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ENHANCED PERVERSITIES

ANDREA D’AGNOLO AND MASAKI KASHIWARA

ABSTRACT. On a complex manifold, the Riemann-Hilbert correspon-
dence embeds the triangulated category of (not necessarily regu-
lar) holonomic D-modules into that of R-constructible enhanced ind-
sheaves. The source category has a standard t-structure. Here, we
provide the target category with a middle perversity t-structure, and
prove that the embedding is exact.

In the paper, we also discuss general perversities in the frame-
work of R-constructible enhanced ind-sheaves on bordered subana-
lytic spaces.
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INTRODUCTION

On a complex manifold X, the classical Riemann-Hilbert correspon-
dence establishes an equivalence

DRx: Dy, (Dx) =~ D2..(Cx)

between the derived category of Dx-modules with regular holonomic co-
homologies, and the derived category of sheaves of C-vector spaces on X
with C-constructible cohomologies ([7]). Here, DRx(M) = Qx ®1L)X M
is the de Rham functor, and €2y the sheaf of top-degree holomorphic dif-
ferential forms. Moreover, the functor DR x interchanges the standard t-
structure on DY, (D) with the middle perversity t-structure on D2 (Cx).
In particular, DR x induces an equivalence between the abelian category
of regular holonomic Dx-modules and that of perverse sheaves on X.

The Riemann-Hilbert correspondence of [4] provides a fully faithful
embedding

DR : Dy (Dx) — Ep (ICx)

from the derived category of Dx-modules with (not necessarily regular)
holonomic cohomologies, into the triangulated category of R-constructible
enhanced ind-sheaves of C-vector spaces on X. Here, DR?( is the en-
hanced version of the de Rham functor. The source category DP  (Dx)
has a standard t-structure. In this paper, we provide the target category
E: (ICx) with a generalized middle perversity t-structure, and prove
that DRY is an exact functor.

Generalized t-structures have been introduced in [10], as a reinterpre-
tation of the notion of slicing from [3]. For example, let DE_(Cx) be the
derived category of sheaves of C-vector spaces on X with R-constructible
cohomologies. Then, if X has positive dimension, D} (Cx) does not ad-
mit a middle perversity t-structure in the classical sense. That is, there
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is no perversity whose induced t-structure on D% (Cyx) is self-dual. How-
ever, it is shown in [10] that DE_(Cx) has a natural middle perversity
t-structure in the generalized sense. This generalized t-structure induces
the middle perversity t-structure on the subcategory D2 (Cy). More-
over, it is compatible with our construction of the generalized middle
perversity t-structure on ER__(ICx), since the natural embedding

Dp (Cx) > Ep (ICx)

turns out to be exact.

From now on, we shall use the term t-structure for the one in the gen-
eralized sense, and refer to the classical notion as a classical t-structure.

Let k be a field and M a real analytic manifold, or more generally a
bordered subanalytic space. Let E .(Ikys) be the triangulated category
of R-constructible enhanced ind-sheaves of k-vector spaces on M. In
this paper, we also discuss the t-structures on Eb  (Iky,) associated with
arbitrary perversities, and study their functorial properties. Let us give
some details.

On the set of maps p: Z>¢ — R, consider the involution * given by

p*(n):=—p(n) —n.

A perversity is a map p: Z>o — R such that p and p* are decreasing.
Let Db _(kys) be the derived category of R-constructible sheaves of k-

vector spaces on M. For a locally closed subset Z of M, let k; be the

extension by zero to M of the constant sheaf on Z. For ¢ € R, set

PDRC (kar) := {F € DR_(ku); for any k € Z- there exists a closed
subanalytic subset Z C M of dimension < k such that
H (kanz ® F) >~ 0 for j > ¢+ p(k)},

"D (kyy) := {F € DR .(kys); for any k € Z~ and any closed
subanalytic subset Z C M of dimension < k one has
HiRHom (kyz, F) ~0 for j < c+p(k)}.

Then (pDﬁfc(kM),pDifc(kM))ceR is a t-structure in the sense of Defi-

nition 1.2.2. Moreover, the duality functor interchanges PD3° (kys) and
P"Dz°(kys). In particular, the t-structure (1/2D§_cc(kM), 1/QDHZ{_CC(kM))
associated with the middle perversity m(n) = —n/2 is self-dual.

The analogous definition for R-constructible enhanced ind-sheaves is

ceR

B8 (Ikyy) :={K € Ep_(Iky); for any k € Z~ there exists a closed
subanalytic subset Z C M of dimension < k such that
H (7 'kppz ® K) >~ 0 for j > ¢+ p(k)},
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B2 (Tkyy) :={K € ER .(Iky); for any k € Z, and any closed
subanalytic subset Z C M of dimension < k one has
HIRThom (m 'k, K) ~ 0 for j < c+ p(k)}.

It turns out that (,E% (Ika), pEﬂi-cc(IkM))ceR
not behave well with respect to the duality functor DY,. Hence we set

is a t-structure, but it does

PERS (Tky) :={K € Ep (Tky); K € JErs k),

DY K € Ep . (Iku)},
p=c . b . >c—1/2
Bes(Ikyy) = {K € Ep .(Tky); K € E2 " (Iku),

C C

Dy K € ,.Ez “(Iky)}.

