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ENHANCED PERVERSITIES

ANDREA D’AGNOLO AND MASAKI KASHIWARA

Abstract. On a complex manifold, the Riemann-Hilbert correspon-
dence embeds the triangulated category of (not necessarily regu-
lar) holonomic D-modules into that of R-constructible enhanced ind-
sheaves. The source category has a standard t-structure. Here, we
provide the target category with a middle perversity t-structure, and
prove that the embedding is exact.

In the paper, we also discuss general perversities in the frame-
work of R-constructible enhanced ind-sheaves on bordered subana-
lytic spaces.
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Introduction

On a complex manifold X, the classical Riemann-Hilbert correspon-
dence establishes an equivalence

DRX : Db
rh(DX) ∼−→ Db

C-c(CX)

between the derived category of DX-modules with regular holonomic co-
homologies, and the derived category of sheaves of C-vector spaces on X
with C-constructible cohomologies ([7]). Here, DRX(M) = ΩX ⊗L

DX
M

is the de Rham functor, and ΩX the sheaf of top-degree holomorphic dif-
ferential forms. Moreover, the functor DRX interchanges the standard t-
structure on Db

rh(DX) with the middle perversity t-structure on Db
C-c(CX).

In particular, DRX induces an equivalence between the abelian category
of regular holonomic DX -modules and that of perverse sheaves on X.

The Riemann-Hilbert correspondence of [4] provides a fully faithful
embedding

DRE
X : Db

hol(DX) // // Eb
R-c(ICX)

from the derived category of DX -modules with (not necessarily regular)
holonomic cohomologies, into the triangulated category of R-constructible
enhanced ind-sheaves of C-vector spaces on X. Here, DRE

X is the en-
hanced version of the de Rham functor. The source category Db

hol(DX)
has a standard t-structure. In this paper, we provide the target category
Eb
R-c(ICX) with a generalized middle perversity t-structure, and prove

that DRE
X is an exact functor.

Generalized t-structures have been introduced in [10], as a reinterpre-
tation of the notion of slicing from [3]. For example, let Db

R-c(CX) be the
derived category of sheaves of C-vector spaces on X with R-constructible
cohomologies. Then, if X has positive dimension, Db

R-c(CX) does not ad-
mit a middle perversity t-structure in the classical sense. That is, there
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is no perversity whose induced t-structure on Db
R-c(CX) is self-dual. How-

ever, it is shown in [10] that Db
R-c(CX) has a natural middle perversity

t-structure in the generalized sense. This generalized t-structure induces
the middle perversity t-structure on the subcategory Db

C-c(CX). More-
over, it is compatible with our construction of the generalized middle
perversity t-structure on Eb

R-c(ICX), since the natural embedding

Db
R-c(CX) // // Eb

R-c(ICX)

turns out to be exact.
From now on, we shall use the term t-structure for the one in the gen-

eralized sense, and refer to the classical notion as a classical t-structure.
Let k be a field and M a real analytic manifold, or more generally a

bordered subanalytic space. Let Eb
R-c(IkM ) be the triangulated category

of R-constructible enhanced ind-sheaves of k-vector spaces on M . In
this paper, we also discuss the t-structures on Eb

R-c(IkM ) associated with
arbitrary perversities, and study their functorial properties. Let us give
some details.

On the set of maps p : Z>0 −→ R, consider the involution ∗ given by

p∗(n) :=−p(n)− n.

A perversity is a map p : Z>0 −→ R such that p and p∗ are decreasing.
Let Db

R-c(kM) be the derived category of R-constructible sheaves of k-
vector spaces on M . For a locally closed subset Z of M , let kZ be the
extension by zero to M of the constant sheaf on Z. For c ∈ R, set

pD6c
R-c(kM) := {F ∈ Db

R-c(kM) ; for any k ∈ Z>0 there exists a closed

subanalytic subset Z ⊂M of dimension < k such that

Hj(kM\Z ⊗F ) ≃ 0 for j > c+ p(k)},
pD>c

R-c(kM) := {F ∈ Db
R-c(kM) ; for any k ∈ Z>0 and any closed

subanalytic subset Z ⊂M of dimension 6 k one has

HjRHom (kZ , F ) ≃ 0 for j < c+ p(k)}.

Then
(

pD6c
R-c(kM), pD>c

R-c(kM)
)

c∈R
is a t-structure in the sense of Defi-

nition 1.2.2. Moreover, the duality functor interchanges pD6c
R-c(kM) and

p∗D>−c
R-c (kM). In particular, the t-structure

(

D
1/2 6c

R-c(kM), D
1/2 >c

R-c(kM)
)

c∈R

associated with the middle perversity m(n) = −n/2 is self-dual.
The analogous definition for R-constructible enhanced ind-sheaves is

pE
6c
R-c(IkM) := {K ∈ Eb

R-c(IkM) ; for any k ∈ Z>0 there exists a closed

subanalytic subset Z ⊂M of dimension < k such that

Hj(π−1
kM\Z ⊗K) ≃ 0 for j > c+ p(k)},
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pE
>c
R-c(IkM) := {K ∈ Eb

R-c(IkM) ; for any k ∈ Z>0 and any closed

subanalytic subset Z ⊂M of dimension 6 k one has

HjRIhom (π−1
kZ , K) ≃ 0 for j < c+ p(k)}.

It turns out that
(

pE
6c
R-c(IkM), pE

>c
R-c(IkM)

)

c∈R
is a t-structure, but it does

not behave well with respect to the duality functor DE
M . Hence we set

Ep 6c
R-c(IkM ) := {K ∈ Eb

R-c(IkM) ; K ∈ E6c
p R-c(IkM),

DE
MK ∈ E

>−c−1/2
p∗ R-c (IkM )},

Ep >c
R-c(IkM ) := {K ∈ Eb

R-c(IkM) ; K ∈ E
>c−1/2

p R-c (IkM),

DE
MK ∈ E6−c

p∗ R-c (IkM)}.

Then
(

Ep 6c
R-c(IkM), Ep >c

R-c(IkM)
)

c∈R
is a t-structure, and the duality func-

tor interchanges Ep 6c
R-c(IkM ) and Ep

∗ >−c
R-c (IkM ). In particular, the t-

structure
(

E
1/2 6c

R-c(M), E
1/2 >c

R-c(M)
)

c∈R
associated with the middle perver-

sity m(n) = −n/2 is self-dual.
Going back to the Riemann-Hilbert correspondence, the enhanced de

Rham functor

DRE
X : Db

hol(DX) // // Eb
R-c(ICX)

is exact with respect to the t-structure associated with the middle per-
versity.

The contents of this paper are as follows.
In Section 1, we recall the notion of t-structure on a triangulated

category. We also recall the t-structure on the derived category of R-
constructible sheaves on a subanalytic space associated with a given per-
versity.

In Section 2, we recall the notions of ind-sheaves and of enhanced
ind-sheaves on a bordered space. In both cases we also discuss the ex-
actness of Grothendieck operations with respect to the standard classical
t-structures.

In Section 3, we introduce the t-structure(s) on the derived category
of R-constructible enhanced ind-sheaves on a bordered subanalytic space
associated with a given perversity. We also discuss the exactness of
Grothendieck operations with respect to these t-structures.

Finally, in Section 4, we prove the exactness of the embedding, pro-
vided by the Riemann-Hilbert correspondence, from the triangulated
category of holonomic D-modules on a complex manifold into that of
R-constructible enhanced ind-sheaves.

Acknowledgments The first author acknowledges the kind hospital-
ity at RIMS, Kyoto University, during the preparation of this paper.
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Notations

In this paper, we take a field k as base ring.
For a category C, we denote by Cop the opposite category of C.
One says that a full subcategory S of a category C is strictly full if it

contains every object of C which is isomorphic to an object of S.
Let C, C′ be categories and F : C −→ C′ a functor. The essential image of

C by F , denoted by F (C), is the strictly full subcategory of C′ consisting
of objects which are isomorphic to F (X) for some X ∈ C.

For a ring A, we denote by Aop the opposite ring of A.
We say that a topological space is good if it is Hausdorff, locally com-

pact, countable at infinity, and has finite soft dimension.

1. T-structures

The notion of t-structure on a triangulated category was introduced in
[1]. As shown in [18], the derived category of a quasi-abelian category has
two natural t-structures. They were presented in [9] in a unified manner,
by generalizing the notion of t-structure. A further generalization is
described in [10], reinterpreting the notion of slicing from [3]. In the
present paper, we use the term t-structure in this more general sense,
and we refer to the notion introduced in [1] as a classical t-structure. A
basic result of [1] asserts that the heart of a classical t-structure is an
abelian category. More generally, it is shown in [3] that small slices of a
t-structure are quasi-abelian categories.

It is shown in [1] that, on a complex manifold, the middle perversity

induces a self-dual classical t-structure on the triangulated category of
C-constructible sheaves. On a real analytic manifold, using results of
[11], it is shown in [10] that the middle perversity induces a self-dual
t-structure on the triangulated category of R-constructible sheaves.

Here we recall these facts, considering general perversities.

1.1. Categories. References are made to [11, Chapter I], and to [18] for
the notion of quasi-abelian category (see also [9, §2]).

Let C be an additive category. The left and right orthogonal of a
subcategory S are the strictly full subcategories

⊥S := {X ∈ C ; HomC(X, Y ) ≃ 0 for any Y ∈ S},
S⊥ := {X ∈ C ; HomC(Y,X) ≃ 0 for any Y ∈ S}.

Assume that C admits kernels and cokernels. Given f : X −→ Y a
morphism in C, one sets

im f := ker
(

Y −→ coker f
)

, coim f := coker
(

ker f −→ X
)

.

The morphism f is called strict if the canonical morphism coim f −→ im f
is an isomorphism.
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The category C is called abelian if all morphisms are strict. It is called
quasi-abelian if every pull-back of a strict epimorphism is a strict epimor-
phism, and every pushout of a strict monomorphism is a strict monomor-
phism.

1.2. T-structures. Let T be a triangulated category. Recall the notion
of t-structure from [1].

Definition 1.2.1. A classical t-structure
(

T 60, T >0
)

on T is a pair of
strictly full subcategories of T such that, setting

T 6n := T 60[−n], T >n := T >0[−n]
for n ∈ Z, one has:

(a) T 60 ⊂ T 61 and T >1 ⊂ T >0;
(b) HomT (T 60, T >1) = 0;
(c) for any X ∈ T , there exists a distinguished triangle

X60 −→ X −→ X>1
+1−−−→

in T with X60 ∈ T 60 and X>1 ∈ T >1.

The following definition of [10] is a reinterpretation of the notion of
slicing from [3].

Definition 1.2.2. A t-structure
(

T 6c, T >c
)

c∈R
on T is a pair of families

of strictly full subcategories of T satisfying conditions (a)–(d) below,
where we set

T <c :=
⋃

c′<c

T 6c′ and T >c :=
⋃

c′>c

T >c′ for c ∈ R.

(a) T 6c =
⋂

c′>c

T 6c′ and T >c =
⋂

c′<c

T >c′ for any c ∈ R,

(b) T 6c+1 = T 6c[−1] and T >c+1 = T >c[−1] for any c ∈ R,
(c) HomT (T <c, T >c) = 0 for any c ∈ R,
(d) for any X ∈ T and c ∈ R, there are distinguished triangles in T

X6c −→ X −→ X>c
+1−−−→ and X<c −→ X −→ X>c

+1−−−→
with XL ∈ T L for L equal to 6 c, > c, < c or > c.

Condition (c) is equivalent to either of the following:

(c)′ HomT (T 6c, T >c) = 0 for any c ∈ R,
(c)′′ HomT (T <c, T >c) = 0 for any c ∈ R.

The next lemma is elementary but useful. It shows for example that,
under condition (a), for any c ∈ R one has

T 6c =
⋂

c′>c

T <c′, T >c =
⋂

c′<c

T >c′.

Lemma 1.2.3. Let X be a set.
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(i) Let (X6c)c∈R be a family of subsets of X such that X6c =
⋂

c′>c

X6c′

for any c ∈ R. Set X<c :=
⋃

c′<c

X6c′. Then

X<c =
⋃

c′<c

X<c′, X6c =
⋂

c′>c

X<c′.

(ii) Conversely, let (X<c)c∈R be a family of subsets of X such that

X<c =
⋃

c′<c

X<c′ for any c ∈ R. Set X6c :=
⋂

c′>c

X<c′. Then

X6c =
⋂

c′>c

X6c′, X<c =
⋃

c′<c

X6c′.

(iii) Let (X6c)c∈R and (X<c)c∈R be as in (i). Let a, b ∈ R with a < b. If

X<c = X6c for any c such that a < c 6 b, then X6a = X6b.

Let
(

T 60, T >0
)

be a classical t-structure. For c ∈ R, set

T 6c := T 60[−n] for n ∈ Z such that n 6 c < n+ 1,

T >c := T >0[−n] for n ∈ Z such that n− 1 < c 6 n.

Then,
(

T 6c, T >c
)

c∈R
is a t-structure. A classical t-structure is regarded

as a t-structure by this correspondence.

Conversely, if
(

T 6c, T >c
)

c∈R
is a t-structure, then

(1.2.1)
(

T 6c+1, T >c
)

and
(

T <c+1, T >c
)

are classical t-structures for any c ∈ R.
For c ∈ R, set

T c := T 6c ∩ T >c.

Definition 1.2.4. Let Σ ⊂ R be a discrete subset such that Σ = Σ+Z.
A t-structure

(

T 6c, T >c
)

c∈R
is indexed by Σ if T c = 0 for any c ∈ R \ Σ.

If Σ is non empty, this is equivalent to the fact that for any c ∈ R one
has

T <c = T 6s′, T 6c = T 6s′′,

T >c = T >t′ , T >c = T >t′′ ,

where

s′ := max{s ∈ Σ; s < c}, s′′ := max{s ∈ Σ; s 6 c},
t′ := min{s ∈ Σ; s > c}, t′′ := min{s ∈ Σ; s > c}.

Classical t-structures correspond to t-structures indexed by Z. In this
paper, we will mainly consider t-structures indexed by 1

2
Z.

The following lemma is easily proved by using Lemma 1.2.3 (iii).

Lemma 1.2.5. Let
(

T 6c, T >c
)

c∈R
be a t-structure on T . The following

two conditions are equivalent.
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(a)
(

T 6c, T >c
)

c∈R
is indexed by some discrete subset Σ ⊂ R such that

Σ = Σ+ Z.

(b) For any c ∈ R, there exist a, b ∈ R such that a < c < b and T <c =
T 6a and T >c = T >b.

1.3. Slices. Let
(

T 6c, T >c
)

c∈R
be a t-structure on T . Note the following

facts.
For any c ∈ R, one has

T >c = (T 6c)⊥, T 6c = ⊥(T >c),
T >c = (T <c)⊥, T <c = ⊥(T >c).

The embeddings T 6c ⊂ T and T <c ⊂ T admit left adjoints

τ6c : T −→ T 6c and τ<c : T −→ T <c,
called the left truncation functors. Similarly, the embeddings T >c ⊂ T
and T >c ⊂ T admit right adjoints

τ>c : T −→ T >c and τ>c : T −→ T >c,
called the right truncation functors.

The distinguished triangles in Definition 1.2.2 (d) are unique up to
unique isomorphism. They are, respectively, given by

τ6cX −→ X −→ τ>cX
+1−−−→ and τ<cX −→ X −→ τ>cX

+1−−−→ .

Summarizing the above notations, to a half-line L (i.e. an unbounded
connected subset L ( R) is associated a truncation functor

τL : T −→ T L.
If L′ ⊂ R is another half-line, there is an isomorphism of functors

(1.3.1) τL ◦ τL′ ≃ τL
′ ◦ τL : T −→ T L ∩ T L′

.

Let I ⊂ R be a proper interval (i.e. a bounded connected non empty
subset I ⊂ R). Then there are two half-lines L, L′ (unique up to ordering)
such that

I = L ∩ L′.

The slice of T associated with I is the additive category

T I := T L ∩ T L′

,

and one denotes the functor (1.3.1) by

HI : T −→ T I .
For example,
T [c,c′) = T >c ∩ T <c′ for c < c′, and T {c} = T c. One writes for short

Hc :=H{c}.
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Note that the map I −→ R/Z is bijective if and only if I = [c, c+ 1) or
I = (c, c+ 1] for some c ∈ R. The map I −→ R/Z is injective if and only
if there exists c ∈ R such that I ⊂ [c, c+ 1) or I ⊂ (c, c+ 1].

The following result generalizes the fact that the heart T 0 of a classical
t-structure

(

T 60, T >0
)

is abelian.

Proposition 1.3.1 (cf. [3, Lemma 4.3]). Let
(

T 6c, T >c
)

c∈R
be a t-structure

on T , and let I ⊂ R be an interval.

(i) If I −→ R/Z is injective, then the slice T I is a quasi-abelian category,

and strict short exact sequences in T I are in one-to-one correspon-

dence with distinguished triangles in T with all vertices in T I .
(ii) If I −→ R/Z is bijective, then the slice T I is an abelian category and

the functor HI : T −→ T I is cohomological.

Remark 1.3.2. The notion of slicing from [3] is equivalent to the datum
of a t-structure

(

T 6c, T >c
)

c∈R
such that T is generated by the family of

subcategories {T c}c∈R.

1.4. Exact functors. Let S and T be triangulated categories. Let
(

S6c,S>c
)

c∈R
and

(

T 6c, T >c
)

c∈R

be t-structures on S and T , respectively.

Definition 1.4.1. A triangulated functor Φ: S −→ T is called

(i) left exact, if one has Φ(S>c) ⊂ T >c for any c ∈ R;
(ii) right exact, if one has Φ(S6c) ⊂ T 6c for any c ∈ R;
(iii) exact, if it is both left and right exact.

Lemma 1.4.2. Consider two triangulated functors

Φ: S −→ T and Ψ: T −→ S.
Assume that (Φ,Ψ) is an adjoint pair. This means that Φ is left adjoint

to Ψ, or equivalently that Ψ is right adjoint to Φ. Then, Ψ is left exact

if and only if Φ is right exact.

Proof. Let c ∈ R. If Ψ is exact, then, for S ∈ S6c and T ∈ T >c, one has

HomT (Φ(S), T ) ≃ HomS(S,Ψ(T ))

∈ HomS(S6c,S>c) = 0.

Hence, Φ(S) ∈ ⊥(T >c) = T 6c. Thus Φ is right exact. The converse can
be proved similarly. �

1.5. Sheaves. Let M be a good topological space. Denote by Mod(kM)
the abelian category of sheaves of k-vector spaces on M , and by Db(kM)
its bounded derived category. It has a standard classical t-structure

(

D60(kM),D>0(kM)
)

.
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For a locally closed subset S ⊂ M , denote by kS the sheaf on M
obtained extending by zero the constant sheaf on S with stalk k.

For f : M −→ N a morphism of good topological spaces, denote by ⊗,
RHom , f−1, Rf∗, Rf! , f

! the six Grothendieck operations for sheaves.
We define the duality functor of Db(kM) by

DMF = RHom (F, ωM) for F ∈ Db(kM),

where ωM denotes the dualizing complex. If M is a C0-manifold, one
has ωM ≃ orM [dM ], where dM denotes the dimension of M and orM the
orientation sheaf. For a map f : M −→ N of C0-manifolds, the relative

orientation sheaf is defined as orM/N :=f !
kN [dN − dM ] ≃ orM ⊗f−1 orN .

