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1. Introduction

The celebrated Frobenius Theorem states the equivalence between the complete
integrability of a k-dimensional simple vectorfield ξ = τ1 ∧ . . .∧ τk ∈ C

1(Rd; Λk(Rd))
in Rd – that is, the existence of a local foliation of Rd by k-dimensional tangent
submanifolds of class C2 – and the involutivity condition for ξ, that is

[τm, τn](x) ∈ span{τ1(x) . . . , τk(x)} x ∈ Rd , ∀m,n = 1, . . . , k,

where [⋅, ⋅] denotes the Lie bracket (commutator) between vector fields in Rd.
In this paper, we consider the following natural question: given a k-vectorfield

ξ, is it possible to generalize the Frobenius Theorem to k-dimensional surface of a
weaker type? In Section 4 we prove the following version of Frobenius Theorem for
integral currents, where we use the standard notation R = ⟦Σ, ξ, θ⟧ to denote the
current R in Rd defined by

R(ω) = ∫
Σ
⟨ω(x), ξ(x)⟩θ(x)dHk(x), ∀ω ∈ C∞

c (Rd; Λk(Rd))

for Σ ⊂ Rd a k-rectifiable set, ξ a k-vectorfield and θ an integer multiplicity.

Theorem 1.1. Let ξ = τ1 ∧ . . . ∧ τk be a k-dimensional simple vector field in Rd,
with τ1, . . . , τk ∈ C1(Rd), and let R = ⟦Σ, ξ, θ⟧ be a k-dimensional integral current
in Rd. Then, for every pair m,n = 1, . . . , k and for every x in the closure of the set
of points of positive density of Σ, one has

[τm, τn](x) ∈ span{τ1(x), . . . , τk(x)} .

The proof of Theorem 1.1 builds upon two results. The first one, which is
probably the main result of the paper, establishes an intuitive geometric property
for the boundary of an integral current.

Theorem 1.2. Let R be a k-dimensional integral current in Rd and let ξ ∈ C 1(Rd; Λk(Rd))
be a continuous k-vectorfield which is tangent to R. Then, the orientation η(x) ∈
Λk−1(Rd) of the boundary ∂R is a subspace of ξ(x) for H k−1-almost every x in the
support of ∂R.

This result is studied in Section 3 and it is obtained by a blow-up technique.
The second main tool in the proof of Theorem 1.1 is the following Differential

Geometry result.

Lemma 1.3. If ξ is a smooth non-involutive simple k-vectorfield, then there exists
a (k − 1)-form α with the following properties:

(i) ⟨ξ,dα⟩ ≠ 0 on a suitable open set;
(ii) if η is a simple (k−1)-vector field representing a linear subspace of ξ, then

⟨η,α⟩ = 0.
1
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The proof of Theorem 1.1 follows quite readily once Theorem 1.2 and Lemma
1.3 are available. Indeed, assuming by contradiction that ξ is non-involutive and
representing ∂R = ⟦Σ′, η, θ′⟧, up to a localization argument one obtains

0 = ∫
Σ′

⟨η,α⟩θ′ dH k−1
= ∂R(α) = R(dα) = ∫

Σ
⟨ξ,dα⟩θ dH k

≠ 0 .

Let us point out the Theorem 1.1 concerns only one of the two implications
in Frobenius Theorem. One might wonder whether the converse is true in the
following version: given a normal current T = ξµ, where µ is a finite measure on
Rd and ξ ∈ C 1(Rd; Λk(Rd)) is an involutive vectorfield, is it possible to “foliate”
T with a family of integral currents in a proper way (that is, without wasting any
mass)? This question was formulated in a broader version by F. Morgan who asked
in [1] whether, given a k-dimensional normal current T in Rd, it is possible to find
a family of integral currents (Rλ)λ∈L (where L is a suitable measure space) such
that

(i) T = ∫LRλ dλ;
(ii) M(T ) = ∫LM(Rλ)dλ;
(iii) M(∂T ) = ∫LM(∂Rλ)dλ.

In Section 5 we study this problem and we show that the normal current T = ξL d

does not admit such a decomposition if ξ is a non-involutive vectorfield. Indeed,
conditions (i) and (ii) imply that Rλ = ⟦Σλ, ξ, θλ⟧ for almost every λ ∈ L, thus
λ-almost every Rλ should violate Theorem 1.1.