C

Then (PERS (Ikar),” Eﬂ?_cc(lk]\/[))ce]R is a t-structure, and the duality func-

tor interchanges "E5° (Tky) and ” EZ °(Tky). In particular, the t-
structure (UQEE_CC(M), 1/ZI:TE_CC(M))Ce
sity m(n) = —n/2 is self-dual.

Going back to the Riemann-Hilbert correspondence, the enhanced de
Rham functor

g associated with the middle perver-

DR : Dy (Dx) — Ep . (ICx)

is exact with respect to the t-structure associated with the middle per-
versity.

The contents of this paper are as follows.

In Section 1, we recall the notion of t-structure on a triangulated
category. We also recall the t-structure on the derived category of R-
constructible sheaves on a subanalytic space associated with a given per-
versity.

In Section 2, we recall the notions of ind-sheaves and of enhanced
ind-sheaves on a bordered space. In both cases we also discuss the ex-
actness of Grothendieck operations with respect to the standard classical
t-structures.

In Section 3, we introduce the t-structure(s) on the derived category
of R-constructible enhanced ind-sheaves on a bordered subanalytic space
associated with a given perversity. We also discuss the exactness of
Grothendieck operations with respect to these t-structures.

Finally, in Section 4, we prove the exactness of the embedding, pro-
vided by the Riemann-Hilbert correspondence, from the triangulated
category of holonomic D-modules on a complex manifold into that of
R-constructible enhanced ind-sheaves.

Acknowledgments The first author acknowledges the kind hospital-
ity at RIMS, Kyoto University, during the preparation of this paper.
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NOTATIONS

In this paper, we take a field k as base ring.

For a category C, we denote by C° the opposite category of C.

One says that a full subcategory S of a category C is strictly full if it
contains every object of C which is isomorphic to an object of S.

Let C, C’ be categories and F': C — C’ a functor. The essential image of
C by F, denoted by F(C), is the strictly full subcategory of C’ consisting
of objects which are isomorphic to F'(X) for some X € C.

For a ring A, we denote by A°P the opposite ring of A.

We say that a topological space is good if it is Hausdorff, locally com-
pact, countable at infinity, and has finite soft dimension.

1. T-STRUCTURES

The notion of t-structure on a triangulated category was introduced in
[1]. As shown in [18], the derived category of a quasi-abelian category has
two natural t-structures. They were presented in [9] in a unified manner,
by generalizing the notion of t-structure. A further generalization is
described in [10], reinterpreting the notion of slicing from [3|. In the
present paper, we use the term t-structure in this more general sense,
and we refer to the notion introduced in [1] as a classical t-structure. A
basic result of [1] asserts that the heart of a classical t-structure is an
abelian category. More generally, it is shown in [3] that small slices of a
t-structure are quasi-abelian categories.

It is shown in [1] that, on a complex manifold, the middle perversity
induces a self-dual classical t-structure on the triangulated category of
C-constructible sheaves. On a real analytic manifold, using results of
[11], it is shown in [10] that the middle perversity induces a self-dual
t-structure on the triangulated category of R-constructible sheaves.

Here we recall these facts, considering general perversities.

1.1. Categories. References are made to [11, Chapter I|, and to [18] for
the notion of quasi-abelian category (see also [9, §2|).

Let C be an additive category. The left and right orthogonal of a
subcategory S are the strictly full subcategories

18:={X €C; Hom,(X,Y) ~0 for any Y € S},
St :i={X €C; Hom,(Y,X) ~0 for any Y € S}.

Assume that C admits kernels and cokernels. Given f: X — Y a
morphism in C, one sets

im f:= ker(Y — coker f), coim f := coker(kerf — X).

The morphism f is called strict if the canonical morphism coim f — im f
is an isomorphism.
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The category C is called abelian if all morphisms are strict. It is called
quasi-abelian if every pull-back of a strict epimorphism is a strict epimor-
phism, and every pushout of a strict monomorphism is a strict monomor-
phism.

1.2. T-structures. Let T be a triangulated category. Recall the notion
of t-structure from [1].

Definition 1.2.1. A classical t-structure (7'@,7'20) on 7T is a pair of
strictly full subcategories of T such that, setting
TS = Tn], T2 =T

for n € Z, one has:

(a) TSP c 7 and T2 C 729

(b) Hom (7<%, T>!) = 0;

(c) for any X € T, there exists a distinguished triangle

Xeog—= X = Xy =
in 7 with Xgo € 7<% and X;l e 7L

The following definition of [10] is a reinterpretation of the notion of
slicing from |[3].
Definition 1.2.2. A t-structure (T<°, T>C)c€R on 7 is a pair of families

of strictly full subcategories of T satisfying conditions (a)-(d) below,
where we set

T<:=J7% and T7¢:=|J7T> forceR,
c'<c c'>c

) T<¢= N T< and T>¢= (| T>¢ for any c € R,
c>c d<c
) Tsetl = 7<¢[—1] and T>¢"! = T2¢[—1] for any c € R,
(c) Hom (7<¢7T~¢) =0 for any c € R, o ' '
) for any X € T and ¢ € R, there are distinguished triangles in T

X<C—>X—>X>c+—1> and X<c—>X—>X>C+—1>
with X, € T* for L equal to < ¢, >¢, <cor > c.