1.6. R-constructible sheaves. Recall the notion of subanalytic subsets
of a real analytic manifold (see [6, 2]).

Definition 1.6.1. (i) A subanalytic space M = (M,SM ) is an R-ringed
space which is locally isomorphic to (Z,SZ), where Z is a closed
subanalytic subset of a real analytic manifold, and SZ is the sheaf
of R-algebras of real valued subanalytic continuous functions. In
this paper, we assume that subanalytic spaces are good topological
spaces.

(ii) A morphism of subanalytic spaces is a morphism of R-ringed spaces.
(iii) A subset S of M is subanalytic if i(S ∩ U) is a subanalytic subset

of N for any open subset U of M , any real analytic manifold N
and any subanalytic morphism i : U −→ N of subanalytic spaces
such that i induces an isomorphism from U to a closed subanalytic
subset of N .

Let M be a subanalytic space. One says that a sheaf F ∈ Mod(kM)
is R-constructible if there exists a locally finite family of locally closed
subanalytic subsets {Si}i∈I of M such that M =

⋃

i∈I
Si and F is locally

constant of finite rank on each Si. Denote by Db
R-c(kM) the full subcate-

gory of Db(kM) whose objects have R-constructible cohomologies.

1.7. Perversities. On the set of maps p : Z>0 −→ R, consider the invo-
lution ∗ given by

p∗(n) :=−p(n)− n.
Definition 1.7.1. (i) A function p : Z>0 −→ R is a perversity if both

p and p∗ are decreasing, i.e. if

0 6 p(n)− p(m) 6 m− n for any m,n ∈ Z>0 such that n 6 m.

(ii) A classical perversity is a Z-valued perversity.

Let M be a subanalytic space. To a classical perversity p is associated
a classical t-structure

(

pD60
R-c(kM), pD>0

R-c(kM)
)

on Db
R-c(kM) (refer to [1]

and [11, §10.2]). Here, slightly generalizing a construction in [10], we will
associate a t-structure to a perversity.
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Notation 1.7.2. Set

CSM :={closed subanalytic subsets of M}.
For Z ∈ CSM , denote by

iZ : Z −→M

the embedding. Set

dZ := dimZ (with d∅ = −∞).

For k ∈ Z, set

CS<kM := {Z ∈ CSM ; dZ < k},
CS6k

M := {Z ∈ CSM ; dZ 6 k}.
Definition 1.7.3. Let p be a perversity, c ∈ R and k ∈ Z>0. Consider
the following conditions on F ∈ Db(kM)

(p6ck ) : i−1
M\ZF ∈ D6c+p(k)(kM\Z) for some Z ∈ CS<kM ,

(p>ck ) : i!Z F ∈ D>c+p(k)(kZ) for any Z ∈ CS6k
M .

We define the following strictly full subcategories of Db(kM )
pD6c(kM) := {F ∈ Db(kM) ; (p6ck ) holds for any k ∈ Z>0},
pD>c(kM) := {F ∈ Db(kM) ; (p>ck ) holds for any k ∈ Z>0}.

Let us also set
pD6c

R-c(kM) := pD6c(kM) ∩ Db
R-c(kM),

pD>c
R-c(kM) := pD>c(kM) ∩ Db

R-c(kM).

Note that
(

Dp 6c(kM), Dp >c(kM)
)

c∈R
is not a t-structure if dimM > 0.

Lemma 1.7.4. For c ∈ R, k ∈ Z>0 and F ∈ Db
R-c(kM), the following

conditions are equivalent

(i) F satisfies (p6ck ),
(ii) dim(supp(HjF )) < k for any j with j > c+ p(k).

Proof. It is enough to remark that i−1
M\ZF ∈ D6c+p(k)(kM\Z) if and only

if supp(HjF ) ⊂ Z for any j such that j > c+ p(k). �

Proposition 1.7.5. We have the following properties.

(i)
(

Dp 6c
R-c(kM), Dp >c

R-c(kM)
)

c∈R
is a t-structure on Db

R-c(kM).

(ii) For any c ∈ R, the duality functor DM interchanges Dp 6c
R-c(kM)

and Dp
∗ >−c

R-c (kM ).
(iii) For any interval I ⊂ R such that I −→ R/Z is injective, the

prestack on M
U 7→ Dp I

R-c(U)

is a stack of quasi-abelian categories.
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Proof. Note that, for (iii), it is enough to consider the case where I −→
R/Z is bijective, i.e. the case where I = [c, c + 1) or I = (c, c + 1] for
some c ∈ R.

(a) If p is a classical perversity, the result is due to [1]. More precisely,
for the statements (i), (ii) and (iii) refer to Theorem 10.2.8, Proposition
10.2.13 and Proposition 10.2.9 of [11], respectively.

(b) Let now p be an arbitrary perversity.
For c ∈ R, denote by ⌊c⌋ the largest integer not greater than c, and by

⌈c⌉ the smallest integer not smaller than c. Note that ⌈c⌉ + ⌊−c⌋ = 0.
Statements (i) and (iii) follow from (a) by noticing that for any c ∈ R

(

Dp <c+1
R-c (kM), Dp >c

R-c(kM)
)

and
(

Dp 6c
R-c(kM), Dp >c−1

R-c (kM)
)

are the classical t-structures associated to the classical perversities

pc, +(n) := ⌈c + p(n)⌉, pc, −(n) := ⌊c + p(n)⌋,

respectively.
Statement (ii) follows from (a) by noticing that one has

(pc, ±)
∗ = (p∗)−c, ∓.

�

Note that
(

Dp 6c
R-c(kM ), Dp >c

R-c(kM)
)

c∈R
is indexed by

⋃

06k6dM

(−p(k)+Z).

Definition 1.7.6. The middle perversity t-structure

(

D
1/2 6c

R-c(kM), D
1/2 >c

R-c(kM)
)

c∈R

is the one associated with the middle perversity m(n) :=−n/2.

Note that m is the only perversity stable by ∗. In particular, the middle
perversity t-structure is self-dual. It is indexed by 1

2
Z.

2. Enhanced ind-sheaves

Let M be a good topological space. The derived category of enhanced
ind-sheaves on M is defined as a quotient of the derived category of
ind-sheaves on the bordered space M × R∞. We recall here these no-
tions and some related results from [4]. We also discuss the exact-
ness of Grothendieck operations with respect to the standard classical
t-structures.

References are made to [13] for ind-sheaves, and to [4] for bordered
spaces and enhanced ind-sheaves. See also [15] for enhanced ind-sheaves
on bordered spaces and [16] for an exposition.
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2.1. Semi-orthogonal decomposition. Let T be a triangulated cate-
gory, and N ⊂ T a strictly full triangulated subcategory. We denote by
T /N the quotient triangulated category (see e.g. [14, § 10.2]).

Proposition 2.1.1. Let N ⊂ T be a strictly full triangulated subcategory

which contains every direct summand in T of an object of N . Then the

following conditions are equivalent:

(i) the embedding N −→ T has a left adjoint,

(ii) the quotient functor T −→ T /N has a left adjoint,

(iii) the composition ⊥N −→ T −→ T /N is an equivalence of categories,

(iv) for anyX ∈ T there is a distinguished triangle X ′ −→ X −→ X ′′ +1−−−→
with X ′ ∈ ⊥N and X ′′ ∈ N ,

(v) the embedding ⊥N −→ T has a right adjoint, and N ≃ (⊥N )⊥.

A similar result holds switching “left” with “right”.

2.2. Ind-sheaves. Let C be a category and denote by C∧ the category
of contravariant functors from C to the category of sets. Consider the
Yoneda embedding h : C −→ C∧, X 7→ HomC(∗, X). The category C∧
admits small colimits. As colimits do not commute with h, one denotes
by lim−→ the colimits taken in C, and by “ lim−→” the colimits taken in C∧.

An ind-object in C is an object of C∧ isomorphic to “ lim−→” ϕ for some

functor ϕ : I −→ C with I a small filtrant category. Denote by Ind(C) the
full subcategory of C∧ consisting of ind-objects in C.

Let M be a good topological space. The category of ind-sheaves on M
is the category

I(kM) := Ind(Modc(kM))

of ind-objects in the category Modc(kM) of sheaves with compact sup-
port.

The category I(kM ) is abelian, and the prestack on M given by U 7→
I(kU) is a stack of abelian categories. There is a natural exact fully
faithful functor ιM : Mod(kM) −→ I(kM ) given by F 7→ “ lim−→”(kU⊗F ), for

U running over the relatively compact open subsets ofM . The functor ιM
has an exact left adjoint αM : I (kM) −→ Mod(kM) given by αM(“ lim−→” ϕ) =

lim−→ϕ.

In this paper, we set for short

D(M) := Db(I(kM)),

and denote by
(

D60(M),D>0(M)
)

its standard classical t-structure.
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For f : M −→ N a morphism of good topological spaces, denote by
⊗, RIhom , f−1, Rf∗, Rf!! , f

! the six Grothendieck operations for ind-
sheaves.

Since ind-sheaves form a stack, they have a sheaf-valued hom-functor
Hom . One has RHom ≃ αM ◦ RIhom .

2.3. Bordered spaces. A bordered space M = (M,
∨

M) is a pair of a

good topological space
∨

M and an open subset M of
∨

M .

Notation 2.3.1. Let M = (M,
∨

M) and N = (N,
∨

N) be bordered spaces.
For a continuous map f : M −→ N , denote by Γf ⊂M ×N its graph, and

by Γf the closure of Γf in
∨

M ×
∨

N . Consider the projections

∨

M
∨

M ×
∨

N
q1oo q2 //

∨

M.

Bordered spaces form a category as follows: a morphism f : M −→ N

is a continuous map f : M −→ N such that q1| Γ f
: Γf −→

∨

M is proper;

the composition of two morphisms is the composition of the underlying
continuous maps.

Remark 2.3.2. (i) If f : M −→ N can be extended to a continuous

map
∨

f :
∨

M −→
∨

N , then f is a morphism of bordered space.
(ii) The forgetful functor from the category of bordered spaces to that

of good topological spaces is given by

M = (M,
∨

M) 7→
◦

M :=M.

It has a fully faithful left adjoint M 7→ (M,M). By this functor,
we consider good topological spaces as particular bordered spaces,
and denote (M,M) by M .

Note that M = (M,
∨

M) 7→
∨

M is not a functor.

Let M = (M,
∨

M) be a bordered space. The continuous maps M
id−→

M →֒
∨

M induce morphisms of bordered spaces

(2.3.1) M −→ M
jM−−−→

∨

M.

Note that M ≃ (M,M), where M is the closure of M in
∨

M .

Notation 2.3.3. For a locally closed subset Z of M , set Z∞ = (Z,Z),

where Z is the closure of Z in
∨

M , and denote iZ∞
: Z∞ −→ M the morphism

induced by the embedding Z ⊂M .

Lemma 2.3.4. Let f : M −→ N be a morphism of bordered spaces. Let

Z ⊂
◦

M and W ⊂
◦

N be locally closed subsets such that f(Z) ⊂ W . Then

f |Z : Z −→W induces a morphism Z∞ −→W∞ of bordered spaces.
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In particular, the bordered space Z∞ only depends on M (and not on
∨

M).

Definition 2.3.5. We say that a morphism f : M −→ N is semi-proper if

q2| Γf
: Γf −→

∨

N is proper. We say that f is proper if moreover
◦

f :
◦

M −→
◦

N

is proper.

For example, jM and iZ∞
are semi-proper.

Definition 2.3.6. A subset S of a bordered space M = (M,
∨

M) is a
subset of M . We say that S is open (resp. closed, locally closed) if it
is so in M . We say that S is relatively compact if it is contained in a

compact subset of
∨

M .

As seen by the following obvious lemma, the notion of relatively com-

pact subsets only depends on M (and not on
∨

M).

Lemma 2.3.7. Let f : M −→ N be a morphism of bordered spaces.

(i) If S is a relatively compact subset of M, then its image
◦

f(S) ⊂
◦

N is

a relatively compact subset of N.

(ii) Assume furthermore that f is semi-proper. If S is a relatively com-

pact subset of N, then its inverse image
◦

f−1(S) ⊂
◦

M is a relatively

compact subset of M.

2.4. Ind-sheaves on bordered spaces. Let M be a bordered space.
The abelian category of ind-sheaves on M is

I(kM) := Ind(Modc(kM)),

where Modc(kM) ⊂ Mod(k ◦

M
) is the full subcategory of sheaves on

◦

M

whose support is relatively compact in M.
There is a natural exact embedding ιM : Mod(k ◦

M
) −→ I(kM) given by

F 7→ “ lim−→”(kU ⊗F ), for U running over the family of relatively compact

open subsets of M.
We set for short

D(M) := Db(I(kM)),

and denote by
(

D60(M),D>0(M)
)

its standard classical t-structure.
Let M = (M,

∨

M), and consider the embeddings

∨

M \M i //
∨

M M.
joo

The functor Ri∗ ≃ Ri!! induces the embedding D(
∨

M\M) ⊂ D(
∨

M), which
admits a left and a right adjoint.
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Proposition 2.4.1. There is an equivalence of triangulated categories:

D(M) ≃ D(
∨

M)/D(
∨

M \M).

Proof. The functor j! induces an exact functor Modc(kM) −→ Modc(k ∨

M
),

which induces an exact functor I(kM) −→ I(k ∨

M
) and functors of triangu-

lated categories D(M) −→ D(
∨

M) −→ D(
∨

M)/D(
∨

M \M).
On the other hand, the functor j−1 induces an exact functor Modc(k ∨

M
) −→

Modc(kM), which induces an exact functor I(k ∨

M
) −→ I(kM) and a func-

tor of triangulated categories D(
∨

M) −→ D(M). Since the composition

D(
∨

M \M) −→ D(
∨

M) −→ D(M) vanishes, we obtain a functor D(
∨

M)/D(
∨

M \
M) −→ D(M).

It is obvious that these functors between D(M) and D(
∨

M)/D(
∨

M \M)
are quasi-inverse to each other. �

Thus, there are equivalences

D(M) ≃ D(
∨

M)/D(
∨

M \M) ≃ ⊥D(
∨

M \M) ≃ D(
∨

M \M)⊥,

and one has
⊥D(

∨

M \M) ≃ {F ∈ D(
∨

M) ; kM ⊗F ∼−→ F},
D(

∨

M \M)⊥ ≃ {F ∈ D(
∨

M) ; RIhom (kM , F )
∼←− F}.

Denote by

qM : D(
∨

M) −→ D(M), lM, rM : D(M) −→ D(
∨

M)

the quotient functor and its left and right adjoint, respectively. For

F ∈ D(
∨

M), they satisfy

(2.4.1) lMqMF ≃ kM ⊗F, rMqMF ≃ RIhom (kM , F ).

Remark 2.4.2. At the level of sheaves, there is a natural equivalence

Db(kM) ≃ Db(k ∨

M
)/Db(k ∨

M\M
).

There is a commutative diagram

Db(kM) // ιM //

≀

D(M)

≀

Db(k ∨

M
)/Db(k ∨

M\M
) // // D(

∨

M)/D(
∨

M \M).

The functor ιM : Db(k ◦

M
) −→ D(M) has a left adjoint

αM : D(M) −→ Db(k ◦

M
).

It coincides with the composition

D(M) −→ D(
◦

M)
α ◦
M−−−→ Db(k ◦

M
).



ENHANCED PERVERSITIES 17

Let f : M −→ N be a morphism of bordered spaces. The six Grothendieck
operations for ind-sheaves on bordered spaces

⊗: D(M)× D(M) −→ D(M),

RIhom : D(M)op × D(M) −→ D(M),

Rf!! ,Rf∗ : D(M) −→ D(N),

f−1, f ! : D(N) −→ D(M)

are defined as follows. Recalling Notation 2.3.1, observe that Γf is locally

closed in
∨

M ×
∨

N . For F, F ′ ∈ D(
∨

M) and G ∈ D(
∨

N), one sets

qMF ⊗ qMF
′ := qM(F ⊗F ′),

RIhom (qMF, qMF
′) := qMRIhom (F, F ′),

Rf!!qMF := qNRq2!!(kΓf
⊗ q−1

1 F ),

Rf∗qMF := qNRq2∗RIhom (kΓf
, q !1F ),

f−1qNG := qMRq1!!(kΓf
⊗ q−1

2 G),

f !qNG := qMRq1∗RIhom (kΓf
, q !2G).

Remark 2.4.3. The natural embedding

ιM : Db(k ◦

M
) −→ D(M)

commutes with the operations ⊗, RIhom , f−1, Rf∗, f
! . If f is semi-

proper, one has

(2.4.2) Rf!! ◦ ιM ∼−→ ιN ◦ R
◦

f ! .

Remark 2.4.4. Let M = (M,
∨

M). For the natural morphism jM : M −→
∨

M , one has

qM ≃ j−1
M
≃ j !

M
, lM ≃ RjM !!, rM ≃ RjM ∗.

The following result generalizes (2.4.1).

Lemma 2.4.5. Let Z be a locally closed subset of M, and let F ∈ D(M).
Using Notation 2.3.3, one has

kZ ⊗F ≃ RiZ∞ !!i
−1
Z∞
F,

RIhom (kZ , F ) ≃ RiZ∞ ∗i
!
Z∞

F.

Proof. To avoid confusion, let us denote by k
Z|

◦

M
the extension by zero

to
◦

M of the constant sheaf kZ on Z. Since iZ∞
is semi-proper, (2.4.2)

implies k
Z|

◦

M
≃ RiZ∞ !!kZ . Hence

k
Z|

◦

M
⊗F ≃ (RiZ∞ !!kZ)⊗F
≃ RiZ∞ !!(kZ ⊗ i−1

Z∞
F )

≃ RiZ∞ !!i
−1
Z∞
F.
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We can prove the second isomorphism similarly. �

Let M = (M,
∨

M) be a bordered space. By [4, §3.4], one has

D60(M) = {F ∈ D(M) ; RjM !!F ∈ D60(
∨

M)},
D>0(M) = {F ∈ D(M) ; RjM !!F ∈ D>0(

∨

M)}.
Proposition 2.4.6. Let M be a bordered space.

(i) The bifunctor ⊗ is exact, i.e. for any n, n′ ∈ Z one has

D6n(M)⊗D6n′

(M) ⊂ D6n+n′

(M),

D>n(M)⊗D>n′

(M) ⊂ D>n+n′

(M).

(ii) The bifunctor RIhom is left exact, i.e. for any n, n′ ∈ Z one has

RIhom (D6n(M),D>n′

(M)) ⊂ D>n′−n(M).

Let f : M −→ N be a morphism of bordered spaces.

(iii) Rf!! and Rf∗ are left exact, i.e. for any n ∈ Z one has

Rf!!D
>n(M) ⊂ D>n(N),

Rf∗D
>n(M) ⊂ D>n(N).

(iv) f−1 is exact, i.e. for any n ∈ Z one has

f−1D6n(N) ⊂ D6n(M),

f−1D>n(N) ⊂ D>n(M).

Let d ∈ Z>0 and assume that f−1(y) ⊂
◦

M has soft-dimension 6 d for

any y ∈
◦

N.

(v) Rf!!(∗)[d] is right exact, i.e., for any n ∈ Z one has

Rf!!D
6n(M) ⊂ D6n+d(N).

(vi) f ! (∗)[−d] is left exact, i.e., for any n ∈ Z one has

f !D>n(N) ⊂ D>n−d(M).