2. Notation

In the following, we work with a fixed orthonormal basis {e1, . . . , ed} of Rd and
a dual basis {dx1, . . . ,dxd} such that

⟨ei; dxj⟩ = δij .

A basis for the space of alternating vectors Λk(Rd) is given by

{ei1 ∧ . . . ∧ eik ∶ 1 ≤ i1 < . . . < ik ≤ d} .

Correspondingly, a basis for the space of alternating covectors Λh(Rd) is given by

{dxi1 ∧ . . .dxih ∶ 1 ≤ i1 < . . . < ih ≤ d} .

Definition 2.1. Given a h-covector w ∈ Λh(Rd) and a k-vector v ∈ Λk(Rd), with
h ≥ k, the interior product is defined as

⟨v̂; v ⌟w⟩ ∶= ⟨v̂ ∧ v;w⟩ ∀ v̂ ∈ Λh−k(Rd) .

Vice versa, if h ≤ k, we can define

⟨v ⌞w; ŵ⟩ ∶= ⟨v;w ∧ ŵ⟩ ∀ ŵ ∈ Λk−h(Rd) .

Definition 2.2. Given a k-vector v ∈ Λk(Rd), we define the span of v as the
smallest linear subspace V of Rd such that v ∈ Λk(V ), that is

span(v) ∶= ⋂
V ⊂Rd l.s.
v∈Λk(V )

V .

Sometimes, when we have v ∈ Λk(Rd), v′ ∈ Λk′(Rd) and span(v′) ⊂ span(v), we
abbreviate v′ ⊂ v.
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Finally we recall the definition of the Lie bracket in a convenient coordinate
version.

Definition 2.3. Given a vectorfield X ∶ U ⊂ Rd → Rd of class C 1, we represent its
action on a smooth function f ∶ U → R as X(f) = ∇Xf ∶= ⟨∇f ;X⟩ = ∑

d
i=1

∂f
∂xi

Xi.

If X ≡ ei for some i ∈ {1, . . . , d}, then we also write ∇if =
∂f
∂xi

. Given two C 1-

vectorfields X,Y ∶ U → Rd their Lie bracket is [X,Y ] ∶=XY −Y X and [X,Y ](f) =
∇X∇Y f −∇Y∇Xf . In coordinates

[X,Y ]h = ⟨∇Yh;X⟩ − ⟨∇Xh;Y ⟩ =
d

∑
i=1

(
∂Yh
∂xi

Xi −
∂Xh

∂xi
Yi) , with h = 1, . . . , d .

3. Geometric structure of the boundary

Definition 3.1. Given a k-dimensional normal current T = ξµ, with orientation
ξ ∈ C(Rd; Λk(Rd)) and µ Radon measure in Rd, and its boundary ∂T = ηµ′, with
orientation η and µ′ Radon measure in Rd, we say that T has the geometric boundary
property if

(3.1) spanη(x) ⊂ span ξ(x) µ′-a.e. x .

Remark 3.2. If ξ is a simple vectorfield, then the geometric boundary property is
equivalent to the existence, µ′-a.e. x, of a w ∈ Λ1(Rd) such that

(3.2) η(x) = ξ(x) ⌞w .

In general, (3.2) is stronger than (3.1).

Remark 3.3. The geometric boundary property does not hold for every normal
current T . For instance, if T = ξL d, where ξ is a compactly supported non-
involutive vectorfield in the sense of Theorem 4.2 below, then ∂T has orientation
divξ and the geometric boundary property does not hold.

Theorem 3.4. Let ξ be a continuous k-dimensional vectorfield on Rd and let R =

⟦Σ, ξ, θ⟧ be a k-dimensional integral current, then T has the geometric boundary
property.

The proof of Theorem 3.4 is based on the blow up technique and can be essentially
split in two parts:

(1) for an integral current R with boundary ∂R = ⟦Σ′, η, θ′⟧ it is possible to
do a blow up at H k−1-a.e. point of Σ′ and this blow up commutes with
the boundary;

(2) if x0 ∈ Σ′ is one of the points where we could perform such a blow up and
ξ(x0) is the constant orientation of the blown up current and η(x0) is the
constant orientation of the blow up of the boundary of the current, then
spanη(x0) ⊂ span ξ(x0), because

∂R0 ⌞ ν(ϕ) = ∂R0(ν) = −R0(ν ∧ dϕ) = −R0 ⌞ ν(dϕ) = 0

for every ν ∈ Λ1(Rd) such that ξ(x0) ⌞ ν = 0.
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4. Frobenius-type result for integral currents

One of the most important theorems in Differential Geometry fully answers
to this question: under which conditions a given k-dimensional simple vectorfield
ξ = τ1 ∧ . . . ∧ τk ∈ C∞(Rd; Λk(Rd)) represents the tangent vectorfield of a smooth
manifold M?