Condition (c) is equivalent to either of the following:

(¢)) Hom (7¢,7>¢) =0 for any ¢ € R,

(¢)” Hom (7<¢T>¢) =0 for any ¢ € R.

The next lemma is elementary but useful. It shows for example that,
under condition (a), for any ¢ € R one has

/ /
Tgc: ﬂT<c’ T2c: mT>C'
c'>c d<e

Lemma 1.2.3. Let X be a set.
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(i) Let (X<).cr be a family of subsets of X such that X<¢ = (| X<¢
c'>c
for any c € R. Set X<¢:= |J X=¢. Then
d<c
X <¢ — U X<c” XSe — m X<c/.
d<c c>c
(ii) Conversely, let (X<%).er be a family of subsets of X such that
X<¢= | X< for any c € R. Set X<¢:= (| X<¢. Then
d<c c>c
X<o= () x, x<o=Jx.
c'>c c<c
(i) Let (X% er and (X<)cer be as in (1). Let a,b € R with a < b. If
X<¢= X<¢ for any c such that a < ¢ < b, then X<% = X<,

Let (7<%, 72°) be a classical t-structure. For ¢ € R, set
T<¢:=T<[-n] forn € Zsuch that n <c<n+1,
T>¢:=T>°[~n] forn € Z such that n — 1 < c < n.

Then, (7‘@, 776) ccr 18 a t-structure. A classical t-structure is regarded
as a t-structure by this correspondence.

Conversely, if (7<¢, T>°) wcg 15 @ t-structure, then

(1.2.1) (TS, 77°) and (T, 77
are classical t-structures for any ¢ € R.
For c € R, set

Te=TnT>

Definition 1.2.4. Let ¥ C R be a discrete subset such that ¥ = X + Z.
A t-structure (75¢,72°) _ is indezed by ¥ if T¢=0 for any c € R\ X.

ceR

If ¥ is non empty, this is equivalent to the fact that for any ¢ € R one
has

I e s S
T>¢ = T;t/’ T>¢ = T}t”’
where
s :=max{s € X; s < ¢}, " :=max{s € X; s < ¢},
t':=min{s € ¥; s > ¢}, t" :==min{s € X; s > c}.
Classical t-structures correspond to t-structures indexed by Z. In this

paper, we will mainly consider t-structures indexed by %Z.
The following lemma is easily proved by using Lemma 1.2.3 (iii).

Lemma 1.2.5. Let (T@’T%)cem be a t-structure on T. The following
two conditions are equivalent.
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(@) (T, 77) . cx
Y=Y+7Z.

(b) For any ¢ € R, there exist a,b € R such that a < ¢ < b and T<¢ =
TS and T>¢ = T=°.

1.3. Slices. Let (7<¢, 7> g e at-structure on 7" Note the following
facts.
For any ¢ € R, one has

7’>c — (TSC)J_’ Téc — J_<7'>c>’
7~2c — (T<c)L’ T<c — L(T2C).
The embeddings 75¢ C T and 7<¢ C T admit left adjoints
ST = 7S¢ and T T — T<°,

called the left truncation functors. Similarly, the embeddings 72¢ C T
and 7-¢ C T admit right adjoints

7 T - T7¢ and 77T = T°°,

called the right truncation functors.
The distinguished triangles in Definition 1.2.2 (d) are unique up to
unique isomorphism. They are, respectively, given by

15 indexed by some discrete subset > C R such that

1 1
X 5 X o roeX Sy and 75X - X o orrex

Summarizing the above notations, to a half-line L (i.e. an unbounded
connected subset L C R) is associated a truncation functor

T = TR
If L’ C R is another half-line, there is an isomorphism of functors
(1.3.1) lort ~rtorl: T 5 TEATE.

Let I C R be a proper interval (i.e. a bounded connected non empty
subset I C R). Then there are two half-lines L, L’ (unique up to ordering)
such that

I=LnL.
The slice of T associated with [ is the additive category
T =T"nT",
and one denotes the functor (1.3.1) by
H:T > T

For example,
Tled) = T2e N T< for ¢ < ¢, and T = T¢. One writes for short

He .= Hid,



ENHANCED PERVERSITIES 9

Note that the map I — R/Z is bijective if and only if I = [¢,c+ 1) or
I = (¢,c+ 1] for some ¢ € R. The map I — R/Z is injective if and only
if there exists ¢ € R such that I C [¢,c+ 1) or I C (¢,c+ 1].

The following result generalizes the fact that the heart 7° of a classical
t-structure (T@,T}O) is abelian.

Proposition 1.3.1 (cf. [3, Lemma 4.3]). Let (T, 7>°) _, be a t-structure
on T, and let I C R be an interval.