Proof. When M and N are good topological spaces, statements (i)–(iv)
follow from [13].

Let M = (M,
∨

M) and N = (N,
∨

N). Replacing (M,
∨

M) with (M, Γf), we

may assume from the beginning that f : M −→ N extends to
∨

f :
∨

M −→
∨

N .

(i) follows from the topological space case, using the fact that RjM !!

commutes with ⊗.

(ii) follows from (i) by adjunction.

(iii) and (iv) follow from the topological space case using the isomor-
phisms

Rf!! ≃ j−1
N

R
∨

f !!RjM !! , Rf∗ ≃ j−1
N

R
∨

f ∗RjM∗, f−1 ≃ jM
−1

∨

f−1RjN !! .
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As (vi) follows from (v) by adjunction, we are left to prove (v).

By dévissage, it is enough to show that for F ∈ I(kM) one has

HkRf!!F ≃ 0 for k > d.

Writing F = “ lim−→”
i

Fi with Fi ∈ Modc(kM), one has

HkRf!!F ≃ “ lim−→”
i

HkRf!Fi.

Then, for any y ∈ N ,
(

HkRf!Fi
)

y
≃ Hk

c (f
−1(y);Fi

∣

∣

f−1(y)
) ≃ 0,

since f−1(y) has soft-dimension 6 d. �

Proposition 2.4.7. Let f : M −→ N be a morphism of bordered spaces.

Let n ∈ Z and G ∈ D(N). Assume

(a) f is semi-proper,

(b)
◦

f :
◦

M −→
◦

N is surjective.

Then

(i) f−1G ∈ D>n(M) implies G ∈ D>n(N),
(ii) f−1G ∈ D6n(M) implies G ∈ D6n(N).

Proof. Let M = (M,
∨

M) and N = (N,
∨

N). Since f−1 is exact, it is enough
to show that, for G ∈ D0(N) ≃ I(kN), f

−1G ≃ 0 implies G ≃ 0.
Write G = “ lim−→” Gi, where {Gi}i∈I is a filtrant inductive system of

objects Gi ∈ Modc(kN). Recall that this means that Gi ∈ Mod(kN) and

supp(Gi) is relatively compact in
∨

N . Since f is semi-proper, f−1Gi ∈
Modc(kM) by Lemma 2.3.7 (ii). The assumption f−1G = “ lim−→” f−1Gi ≃
0 implies that, for any i ∈ I, there exists i −→ j in I whose induced
morphism f−1Gi −→ f−1Gj is the zero map. Since f is surjective, Gi −→
Gj is the zero map. Thus G = 0. �

Proposition 2.4.8. Let f : M −→ N be a continuous map of good topo-

logical spaces, and {Vi}i∈I an open covering of N . Let Ki ∈ D(f−1Vi)
satisfy Rf∗RHom (Ki, Ki) ∈ D>0(kVi) and let

uij : Kj |f−1Vi∩f−1Vj
∼−→ Ki|f−1Vi∩f−1Vj

be isomorphisms satisfying the usual cochain condition: uij ◦ujk = uik on

f−1Vi ∩ f−1Vj ∩ f−1Vk. Then there exist K ∈ D(M) and isomorphisms

ui : K|f−1Vi
∼−→ Ki compatible with uij, that is, uij ◦ uj = ui on f−1Vi ∩

f−1Vj. Moreover, such a K is unique up to a unique isomorphism.
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Proof. The arguments we use are standard (see e.g. [10, Proposition 5.9]).
Let us set Ui := f−1Vi ⊂ M .

(i) Let us first discuss uniqueness. Let K ′ ∈ D(M) be such that there
are isomorphisms u′i : K

′|Ui
∼−→ Ki compatible with uij. Note that for

any open subset V of N , one has

HomD(f−1V )(K|f−1V , K
′|f−1V ) ≃ H0RΓ (V ; Rf∗RHom (K,K ′)).

Since one has Rf∗RHom (K,K ′)|Vi ≃ Rf∗RHom (Ki, Ki) ∈ D>0(kVi), we
have Rf∗RHom (K,K ′) ∈ D>0(kN). Hence

V 7→ HomD(f−1V )(K|f−1V , K
′|f−1V ) is a sheaf on N .

We thus get an isomorphism K ∼−→ K ′ on M by patching together the
isomorphisms u′−1

i ◦ ui on Ui.

(ii) Let us now prove the existence of K as in the statement.

(ii-1) Assume that I is finite. In order to prove the statement, by
induction we reduce to the case I = {1, 2}. Set V0 := V1 ∩ V2 and
K0 :=K1|U0 ≃ K2|U0. Let ji : Ui −→M (i = 0, 1, 2) be the open inclusion.
By adjunction, for i = 1, 2 there are natural morphisms

βi : Rj0!!K0 −→ Rji !!Ki.

Let us complete the morphism (β1, β2) into a distinguished triangle

Rj0!!K0
(β1,β2)−−−−−→ Rj1!!K1 ⊕ Rj2!!K2 −→ K

+1−−−→ .

Then K satisfies the desired condition.

(ii-2) Assume that I = Z>0 and that {Vn}n∈Z>0
is an increasing sequence

of open subsets of N . Then Kn+1|Un
≃ Kn. Let jn : Un −→ M (n ∈

Z>0) be the open inclusion. By adjunction, there are natural morphisms
βn : Rjn !!Kn −→ Rjn+1!!Kn+1 (n ∈ Z>0). Let K be the homotopy colimit
of the inductive system {Rjn !!Kn}n∈Z>0

, that is, let K be the third term
of the distinguished triangle

⊕

n∈Z>0

Rjn !!Kn
β−−→

⊕

n∈Z>0

Rjn !!Kn −→ K
+1−−−→ .

Here β is the only morphism making the following diagram commute for
any m ∈ Z>0

Rjm !!Km

��

(id,−βm)
// Rjm !!Km ⊕ Rjm+1!!Km+1

��
⊕

n∈Z>0
Rjn !!Kn

β //
⊕

n∈Z>0
Rjn !!Kn.

Then K satisfies the desired condition.
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(ii-3) Let I be arbitrary. Let {Zn}n∈Z>0
be an increasing sequence of

compact subsets of N such that N =
⋃

n∈Z>0
Zn. Let us take an increas-

ing sequence {In}n∈Z>0
of finite subsets of I such that Zn is covered by

{Vi}i∈In, and set V ′
n :=

⋃

i∈In
Vi, U

′
n :=f

−1V ′
n. Applying (ii-1) with N = V ′

n

and I = In, we can find an object Kn ∈ D(U ′
n) such that Kn|Ui

≃ Ki for
any i ∈ In. Then we can apply (ii-2) with Vn = V ′

n. �

2.5. Ind-sheaves with an extra variable. Let R := R ∪ {+∞,−∞}
be the two-point compactification of the affine line. The bordered line is

R∞ := (R,R).

Let M be a bordered space. Consider the morphisms

(2.5.1) µ, q1, q2 : M× R∞ × R∞ −→ M× R∞,

where µ(x, t1, t2) = (x, t1 + t2), and q1, q2 are the natural projections.
The convolution functors

+
⊗ : D(M× R∞)× D(M× R∞) −→ D(M× R∞),

Ihom+ : D(M× R∞)op ×D(M× R∞) −→ D(M× R∞)

are defined as follows, for F1, F2 ∈ D(M× R∞),

F1

+
⊗ F2 := Rµ!!(q

−1
1 F1 ⊗ q−1

2 F2),

Ihom+(F1, F2) := Rq1∗RIhom (q−1
2 F1, µ

!F2).

Example 2.5.1. Let M = {pt} and let a, b ∈ R.

(i) For a 6 b, one has

k{t>0}

+
⊗ k{t>a} ≃ k{t>a}, k{t>0}

+
⊗ k{a6t<b} ≃ k{a6t<b},

Ihom+(k{t>0},k{t>a}) ≃ k{t<a}[1], Ihom+(k{t>0},k{a6t<b}) ≃ k{a6t<b}.

(ii) For 0 < a 6 b, one has

k{06t<a}

+
⊗ k{06t<b} ≃ k{06t<a} ⊕ k{b6t<a+b}[−1].

Consider the standard classical t-structure
(

D60(M× R∞),D>0(M× R∞)
)

on D(M× R∞) discussed in §2.4.

Lemma 2.5.2. Let M be a bordered space.

(i) For n, n′ ∈ Z one has

D6n(M× R∞)
+
⊗ D6n′

(M× R∞) ⊂ D6n+n′+1(M× R∞),

D>n(M× R∞)
+
⊗ D>n′

(M× R∞) ⊂ D>n+n′

(M× R∞).

In particular, the bifunctor
+
⊗ is left exact.



22 A. D’AGNOLO AND M. KASHIWARA

(ii) For n, n′ ∈ Z one has

Ihom+(D6n(M× R∞),D>n′

(M× R∞)) ⊂ D>n′−n−1(M× R∞).

Proof. Recall the maps (2.5.1).
(i) By the definition, for F1, F2 ∈ D(M× R∞) one has

F1

+
⊗ F2 := Rµ!!(q

−1
1 F1 ⊗ q−1

2 F2).

Then the statement follows from Proposition 2.4.6.
(ii) The proof is similar, recalling that

Ihom+(F1, F2) := Rq1∗RIhom (q−1
2 F1, µ

!F2).

�

Remark 2.5.3. There are no estimates of the form

Ihom+(k{t>0},D
0(M× R∞)) ⊂ D6m(M× R∞)

with m ∈ Z>0 independent of M. In fact, setting,

M = Rn (n > 1), F = k{x 6=0, t=1/|x|},

one has

(2.5.2) Ihom+(k{t>0}, F ) /∈ D6n−3(M× R∞),

which follows from

π−1
k{x=0} ⊗Ihom+(k{t>0}, F ) ≃ π−1

k{x=0}[1]⊕ π−1
k{x=0}[2− n].

Lemma 2.5.4. For K ∈ D(M× R∞) and n ∈ Z one has

k{t>0}

+
⊗ τ6n(k{t>0}

+
⊗K) ∼−→ τ6n(k{t>0}

+
⊗K),

k{t>0}

+
⊗ τ>n(k{t>0}

+
⊗K) ∼−→ τ>n(k{t>0}

+
⊗K),

Let us give a proof of this result slightly different from that in [4,
Proposition 4.6.2].

Proof. Consider the distinguished triangle

k{t>0}

+
⊗ τ6n(k{t>0}

+
⊗K) −→ k{t>0}

+
⊗ (k{t>0}

+
⊗K)

−→ k{t>0}

+
⊗ τ>n(k{t>0}

+
⊗K)

+1−−−→ .

Since the middle term vanishes, one has

k{t>0}

+
⊗ τ>n(k{t>0}

+
⊗K) ≃ k{t>0}

+
⊗ τ6n(k{t>0}

+
⊗K)[1].

By Lemma 2.5.2, the first term belongs to D>n(M×R∞) and the second
term belongs to D6n(M× R∞). Hence they both vanish. �
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2.6. Enhanced ind-sheaves. Let M be a bordered space, and consider
the natural morphisms

M M× R∞
πoo j // M× R

π // M.

Consider the full subcategories of D(M× R∞)

N± := {K ∈ D(M× R∞) ; k{∓t>0}

+
⊗K ≃ 0}

= {K ∈ D(M× R∞) ; Ihom+(k{∓t>0}, K) ≃ 0},
N :=N+ ∩N−

= π−1D(M),

where the equalities hold by [4, Corollary 4.3.11 and Lemma 4.4.3].
The categories of enhanced ind-sheaves are defined by

Eb
±(IkM) := D(M× R∞)/N∓, Eb(IkM) := D(M× R∞)/N .

In this paper, we set for short

E±(M) := Eb
±(IkM), E(M) := Eb(IkM).

By [4, Proposition 4.4.4], there are natural equivalences

E±(M) ≃ N±/N ≃ ⊥N∓ = N± ∩ ⊥N ,
E(M) ≃ ⊥N ≃ E+(M)⊕ E−(M),

and the same equivalences hold when replacing left with right orthogo-
nals. Moreover, one has

⊥N∓ = {K ∈ D(M× R∞) ; k{±t>0}

+
⊗K ∼−→ K},

⊥N = {K ∈ D(M× R∞) ; (k{t>0} ⊕ k{t60})
+
⊗K ∼−→ K}

= {K ∈ D(M× R∞) ; Rπ!!K ≃ 0},

and the same equalities hold for right orthogonals, replacing
+
⊗ with

Ihom+ and Rπ!! with Rπ∗.
We use the following notations

D(M× R∞)
QM // E(M),

LE, RE
oo D(M× R∞)

Q±

M // E±(M),
LE
±, R

E
±

oo

for the quotient functors and their left and right adjoints, respectively.
For F ∈ D(M× R∞) one has

LE(QMF ) ≃
(

k{t>0} ⊕ k{t60}

) +
⊗ F,

RE(QMF ) ≃ Ihom+
(

k{t>0} ⊕ k{t60}, F
)

.

For a locally closed subset Z ⊂M × R, we set

(2.6.1) k
Q
Z := QM(kZ) ∈ E(M).
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There are functors

ǫ : D(M) −→ E(M), F 7→ k
Q
{t=0} ⊗ π−1F,(2.6.2)

ǫ± : D(M) −→ E±(M), F 7→ k
Q
{±t>0} ⊗ π−1F.

The functors ǫ± are fully faithful and ǫ(F ) ≃ ǫ+(F )⊕ ǫ−(F ).
The bifunctors

IhomE : E(M)× E(M) −→ D(M),

HomE : E(M)op × E(M) −→ Db(k ◦

M
),

are defined by

IhomE(K,K ′) := Rπ∗RIhom (LEK,LEK ′)

≃ Rπ∗RIhom (LEK,REK ′)

≃ Rπ∗RIhom (REK,REK ′)

≃ Rπ∗RIhom (Rj!! L
EK,Rj∗R

EK ′) and

HomE := αM ◦ IhomE.

One has

HomE(M)(K,K
′) ≃ HomD(M)(kM , IhomE(K,K ′)).(2.6.3)

If M is a topological space, that is, if
◦

M −→ M is an isomorphism, one has

HomE(M)(K,K
′) ≃ H0RΓ

( ◦

M;HomE(K,K ′)
)

.

Note, however, that HomE(M)(K,K
′) ≃ H0RΓ

(

M;HomE(K,K ′)
)

does
not hold in general.

Definition 2.6.1 ([4, Definition 4.6.3]). For n ∈ Z, set

E6n(M) := {K ∈ E(M) ; LEK ∈ D6n(M× R∞)},
E>n(M) := {K ∈ E(M) ; LEK ∈ D>n(M× R∞)}.

Note that

E0(M)≃{F ∈ I(kM×R∞
) ;

(

k{t>0} ⊕ k{t60}

) +
⊗ F ∼−→ F in D(M× R∞)}

= {F ∈ I(kM×R∞
) ; Rπ!!F ≃ 0 in D(M)}.

Proposition 2.6.2 ([4, Proposition 4.6.2]).
(

E60(M),E>0(M)
)

is a clas-

sical t-structure on E(M).

Example 2.6.3. Let a, b ∈ R with a < b. In the category E({pt}), one
has

LE
k
Q
{a6t} ≃ k{a6t}, LE

k
Q
{a6t<b} ≃ k{a6t<b},

RE
k
Q
{a6t} ≃ k{t<a}[1], RE

k
Q
{a6t<b} ≃ k{a6t<b}.
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In particular,

k
Q
{a6t}, k

Q
{a6t<b} ∈ E0({pt}).

Proposition 2.6.4. Let M be a good topological space. Then the prestack

on M given by U 7→ E0(U) is a stack of abelian categories.

Proof. The statement holds since U 7→ E0(U) is a sub-prestack of the
direct image by π of the stack of ind-sheaves on M×R∞. More precisely,
one has

E0(U) ≃ {F ∈ I(kU×R∞
) ; (k{t>0} ⊕ k{t60})

+
⊗ F ∼−→ F}.

�

Lemma 2.6.5. For any n ∈ Z one has

QMD
6n(M× R∞) ⊂ E6n+1(M),

QMD
>n(M× R∞) = E>n(M).

In particular, QM is left exact.

Proof. (i) For F ∈ D(M×R∞), one has LE QMF ≃ (k{t>0}⊕k{t60})
+
⊗F .

Hence the inclusions “⊂” follow from Lemma 2.5.2.

(ii) It remains to show the opposite inclusion QMD
>n(M×R∞) ⊃ E>n(M).

If K ∈ E>n(M), then F := LEK ∈ D>n(M× R∞), and K ≃ QM(F ). �

Lemma 2.6.6. For any n ∈ Z one has

RE E>n(M) ⊂ D>n−1(M× R∞).

Proof. By Lemma 2.6.5, the functor QM[1] is right exact. Hence its right
adjoint RE[−1] is left exact. �

Remark 2.6.7. (i) It follows from Example 2.6.3 that the estimate in
Lemma 2.6.6 is optimal.

(ii) It follows from Remark 2.5.3 that there are no estimates of the form

RE E0(M) ⊂ D6m(M× R∞)

with m ∈ Z independent of M.
(iii) The example in Remark 2.5.3 shows that
(

{K ∈ E(M) ; REK ∈ D60(M× R∞)},
{K ∈ E(M) ; REK ∈ D>0(M× R∞)}

)

is not a classical t-structure on E(M), in general.

Proposition 2.6.8. The functors IhomE and HomE are left exact, i.e.

for n, n′ ∈ Z one has

(i) IhomE(E6n(M),E>n′

(M)) ⊂ D>n′−n(M),
(ii) HomE(E6n(M),E>n′

(M)) ⊂ D>n′−n(k ◦

M
).
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Proof. (i) By the definition, for K,K ′ ∈ E(M) one has

IhomE(K,K ′) = Rπ∗RIhom (LEK,LEK ′).

Hence the statement follows from Proposition 2.4.6.
(ii) One has HomE = αM IhomE. Since αM is exact, the statement

follows from (i). �

2.7. Operations. Let f : M −→ N be a morphism of bordered spaces.
The six Grothendieck operations for enhanced ind-sheaves

+
⊗ : E(M)× E(M) −→ E(M),

Ihom+ : E(M)op × E(M) −→ E(M),

Ef !!,Ef∗ : E(M) −→ E(N),

Ef−1,Ef ! : E(N) −→ E(M)

are defined as follows. Set fR∞
= f × idR∞

: M × R∞ −→ N × R∞. For
F, F ′ ∈ D(M× R∞) and G ∈ D(N× R∞), one sets

QMF
+
⊗QMF

′ := QM(F
+
⊗ F ′),

Ihom+(QMF,QMF
′) := QMIhom+(F, F ′),

Ef !!QMF := QNRfR∞ !!F,

Ef ∗QMF := QNRfR∞ ∗F,

Ef−1QNG := QMf
−1
R∞
G,

Ef !QNG := QMf
!
R∞

G.

The duality functor is defined by

DQ
M
: E(M) −→ E(M)op, K 7→ Ihom+(K,ωQ

M
),

where ωM := j !
M
ω ∨

M
∈ D(M) and ωQ

M
:= ǫ(ωM) := π−1ωM ⊗k

Q
{t=0} ∈ E(M).