Definition 4.1. A k-dimensional simple vectorfield ξ = τ1∧. . .∧τk, with τ1, . . . , τk ∈
C 1(Rd; Λk(Rd)), is integrable if, for every point x0 ∈ Rd, there exist an open neigh-
borhood U ∋ x0 and a k-dimensional submanifold M ∋ x0 such that

TxM = span{τ1(x), . . . , τk(x)}

for every x ∈ U ∩M . We will say that ξ is completely integrable if, for every x0 ∈ Rd,
there exist an open neighborhood U ∋ x0 and a C 2-function1 F ∶ U → Rd−k such that
its level sets {F = p} are k-submanifolds with span{τ1, . . . , τk} as tangent space.

Roughly speaking, a completely integrable vectorfield is a tangent field for a local
foliation of Rd in C 2-submanifolds. Obviously, a completely integrable vectorfield
is integrable.

The proof of the following theorem characterizing integrable vectorfields can be
found in [4] or in any other book about the basics of smooth manifolds.

Theorem 4.2 (Frobenius Theorem). A k-dimensional simple vectorfield ξ = τ1 ∧
. . . ∧ τk, with τ1, . . . , τk ∈ C 1(Rd; Λk(Rd)), is completely integrable if and only if

(4.1) [τm, τn](x) ∈ span{τ1(x), . . . , τk(x)}

for every x ∈ Rd and for every m,n = 1, . . . , k.

Let us remark that condition (4.1) does not depend on the choice of τ1, . . . , τk,
but only on their product ξ = τ1 ∧ . . . ∧ τk.

Definition 4.3. Consider a k-dimensional simple vectorfield ξ = τ1 ∧ . . . ∧ τk, such
that τ1, . . . , τk ∈ C 1(Rd; Λk(Rd)). We say that ξ is involutive2 if (4.1) holds.

Lemma 4.4. Given a non-involutive simple k-vectorfield ξ = τ1 ∧ . . . ∧ τk, with
τ1, . . . , τk ∈ C 1(Rd; Λk(Rd)), there exist an open subset U ⊂ Rd and a (k − 1)-form
α such that we have

(4.2) ⟨ξ(x),dα(x)⟩ ≠ 0 ∀x ∈ U

and

(4.3) ⟨η(x), α(x)⟩ = 0 ∀x ∈ Rd

whenever η(x) is a simple (k−1)-vectorfield representing a linear subspace of ξ(x).

Consider a non-involutive k-vectorfield ξ in Rd, as above. We may wonder if the
non-involutivity property is strong enough to prevent not only the existence of a
surface with tangent field ξ, but also the existence of an integral current with such

1From this perspective, it is clear that this problem and the problem of the existence of a
potential F ∶ U ⊂ Rd → R for a given map f ∶ U → Rd, with ∇F = f , are related and we refer to

them as integrability problems.
2Actually, a more general definition of involutivity can be given, after noticing that divξ∧τm∧

τn = (−1)k−1ξ ∧ [τm, τn]. Indeed, one can say that ξ = τ1 ∧ . . . ∧ τk is involutive if and only if
divξ ∧ τm ∧ τn = 0 for every m,n = 1, . . . , d. This definition applies when τ1, . . . , τk are barely

continuous, provided divξ is a measure.
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a tangent field. The answer is affirmative, as we state in Theorem 4.5. We begin
with the key theorem.

Theorem 4.5. Let ξ = τ1 ∧ . . . ∧ τk be a k-dimensional simple vectorfield on Rd,
with τ1, . . . , τk ∈ C 1(Rd), and let T ∈ Ik(Rd) be a k-dimensional integral current
with R = ⟦Σ, ξ, θ⟧, then

(4.4) [τm, τn](x) ∈ span{τ1(x), . . . , τk(x)}

for every pair m,n = 1, . . . , k and for every x in the closure of the set of points of
positive density of Σ.