(i) If I — R/Z is injective, then the slice T! is a quasi-abelian category,
and strict short exact sequences in T! are in one-to-one correspon-
dence with distinguished triangles in T with all vertices in T?.

(ii) If I — R/Z is bijective, then the slice T' is an abelian category and
the functor H': T — T' is cohomological.

Remark 1.3.2. The notion of slicing from [3] is equivalent to the datum
of a t-structure (7°<¢,7>°) wcp Such that 7 is generated by the family of

subcategories {7} .cr.
1.4. Exact functors. Let S and 7 be triangulated categories. Let
(3<6,326)66R and (T<6,720)

be t-structures on S and T, respectively.

ceR

Definition 1.4.1. A triangulated functor ®: § — T is called

(i) left exact, if one has ®(S>¢) C T>¢ for any ¢ € R;
(ii) right ezact, if one has ®(SS¢) C T< for any ¢ € R;
(iii) ezact, if it is both left and right exact.

Lemma 1.4.2. Consider two triangulated functors
&:S—>T and V:T —S.

Assume that (®, V) is an adjoint pair. This means that ® is left adjoint
to U, or equivalently that ¥ is right adjoint to ®. Then, ¥ is left exact
if and only if ® 1s right exact.

Proof. Let ¢ € R. If ¥ is exact, then, for S € 8S¢ and T € T~¢, one has
Hom (®(S),T) ~ Hom 4(S, ¥(T))
€ Hom ((8%¢,87¢) = 0.

Hence, ®(S) € H(77¢) = T<¢. Thus ® is right exact. The converse can
be proved similarly. O

1.5. Sheaves. Let M be a good topological space. Denote by Mod (kxy)
the abelian category of sheaves of k-vector spaces on M, and by D"(ky,)
its bounded derived category. It has a standard classical t-structure

(D=°(kar), D*°(kay)).
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For a locally closed subset S C M, denote by kg the sheaf on M
obtained extending by zero the constant sheaf on S with stalk k.

For f: M — N a morphism of good topological spaces, denote by &,
RHom, f~', Rf., Rfi, f' the six Grothendieck operations for sheaves.

We define the duality functor of D”(ky,) by

Dy F = RHom (F,wy) for F € DP(kyy),

where wy; denotes the dualizing complex. If M is a C%manifold, one
has wy; =~ orys[dys], where dy; denotes the dimension of M and ory, the
orientation sheaf. For a map f: M — N of C%manifolds, the relative
orientation sheaf is defined as orps/n ::f!kN[dN —dy| ~ orpr @f Lory.

1.6. R-constructible sheaves. Recall the notion of subanalytic subsets
of a real analytic manifold (see [6, 2|).

Definition 1.6.1. (i) A subanalytic space M = (M, S)yr) is an R-ringed
space which is locally isomorphic to (Z,Sz), where Z is a closed
subanalytic subset of a real analytic manifold, and Sz is the sheaf
of R-algebras of real valued subanalytic continuous functions. In
this paper, we assume that subanalytic spaces are good topological
spaces.

(ii) A morphism of subanalytic spaces is a morphism of R-ringed spaces.

(iii) A subset S of M is subanalytic if i(S N U) is a subanalytic subset
of N for any open subset U of M, any real analytic manifold N
and any subanalytic morphism ¢: U — N of subanalytic spaces
such that ¢ induces an isomorphism from U to a closed subanalytic
subset of N.

Let M be a subanalytic space. One says that a sheaf F' € Mod(ky,)
is R-constructible if there exists a locally finite family of locally closed
subanalytic subsets {S;};c; of M such that M = UZ_GI S; and F is locally

constant of finite rank on each S;. Denote by DE (k) the full subcate-
gory of DP(k,;) whose objects have R-constructible cohomologies.
1.7. Perversities. On the set of maps p: Z-y — R, consider the invo-
lution * given by
p*(n) = —p(n) —n.
Definition 1.7.1. (i) A function p: Z>y — R is a perversity if both
p and p* are decreasing, i.e. if
0< p(n) —plm) <m—n for any m,n € Z-, such that n < m.
(ii) A classical perversity is a Z-valued perversity.
Let M be a subanalytic space. To a classical perversity p is associated
a classical t-structure (PDg"(kas),”Dg(kas)) on DR (kas) (refer to [1]
and [11, §10.2]). Here, slightly generalizing a construction in [10], we will
associate a t-structure to a perversity.
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Notation 1.7.2. Set
CSys :={closed subanalytic subsets of M}.

For Z € CS,;, denote by
ig: 4 — M
the embedding. Set
dz :=dim Z (with dy = —00).
For k € Z, set
CSyf:={Z € CSy; dy < k},
CS5y:={Z € CSyr; dy < k}.

Definition 1.7.3. Let p be a perversity, ¢ € R and k € Z-,. Consider
the following conditions on F' € D"(ky,)

(p5): iA_/Il\ZF € D" (kyp ) for some Z € CS;yf,
(p79): i, F € D*"P®)(k ) for any Z € CSf\/[k.
We define the following strictly full subcategories of D” (k)
PD(kyr) :={F € D"(ky); (p;°) holds for any k € Zzo},
PD>¢(ky) :={F € D"(ky); (p7°) holds for any k € Z-o}.