Lemma 2.7.1 ([4, Lemma 4.3.2]). Let M = (M,
∨

M). For F ∈ D(kM×R),
one has

DQ
M
(QMF ) ≃ QM(a

−1DM×RF ),

where a is the involution of M × R defined by a(x, t) = (x,−t).
Example 2.7.2. Let a, b ∈ R with a < b. In the category E({pt}), one
has

DQ
k
Q
{a6t} ≃ k

Q
{t<−a}[1] ≃ k

Q
{−a6t} and DQ

k
Q
{a6t<b} ≃ k

Q
{−b6t<−a}[1].

In particular,

DQ
k
Q
{a6t} ∈ E0({pt}) and DQ

k
Q
{a6t<b} ∈ E−1({pt}).

Proposition 2.7.3. Let M be a bordered space.
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(i) For n, n′ ∈ Z one has

E6n(M)
+
⊗ E6n′

(M) ⊂ E6n+n′+1(M),

E>n(M)
+
⊗ E>n′

(M) ⊂ E>n+n′

(M).

In particular, the bifunctor
+
⊗ is left exact.

(ii) For n, n′ ∈ Z one has

Ihom+(E6n(M),E>n′

(M)) ⊂ E>n′−n−1(M).

Let f : M −→ N be a morphism of bordered spaces.

(iii) Ef !! and Ef ∗ are left exact, i.e. for any n ∈ Z one has

Ef !!E
>n(M) ⊂ E>n(N),

Ef ∗E
>n(M) ⊂ E>n(N).

(iv) Ef−1 is exact, i.e. for any n ∈ Z one has

Ef−1E6n(N) ⊂ E6n(M),

Ef−1E>n(N) ⊂ E>n(M).

Let d ∈ Z>0 and assume that f−1(y) ⊂
◦

M has soft-dimension 6 d for

any y ∈
◦

N.

(v) Ef !!(∗)[d] is right exact, i.e. for any n ∈ Z one has

Ef !!E
6n(M) ⊂ E6n+d(N).

(vi) Ef !(∗)[−d] is left exact, i.e. for any n ∈ Z one has

Ef !E>n(N) ⊂ E>n−d(M).

Proof. (i) For K ∈ E(M) and K ′ ∈ E(M) one has

LE(K
+
⊗K ′) ≃ LEK

+
⊗ LEK ′.

Then the statement follows from Lemma 2.5.2.

(ii) follows from (i) by adjunction. As we deal here with bifunctors,
let us spell out the proof. Let K ∈ E6n(M), K ′ ∈ E>n′

(M), and L ∈
E<n

′−n−1(M). Then one has

HomE(M)(L, Ihom+(K,K ′)) ≃ HomE(M)(L
+
⊗K,K ′)

∈ HomE(M)(E
<n′

(M),E>n′

(M)) = 0.

Then Ihom+(K,K ′) ∈ E<n
′−n−1(N)⊥ = E>n′−n−1(N).

(iii-1) The fact that Ef !! is left exact follows from Proposition 2.4.6, since
one has

LE ◦Ef !! ≃ RfR∞ !! ◦ LE,

where we recall that fR∞
:= f × idR∞

.
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(iv) also follows from Proposition 2.4.6, since one has

LE ◦Ef−1 ≃ f−1
R∞
◦ LE .

(iii-2) The fact that Ef ∗ is left exact follows from (iv) by adjunction.
(v) has a proof similar to (iii-1).
(vi) follows from (v) by adjunction. �

Proposition 2.7.4. Let f : M −→ N be a morphism of bordered spaces.

Let n ∈ Z and L ∈ E(N). Assume

(a) f is semi-proper,

(b)
◦

f :
◦

M −→
◦

N is surjective.

Then

(i) f−1L ∈ E>n(M) implies L ∈ E>n(N),
(ii) f−1L ∈ E6n(M) implies L ∈ E6n(N).

Proof. It is enough to apply Proposition 2.4.7 to the morphism fR∞
: M×

R∞ −→ N× R∞ and the object G = LE L ∈ D(N× R∞). �

The bifunctors

π−1(∗)⊗ (∗) : D(M)× E(M) −→ E(M),

RIhom (π−1(∗), ∗) : D(M)op × E(M) −→ E(M)

are defined as follows, for L ∈ D(M) and F ∈ D(M× R∞),

π−1L
+
⊗QMF := QM(π

−1L⊗F ),
RIhom (π−1L,QMF ) := QMRIhom (π−1L, F ).

Lemma 2.7.5. Let M be a bordered space.

(i) The bifunctor π−1(∗)⊗ (∗) is exact, i.e. for n, n′ ∈ Z one has

π−1D6n(M)⊗E6n′

(M) ⊂ E6n+n′

(M),

π−1D>n(M)⊗E>n′

(M) ⊂ E>n+n′

(M).

In particular, the functor ǫ from (2.6.2) is exact.

(ii) The bifunctor RIhom (π−1(∗), ∗) is left exact, i.e. for n, n′ ∈ Z
one has

RIhom (π−1D6n(M),E>n′

(M)) ⊂ E>n′−n(M).

Proof. (i) For F ∈ D(M) and K ∈ E(M) one has

LE(π−1F ⊗K) ≃ π−1F ⊗LEK.

Hence the statement follows from Proposition 2.4.6.
(ii) follows by adjunction from (i). �

Let us end this section stating some facts related to Notation 2.3.3.
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Lemma 2.7.6. Let Z be a locally closed subset of M, and K ∈ E(M).
One has

π−1
kZ ⊗K ≃ EiZ∞ !!Ei

−1
Z∞
K,

RIhom (π−1
kZ , K) ≃ EiZ∞∗Ei

!
Z∞
K.

Proof. Note that (Z × R)∞ = Z∞×R∞ and iZ∞
×idR∞

= i(Z×R)∞ . Hence
the statement follows from Lemma 2.4.5. �

Lemma 2.7.7. Let Z be a locally closed subset of M, and Z ′ ⊂ Z a

closed subset. For K ∈ E(M), there are distinguished triangles in E(Z∞)

Ei!!Ei
−1
(Z\Z′)∞

K −→ Ei−1
Z∞
K −→ Ei′!!Ei

−1
Z′
∞
K

+1−−−→,

Ei′∗Ei
!
Z′
∞
K −→ Ei!Z∞

K −→ Ei∗Ei
!
(Z\Z′)∞K

+1−−−→,
where i : (Z \ Z ′)∞ −→ Z∞ and i′ : Z ′

∞ −→ Z∞ are the natural morphisms.

Proof. Since the proofs are similar, we shall only construct the first dis-
tinguished triangle. By Lemma 2.7.6, applying the functor π−1(∗) ⊗K
to the distinguished triangle

kZ\Z′ −→ kZ −→ kZ′

+1−−−→,
one gets the distinguished triangle

Ei(Z\Z′)∞ !!
Ei−1

(Z\Z′)∞
K −→ EiZ∞ !!Ei

−1
Z∞
K −→ EiZ′

∞ !!
Ei−1

Z′
∞
K

+1−−−→ .

Since iZ′
∞

= iZ∞
◦ i′ and i(Z\Z′)∞ = iZ∞

◦ i, the distinguished triangle

in the statement is obtained by applying the functor Ei−1
Z∞

to the above
distinguished triangle. �

Lemma 2.7.8. Let c ∈ R and Z a locally closed subset of M.

(i) The following conditions are equivalent:

(a) Ei−1
Z∞
K ∈ E6c(Z∞),

(b) π−1
kZ ⊗K ∈ E6c(M).

(ii) The following conditions are equivalent:

(a) Ei!Z∞
K ∈ E>c(Z∞),

(b) RIhom (π−1
kZ , K) ∈ E>c(M).

Proof. (i) By Lemma 2.7.6, one has

π−1
kZ ⊗K ≃ EiZ∞ !!Ei

−1
Z∞
K,

Ei−1
Z∞
K ≃ Ei−1

Z∞
(π−1

kZ ⊗K).

The statement follows, since the functors EiZ∞ !! and Ei−1
Z∞

are exact by
Proposition 2.7.3. (It follows that (a) and (b) remain equivalent when
replacing 6 c by > c.)

(ii) is proved similarly. �
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2.8. Stable objects. Setting

k{t≫0} := “ lim−→”
a→+∞

k{t>a}, k{t<∗} := “ lim−→”
a→+∞

k{t<a},

k{06t<∗} := “ lim−→”
a→+∞

k{06t<a},

there are distinguished triangles in D(M× R∞)

k{t≫0} −→ k{t<∗}[1] −→ kM×R[1]
+1−−−→,

k{06t<∗} −→ k{t>0} −→ k{t≫0}
+1−−−→ .

The objects of E(M)

k
E
M
:= QM(k{t≫0}) ≃ QM(k{t<∗}[1]) and

k
tor
M

:= QM(k{06t<∗})

enter the distinguished triangle

(2.8.1) k
tor
M
−→ k{t>0} −→ k

E
M

+1−−−→ .

Note that we have

k
tor
M

+
⊗ k

tor
M
≃ k

tor
M
, k

E
M

+
⊗ k

E
M
≃ k

E
M

and k
tor
M

+
⊗ k

E
M
≃ 0.

Definition 2.8.1. The category Est(M) of stable enhanced ind-sheaves
is the full subcategory of E+(M) given by

Est(M) := {K ∈ E+(M) ; ktor
M

+
⊗K ≃ 0}

= {K ∈ E+(M) ; K ∼−→ k
E
M

+
⊗K}

= {K ∈ E+(M) ; K ≃ k
E
M

+
⊗ L for some L ∈ Eb

+(IkM )}

= {K ∈ E+(M) ; K ∼−→ k
Q
{t>a}

+
⊗K for any a > 0},

where the equivalences follow from (2.8.1) and [4, Proposition 4.7.5].

Similar equivalences hold by replacing
+
⊗ with Ihom+.

The embedding Est(M) −→ E(M) has a left adjoint kE
M

+
⊗ ∗, and a right

adjoint Ihom+(kE
M
, ∗). There is an embedding

(2.8.2) e : D(M) →֒ Est(M), F 7→ k
E
M
⊗ π−1F.

Note that e(F ) ≃ k
E
M

+
⊗ ǫ(F ).

For a locally closed subset Z ⊂
◦

M× R, we set

(2.8.3) k
E
Z := k

E
M

+
⊗ k

Q
Z ∈ Est(M).

Lemma 2.8.2.

(i) The embedding e from (2.8.2) is fully faithful and exact.
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(ii) The functor k
E
M

+
⊗ (∗) is exact.

Proof. (i) follows from [4, Proposition 4.7.15] and Lemma 2.7.5, and (ii)
from [4, Lemma 4.7.4]. �

The duality functor for stable enhanced ind-sheaves is defined by

DE
M
: E(M) −→ Est(M)op, K 7→ Ihom+(K,ωE

M
),

where we set ωE
M
:= e(ωM).

Lemma 2.8.3 ([4, Proposition 4.8.3]). Let M = (M,
∨

M). For F ∈
Db(kM×R), one has

DE
M
(kE

M

+
⊗QMF ) ≃ k

E
M

+
⊗ (DQ

M
QMF ) ≃ k

E
M

+
⊗QM(a

−1DM×RF ),

where a is the involution of M × R defined by a(x, t) = (x,−t).

3. Enhanced perverse ind-sheaves

As we recalled in Section 1, a perversity endows the triangulated cate-
gory of R-constructible sheaves on a subanalytic space with a t-structure.
Here, we extend this result to the triangulated category of R-constructible
enhanced ind-sheaves. We allow the subanalytic space to be bordered,
and we also discuss exactness of the six Grothendieck operations.

3.1. Subanalytic bordered spaces. Recall Notation 2.3.1.

Definition 3.1.1. (i) A subanalytic bordered space M = (M,
∨

M) is a

bordered space such that
∨

M is a subanalytic space and M is an

open subanalytic subset of
∨

M .

(ii) A morphism f : M −→ N = (N,
∨

N) of subanalytic bordered spaces is
a morphism f : M −→ N of subanalytic spaces such that its graph Γf

is a subanalytic subset of
∨

M×
∨

N , and q1| Γ f
is proper. In particular,

f : M −→ N is a morphism of bordered spaces.
(iii) M is smooth of dimension d if M is locally isomorphic to Rd as a

subanalytic space.
(iv) A subset S of M (see Definition 2.3.6) is called subanalytic if it is

subanalytic in
∨

M .
(v) A morphism f : M −→ N of subanalytic bordered spaces is submersive

if the continuous map
◦

f :
◦

M −→
◦

N is locally (in
◦

M) isomorphic to the

projection
◦

N× Rd −→
◦

N for some d.

Let M = (M,
∨

M) be a subanalytic bordered space, and consider the

embedding jM : M −→
∨

M .
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Definition 3.1.2. Db
R-c(kM) is the full subcategory of Db(kM) whose

objects F are such that RjM !F is an R-constructible object of Db(k ∨

M
).

We regard Db
R-c(kM) as a full subcategory of D(M).

Proposition 3.1.3. Let f : M −→ N be a morphism of subanalytic bor-

dered spaces.

(i) The functors f−1 and f ! send Db
R-c(kN) to Db

R-c(kM).
(ii) If f is semi-proper, then the functors Rf!! and Rf∗ send Db

R-c(kM)
to Db

R-c(kN).

In particular, the category Db
R-c(kM) only depends on M.

Notation 3.1.4. For M a subanalytic bordered space, set

CSM := {closed subanalytic subsets of M},
LCSM := {locally closed subanalytic subsets of M}.

For Z ∈ LCSM, denote by

iZ∞
: Z∞ −→ M

the morphism induced by the embedding Z ⊂
◦

M (see Notation 2.3.3).
For k ∈ Z, set

CS<k
M

:= {Z ∈ CSM ; dZ < k},
CS6k

M
:= {Z ∈ CSM ; dZ 6 k},

and similarly for LCS<k
M

and LCS6k
M

.

Definition 3.1.5. Let p be a perversity, c ∈ R and k ∈ Z>0. Consider
the following conditions for F ∈ D(M)

(Ip6ck ) : i−1
(M\Z)∞

F ∈ D6c+p(k)((M \ Z)∞) for some Z ∈ CS<k
M
,

(Ip>ck ) : i!Z∞
F ∈ D>c+p(k)(Z∞) for any Z ∈ CS6k

M
.

Consider the following strictly full subcategories of D(M)

Dp 6c(M) := {F ∈ D(M) ; (Ip6ck ) holds for any k ∈ Z>0},
Dp >c(M) := {F ∈ D(M) ; (Ip>ck ) holds for any k ∈ Z>0}.

Let us also set

Dp 6c
R-c(kM) := Dp 6c(M) ∩Db

R-c(kM),

Dp >c
R-c(kM) := Dp >c(M) ∩Db

R-c(kM).

It is easy to check that
(

Dp 6c
R-c(kM), Dp >c

R-c(kM)
)

c∈R
satisfies the analogue

of Proposition 1.7.5 (i) and (ii).
Note that

(

Dp 6c(M), Dp >c(M)
)

c∈R
is not a t-structure if dimM > 0.

Lemma 3.1.6. For any c ∈ R one has

αM

(

Dp 6c(M)
)

⊂ Dp 6c(k ◦

M
).
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Proof. This follows from the fact that α commutes with i−1. �

Remark 3.1.7. Since α does not commute with the functors i! , the
statement

αM

(

Dp >c(M)
)

⊂ Dp >c(k ◦

M
)

does not hold in general. For example, as in [13, Exercise 5.1], let

M = R, S = {0}, F = “ lim−→”
ε−→0+

k[−ε,ε].

Then αMF ≃ kS ∈ D1/2 0(kM) and i!S F ≃ kS[−1], i!S αMF ≃ kS. Hence

F ∈ D1/2 >1/2(M) but αMF /∈ D1/2 >1/2(kM).

3.2. Intermediate enhanced perversities. Let M = (M,
∨

M) be a
subanalytic bordered space.

Definition 3.2.1. Let p be a perversity, c ∈ R and k ∈ Z>0. Consider
the following conditions for K ∈ E(M):

(Ep6ck ) : Ei−1
(M\Z)∞

K ∈ E6c+p(k)((M \ Z)∞) for some Z ∈ CS<k
M
,

(Ep>ck ) : Ei!Z∞
K ∈ E>c+p(k)(Z∞) for any Z ∈ CS6k

M
.

Consider the following strictly full subcategories of E(M)

E6c
p (M) := {K ∈ E(M) ; (Ep6ck ) holds for any k ∈ Z>0},
E>c
p (M) := {K ∈ E(M) ; (Ep>ck ) holds for any k ∈ Z>0}.

Note that
(

E6c
p (M), E>c

p (M)
)

c∈R
is not a t-structures if dimM > 0.

However, we write

E<cp (M) :=
⋃

c′<c

E6c′

p (M), Ecp (M) := E6c
p (M) ∩ E>c

p (M), etc.

Remark 3.2.2.

(i) Conditions (Ep6ck ) and (Ep>ck ) can be rewritten using the equiva-
lences

Ei−1
(M\Z)∞

K ∈ E6c((M \ Z)∞) ⇐⇒ π−1
kM\Z ⊗K ∈ E6c(M),

Ei!Z∞
K ∈ E>c(Z∞) ⇐⇒ RIhom (π−1

kZ , K) ∈ E>c(M),

which follow from Lemma 2.7.8.
(ii) One has

Ei−1
(M\Z)∞

K ∈ E6c((M \ Z)∞)⇒ Ei−1
(M\Z′)∞

K ∈ E6c((M \ Z ′)∞)

for any Z, Z ′ ∈ CSM such that Z ⊂ Z ′.
Similarly,

Ei!Z∞
K ∈ E>c(Z∞)⇒ Ei!Z′

∞
K ∈ E>c(Z ′

∞)
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for any Z ∈ CSM and any locally closed subanalytic subset Z ′ of Z.
Indeed, one has

Ei−1
(M\Z′)∞

≃ Ej−1 ◦ Ei−1
(M\Z)∞

and Ei!Z′
∞
≃ Ej′

! ◦ Ei!Z∞
,

and Ej−1 is exact and Ej′ ! is left exact for the standard t-structure.
Here, j : (M \ Z ′)∞ −→ (M \ Z)∞ and j′ : Z ′

∞ −→ Z∞ are the canon-
ical morphisms.

The following lemma is obvious.

Lemma 3.2.3. For any c ∈ R, one has

E6c+p(dM )(M) ⊂ E6c
p (M)⊂ E6c+p(0)(M),

E>c+p(0)(M) ⊂ E>c
p (M)⊂ E>c+p(dM )(M).

Note that the following lemma is a particular case of Proposition 3.3.21
below.

Lemma 3.2.4. For any c ∈ R and any Z ∈ LCSM, one has

Ei −1
Z∞

(

E6c
p (M)

)

⊂ E6c
p (Z∞),

Ei !
Z∞

(

E>c
p (M)

)

⊂ E>c
p (Z∞),

EiZ∞ ∗

(

E>c
p (Z∞)

)

⊂ E>c
p (M),

EiZ∞ !!

(

E6c
p (Z∞)

)

⊂ E6c
p (M).

Proof. Since the proofs are similar, let us only discuss the third inclusion.
Let K ∈ E>c

p (Z∞). For W ∈ CS6k
M

, consider the Cartesian diagram of
bordered spaces

(Z ∩W )∞

i
��

i′ // W∞

iW∞

��
Z∞

iZ∞ // M.

Noticing that Z ∩ W ∈ CS6k
Z∞

and that Ei′∗ is left exact by Proposi-
tion 2.7.3, one has

Ei!W∞
EiZ∞ ∗K ≃ Ei′∗Ei

!K

∈ Ei′∗
(

E>c+p(k)((Z ∩W )∞)
)

⊂ E>c+p(k)(W∞).