Proof. Choose a (k − 1)-form α satisfying (4.2) and (4.3) of Lemma 4.4 for some
open set U ⊂ Rd. Therefore,

0 ≠ ⟨T ⌞U ; dα⟩ = ⟨∂T ⌞U ;α⟩ ,

because of (4.2). But then Theorem 3.4 and condition (4.3) imply

⟨∂T ⌞U ;α⟩ = 0

and this is a contradiction. �

5. Decomposition of normal currents

An interesting problem in the theory of currents concerns the decomposition of
a normal current by means of a family of integral currents. This problem firstly
appeared in [1], formulated by F. Morgan. More precisely, given a normal current
T ∈ Nk(Rd), we ask whether there exists a family of integral currents (Rλ)λ∈L,
where L is a suitable measure space, such that

(i) T = ∫LRλ dλ, i.e., for every ω ∈ Dk(Rd), we can write

T (ω) = ∫
L
Rλ(ω)dλ ;

(ii) M(T ) = ∫LM(Rλ)dλ;
(iii) M(∂T ) = ∫LM(∂Rλ)dλ.

Condition (ii) and (iii) express the requirement of a decomposition where no mass is
wasted. In the analysis below, we will discuss also weaker versions of the problem:
we can drop condition (iii), and we can also change the type of “decomposing”
currents, saying we are satisfied with a family of rectifiable currents, instead of
the family of integral ones. We agree that, when we do not specify the type of
currents to which the “decomposing” family belongs, we will always be looking for
a decomposition into integral currents; otherwise, we will always specify the type
of the decomposing currents.

Let us briefly sketch the state of the art for this problem.

(1) When the dimension of the normal current is 1, it is known that there
exists a decomposition satisfying (i) and (ii): see Proposition 4.4 in [5]
and [8] or [7] for the proof (while a decomposition satisfying (i), (ii) and
(iii) may not always exist).

(2) In the special case of codimension 1 with an integer rectifiable bounda-
ry, there exists a decomposition satisfying (i), (ii) and (iii), thanks to an
observation by M. Zworski in [9]. The core of this argument is the Hardt-
Pitts decomposition proved in [3].

Moreover, one can prove the following theorems.
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Theorem 5.1. When the codimension of the normal current is 1, there exists a
decomposition in rectifiable currents satisfying (i) and (ii).

Theorem 5.2. If T = ξµ is a k-dimensional normal current and ξ ∈ C1(Λk(Rd))
is involutive, then there exists a decomposition in rectifiable currents satisfying (i),
(ii) and (iii).

The existence of a decomposition for normal currents under suitable assumptions
is an isolated result. Indeed, in general the search for a decomposition by means
of integral currents is actually too strong: we claim that any normal current of
the form ξL d cannot be decomposed into integral currents satisfying (i) and (ii),
provided ξ is non-involutive. This claim follows from Lemma 5.3 and Theorem 4.5.

In [9], M. Zworski exhibited this very same counterexample, claiming that, in
general, a normal current has no decomposition satisfying (i) and (ii), even if we
allow the decomposing currents to be rectifiable only. However the proof in [9] does
not work, as pointed out by Alberti (see Section 4.5 of [6]). There is a gap in the
argument, possibly due to a misunderstanding when referring to the Federer Flat-
ness Theorem 4.1.15 in [2]. We propose the same counterexample for the problem
of decomposing a normal current with a family of integral currents satisfying (i)
and (ii) (at page 66) and the results we got in Section 4 fill the aforementioned gap.

Lemma 5.3. Consider a vector-valued measure µ = ξ∣µ∣, where

ξ ∈ C∞
(Rd; Λk(Rd))

is a smooth k-vectorfield and assume that

(i) µ = ∫L µλ dλ, where (L,λ) is a measure space;
(ii) ∥µ∥ = ∫L ∥µλ∥dλ.

Then, for λ-a.e. µλ, we have that

µλ = ξ∣µλ∣ .

Theorem 5.4. Consider the normal current T ∶= ξL d ∈ Nk(Rd) given by the
smooth non-involutive vectorfield ξ ∈ C∞(Rd; Λk(Rd)). Then there exist no measure
space L and no family of integral currents (Rλ)λ∈L such that (i) and (ii) at page 66
hold.

The proof of this theorem is a consequence of Lemma 5.3 and Theorem 4.5.
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