Let us also set

PDR% (kar) :="D(kar) N Do (kar),
PDi’ (kar) :="D(kar) N DR.o(kar).-

Note that (PD<°(kas),"D>(kys)),p is 00t a t-structure if dim M > 0.

Lemma 1.7.4. For c € R, k € Z>o and F € D_(ky), the following
conditions are equivalent

(i) F satisfies (py°),
(i) dim(supp(H’F)) < k for any j with j > ¢+ p(k).

Proof. 1t is enough to remark that i;j\ ,F € DMk £) if and only
if supp(H’F) C Z for any j such that j > ¢+ p(k). O

Proposition 1.7.5. We have the following properties.
(i) (”DE_c (kas), "D2°¢ (kM))ceR is a t-structure on DE_(kas).

(ii) For any ¢ € R, the duality functor Dy interchanges "D (Kar)
and "D (k).
(iii) For any interval I C R such that I — R/Z is injective, the
prestack on M
U+ "D (U)

1s a stack of quasi-abelian categories.
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Proof. Note that, for (iii), it is enough to consider the case where I —
R/Z is bijective, i.e. the case where I = [c,c+ 1) or I = (¢,c + 1] for
some c € R.

(a) If p is a classical perversity, the result is due to [1]. More precisely,
for the statements (i), (ii) and (iii) refer to Theorem 10.2.8, Proposition
10.2.13 and Proposition 10.2.9 of [11], respectively.

(b) Let now p be an arbitrary perversity.

For ¢ € R, denote by |c| the largest integer not greater than ¢, and by
[¢] the smallest integer not smaller than c¢. Note that [¢] 4+ [—c] = 0.

Statements (i) and (iii) follow from (a) by noticing that for any ¢ € R

("Dr (kar), "D (kar))  and  ("DRS(ka), "D (k)

C C

are the classical t-structures associated to the classical perversities

Pe.+(n):=[c+pn)],  pe -(n):=[c+pn)],

respectively.
Statement (ii) follows from (a) by noticing that one has

(pc,:l:)* = (p*)_c,q:.
]

Note that ("D’ (kas), pD[ﬁ_cc(k]\/[))ce]R is indexed by | (—p(k)+Z).

0<k<dy
Definition 1.7.6. The middle perversity t-structure
1/2<e 1/2 e
(V*Di (o), DR (k) e
is the one associated with the middle perversity m(n) := —n/2.

Note that m is the only perversity stable by . In particular, the middle
perversity t-structure is self-dual. It is indexed by %Z.

2. ENHANCED IND-SHEAVES

Let M be a good topological space. The derived category of enhanced
ind-sheaves on M is defined as a quotient of the derived category of
ind-sheaves on the bordered space M x R.,,. We recall here these no-
tions and some related results from [4]. We also discuss the exact-
ness of Grothendieck operations with respect to the standard classical
t-structures.

References are made to [13] for ind-sheaves, and to [4] for bordered
spaces and enhanced ind-sheaves. See also [15] for enhanced ind-sheaves
on bordered spaces and [16] for an exposition.
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2.1. Semi-orthogonal decomposition. Let 7 be a triangulated cate-
gory, and N C T a strictly full triangulated subcategory. We denote by
T /N the quotient triangulated category (see e.g. [14, §10.2]).

Proposition 2.1.1. Let N' C T be a strictly full triangulated subcategory
which contains every direct summand in T of an object of N'. Then the
following conditions are equivalent:

(i) the embedding N — T has a left adjoint,
(ii) the quotient functor T — T /N has a left adjoint,
(iii) the composition *N — T — T /N is an equivalence of categories,
(iv) for any X € T there is a distinguished triangle X' — X — X" ERZIN

with X' € *N and X" € N,

(v) the embedding *N — T has a right adjoint, and N~ (*N)*+.

A similar result holds switching “left” with “right”.

2.2. Ind-sheaves. Let C be a category and denote by C" the category
of contravariant functors from C to the category of sets. Consider the
Yoneda embedding h: C — C", X + Hom,(*, X). The category C"
admits small colimits. As colimits do not commute with A, one denotes
by hgl the colimits taken in C, and by “liﬂ” the colimits taken in C*.

An ind-object in C is an object of C" isomorphic to “liﬂ” @ for some

functor ¢: I — C with I a small filtrant category. Denote by Ind(C) the
full subcategory of C” consisting of ind-objects in C.

Let M be a good topological space. The category of ind-sheaves on M
is the category

I(kys) := Ind(Mod.(kas))

of ind-objects in the category Mod,(kys) of sheaves with compact sup-
port.