�

Lemma 3.2.5. For any c ∈ R and K ∈ E(M), the following conditions

are equivalent:

(i) K ∈ E>c
p (M),

(ii) Ei!S∞
K ∈ E>c+p(k)(S∞) for any k ∈ Z>0 and any S ∈ LCS6k

M
,
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(iii) Ei!S∞
K ∈ E>c+p(k)(S∞) for any k ∈ Z>0 and any smooth S ∈

LCS6k
M

,

(iv) for any k ∈ Z>0 and any Z ∈ CS6k
M

, there exists an open subana-

lytic subset Z0 of Z∞ such that dim(Z \ Z0) < k and Ei!(Z0)∞
K ∈

E>c+p(k)((Z0)∞),
(v) for any k ∈ Z>0 and any S ∈ LCS6k

M
, there exists an open suban-

alytic subset S0 of S∞ such that dim(S \ S0) < k and Ei!(S0)∞
K ∈

E>c+p(k)((S0)∞).

Proof. The implications in the following diagram are clear

(iii)
'/❱❱❱

❱❱
❱❱❱❱

❱

(i) +3 (ii)
&.❱❱

❱❱❱
❱❱❱

❱❱

08❤❤❤❤❤ ❤❤❤❤❤ (iv).
(v)

/7❤❤❤❤❤ ❤❤❤❤❤

Here the less trivial implication (i)⇒(ii) follows from Remark 3.2.2 (ii).
It remains to show that (iv) =⇒ (i). That is, we have to show that for

any Z ∈ CS6k
M

one has

(3.2.1) RIhom (π−1
kZ , K) ∈ E>c+p(k)(M).

We shall prove it by induction on k ∈ Z>0. When k = 0, (3.2.1) is true,
because Z0 in (iv) coincides with Z. Assume that k > 0. Let Z0 ⊂ Z be
an open subanalytic subset as in (iv), so that

RIhom (π−1
kZ0, K) ∈ E>c+p(k)(M).

Since Z \ Z0 ∈ CS6k−1
M

, the induction hypothesis implies

RIhom (π−1
kZ\Z0, K) ∈ E>c+p(k−1)(M) ⊂ E>c+p(k)(M).

Then (3.2.1) follows from the distinguished triangle

RIhom (π−1
kZ\Z0 , K) −→ RIhom (π−1

kZ , K)

−→ RIhom (π−1
kZ0, K)

+1−−−→ .

�

Proposition 3.2.6. For any c, c′ ∈ R, one has:

IhomE( E6c
p (M), E>c′

p (M)) ⊂ D>c′−c(M),

HomE( E6c
p (M), E>c′

p (M)) ⊂ D>c′−c(k ◦

M
).

In particular, HomE(M)( E6c
p (M), E>c′

p (M)) = 0 if c′ > c.

Proof. (i) Let K ∈ E6c
p (M) andK ′ ∈ E>c′

p (M). Reasoning by decreasing
induction on k ∈ Z>−1, let us show that

(i)k there exists Zk ∈ CS6k
M

such that

RIhom (kM\Zk
, IhomE(K,K ′)) ∈ D>c′−c(M).
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The above statement is obvious for k > dM . Assuming that (i)k holds
true for k > 0, let us prove (i)k−1. Since K ′ ∈ E>c′

p (M), one has

RIhom (π−1
kZk

, K ′) ∈ E>c′+p(k)(M).

Moreover, since K ∈ E6c
p (M), there exists Wk−1 ∈ CS6k−1

M
with

π−1
kM\Wk−1

⊗K ∈ E6c+p(k)(M).

Then

RIhom (kZk\Wk−1
, IhomE(K,K ′))

≃ RIhom (kM\Wk−1
⊗kZk

, IhomE(K,K ′))

≃ IhomE(π−1
kM\Wk−1

⊗K,RIhom (π−1
kZk

, K ′))

∈ IhomE
(

E6c+p(k)(M),E>c′+p(k)(M)
)

⊂ D>c′−c(M),

where the last inclusion follows from Proposition 2.6.8.
Considering the distinguished triangle

RIhom (kZk\Wk−1
, IhomE(K,K ′))

−→ RIhom (kM\(Zk∩Wk−1), IhomE(K,K ′))

−→ RIhom (kM\Zk
, IhomE(K,K ′))

+1−−−→,
we deduce (i)k−1 for Zk−1 = Zk ∩Wk−1.

(ii) The second inclusion follows from the first since HomE ≃ αM IhomE.

(iii) The last assertion follows from (2.6.3). �

Lemma 3.2.7. For any c, c′ ∈ R, one has:

IhomE(E6c(M), E>c′

p (M)) ⊂ Dp >c′−c(M),

and in particular,

IhomE(kQ
M
, E>c
p (M)) ⊂ Dp >c(M).

Proof. Let k ∈ Z>0, Z ∈ CS6k
M

, K ∈ E6c(M) and K ′ ∈ E>c′

p (M). One
has

RIhom (kZ , IhomE(K,K ′)) ≃ IhomE(K,RIhom (π−1
kZ , K

′))

∈ IhomE(E6c(M),E>c′+p(k)(M))

⊂ D>c′−c+p(k)(M),

where the last inclusion follows from Proposition 2.6.8. �

Remark 3.2.8. For c, c′ ∈ R, the inclusion

HomE(E6c(M), E>c′

p (M)) ⊂ Dp >c′−c(k ◦

M
)
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does not hold in general. For example, with notations as in Remark 3.1.7,
let M = R, K = k

E
M

and K ′ = k
E
M
⊗ π−1F . Then K ∈ E0(M), K ′ ∈

1/2E
>1/2(M) and

HomE(K,K ′) ≃ αMF /∈ D1/2 >1/2(kM).

Here, 1/2E :=mE and D1/2 := Dm for m(n) :=−n/2 the middle perversity.

Proposition 3.2.9. For c ∈ R one has
(

E<cp (M)
)⊥

= E>c
p (M).

Proof. One has E>c
p (M) ⊂

(

E<cp (M)
)⊥

by Proposition 3.2.6.

Let K ∈
(

E<cp (M)
)⊥

. We have to show that for any Z ∈ CS6k
M

one
has

Ei!Z∞
K ∈ E>c+p(k)(Z∞).

Since E>c+p(k)(Z∞) =
(

E<c+p(k)(Z∞)
)⊥

, this is equivalent to show that

for any L ∈ E<c+p(k)(Z∞) one has

HomE(Z∞)(L,Ei
!
Z∞
K) ≃ 0.

By Lemma 3.2.3, one has E<c+p(k)(Z∞) ⊂ E<cp (Z∞). Then Lemma 3.2.4
implies EiZ∞ !!L ∈ E<cp (M), so that

HomE(Z∞)(L,Ei
!
Z∞
K) ≃ HomE(M)(EiZ∞ !!L,K) ≃ 0.

�

Proposition 3.2.10. Let M be a subanalytic space. For any interval

I ⊂ R such that I −→ R/Z is injective, the prestack on M

U 7→ EIp (U)

is a stack.

Proof. (i) Let K,L ∈ EIp (M). By Proposition 3.2.6, one has

HomE(K,L) ∈ D>−1(M) = D>0(M).

Hence the presheaf

U 7→ Hom EI
p (U)(Ei

−1
U K,Ei−1

U L) ≃ Γ
(

U ;H0(HomE(K,L))
)

is a sheaf. Thus U 7→ EIp (U) is a separated prestack on M .

(ii) Let M =
⋃

a∈A Ua be an open cover. Let Ka ∈ EIp (Ua) and let
uab : Kb|Ua∩Ub

∼−→ Ka|Ua∩Ub
be isomorphisms such that uab ◦ ubc = uac

on Ua ∩ Ub ∩ Uc (a, b, c ∈ A). We have to show that there exist K ∈
EIp (M) and isomorphisms ua : K|Ua

∼−→ Ka such that uab ◦ ub = ua on
Ua ∩ Ub (a, b ∈ A). This follows from Proposition 2.4.8 by applying it to
Rja !! L

EKa ∈ D(Ua × R), where ja : Ua × R∞ −→ Ua × R is the canonical
morphism. �
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Lemma 3.2.11. Let M be a bordered space. Let c ∈ R, Z ∈ CSM and

K ∈ E(M). Set U =
◦

M \ Z. Then, considering the morphisms

Z∞
i // M U∞,

joo

one has:

(i) K ∈ E6c
p (M) if and only if

Ei−1K ∈ E6c
p (Z∞) and Ej−1K ∈ E6c

p (U∞),

(ii) K ∈ E>c
p (M) if and only if

Ei!K ∈ E>c
p (Z∞) and Ej !K ∈ E>c

p (U∞).

Proof. Since the proofs are similar, let us only discuss (i).
If K ∈ E6c

p (M), then Ei−1K and Ej−1K satisfy the required condi-

tions since the functors Ei−1 and Ej−1 are right exact by Lemma 3.2.4.
Conversely, assume that Ei−1K ∈ E6c

p (Z∞) and Ej−1K ∈ E6c
p (U∞).

For k ∈ Z>0, let SU ∈ CS<kU∞
be such that

π−1
kU\SU

⊗Ej−1K ∈ E6c+p(k)(U∞),

and SZ ∈ CS<kZ∞
be such that

π−1
kZ\SZ

⊗Ei−1K ∈ E6c+p(k)(Z∞).

Set S = SZ ∪ SU ∈ CS<k
M

and S ′
Z = SZ ∪ (Z ∩ SU) ∈ CS<kZ∞

. (Here the

closure of SU is taken in
◦

M.) Then S ∩ U = SU and S ∩ Z = S ′
Z . Since

π−1
kU\SU

⊗K ∈ E6c+p(k)(M), π−1
kZ\S′

Z
⊗K ∈ E6c+p(k)(M),

one concludes that π−1
kM\S ⊗K ∈ E6c+p(k)(M) by considering the dis-

tinguished triangle

π−1
kU\SU

⊗K −→ π−1
kM\S ⊗K −→ π−1

kZ\S′
Z
⊗K +1−−−→ .

�

A subanalytic stratification {Mα}α∈A of M := (M,
∨

M) is a locally finite

(in
∨

M) family of smooth Mα ∈ LCSM such that M =
⊔

α∈AMα and

Mα ∩Mβ 6= 0 implies Mα ⊃Mβ .

Proposition 3.2.12. Let {Mα}α∈A be a subanalytic stratification of M,

and set Mα = (Mα)∞. Let K ∈ E(M).

(i) K ∈ E6c
p (M) if and only if Ei−1

Mα
K ∈ E6c

p (Mα) for any α ∈ A,

(ii) K ∈ E>c
p (M) if and only if Ei!

Mα
K ∈ E>c

p (Mα) for any α ∈ A.

Proof. The statement follows from Lemma 3.2.11. �
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3.3. R-constructible enhanced ind-sheaves. Here, we extend the
definition of R-constructible enhanced ind-sheaves from [4, §4.9] to the
case of subanalytic bordered spaces.

Let M = (M,
∨

M) be a subanalytic bordered space.

Definition 3.3.1. (i) An object K ∈ E(M) is R-constructible if for
any relatively compact subanalytic open subset U of M, one has

Ei−1
U∞
K ≃ k

E
U∞

+
⊗QU∞

F in E(U∞) for some F ∈ Db
R-c(kU∞×R∞

).

In particular, K is stable.
(ii) ER-c(M) is the strictly full subcategory of E(M) whose objects are

R-constructible.

Recall the morphism jM : M −→
∨

M .

Lemma 3.3.2. Let K ∈ E(M). Then K ∈ ER-c(M) if and only if

EjM !!K ∈ ER-c(
∨

M).

Proposition 3.3.3 ([4]). Let f : M −→ N a morphism of subanalytic bor-

dered spaces.

(i) ER-c(M) is a triangulated subcategory of E(M).
(ii) The duality functor DE

M
gives an equivalence ER-c(M)op ∼−→ ER-c(M),

and there is a canonical isomorphism of functors idER-c(M)
∼−→ DE

M
◦

DE
M
.

(iii) The functors Ef−1 and Ef ! send ER-c(N) to ER-c(M), and

DE
M
◦ Ef−1 ≃ Ef ! ◦DE

N
and DE

M
◦ Ef ! ≃ Ef−1 ◦DE

N
.

(iv) Assume that f is semi-proper. Then the functors Ef ∗ and Ef !! send

ER-c(M) to ER-c(N), and

DE
N
◦ Ef ∗ ≃ Ef !! ◦DE

M
and DE

N
◦ Ef !! ≃ Ef ∗ ◦DE

M
.

See [4, Corollary 4.9.4, Theorem 4.9.12, Propositions 4.9.14, 4.8.2].

Definition 3.3.4. (i) An E-type on M is the datum

(3.3.1) L = (ϕa, ma, ψ
±
b , nb)a∈A, b∈B

consisting of
(a) finite sets A,B,
(b) integers ma and nb for any a ∈ A and b ∈ B,
(c) morphisms of subanalytic bordered spaces

ϕa, ψ
±
b : M −→ R∞

for any a ∈ A and b ∈ B, such that ψ−
b (x) < ψ+

b (x) for any
x ∈M .
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(ii) An E-type L as in (3.3.1) is called stable if for any b ∈ B
(3.3.2) {(x, t) ∈M × R ; t = ψ+

b (x)− ψ−
b (x)} ∩ (

∨

M × {+∞}) 6= ∅,

where ∗ denotes the closure in
∨

M × R.

Notation 3.3.5. For an E-type L on M as in (3.3.1), set

Φa := {(x, t) ∈ M × R ; t > ϕa(x)},
Ψb := {(x, t) ∈ M × R ; ψ−

b (x) 6 t < ψ+
b (x)},

and

k
Q
L :=

(

⊕

a∈A
k
Q
Φa
[−ma]

)

⊕
(

⊕

b∈B
k
Q
Ψb
[−nb]

)

∈ E(M),

k
E
L :=

(

⊕

a∈A
k
E
Φa
[−ma]

)

⊕
(

⊕

b∈B
k
E
Ψb
[−nb]

)

≃ k
E
M

+
⊗ k

Q
L ∈ ER-c(M).

Note that kE
Ψb
6≃ 0 if and only if (3.3.2) holds true.

Definition 3.3.6. One says that K ∈ E(M) is free (resp. stably free) on

M if, for any connected component S of
◦

M, there exists an E-type L on S∞

such that Ei−1
S∞
K ≃ k

Q
L (resp. Ei−1

S∞
K ≃ k

E
L). (Note that Ei−1

S∞
≃ Ei !S∞

.)

If K ∈ E(M) is stably free, then it is R-constructible. If K is free, then
it is constructible in the sense of Remark 3.5.12 below.

A regular filtration (Mk)k∈Z of M is an increasing sequence of closed

subanalytic subsets Mk of M such that Mk = ∅ for k 6 −1, Mk =
◦

M for
k > d ◦

M
, and Mk \Mk−1 is smooth of dimension k. In particular,

∅ =M−1 ⊂M0 ⊂ · · · ⊂MdM−1 ⊂MdM =
◦

M.

Lemma 3.3.7 ([4, Lemma 4.9.9]). For any K ∈ ER-c(M) there ex-

ists a regular filtration (Mk)k∈Z of M such that both Ei −1
(Mk\Mk−1)∞

K and

Ei !
(Mk\Mk−1)∞

K are stably free.

Definition 3.3.8. Consider an E-type on M

L = (ϕa, ma, ψ
±
b , nb)a∈A, b∈B,

and assume that M is smooth of dimension d. The dual of L, denoted by

L∗ = (ϕ∗
a, m

∗
a, ψ

±∗
b , n∗

b)a∈A, b∈B,

is the E-type on M defined by

ϕ∗
a :=−ϕa, m∗

a :=−ma − d,
ψ±∗
b :=−ψ∓

b , n∗
b :=−nb − d− 1.

Accordingly, we set

Φ∗
a := {(x, t) ∈M × R ; t > −ϕa(x)},

Ψ∗
b := {(x, t) ∈M × R ; − ψ+

b (x) 6 t < −ψ−
b (x)}.
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Lemma 3.3.9. Let L be an E-type on M. Assume that M is smooth and

equidimensional. Then

DQ
M
k
Q
L ≃ k

Q
L∗ and DE

M
k
E
L ≃ k

E
L∗ .

Proof. This follows from Lemma 3.3.10 below. �

Lemma 3.3.10. Recall Notation 3.3.5 and Definition 3.3.8. If M is

smooth of dimension d, one has

DQ
M
(kQ

Φa
) ≃ k

Q
Φ∗

a
[d], DE

M
(kE

Φa
) ≃ k

E
Φ∗

a
[d],

DQ
M
(kQ

Ψb
) ≃ k

Q
Ψ∗

b
[d+ 1], DE

M
(kE

Ψb
) ≃ k

E
Ψ∗

b
[d+ 1].

Proof. By Lemma 2.8.3, one has

DQ
M
(kQ

Φa
) ≃ k

Q
{t<−ϕa(x)}

[d+ 1] ≃ k
Q
Φ∗

a
[d],

DQ
M
(kQ

Ψb
) ≃ k

Q

{−ψ+
b
(x)6t<−ψ−

b
(x)}

[d+ 1] = k
Q
Ψ∗

b
[d+ 1].

The other statements also follow from Lemma 2.8.3. �

Definition 3.3.11. For p a perversity and c ∈ R, we set

E6c
p R-c(M) := E6c

p (M) ∩ ER-c(M),

E>c
p R-c(M) := E>c

p (M) ∩ ER-c(M).

Proposition 3.3.12. The following properties hold.

(i)
(

E6c
p R-c(M), E>c

p R-c(M)
)

c∈R
is a t-structure on ER-c(M).

(ii) Assume that M = M is a subanalytic space. For any interval

I ⊂ R such that I −→ R/Z is injective, the prestack on M

U 7→ EIp R-c(U)

is a stack of quasi-abelian categories.

Plan of the proof. (i) We have to prove that the conditions in Defini-
tion 1.2.2 are satisfied. Conditions (a) and (b) are clear. Condition
(c) follows from Proposition 3.2.6. Condition (d) is checked in Proposi-
tion 3.3.19 below.

(ii) follows from Proposition 3.2.10. �

Notation 3.3.13. We denote by
(

E6c
1/2 R-c(M), E>c

1/2 R-c(M)
)

c∈R

the t-structure associated with the middle perversity m(n) = −n/2.
Remark 3.3.14. The t-structures

(

E6c
p R-c(M), E>c

p R-c(M)
)

c∈R
are not well

behaved with respect to duality, as one observes in Lemma 3.3.15 below.
We will come back to this point in § 3.5.

Lemma 3.3.15. Assume that M is smooth of dimension d. Using Nota-
tion 3.3.5, one has
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(i) k
E
Φa
,kE

Ψb
∈ E

−p(d)
p R-c (M),

(ii) DE
M
k
E
Φa
∈ E

p(d)
p∗ R-c (M) and DE

M
k
E
Ψb
∈ E

p(d)−1
p∗ R-c (M).

Proof. (i) As the proofs are similar, let us only discuss k
E
Φa

.

(i-1) It is straightforward that kE
Φa
∈ E

6−p(d)
p R-c (M).

(i-2) Let us show that k
E
Φa
∈ E

>−p(d)
p R-c (M). We have to prove that for

any smooth Z ∈ LCS6k
M

one has

E i !Z∞
(kE

Φa
) ∈ E>−p(d)+p(k)(Z∞).

