], 6 € [0,F]. Observe that Qg is obtained replacing the factor
sin((¢€ — €' +1)t)/((¢ — ¢ + 1) sint) in (3.1) with the highest-weight spherical harmonic of degree ¢ — ¢’ in X3, the unit
sphere in R*. For a discussion about the role of 3 (or, equivalently, of Sp(1)) in our analysis, we refer the reader to [6,
Remark 2.3].
We only recall here that HY s a joint eigenspace for the spherical Laplacian Ags-1 and for an operator I', which

essentially coincides with the Casimir operator on Sp(1) and, in our coordinates, reads as

e
)

Qe (0, @, t) = (sint siny el® (3.15)

= sin? d + ! i sinyr d + ! L
sin®t ot ot sin’t siny Y oY sin’tsin®y %@’
We refer to [9] and [8, p. 696] for a discussion about the role of this operator. Then it is easily seen that Qg belongs to
H¢, since it is an eigenvector both for Agan—1 and for T.

Propeosition 3.6. Fixn > 2. For all (¢, ¢') € Is, such that ¢’ and ¢ — ¢’ are sufficiently great, and for all ¢ > 2 we have:

11Qeellg > (L— ¢ 4 1)V/21a (g en=2)(1/2-1/2) pr=1/2
|1Qeer |2

Proof. It follows from Lemma 3.2, Proposition 3.1 and some basic estimates for the spherical harmonics in =3 (see [11,
Theorem 4.1]). [

4. Bounding the harmonic projections

A comparison between Proposition 3.4, Proposition 3.5, and Proposition 3.6 leads to the following estimate.

Proposition 4.1. Let n > 2, 1 < p < 2. Set py = 2(4n — 3)/(4n — 1). Then there exists some constant C, only depending on n and p,
such that the following estimate holds

[7eer fl12 = Cn, p) (14 % TV (1 + PG (¢ — ¢/ 4 )Y GO | £l (41)
where
oz(l n) 72(n71)(—71) forall1<p<2
p’ - 2 \p\ ’
st 2m-1)(3-3) -3 <p<p
p’ 3G —3) ifpn<p<2
and

forall (¢,¢") € Ig, such that ¢ — ¢’ and ¢’ are sufficiently great.
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The proof of (4.1) from above, which involves both real and analytic interpolation arguments, multiplier theorems for
Agan—1, T and for £, and a very detailed analysis of the Jacobi polynomials, is quite long and tangled. This work is already
under way.
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