The category 1(ky,) is abelian, and the prestack on M given by U
I(ky) is a stack of abelian categories. There is a natural exact fully
faithful functor ¢pr: Mod(kys) — I(kas) given by F +— “lig”(kU ®F), for

U running over the relatively compact open subsets of M. The functor ¢y,
has an exact left adjoint oy : I(ky ) — Mod(kyy) given by on(“li%m” ) =

g
In this paper, we set for short
D(M) := D"(I(k)),

and denote by
(D=(M),D>°(M))

its standard classical t-structure.
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For f: M — N a morphism of good topological spaces, denote by
®, RZThom, f~', Rf., Rfu, f' the six Grothendieck operations for ind-
sheaves.

Since ind-sheaves form a stack, they have a sheaf-valued hom-functor

Hom . One has RHom ~ aur 0o RZhom.

2.3. Bordered spaces. A bordered space M = (M, Z\>[) is a pair of a
good topological space M and an open subset M of M.

Notation 2.3.1. Let M = (M, ]\Zf) and N = (N, NI) be bordered spaces.
For a continuous map f: M — N, denote by I'y C M x N its graph, and

by I:f the closure of I'y in M x N. Consider the projections

M <2 M x N2+ M.
Bordered spaces form a category as follows: a morphism f: M — N

— v
is a continuous map f: M — N such that ‘11|Ff: I'y — M is proper;

the composition of two morphisms is the composition of the underlying
continuous maps.

Remark 2.3.2. (i) If f: M — N can be extended to a continuous
map f: M — N, then f is a morphism of bordered space.
(ii) The forgetful functor from the category of bordered spaces to that
of good topological spaces is given by
M = (M, M) — M := M.

It has a fully faithful left adjoint M +— (M, M). By this functor,
we consider good topological spaces as particular bordered spaces,
and denote (M, M) by M.

Note that M = (M, ]\VJ) — M is not a functor.

Let M = (M, M ) be a bordered space. The continuous maps M SN
M — M induce morphisms of bordered spaces
(2.3.1) M — M M5 7

Note that M ~ (M, M), where M is the closure of M in M.

Notation 2.3.3. For a locally closed subset Z of M, set Z,, = (Z,7),

where Z is the closure of Z in Z\v4 , and denote iz__: Zo — M the morphism
induced by the embedding Z C M.

Lemma 2.3.4. Let f: M — N be a morphism of bordered spaces. Let

Z C M and W C N be locally closed subsets such that f(Z) C W. Then
flz: Z = W induces a morphism Z., — Wy, of bordered spaces.
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In particular, the bordered space Z,, only depends on M (and not on
Definition 2. 3 5. We say that a morphism f: M — N is semz-pmper 1f

G| = v Tf 5 Nis proper. We say that f is proper if moreover f M — N
is proper.

For example, jv and iy _ are semi-proper.

Definition 2.3.6. A subset S of a bordered space M = (M, ]\V4) is a
subset of M. We say that S is open (resp. closed, locally closed) if it
is so in M. We say that S is relatively compact if it is contained in a

compact subset of M.

As seen by the following obvious lemma, the notion of relatively com-
\%
pact subsets only depends on M (and not on M).

Lemma 2.3.7. Let f: M — N be a morphism of bordered spaces.

(i) If S is a relatively compact subset of M, then its image f(S) c N is
a relatively compact subset of N.
(ii) Assume furthermore that f is semi-proper. If S is a relatively com-

pact subset of N, then its inverse image ]?*1(5) CMisa relatively
compact subset of M.

2.4. Ind-sheaves on bordered spaces. Let M be a bordered space.
The abelian category of ind-sheaves on M is

I(km) :=Ind(Mod.(kwm)),

o

where Mod.(km) C Mod(ke) is the full subcategory of sheaves on M
whose support is relatively compact in M.
There is a natural exact embedding tm: Mod(ke) — I(km) given by

F— “li%m”(kU ® F'), for U running over the family of relatively compact

open subsets of M.
We set for short

D(M) := D"(I(kw)),
and denote by
(DSO(M)7 D>O<M))
its standard classical t-structure.
Let M = (M, M), and consider the embeddings

MAM 0121

The functor Ri, ~ Riy induces the embedding D(]\Z/\M) C D(]\Zf), which
admits a left and a right adjoint.
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Proposition 2.4.1. There is an equivalence of triangulated categories:
D(M) ~D(M)/D(M\ M).

Proof. The functor j; induces an exact functor Mod.(ky) — Modc(kz\g),

which induces an exact functor I(km) — I(k ) and functors of triangu-

lated categories D(M) — D(M) — D(M)/D(M \ M).
On the other hand, the functor j~! induces an exact functor Modc(k]&) —
Mod,(km), which induces an exact functor I(kv) — I(ku) and a func-

\%

tor of triangulated categories D(M) — D(M). Since the composition
D(Z\Zf\M) — D(]\V4) — D(M) vanishes, we obtain a functor D(]\>[)/D(]\V4\
M) — D(M).