We may assume that k < d. Note that

E i !Z∞
(kE

Φa
) ≃ k

E
M

+
⊗QM

(

i !Z(k{t>ϕa(x)})
)

≃ k
E
M

+
⊗QM

(

i−1
Z (k{t>ϕa(x)})⊗ i !ZkM

)

.

Locally on Z, one has i !ZkM ≃ kZ [k − d]. Hence

E i !Z∞
(kE

Φa
) ∈ E>d−k(Z∞)

by Lemmas 2.6.5 and 2.8.2. One concludes since d − k > −p(d) + p(k)
by perversity.

(ii) Using Lemma 3.3.10 and (i), one has

DE
M
k
E
Φa
≃ k

E
Φ∗

a
[d] ∈ E

−p∗(d)−d
p∗ R-c (M) = E

p(d)
p∗ R-c (M),

DE
M
k
E
Ψb
≃ k

E
Ψ∗

b
[d+ 1] ∈ E

−p∗(d)−d−1
p∗ R-c (M) = E

p(d)−1
p∗ R-c (M).

�

Lemma 3.3.16. Assume that
◦

M is non empty and smooth of dimension

d. For

L = (ϕa, ma, ψ
±
b , nb)a∈A, b∈B

a stable E-type on M, and c ∈ R, one has

(i) k
E
L ∈ E6c

p R-c(M) if and only if for any a ∈ A and b ∈ B
ma 6 c+ p(d), nb 6 c+ p(d),

(ii) k
E
L ∈ E>c

p R-c(M) if and only if for any a ∈ A and b ∈ B
ma > c+ p(d), nb > c+ p(d),

(iii) DE
M
k
E
L ∈ E>−c

p∗ R-c (M) if and only if for any a ∈ A and b ∈ B
ma 6 c + p(d), nb 6 c+ p(d)− 1,

(iv) DE
M
k
E
L ∈ E6−c

p∗ R-c (M) if and only if for any a ∈ A and b ∈ B
ma > c + p(d), nb > c+ p(d)− 1.
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Proof. Since

k
E
L =

(

⊕

a∈A

k
E
Φa
[−ma]

)

⊕
(

⊕

b∈B

k
E
Ψb
[−nb]

)

,

the statement follows from Lemma 3.3.15. Note that a non-zero object
of Ecp (M) belongs to E6c′

p (M) (resp. E>c′

p (M)) if and only if c 6 c′ (resp.
c > c′) by Proposition 3.2.6. �

Corollary 3.3.17. Assume that M is smooth of dimension d. Let K ∈
ER-c(M) be a stably free object. Then, for c ∈ R, one has

(i) K ∈ E6c
p R-c(M) if and only if K ∈ E

6c+p(d)
R-c (M),

(ii) K ∈ E>c
p R-c(M) if and only if K ∈ E

>c+p(d)
R-c (M).

Lemma 3.3.18. Let c ∈ R and K ∈ ER-c(M). Assume that M is smooth

and K is stably free on M. Then there are distinguished triangles in

ER-c(M)

K6c −→ K −→ K>c
+1−−−→ and K<c −→ K −→ K>c

+1−−−→
with KL ∈ ELp R-c(M) for L equal to 6 c, > c, < c or > c.

Proof. It is obvious since K is a direct sum of objects belonging to
Eap R-c(M) for some a ∈ R by Lemma 3.3.15. �

Proposition 3.3.19. Let c ∈ R and K ∈ ER-c(M). Then there are

distinguished triangles in ER-c(M)

K6c −→ K −→ K>c
+1−−−→ and K<c −→ K −→ K>c

+1−−−→
with KL ∈ ELp R-c(M) for L equal to 6 c, > c, < c or > c.

Proof. Since the proof of the existence of the second distinguished trian-
gle follows from the first one, we will construct only the first distinguished
triangle. The arguments we use are standard (see e.g. [10, Lemma 5.8]).

Let M = (M,
∨

M). Reasoning by decreasing induction on k ∈ Z>−1, let
us show that

(dt)k there exists Zk ∈ CS6k
M

and a distinguished triangle

K ′
k −→ Ejk

−1K −→ K ′′
k

+1−−−→,
with K ′

k ∈ E6c
p R-c((M \ Zk)∞) and K ′′

k ∈ E>cp R-c((M \ Zk)∞).

Here, jk is the morphism indicated in the diagram below, where we pic-
ture all the morphisms that will be used in the proof.

(Zk \ Zk−1)∞
i′
k //

ik ((◗◗
◗◗◗

◗◗◗
◗◗◗

◗◗◗
◗

(M \ Zk−1)∞

jk−1

��

(M \ Zk)∞
j′
koo

jkvv♠♠♠
♠♠
♠♠
♠♠
♠♠
♠♠
♠

M
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The statement (dt)k is obvious for k > dM . Assuming that (dt)k holds
true for some k > 0, let us prove (dt)k−1.

The morphism K ′
k −→ Ejk

−1K ≃ Ejk
!K induces by adjunction a mor-

phism Ejk !!K
′
k −→ K, that we complete in a distinguished triangle in

ER-c(M)

Ejk !!K
′
k −→ K −→ L

+1−−−→ .

Let Zk−1 ∈ CS6k−1
M

be such that Zk \ Zk−1 is smooth and Ei!kL is stably
free. By Lemma 3.3.18, there is a distinguished triangle

(3.3.3) L′ −→ Ei!kL −→ L′′ +1−−−→,

with L′ ∈ E6c
p R-c((Zk \ Zk−1)∞) and L′′ ∈ E>cp R-c((Zk \ Zk−1)∞).

The morphism L′ −→ Ei!kL ≃ Ei′ !kEj
!
k−1L induces by adjunction a mor-

phism Ei′k !!L
′ −→ Ej !k−1L ≃ Ej−1

k−1L, that we complete in a distinguished
triangle in ER-c((M \ Zk−1)∞)

(3.3.4) Ei′k !!L
′ −→ Ej−1

k−1L −→ K ′′
k−1

+1−−−→ .

Consider the composite morphism Ej−1
k−1K −→ Ej−1

k−1L −→ K ′′
k−1, and

complete it in a distinguished triangle in ER-c((M \ Zk−1)∞)

K ′
k−1 −→ Ej−1

k−1K −→ K ′′
k−1

+1−−−→ .

We claim that this satisfy (dt)k−1.
Note that

Ej′−1
k K ′′

k−1 ≃ Ej−1
k L ≃ K ′′

k ∈ E>cp R-c((M \ Zk)∞),

Ej′−1
k K ′

k−1 ≃ K ′
k ∈ E6c

p R-c((M \ Zk)∞).

Hence, by Lemma 3.2.11, we are reduced to prove

Ei′−1
k K ′

k−1 ∈ E6c
p R-c((Zk \ Zk−1)∞),(3.3.5)

Ei′ !kK
′′
k−1 ∈ E>cp R-c((Zk \ Zk−1)∞).(3.3.6)

Applying the functor Ei′ !k to (3.3.4), we get a distinguished triangle

L′ −→ Ei!kL −→ Ei′ !kK
′′
k−1

+1−−−→ .

Thus (3.3.3) gives Ei′ !kK
′′
k−1 ≃ L′′ ∈ E>cp R-c((Zk \ Zk−1)∞), which proves

(3.3.6).
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By the octahedral axiom, there is a diagram in E((M \ Zk−1)∞)

K ′
k−1

''

��⑧⑧
⑧⑧
⑧⑧
⑧⑧
⑧⑧
⑧⑧
⑧⑧
⑧⑧
⑧⑧

Ej−1
k−1Ejk !!K

′
k

77

��

Ei′k !!L
′+1oo

��⑧⑧
⑧⑧
⑧⑧
⑧⑧
⑧⑧
⑧⑧
⑧⑧
⑧⑧
⑧⑧

Ej−1
k−1K

''❖❖
❖❖

❖❖
❖❖

❖

// K ′′
k−1 ,

+1

OO

+1❄❄❄❄❄❄❄❄❄❄❄❄

__❄❄❄❄❄

Ej−1
k−1L

77♦♦♦♦♦♦♦♦♦♦

+1❄❄❄❄❄❄❄❄❄❄❄

__❄❄❄❄❄

and hence a distinguished triangle

Ej−1
k−1Ejk !!K

′
k −→ K ′

k−1 −→ Ei′k !!L
′ +1−−−→ .

Applying the functor Ei′−1
k , we get

Ei′−1
k K ′

k−1 ≃ L′ ∈ E6c
p R-c((Zk \ Zk−1)∞),

which proves (3.3.5). �

Definition 3.3.20. For p : Z>0 −→ R a perversity and d ∈ Z>0, the
shifted perversity p[d] is given by

p[d](n) = p(d+ n).

Note that the soft dimension of a subanalytic space is equal to its
dimension.

Proposition 3.3.21. Let f : M −→ N be a morphism of subanalytic bor-

dered spaces, and d ∈ Z>0. Assume that dim
◦

f−1(y) 6 d for any y ∈
◦

N.

Then, for any c ∈ R one has

(i) Ef−1
(

E6c
p[d] (N)

)

⊂ E6c
p (M),

(ii) Ef !
(

E>c
p[d] (N)

)

⊂ E>c−d
p (M).

(iii) Ef ∗

(

E>c
p (M)

)

⊂ E>c
p[d] (N),

(iv) ER-c(N) ∩ Ef !!

(

E6c
p (M)

)

⊂ E6c+d
p[d] (N).

Proof. Let M = (M,
∨

M) and N = (N,
∨

N).
(i) Let L ∈ E6c

p[d] (N). We have to prove that, for any k ∈ Z>0, there

exists Z ∈ CS<k
M

such that Ei−1
(M\Z)∞

Ef−1L ∈ E6c+p(k)((M \ Z)∞). Let

W ∈ CS<k−d
N

be such that Ei−1
(N\W )∞

L ∈ E6c+p(k)((N \W )∞). Note

that if 0 6 k < d, then W = ∅ will do because L ∈ E6c+p[d](0)(N) ⊂
E6c+p(k)(N).

Then Z := f−1(W ) ∈ CS<k
M

satisfies the desired condition. Indeed,
denoting f0 : (M \ Z)∞ −→ (N \W )∞ the morphism induced by f |M\Z ,
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one has

Ei−1
(M\Z)∞

Ef−1L ≃ Ef−1
0 Ei−1

(N\W )∞
L

∈ Ef−1
0 E6c+p(k)((N \W )∞)

⊂ E6c+p(k)((M \ Z)∞),

where the last inclusion follows from Proposition 2.7.3.

(ii) Let L ∈ E>c
p[d] (N). We have to show that for any Z ∈ CS6k

M
there

exists an open subanalytic subset Z0 of Z∞ such that dim(Z \ Z0) < k
and

(3.3.7) Ei!(Z0)∞
Ef !L ∈ E>c+p(k)−d((Z0)∞).

Recall Notation 2.3.1. Replacing
∨

M with Γf , we may assume that f

extends to a morphism of subanalytic spaces
∨

f :
∨

M −→
∨

N .

Since (3.3.7) is local on
∨

M , we may assume that Z is relatively compact

in
∨

M . Then, there exists an open subanalytic subset Z0 of Z satisfying
the following properties:

(a) dim(Z \ Z0) < k,
(b) Z0 =

⊔

i∈I

Si, where {Si}i∈I is a family of subanalytic smooth subsets

of dimension k,
(c) Ti := f(Si) is a smooth equidimensional subset of N for any i ∈ I,
(d) f induces a submersive morphism fi : (Si)∞ −→ (Ti)∞ for any i ∈ I.
We claim that Z0 satisfies (3.3.7). In fact, for any i ∈ I, one has

Ei!(Si)∞
Ef !L ≃ Ef !

iEi
!
(Ti)∞

L

∈ Ef !
i E

>c+p(dTi+d)((Ti)∞).

Since fi is submersive, we have Ef !
i ≃ orSi/Ti ⊗Ef−1

i [dSi
− dTi ], where

orSi/Ti is the relative orientation sheaf (see § 1.5). Hence we have

Ef !
i E

>c+p(dTi+d)((Ti)∞)⊂E>c+p(dTi+d)+dTi−dSi ((Si)∞)

⊂E>c+p(dSi
)−d((Si)∞).

Here, the last inclusion follows from dTi+d > dSi
and p(dTi+d)+dTi+d >

p(dSi
) + dSi

by perversity.
Thus we obtain Ei!(Si)∞

Ef !L ∈ E>c+p(k)−d((Si)∞) for any i ∈ I, which
implies (3.3.7).

(iii) and (iv) follow from (i) and (ii) by adjunction using Proposition 3.2.9
and Proposition 3.3.12 (i), respectively. �

Remark 3.3.22. Concerning (iv) above, the inclusion

Ef !!

(

E6c
p (M)

)

⊂ E6c+d
p[d] (N)
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does not hold in general, since E6c
p (M) is not stable by “

⊕

”. For ex-
ample, let M = R \ {0}, N = R and let f : M −→ N be the inclusion
map. Let xn = 1/n and set Fn = π−1

k{xn} ⊗ k{t>0} ∈ Mod(kM×R∞
).

Let K = QM

(
⊕

n>1 Fn
)

∈ E(M). Then K ∈ E0
1/2 (M) but Ef !!K ≃

QN

(

“
⊕

”
n>1

fR!!Fn
)

∈ E(N) does not belong to E60
1/2 (N). Here fR := f ×

idR : M × R −→ N × R. Indeed, there is no Z ∈ CS<1(N) such that
Ei−1

(N\Z)∞
Ef !!K ∈ E6−1/2((N \ Z)∞), i.e. such that Ei−1

(N\Z)∞
Ef !!K ≃ 0.

3.4. Dual intermediate enhanced perversity. Let p be a perver-
sity and let M be a subanalytic bordered space. Since the t-structure
(

E6c
p R-c(M), E>c

p R-c(M)
)

c∈R
is not well behaved with respect to duality, we

consider also its dual t-structure.

Notation 3.4.1. For c ∈ R, set

E′ 6c
p R-c(M) := {K ∈ ER-c(M) ; DE

M
K ∈ E>−c

p∗ R-c (M)},
E′ >c
p R-c(M) := {K ∈ ER-c(M) ; DE

M
K ∈ E6−c

p∗ R-c (M)}.
The following result is a consequence of Proposition 3.3.12.

Proposition 3.4.2.
(

E′ 6c
p R-c(M), E′ >c

p R-c(M)
)

c∈R
is a t-structure on ER-c(M).

Note that, by the definition, for any c ∈ R the duality functor DE
M

in-
terchanges E6c

p R-c(M) and E′ >−c
p∗ R-c (M), as well as E>c

p R-c(M) and E′ 6−c
p∗ R-c (M).

Lemma 3.4.3. Let M be a bordered space. Let c ∈ R, Z ∈ CSM, and

K ∈ ER-c(M). Set U =
◦

M \ Z. Then, considering the morphisms

Z∞
i // M U∞,

joo

one has:

(i) K ∈ E′ 6c
p R-c(M) if and only if

Ei−1K ∈ E′ 6c
p R-c(Z∞) and Ej−1K ∈ E′ 6c

p R-c(U∞),

(ii) K ∈ E′ >c
p R-c(M) if and only if

Ei!K ∈ E′ >c
p R-c(Z∞) and Ej !K ∈ E′ >c

p R-c(U∞).

Proof. The statement follows from Lemma 3.2.11, noticing that

DE
Z∞

Ei−1K ≃ Ei!DE
M
K, DE

U∞
Ej−1K ≃ Ej !DE

M
K,

DE
Z∞

Ei!K ≃ Ei−1DE
M
K, DE

U∞
Ej !K ≃ Ej−1DE

M
K,

which is a consequence of Proposition 3.3.3. �

Lemma 3.4.4. For any c ∈ R one has:

E′ 6c
p R-c(M) ⊂ E6c

p R-c(M) ⊂ E′ 6c+1
p R-c (M),

E>c
p R-c(M) ⊂ E′ >c

p R-c(M) ⊂ E>c−1
p R-c (M).
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Proof. Let K ∈ E(M). By Lemma 3.3.7, there exists a regular filtration
(Mk)k∈Z of M such that both Ei −1

(Mk\Mk−1)∞
K and Ei !

(Mk\Mk−1)∞
K are

stably free. In order to check the inclusions in the statement, by Lem-
mas 3.2.11 and 3.4.3, we may assume that M is smooth equidimensional,
and that K is stably free. Then one concludes using Lemma 3.3.16. �

Proposition 3.4.5. Let f : M −→ N be a morphism of subanalytic bor-

dered spaces, and d ∈ Z>0. Assume that dim f−1(y) 6 d for any y ∈
◦

N.

Then, for any c ∈ R one has

(i) Ef−1
(

E′ 6c
p[d] R-c(N)

)

⊂ E′ 6c
p R-c(M),

(ii) Ef !
(

E′ >c
p[d] R-c(N)

)

⊂ E′ >c−d
p R-c (M),

(iii) ER-c(N) ∩ Ef ∗

(

E′ >c
p R-c(M)

)

⊂ E′ >c
p[d] R-c(N),

(iv) ER-c(N) ∩ Ef !!

(

E′ 6c
p R-c(M)

)

⊂ E′ 6c+d
p[d] R-c (N).

Proof. (i) Let K ∈ E′ 6c
p[d] R-c(N), that is, DE

N
K ∈ E>−c

p[d]∗ R-c (M). Since

p[d]∗(n) = p∗[d](n) + d, Proposition 3.3.21 implies

DE
M
Ef−1K ≃ Ef !DE

N
K ∈ E>−c

p∗ R-c (M).

Hence
Ef−1K ∈ E′ 6c

p R-c(M).

(ii) is proved similarly.

(iii) and (iv) follows from (i) and (ii) by adjunction. �

3.5. Enhanced perversity. Let p be a perversity and M a subanalytic
bordered space.

Definition 3.5.1. For c ∈ R, consider the strictly full subcategories of
ER-c(M) given by

Ep 6c
R-c(M) := E6c

p R-c(M) ∩ E
′ 6c+1/2
p R-c (M)

= {K ∈ ER-c(M) ; K ∈ E6c
p R-c(M), DE

M
K ∈ E

>−c−1/2
p∗ R-c (M)},

Ep >c
R-c(M) := E

>c−1/2
p R-c (M) ∩ E′ >c

p R-c(M)

= {K ∈ ER-c(M) ; DE
M
K ∈ Ep 6−c

R-c (M)}
= {K ∈ ER-c(M) ; K ∈ E

>c−1/2
p R-c (M), DE

M
K ∈ E6−c

p∗ R-c (M)}.
By Lemma 3.4.4 one has

(3.5.1)
E′ 6c
p R-c(M)⊂ Ep 6c

R-c(M)⊂ E6c
p R-c(M) and

E>c
p R-c(M)⊂ Ep >c

R-c(M)⊂ E′ >c
p R-c(M).

In the rest of this section, we will give a proof of the following result.

Theorem 3.5.2. Let M be a subanalytic bordered space.

(i)
(

Ep 6c
R-c(M), Ep >c

R-c(M)
)

c∈R
is a t-structure on ER-c(M).
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(ii) For any c ∈ R, the duality functor DE
M interchanges Ep 6c

R-c(M) and

Ep
∗ >−c

R-c (M).
(iii) Assume that M = M is a subanalytic space. For any interval

I ⊂ R such that I −→ R/Z is injective, the prestack on M

U 7→ Ep I
R-c(U)

is a stack of quasi-abelian categories.