It is obvious that these functors between D(M) and D(M)/D(Z\Zf \ M)
are quasi-inverse to each other. O

Thus, there are equivalences

\Y%

D(M) ~ D(M)/D(M \ M) ~ *D(M \ M) ~ D(M \ M)*,
and one has
DM\ M)~ {F € D(M); kyy ® F =5 F},
D(M \ M)* ~ {F € D(M); RThom (ky, F) <= F}.
Denote by

\% \%

au: D(M) — D(M), 1Iu,rm: D(M) — D(M)
the quotient functor and its left and right adjoint, respectively. For

V

F € D(M), they satisfy
(2.4.1) ImamF ~ky @ F,  rmamE ~ RZhom (kyy, F).
Remark 2.4.2. At the level of sheaves, there is a natural equivalence

D" (ky) =~ D°(k ) /D" (k

J\XI\M)'
There is a commutative diagram
D (kay) - D(M)
y y

D(k,,)/D"(ky, | ) == D(M)/D(M \ M),

The functor ¢y : Db(kl\c}l) — D(M) has a left adjoint
: b
av: D(M) =D (k,{}l).
It coincides with the composition

D(M) — D(M) — D" (ke ).
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Let f: M — N be a morphism of bordered spaces. The six Grothendieck
operations for ind-sheaves on bordered spaces
®: D(M) x D(M) — D(M),
RZhom : D(M)°® x D(M) — D(M),
Rfu,Rf.: D(M) — D(N),
7%, f': D(N) = D(M)
are deﬁnedvas fovllows. Recalling N (v)tation 2.3.1, obvserve that I'y is locally
closed in M x N. For F, F' € D(M) and G € D(N), one sets
awF @ aulF" = au(F @ F'),
RZhom (quF,quF") := quRZhom (F, F'),
RfuamE == auRean(kr, ® ¢; ' F),
Rf.awF = quRg2.RZhom (kr,, q; F),
f'anG = aquRaquu(kr, ® ¢;'G),
f'anG == quRq1.RZhom (kr,, ¢ G).
Remark 2.4.3. The natural embedding
IM: Db(k,\o/l) — D(M)

commutes with the operations ®, RZhom, f~', Rf., f'. If f is semi-
proper, one has

(2.4.2) Rfn o =% o RS,
Remark 2.4.4. Let M = (M, ]\Zf) For the natural morphism jy: M —

J\VL one has
am > Ju' ~jws I~ Ry, v~ Rirs.
The following result generalizes (2.4.1).

Lemma 2.4.5. Let Z be a locally closed subset of M, and let F' € D(M).
Using Notation 2.3.3, one has

k; @ F ~ Riy_ni,' F,
RZhom (kz, F) ~ Riz, iy F.

Proof. To avoid confusion, let us denote by k & the extension by zero

Z|
to M of the constant sheaf k; on Z. Since iy is semi-proper, (2.4.2)
implies kZ|I\O/I ~ Riz_nkz. Hence
kZ\IS/I QRE ~ (R’izwggkz) QK F
~ R'izoogg(kz ®Z§;F>

. 1
~ RZZOO!!ZZOOF.
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We can prove the second isomorphism similarly. OJ
Let M = (M, ]\Zf) be a bordered space. By [4, §3.4], one has
D<°(M) = {F € D(M); RjmnF € D<(M)},
D>(M) = {F € D(M); RjwuF € D*°(M)}.
Proposition 2.4.6. Let M be a bordered space.
(i) The bifunctor ® is exact, i.e. for any n,n’ € Z one has
D<*(M) @ DS (M) € D" (M),
D>"(M) @ D> (M) € D> (M).
(ii) The bifunctor RZhom 1is left exact, i.e. for any n,n’ € Z one has
RZhom (D*(M), D> (M)) C D> ""(M).
Let f: M — N be a morphism of bordered spaces.
(iii) Rfy and Rf. are left exact, i.e. for any n € Z one has
RfyD”"(M) Cc D”™(N),
Rf.D”"(M) c D>"(N).
(iv) f~! is exact, i.e. for any n € Z one has
fT'DS"(N) € D¥"(M),
f71D>"(N) C D”"(M).
Let d € OZ>0 and assume that f~'(y) C M has soft-dimension < d for

any y € N.
(v) Rfu(x)[d] is right exact, i.e., for any n € Z one has

R fyDS"(M) € DS"T4(N).
(vi) f'(*)[—d] is left exact, i.e., for any n € Z one has
f'D?"(N) c D*"~4(Mm).

Proof. When M and N are good topological spaces, statements (i)—(iv)
follow from [13].

Let M = (M, M) and N = (N, N). Replacing (M, M) with (M, T'}), we
may assume from the beginning that f: M — N extends to j¥ .M — N.
(i) follows from the topological space case, using the fact that Rjym
commutes with ®.

(ii) follows from (i) by adjunction.
(iii) and (iv) follow from the topological space case using the isomor-
phisms

Rfy ~ j,qufuRjMn, Rf, ~ ]ﬁlRf*RjM*a f_l = jM_lf_leN!!~
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As (vi) follows from (v) by adjunction, we are left to prove (v).
By dévissage, it is enough to show that for F' € 1(ky) one has
HRfyF ~0 fork>d.
Writing F' = “liﬂ” F; with F; € Mod.(ky), one has

H'Rfy F ~ “ling” HRf F;.