Plan of the proof. (i) As in the proof of Proposition 3.3.12, the statement
follows from Propositions 3.5.4 and 3.5.5 below.

(ii) is clear from the definitions.
(iii) has a proof analogous to that of Proposition 3.2.10. �

Lemma 3.5.3. Assume that
◦

M is non empty and smooth of dimension

d. For c ∈ R and L a stable E-type on M as in (3.3.1), one has

(i) k
E
L ∈ Ep 6c

R-c(M) if and only if for any a ∈ A and b ∈ B

ma 6 c+ p(d), nb 6 c+ p(d)− 1/2,

(ii) k
E
L ∈ Ep >c

R-c(M) if and only if for any a ∈ A and b ∈ B

ma > c+ p(d), nb > c+ p(d)− 1/2.

Proof. The statement follows from Lemma 3.3.16. �

Proposition 3.5.4. The bifunctors IhomE and HomE are left exact,

i.e., for any c, c′ ∈ R one has:

IhomE( Ep 6c
R-c(M), Ep >c′

R-c(M)) ⊂ D>c′−c(M),

HomE( Ep 6c
R-c(M), Ep >c′

R-c(M)) ⊂ D>c′−c(k ◦

M
).

In particular, HomER-c(M)

(

Ep 6c
R-c(M), Ep >c′

R-c(M)
)

= 0 if c < c′.

Proof. The second inclusion follows from the first one, since HomE ≃
αMIhomE. Let us prove the first inclusion.

Let K ∈ Ep 6c
R-c(M) and K ′ ∈ Ep >c′

R-c(M). As in the proof of Proposi-
tion 3.2.6, reasoning by decreasing induction on k ∈ Z>−1, let us show
that

(i)k there exists Zk ∈ CS6k
M

such that

RIhom (kM\Zk
, IhomE(K,K ′)) ∈ D>c′−c(M).

The above statement is obvious for k > dM . Assuming that (i)k holds
true for some k, let us prove (i)k−1. There exists Zk−1 ∈ CS6k−1

M
such

that Zk−1 ⊂ Zk, Zk \ Zk−1 is smooth of dimension k, and Ei−1
(Zk\Zk−1)∞

K
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and Ei!(Zk\Zk−1)∞
K are stably free. Consider the distinguished triangle

RIhom (kZk\Zk−1
, IhomE(K,K ′))

−→ RIhom (kM\Zk−1
, IhomE(K,K ′))

−→ RIhom (kM\Zk
, IhomE(K,K ′))

+1−−−→ .

Then (i)k−1 will follow if we show that

RIhom (kZk\Zk−1
, IhomE(K,K ′)) ∈ D>c′−c(M).

This is equivalent to

i!S∞
IhomE(K,K ′) ∈ D>c′−c(S∞)

for any connected component S of Zk \ Zk−1. One has

i!S∞
IhomE(K,K ′) ≃ IhomE(Ei−1

S∞
K,Ei!S∞

K ′).

By the assumption, Ei−1
S∞
K ≃ k

E
L and Ei!S∞

K ′ ≃ k
E
L′ for some stable

E-types

L = (ϕa, ma, ψ
±
b , nb)a∈A, b∈B and L′ = (ϕa′ , ma′ , ψ

±
b′ , nb′)a′∈A′, b′∈B′ .

Then we are reduced to prove

(3.5.2) IhomE(kE
L,k

E
L′) ∈ D>c′−c(S∞).

Recall that

k
E
L =

(

⊕

a∈A

k
E
Φa
[−ma]

)

⊕
(

⊕

b∈B

k
E
Ψb
[−nb]

)

∈ Ep 6c
R-c(S∞),

k
E
L′ =

(

⊕

a′∈A′

k
E
Φa′

[−ma′ ]
)

⊕
(

⊕

b′∈B′

k
E
Ψb′

[−nb′ ]
)

∈ Ep >c′

R-c(S∞).

By Lemma 3.5.3 and Proposition 2.6.8, one has

IhomE(kE
Ψb
[−nb],kE

Ψb′
[−nb′ ])

∈ IhomE(E6c+p(k)−1/2(S∞),E>c′+p(k)−1/2(S∞))

⊂ D>c′−c(S∞).

Similarly, one has

IhomE(kE
Φa
[−ma],k

E
Ψb′

[−nb′ ]) ∈ D>c′−c−1/2(S∞),

IhomE(kE
Ψb
[−nb],kE

Φa′
[−ma′ ]) ∈ D>c′−c+1/2(S∞),

IhomE(kE
Φa
[−ma],k

E
Φa′

[−ma′ ]) ∈ D>c′−c(S∞).

Hence (3.5.2) reduces to show that for any a ∈ A and b′ ∈ B′

HmIhomE(kE
Φa
[−ma],k

E
Ψb′

[−nb′ ]) ≃ 0

for any m ∈ Z such that c′ − c− 1/2 6 m < c′ − c. Since we have

HmIhomE(kE
Φa
[−ma],k

E
Ψb′

[−nb′ ]) ≃ Hm+ma−nb′IhomE(kE
Φa
,kE

Ψb′
),
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we may assume that m + ma − nb′ > 0. Since ma 6 c + p(k) and
nb′ > c′ + p(k) − 1/2, one has m +ma − nb′ 6 m − c′ + c + 1/2 < 1/2.
Then, we have m+ma − nb′ = 0.

Let π : S∞×R∞ −→ S∞ and π : S∞×R −→ S∞ be the projections. Then
one concludes by noticing that

HmIhomE(kE
Φa
[−ma],k

E
Ψb′

[−nb′ ])
≃ H0IhomE(kE

Φa
,kE

Ψb′
) ≃ H0IhomE(kQ

Φa
,kE

Ψb′
)

≃ H0Rπ∗RIhom (k{t>ϕa(x)},k{t≫0}

+
⊗ k{ψ−

b′
(x)6t<ψ+

b′
(x)})

≃ H0Rπ !!RIhom (k{t>ϕa(x)}, “ lim−→”
s−→+∞

k{ψ−

b′
(x)+s6t<ψ+

b′
(x)+s})

≃ π!!Ihom (k{t>ϕa(x)}, “ lim−→”
s−→+∞

k{ψ−

b′
(x)+s6t<ψ+

b′
(x)+s})

≃
(∗)

“ lim−→”
s−→+∞

π!!Ihom (k{t>ϕa(x)},k{ψ−

b′
(x)+s6t<ψ+

b′
(x)+s})

≃ “ lim−→”
s−→+∞

π∗Hom (k{t>ϕa(x)},k{ψ−

b′
(x)+s6t<ψ+

b′
(x)+s}) ≃ 0,

where (∗) holds because π!! and Ihom (k{t>ϕa(x)}, • ) commute with in-
ductive limits. �

Proposition 3.5.5. For any c ∈ R and K ∈ ER-c(M) there are distin-

guished triangles in ER-c(M)

K6c −→ K −→ K>c
+1−−−→, K<c −→ K −→ K>c

+1−−−→,
with KL ∈ Ep L

R-c(M) for L equal to 6 c, > c, < c or > c.

Proof. Since the proofs are similar, we will construct only the first dis-
tinguished triangle.

As in the proof of Proposition 3.3.19, one reduces to the case where M

is smooth and connected, and K is stably free. Then K is a direct sum
of objects in Ep a

R-c(M) for some a ∈ R by Lemma 3.5.3. �

As a corollary of Propositions 3.3.21 and 3.4.5, one has

Proposition 3.5.6. Let f : M −→ N be a morphism of subanalytic bor-

dered spaces, and d ∈ Z>0. Assume that dim
◦

f−1(y) 6 d for any y ∈
◦

N.

Then, for any c ∈ R one has

(i) Ef−1
(

E
p[d] 6c

R-c(N)
)

⊂ Ep 6c
R-c(M),

(ii) Ef !
(

E
p[d] >c

R-c(N)
)

⊂ Ep >c−d
R-c (M),

(iii) ER-c(N) ∩ Ef ∗

(

Ep >c
R-c(M)

)

⊂ E
p[d] >c

R-c(N),

(iv) ER-c(N) ∩ Ef !!

(

Ep 6c
R-c(M)

)

⊂ E
p[d] 6c+d

R-c (N).

Proof. (i) and (ii) follow from Propositions 3.3.21 and 3.4.5, and (iii) and
(iv) follow from them by adjunction. �
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Proposition 3.5.7. Let M be a subanalytic bordered space. The embed-

ding

e : Db
R-c(kM) →֒ ER-c(M)

induced by (2.8.2) is exact, i.e., for any c ∈ R one has

e
(

Dp 6c
R-c(kM)

)

⊂ Ep 6c
R-c(M),

e
(

Dp >c
R-c(kM)

)

⊂ Ep >c
R-c(M).

Proof. It follows from the exactness of e with respect to the standard
t-structures and

π−1
kS ⊗ e(F ) ≃ e(kS ⊗F ),

RIhom (π−1
kS, e(F )) ≃ e(RIhom (kS, F ))

for any F ∈ Db(kM) and S ∈ LCS(M), by [4, Corollary 4.7.11]. �

Definition 3.5.8. The enhanced middle perversity t-structure
(

E
1/2 6c

R-c(M), E
1/2 >c

R-c(M)
)

c∈R

is the one associated with the middle perversity m(n) = −n/2. It is a
self-dual t-structure indexed by 1

2
Z

Example 3.5.9. Let M = {pt}. Note that one has:

(i) k
E
{a6t<b} ≃ 0 for a, b ∈ R with a < b,

(ii) k
E
{t>a} ≃ k

E
M

for a ∈ R,

(iii) DE
k
E
M
≃ k

E
M

.

Hence k
E
M
∈ E

1/2 0
R-c({pt}), and any object of ER-c({pt}) is a finite direct

sum of shifts of copies of kE
M

.

Example 3.5.10. Let M =M = R and let

K = k
E
{x>0, 06t<1/x}∪{x=0, t>0},

so that
DE
MK ≃ k

E
{x>0, −1/x6t<0}[2].

Noticing that

Ei!{0}K ≃ DE
{0}Ei

−1
{0}D

E
MK ≃ 0,

Ei!{0}D
E
MK ≃ DE

{0}Ei
−1
{0}K ≃ DE

{0}k
E
{0} ≃ k

E
{0},

one has K ∈ E
1/2

1/2 R-c(R) and DEK ∈ E
−3/2

1/2 R-c (R), so that K ∈ E
′ 3/2

1/2 R-c(R).

Hence K ∈ E
1/2 1

R-c(R).

Example 3.5.11. Let {Mα}α be a subanalytic stratification of M, and
set Mα := (Mα)∞. Let K ∈ ER-c(M). Assume that Ei−1

Mα
K and Ei !

Mα
K

are stably free. Recall Notation 3.3.5. Even if only direct summands
containing Φa appear in Ei−1

Mα
K, direct summands containing Ψb can

appear in Ei!
Mα
K, as seen in this example.
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Let M = R2 × R>0 with coordinates (x, y, z), consider the bordered
space M := (M,R2 × R), and set

S :=

{

(x, y, z, t) ∈M × R ; x > 0, y > 0, t >
zx

x+ y

}

,

K := k
E
S ∈ E(M).

Set Z = {x = y = 0} ⊂M . Then one has:

Ei−1
Z∞
K ≃ 0, Ei!Z∞

K ≃ k
E
{06t<z}[−1],

Ei!Z∞
DE

M
K ≃ 0, Ei−1

Z∞
DE

M
K ≃ DE

Z∞
Ei!Z∞

K ≃ k
E
{−z6t<0}[3].

We deduce that K ∈ E
3/2

1/2 R-c(M) and DE
M
K ∈ E

−3/2
1/2 R-c (M). Hence K ∈

E
′ 3/2

1/2 R-c(M), so that

K ∈ E
1/2 3/2

R-c(M).

Remark 3.5.12. Let M be a subanalytic space. The triangulated cate-
gory of enhanced sheaves on M (cf. [19, 5]) is defined by

Eb(kM) := Db(kM×R)/π
−1Db(kM),

where π : M × R −→ M is the projection. One similarly defines Eb
±(kM),

so that Eb(kM) ≃ Eb
+(kM)⊕ Eb

−(kM). Note that

Eb
±(kM) ≃ {K ∈ E±(M) ; LEK ∈ Db(kM×R∞

)}.

We say that an object K ∈ Eb
+(kM) is R-constructible if so is LEK ∈

Db(kM×R∞
). Let p : Z>0 −→ R be a perversity. Then, with obvious nota-

tions,
(

Ep 6c
R-c(kM), Ep >c

R-c(kM)
)

c∈R

satisfies the analogue of Theorem 3.5.2. Moreover, a description analo-
gous to that in Lemma 3.3.7 holds, replacing “stably free” with “free”.

Remark 3.5.13. Let M be a subanalytic space. It is shown in [16] that
HomE induces a functor

HomE(kE
t>0, ∗) : Eb

R-c(M) −→ Db
R-c(kM).

This is neither left nor right exact with respect to the middle perversity t-
structures. For example, letM = Rn andK = k

E
{x 6=0, t=−1/|x|}. Then K ∈

E
1/2 n/2

R-c (M) and F := HomE(kE
M , K) ≃ k{x 6=0} by [16, Corollary 6.6.6.].

Hence, H1/2 n/2(F ) ≃ kM and H1/2 1(F ) ≃ k{0} when n > 3. Therefore,
HomE(kE

t>0, ∗) is not left exact. Since HomE(kE
t>0, ∗) commutes with

duality, HomE(kE
t>0, ∗) is not right exact either.
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4. Riemann-Hilbert correspondence

On a complex manifold, the Riemann-Hilbert correspondence embeds
the triangulated category of holonomicD-modules into that of R-constructible
enhanced ind-sheaves. We prove here the exactness of the embedding,
when the target category is endowed with the middle perversity t-structure.

4.1. Subanalytic ind-sheaves. For subanalytic sheaves and ind-sheaves
we refer to [13] (where subanalytic sheaves are called ind-R-constructible
sheaves).

Let M be a subanalytic space. An ind-sheaf on M is called subanalytic
if it is isomorphic to a small filtrant ind-limit of R-constructible sheaves.
Then, being subanalytic is a local property.

Let us denote by I suban(kM) the category of subanalytic ind-sheaves.
Note that it is a strictly full subcategory of I(kM ) stable by kernels,
cokernels and extensions.

Let OpMsa
be the category of relatively compact subanalytic open sub-

sets of M , whose morphisms are inclusions.

Definition 4.1.1 (cf. [12, 13]). A subanalytic sheaf F is a functor Opop
Msa
−→

Mod(k) which satisfies

(i) F (∅) = 0,
(ii) For U, V ∈ OpMsa

, the sequence

0 −→ F (U ∪ V )
r1−−→ F (U)⊕ F (V ) r2−−→ F (U ∩ V )

is exact. Here r1 is given by the restriction maps and r2 is given by
the restriction F (U) −→ F (U∩V ) and the opposite of the restriction
F (V ) −→ F (U ∩ V ).

Denote by Mod(kMsa) the category of subanalytic sheaves.

The following result is proved in [13].

Proposition 4.1.2. The category I suban(kM) of subanalytic ind-sheaves

and the category Mod(kMsa) of subanalytic sheaves are equivalent by the

functor associating with F ∈ I suban(kM) the subanalytic sheaf

OpMsa
∋ U 7−→ Hom I(kM )(kU , F ).

4.2. Enhanced tempered distributions. Hereafter, we take the com-

plex number field C as the base field k.

Let M be a real analytic manifold. Denote by DbM the sheaf of
Schwartz’s distributions on M . The subanalytic sheaf of tempered dis-
tributions on M is defined by

DbtM(U) := Im(DbM(M) −→ DbM(U))

≃ DbM (M)/ΓM\U (M ;DbM)
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for any U ∈ OpMsa
. We still denote by DbtM the corresponding subana-

lytic ind-sheaf.
Denote by P the real projective line, and let t ∈ R ⊂ P be the affine

coordinate. Considering the natural morphism of bordered spaces

j : M × R∞ −→M × P,

one sets

DbTM := j !
(

DbtM×P

∂t−1−−−−→ DbtM×P

)

∈ D(M × R∞),

where the above complex sits in degrees −1 and 0.
By the results in [4, §8.1] one has

Proposition 4.2.1.

(i) There are isomorphisms in D(M × R∞)

DbTM ∼−→ Ihom+(C{t>0},DbTM)
∼←− Ihom+(C{t>a},DbTM) for any a > 0.

(ii) The complex DbTM is concentrated in degree −1.
(iii) There are natural monomorphisms in I(CM×R∞

)

C{t<∗} ⊗ π−1DbtM // // H−1DbTM // // π−1DbM .

The enhanced ind-sheaf of tempered distributions is defined by

DbEM := QM(DbTM ) ∈ E(M).

Part (iii) in the following proposition is new.

Proposition 4.2.2.

(i) DbEM is stable, i.e. CE
M

+
⊗DbEM ≃ DbEM .

(ii) REDbEM ≃ DbTM . In particular, it is concentrated in degree −1.
(iii) DbEM ∈ E0(M). In other words, the complex LEDbEM is concen-

trated in degree 0.

Proof. (i) follows from Proposition 4.2.1 (i).
(ii) By Proposition 4.2.1 (i), one has REDbEM ≃ DbTM . This is concen-

trated in degree −1 by Proposition 4.2.1 (ii),
(iii) By (ii), REDbEM ≃ DbTM is concentrated in degree −1. Hence

Lemma 2.5.2 implies

LEDbEM ≃ C{t>0}

+
⊗DbTM ∈ D[−1,0](M × R∞),

and we are reduced to prove that H−1 LEDbEM ≃ 0.
By [4, Proposition 4.3.10], there is a distinguished triangle

π−1
M RπM !!DbTM −→ LEDbEM −→ DbTM

+1−−−→ .

By Proposition 4.2.1 (iii),

H−1RπM !!DbTM ≃ πM !!H
−1DbTM ⊂ πM !!π

−1DbM = 0.
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Thus, the above distinguished triangle induces the exact sequence

0 −→ H−1 LEDbEM −→ H−1DbTM
γ−→ π−1R1πM !!H

−1DbTM .
To conclude, we have to show that γ is a monomorphism.

By Proposition 4.2.1 (iii), there is a commutative diagram

H−1DbTM
γ //

��

��

π−1
M R1πM !!H

−1DbTM

��

π−1
M DbM

∼ // π−1
M R1πM !!π

−1
M DbM .

Hence γ is a monomorphism. �

4.3. D-modules. Let X be a complex manifold. We denote by dCX its
complex dimension. Denote by OX and DX the sheaves of algebras of
holomorphic functions and of differential operators, respectively. Denote
by ΩX the sheaf of differential forms of top degree.

Denote by Mod(DX) the category of left DX -modules, and by Db(DX)
its bounded derived category. For f : X −→ Y a morphism of complex
manifolds, denote by ⊗D, Df ∗, Df ∗ the operations for D-modules.

Consider the dual ofM∈ Db(DX) given by

DXM = RHomDX
(M,DX ⊗OX

Ω⊗−1
X )[dCX ].

A DX-module M is called quasi-good if, for any relatively compact
open subset U ⊂ X,M|U is isomorphic (as an OX |U -module) to a filtrant
inductive limit of coherent OX |U -modules. A DX -module M is called
good if it is quasi-good and coherent.

Recall that to a coherent DX-moduleM one associates its character-
istic variety char(M), a closed conic involutive subset of the cotangent
bundle T ∗X. If char(M) is Lagrangian,M is called holonomic. For the
notion of regular holonomic DX-module, refer e.g. to [8, §5.2].

Denote by Db
hol(DX) and Db

rh(DX) the full subcategories of Db(DX)
whose objects have holonomic and regular holonomic cohomologies, re-
spectively. These are triangulated categories.

Let f : X −→ Y be a morphism of complex manifolds. For x0 ∈ X
consider

rankCx0(f) := rankC(Tx0X
df(x0)−−−→ Tf(x0)Y ) and

flat-dimDX,x0
(DX−→Y,x0),

the complex dimension of the image of df(x0), and the flat dimension of
DX−→Y,x0 as a left DX,x0-module, respectively.

Proposition 4.3.1. Let f : X −→ Y be a morphism of complex manifolds.

For x0 ∈ X one has

flat-dimDX,x0
(DX−→Y,x0) 6 dCX − rankCx0(f).
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Proof. Set n = dCX , m = dCY , d = rankCx0(f), and y0 = f(x0).
Choose a system of local coordinates y = (y1, . . . , ym) of Y on a neigh-

borhood of y0, such that ∂y1 , . . . , ∂yd generate df(x0)(Tx0X) ⊂ Tf(x0)Y .
Set xk = yk ◦ f for k 6 d, and complete them to a system of local
coordinates x = (x1, . . . , xn) of X on a neighborhood of x0.

Consider the subring

R :=OX, x0 [∂x1 , . . . , ∂xd] ⊂ D :=DX,x0 .
Then DX−→Y, x0 ≃ OX, x0 ⊗OY, y0

DY, y0 is a free R-module. In fact, one

has

DX−→Y, x0 ≃
⊕

β∈{0}d×Zm−d
>0 ⊂Zm

>0

R∂βy .

The statement follows by Lemma 4.3.2 below. �

Lemma 4.3.2. Use notations as in the proof above. Let M be a left

D-module. If M is flat as a left R-module, then

flat-dimD(M) 6 n− d.
Proof. Set O := OX, x0 and D′ := O[∂xd+1

, . . . , ∂xn ], so that D ≃ D′ ⊗O

R. Set K := C∂xd+1
⊕ · · · ⊕ C∂xn. Then the Spencer resolution of M,

considered as a D′-module, is

0 −→ (D′ ⊗
n−d
∧

K)⊗OM−→ · · · −→ D′ ⊗OM−→M −→ 0.

Since D′ ⊗O R ≃ D, the above resolution reads as

0 −→ (D ⊗
n−d
∧

K)⊗RM−→ · · · −→ D ⊗RM−→M−→ 0.

Since M is a flat left R-module, this is a flat resolution of M as a left
D-module. �

For a category C, let Pro(C) be the category of pro-objects in C, and
“ lim←−” the projective limit in Pro(C).

Lemma 4.3.3. Let M be a quasi-good DX-module, flat over DX . Let

{Mi}i∈I be a filtrant inductive system of coherent DX-modules such that

M≃ lim−→
i

Mi. Then, for any x ∈ X and any k 6= 0 one has

“ lim←−”
i

Extk
DX

(Mi,DX)x ≃ 0 in Pro(Mod(Dop
X,x)).

Proof. There exists a filtrant inductive system {Lj}j∈J of free DX,x-
modules of finite rank such that Mx ≃ lim−→

j

Lj (see [17]). It implies
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that “ lim−→”
i

Mi,x ≃ “ lim−→”
j

Lj in Ind(Mod(DX,x)). Hence, for any i ∈ I

there exist j ∈ J , a morphism u : i −→ i′ in I and a commutative diagram

Mi,x
//

%%❑❑
❑

Mi′,x .

Lj

88qqqq

It follows that the morphism induced by u,

Extk
DX,x

(Mi′,x,DX,x) −→ ExtkDX,x
(Mi,x,DX,x),

is the zero morphism. �

For a hypersurface Y of X, denote by OX(∗Y ) the sheaf of meromor-
phic functions on X with poles in Y . We set DX(∗Y ) = OX(∗Y ) ⊗OX

DX ≃ DX ⊗OX
OX(∗Y ). It is a sheaf of C-algebras on X. For a DX-

moduleM, we set M(∗Y ) :=DX(∗Y )⊗DX
M.

Lemma 4.3.4. Let Y ⊂ X be a closed complex analytic hypersurface,

and let M be a quasi-good DX-module. Assume that M|X\Y is flat over

DX\Y . Let {Mi}i∈I be a filtrant inductive system of coherent DX-modules

such that M(∗Y ) ≃ lim−→
i

Mi. Then, for any V ⊂⊂ X one has

(i) “ lim←−”
i

Extk
DX

(Mi,DX(∗Y ))|V ≃ 0 in Pro
(

Mod(Dop
V )

)

for any k 6= 0,

(ii) “ lim←−”
i

RHomDX
(Mi,DX(∗Y ))|V

≃ “ lim←−”
i

HomDX
(Mi,DX(∗Y ))|V in Pro

(

Db(Dop
V )

)

.

Proof. (i) For i ∈ I, denote by I i the category whose objects are mor-
phism i −→ i′ in I with source i, and whose morphisms are commutative
diagrams in I

i
}}③③③
③ ##❍

❍❍

i′ // i′′ .

It is enough to show that for any i ∈ I there exists (u0 : i −→ i0) ∈ I i such
that the induced morphism

u′0 : ExtkDX
(Mi0,DX(∗Y ))|V −→ ExtkDX

(Mi,DX(∗Y ))|V
is the zero morphism. For (u : i −→ i′) ∈ I i, set

Nu = Im
(

Extk
DX

(Mi′,DX) −→ ExtkDX
(Mi,DX)

)

.

It is a coherent Dop
X -module. Since I i is filtrant by [14, Corollary 3.2.3],

{supp(Nu)}u∈Ii is a decreasing family of closed complex analytic subsets.
Hence it is locally stationary. Thus, there exists (u0 : i −→ i0) ∈ I i such
that

supp(Nu0 |V ) =
⋂

u∈Ii

supp(Nu|V ).
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By Lemma 4.3.3, one has
⋂

u∈Ii

supp(Nu|V ) ⊂ Y.

Hence, supp(Nu0|V ) ⊂ Y and one has

0 ≃ (Nu0 ⊗DX
DX(∗Y ))|V ≃ Im(u′0).

Hence we obtain (i).

(ii) follows from (i). �

Proposition 4.3.5. Let Y ⊂ X be a closed complex analytic hypersur-

face, and letM be a quasi-good DX-module. Assume thatM|X\Y is flat

over DX\Y . Then M(∗Y ) is a flat DX-module.

Proof. The question being local, we can write M(∗Y ) ≃ lim−→
i

Mi with

{Mi}i∈I a filtrant inductive system of coherent DX-modules. Set

M∗
i :=HomDX

(Mi,DX).
Then HomDX

(Mi,DX(∗Y )) ≃M∗
i (∗Y ). By Lemma 4.3.4, one has

“ lim←−”
i

RHomDX
(Mi,DX(∗Y )) ≃ “ lim←−”

i

M∗
i (∗Y ) in Pro(Db(Dop

X )),

by shrinking X if necessary. Let P ∈ Mod(Dop
X ). We have to show that,

for k < 0,

(4.3.1) Hk
(

P ⊗L
DX
M(∗Y )

)

≃ 0.

One has

Hk
(

P ⊗L
DX
M(∗Y )

)

≃ Hk
(

P(∗Y )⊗L
DX
M(∗Y )

)

≃ lim−→
i

Hk
(

P(∗Y )⊗L
DX
Mi

)

.

Moreover,

“ lim−→”
i

P(∗Y )⊗L
DX
Mi

≃ “ lim−→”
i

RHomDop
X

(

RHomDX
(Mi,DX), P(∗Y )

)

≃ “ lim−→”
i

RHomDX(∗Y )op

(

RHomDX

(

Mi,DX(∗Y )
)

, P(∗Y )
)

≃ “ lim−→”
i

RHomDX(∗Y )op

(

M∗
i (∗Y ), P(∗Y )

)

.

Hence we obtain

Hk
(

P ⊗L
DX
M(∗Y )

)

≃ lim−→
i

HkRHomDop
X

(∗Y )

(

M∗
i (∗Y ),P(∗Y )

)

,

which vanishes for k < 0. �
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Let us denote by E(Dop
X ) the category of enhanced ind-sheaves on X

with Dop
X -action (see [4, § 4.10] where E(Dop

X ) is denoted by Eb(IDop
X )).

Consider the forgetful functor

for : E(Dop
X ) −→ E(X).

Lemma 4.3.6. Let c ∈ R, X a complex manifold, Y ⊂ X a complex

analytic subset, K ∈ E(Dop
X ), and M a quasi-good DX-module. Set U =

X \ Y . Assume

(a) K ≃ RIhom (π−1
kU , K),

(b) for(K) ∈ E>c(X),
(c) M|U is flat over DU .

Then,

K ⊗L
DX
M∈ E>c(X).

Proof. (i) Let ϕ : X ′ −→ X be a projective morphism such that Y ′ :=
ϕ−1(Y ) is a hypersurface, and ϕ induces an isomorphism U ′:=ϕ−1(U) ∼−→
U . Set

K ′ := RIhom
(

π−1CU ′ ,Eϕ−1K ⊗L
ϕ−1DX

DX←−X′

)

∈ E(Dop
X′),

M′ := (Dϕ∗M)(∗Y ′).

Then we have for(K ′) ∈ E>c(X ′). Note thatM′ is concentrated in degree
zero. Moreover, by Proposition 4.3.5,M′ is a flat DX′-module. Since

K ⊗L
DX
M≃ Eϕ∗(K

′ ⊗L
DX′
M′),

and since Eϕ∗ is left exact, we reduce to the case where M is flat over
DX .

(ii) LetM be a quasi-good flat DX-module. Let {Mi}i∈I be a filtrant
inductive system of coherent DX-modules such thatM≃ lim−→

i

Mi. Set

M∗
i :=HomDX

(Mi,DX).
Then Lemma 4.3.4 implies that

“ lim←−”
i

RHomDX
(Mi,DX) ≃ “ lim←−”

i

M∗
i in Pro(Db(Dop

X )),

by shrinking X if necessary. Hence one has

Hk(K ⊗L
DX
M) ≃ “ lim−→”

i

Hk(K ⊗L
DX
Mi)

≃ “ lim−→”
i

HkRHomDop
X
(RHomDX

(Mi,DX), K)

≃ “ lim−→”
i

HkRHomDop
X
(M∗

i , K) ≃ 0

for k < c. �
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Proposition 4.3.7. Let ℓ ∈ Z>0, c ∈ R, X a complex manifold, Y ⊂ X
a complex analytic subset, K ∈ E(Dop

X ), andM a quasi-good DX-module.

Set U = X \ Y . Assume

(a) for(K) ∈ E>c(X),
(b) flat-dimDX,x

(Mx) 6 ℓ for any x ∈ U .

Then,

RIhom (π−1
kU , K)⊗L

DX
M∈ E>c−ℓ(X).

Proof. Replacing K with RIhom (π−1
kU , K), we may assume that K ≃

RIhom (π−1
kU , K) from the beginning. We proceed by induction on ℓ.

The case ℓ = 0 follows from Lemma 4.3.6. Let ℓ > 0. Then, there is
locally a short exact sequence

0 −→ N −→ L −→M −→ 0,

with a free DX-module L. Hence N is a quasi-good DX-module such that
flat-dimDX,x

(Nx) 6 ℓ−1 for any x ∈ U . One has K⊗L
DX
N ∈ E>c−ℓ+1(X)

by the induction hypothesis. Moreover, K ⊗L
DX
L ∈ E>c(X) since L is

free. One concludes by considering the distinguished triangle

K ⊗L
DX
L −→ K ⊗L

DX
M−→ K ⊗L

DX
N [1]

+1−−−→ .

�

4.4. Enhanced tempered holomorphic functions. Let X be a com-
plex manifold.

Proposition 4.4.1. One has OE
X ∈ E

>dCX
1/2 (X).

Proof. By Lemma 3.2.5, it is enough to show that for any k ∈ Z>0 and
any Z ∈ CS6k

XR
there exists an open subanalytic subset Z0 of Z such that

dim(Z \ Z0) < k and

(4.4.1) Ei !
(Z0)∞OE

X ∈ E>dCX−k/2((Z0)∞).

Since the question is local on X, we may assume from the beginning that
Z is compact. Let Z0, W0 ⊂ N , ℓ = dN and g : N −→ M be as obtained
by Lemma 4.4.3 below, forM = XR the real analytic manifold underlying
X. There exists a complexification Y of N such that g : N −→ X extends
to a holomorphic map f : Y −→ X.

Then, dCY = ℓ and there is a commutative diagram

(W0)∞:=(W0, N)

g0
��

i(W0)∞

//

j

))
N

iN

// Y

f

��
(Z0)∞:=(Z0, Z)

i(Z0)∞ // X.
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Note that for any w ∈ W0, setting x = f(w) ∈ Z0, one has

(4.4.2) rankCw(f) = dimC(TxZ +
√
−1TxZ) > (dimTxZ)/2 = k/2.

Set
V :=

{

y ∈ Y ; rankCy (f) > k/2
}

.

Then V is an open subset of Y such that Y \ V is a closed complex
analytic subset. Moreover W0 ⊂ V . Hence Proposition 4.3.1 implies

flat-dimDop
Y,y
(DX←−Y ) 6 dCY − k/2 = ℓ− k/2 for any y ∈ V .(4.4.3)

By Proposition 2.7.4, in order to see (4.4.1) it is enough to show

Eg−1
0 E i !

(Z0)∞OE
X ∈ E>dCX−k/2((W0)∞).(4.4.4)

Since W0 −→ Z0 is smooth, one has

Eg−1
0 E i !

(Z0)∞OE
X ≃ orW0/Z0 ⊗Eg !0E i !

(Z0)∞OE
X [dZ0 − dN ]

≃ orW0/Z0
⊗E i !

(W0)∞
Ei!NEf

!OE
X [k − ℓ]

≃ orW0/Z0 ⊗Ej !EiN ∗Ei
!
NEf

!OE
X [k − ℓ],

where orW0/Z0
:=Hk−ℓ(g !0CZ0) is the relative orientation sheaf.

By [4, Theorem 9.1.2], one has

Ef !OE
X ≃ DX←−Y ⊗L

DY
OE
Y [d

C
Y − dCX ].

Moreover, denoting by orN/Y ≃ i!N CY [ℓ] the relative orientation sheaf,
one has

i!NOE
Y ≃ orN/Y ⊗DbEN [−dN ].

Thus, we obtain

orW0/Z0 ⊗Eg−1
0 E i !

(Z0)∞OE
X

≃ Ej !EiN ∗Ei
!
N

(

DX←−Y ⊗L
DY
OE
Y

)

[k − dCX ]
≃ Ej !

(

DX←−Y ⊗L
DY

EiN ∗(orN/Y ⊗DbEN)
)

[k − dCX − dN ]
≃ Ej !

(

DX←−Y ⊗L
DY

RIhom (π−1CV ,EiN ∗(orN/Y ⊗DbEN ))
)

[k − dCX − ℓ].
By Proposition 4.2.2, one has

EiN ∗(orN/Y ⊗DbEN ) ∈ E>0(Y ).

Hence Proposition 4.3.7 and (4.4.3) implies that

DX←−Y ⊗L
DY

RIhom
(

π−1CV ,EiN ∗(orN/Y ⊗DbEN)
)

∈ E>k/2−ℓ(Y ).

Finally, we obtain (4.4.4). �

Corollary 4.4.2. One has O t

X ∈ D1/2 >dC
X (X).

Proof. Since O t

X ≃ IhomE(CE
X ,OE

X), the statement follows from Propo-
sition 4.4.1 and Lemma 3.2.7. �
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Here is the lemma which is used in the course of the proof of Proposi-
tion 4.4.1.

Lemma 4.4.3. Let M be a real analytic manifold, and let Z ∈ CS6k
M for

k ∈ Z>0. Assume that Z is compact. Then there exist

(i) an open subset Z0 of Z which is a real analytic submanifold of di-

mension k,
(ii) a real analytic manifold N of dimension ℓ > k,
(iii) a real analytic proper map g : N −→M ,

(iv) an open subanalytic subset W0 of N

such that one has

(a) dim(Z \ Z0) < k,
(b) g(N) = Z, g(W0) = Z0 and g induces a smooth morphism W0 −→ Z0

of real analytic manifolds.

Proof. It follows immediately from the existence of a real analytic man-
ifold N and a proper real analytic map g : N −→M such that g(N) = Z.
Note that we may assume that N is equidimensional, by multiplying each
connected component of N with a sphere if necessary. �

4.5. Riemann-Hilbert correspondence. Let X be a complex mani-
fold. The enhanced de Rham and solution functors

DRE
X : Db(DX) −→ E(X),

SolEX : Db(DX)op −→ E(X),

are defined by

DRE
X(M) := ΩE

X ⊗L
DX
M,

SolEX(M) = RHomDX
(M,OE

X),

where ΩE
X := ΩX ⊗L

OX
OE
X .

The Riemann-Hilbert correspondence of [4, Theorem 9.5.3] implies
that these functors induce fully faithful functors

DRE
X : Db

hol(DX) −→ ER-c(X),

SolEX : Db
hol(DX)op −→ ER-c(X).

(4.5.1)

Theorem 4.5.1. The functors DRE
X and SolEX [dCX ] are exact. That is,

for any c ∈ R one has

DRE
X

(

D6c
hol(DX)

)

⊂ E
1/2 6c

R-c(X), SolEX
(

D6c
hol(DX)

)

⊂ E
1/2 >dC

X
−c

R-c (X),

DRE
X

(

D>c
hol(DX)

)

⊂ E
1/2 >c

R-c(X), SolEX
(

D>c
hol(DX)

)

⊂ E
1/2 6dC

X
−c

R-c (X).
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In particular, there are commutative diagrams of embeddings

Modhol(DX) //
DRE

X // E
1/2 0

R-c(X)

Modrh(DX)
OO

OO

// DR // D
1/2 0

R-c(CX),

OO

OO
Modhol(DX)op //

SolEX // E
1/2 dC

X

R-c(X)

Modrh(DX)op
OO

OO

// SolX // D
1/2 dCX

R-c(CX).

OO

OO

Proof. It is enough to show that for anyM∈ Modhol(DX) one has

DRE
X(M) ∈ E

1/2 0
R-c(X), SolEX(M) ∈ E

1/2 dC
X

R-c(X).

(i) By the definition,

SolEX(M) ≃ RHomDX
(M,OE

X).

By Proposition 4.4.1,

OE
X ∈ E

>dCX
1/2 (X).

Hence

SolEX(M) ∈ E
>dC

X

1/2 R-c (X) ⊂ E
1/2 >dC

X

R-c (X),

where the inclusions follow from (3.5.1). Then

DRE
X(M) ≃ SolEX(DXM)[dCX ] ∈ E

1/2 >0
R-c(X).

(ii) Note that DXM∈ Modhol(DX). Moreover, by [4, Theorem 9.4.8],

DE
XDRE

X(M) ≃ DRE
X(DXM).

We thus get from (i)

DRE
X(M) ∈ E

1/2 60
R-c(X), and hence

SolEX(M) ≃ DRE
X(DXM)[−dCX ] ∈ E

1/2 6dC
X

R-c (X).

�
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