Then, for any y € N,
(H*'RAF), = H:(f () Bl ) =0,
since f~1(y) has soft-dimension < d. O

Proposition 2.4.7. Let f: M — N be a morphism of bordered spaces.
Letn € Z and G € D(N). Assume

(a) f is semi-proper,

(b) f: M — N is surjective.
Then

(i) f71G € D®™(M) implies G € D>"(N),

(ii) f~1G € DSY(M) implies G € DS*(N).

Proof. Let M = (M, ]\VJ) and N = (N, Kf) Since f~! is exact, it is enough
to show that, for G € D°(N) ~ I(ky), f~'G ~ 0 implies G ~ 0.
Write G = “liﬂ” G;, where {G;}ies is a filtrant inductive system of

objects G; € Mod.(ky). Recall that this means that G; € Mod(ky) and
supp(G;) is relatively compact in N. Since f is semi-proper, f~1G; €
Mod.(kym) by Lemma 2.3.7 (ii). The assumption f~'G = “liny” Gy ~

0 implies that, for any ¢ € I, there exists ¢ — 7 in I whose induced
morphism f~'G; — f7'G; is the zero map. Since [ is surjective, G; —
Gj is the zero map. Thus G = 0. U

Proposition 2.4.8. Let f: M — N be a continuous map of good topo-
logical spaces, and {V;};cr an open covering of N. Let K; € D(f_1%)
satisfy Rf.RHom (K;, K;) € D*%(ky:) and let

Uqj - Kj‘f—l‘/imf—l‘/j = Ki|f_1Viﬂf_1Vj

be isomorphisms satisfying the usual cochain condition: w;jouj, = u; on
VN f7V N 7. Then there exist K € D(M) and isomorphisms
U K\f_lw == K; compatible with w;;, that is, u;; o u; = u; on f~vin
[V, Moreover, such a K is unique up to a unique isomorphism.
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Proof. The arguments we use are standard (see e.g. [10, Proposition 5.9]).
Let us set U; := f~'V; C M.

(i) Let us first discuss uniqueness. Let K’ € D(M) be such that there
are isomorphisms u;: K'|y, =% K, compatible with u;;. Note that for
any open subset V' of N, one has

HomD(f*1V)(K|f_1V7Kl‘f—lv) ~ H'RI'(V;Rf.RHom (K, K")).

Since one has Rf.RHom (K, K')|y, ~ Rf.RHom (K;, K;) € D*%(ky,), we
have Rf,RHom (K, K') € D*°(ky). Hence

V' Homp g1y (K] -1y, K'[-1v) is a sheaf on N.
We thus get an isomorphism K =% K’ on M by patching together the
isomorphisms ;" o u; on Uj.
(ii) Let us now prove the existence of K as in the statement.

(ii-1) Assume that [ is finite. In order to prove the statement, by
induction we reduce to the case I = {1,2}. Set Vj :=V; NV, and
Ko = Ki|y, ~ Ks|y,- Let ji: Ui — M (i = 0,1,2) be the open inclusion.
By adjunction, for ¢ = 1,2 there are natural morphisms

Bi: RjO!!](VO — RquKZ
Let us complete the morphism (1, 2) into a distinguished triangle

RjonKo SCR RjinK, ® Rjonky — K —— .

Then K satisfies the desired condition.

(ii-2) Assume that I = Z¢ and that {V, },ez., is an increasing sequence
of open subsets of N. Then K, 1|y, ~ K,. Let j,: U, - M (n €
Z=p) be the open inclusion. By adjunction, there are natural morphisms
B RinnK, = Rjns1nKni1 (n € Zsp). Let K be the homotopy colimit
of the inductive system {Rjnn/,fnez.,, that is, let K be the third term
of the distinguished triangle

@ Rjnn K, 2, EB RjnunK, — K —

n€Z>0 n€Z>0

Here f is the only morphism making the following diagram commute for
any m € Zxg

id—Bm) 4
Rjmn K S Rjmi K @& Rimy1in K1

| |

@”ngo Ry @n€Z>0 RjnnKy,.

Then K satisfies the desired condition.
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(ii-3) Let I be arbitrary. Let {Z,}necz., be an increasing sequence of
compact subsets of N such that N = Unez20 Z,. Let us take an increas-
ing sequence {I,}nez., of finite subsets of I such that Z,, is covered by
{Vitier,, and set V:=,c,; Vi, U,:=f~'V,.. Applying (ii-1) with N =V,
and [ = I,,, we can find an object K,, € D(U}) such that K|y, ~ K; for
any i € I,,. Then we can apply (ii-2) with V,, = V. OJ

2.5. Ind-sheaves with an extra variable. Let R := R U {400, —00}
be the two-point compactification of the affine line. The bordered line is

R, = (R, R).
Let M be a bordered space. Consider the morphisms
(2.5.1) Wy qi, g M X Ry X Ryy =& M x Ry,

where p(x,ty,ts) = (x,t + t2), and ¢, g2 are the natural projections.
The convolution functors

©: D(M x Ryo) x D(M x R.) — D(M x Ry.),
Thom™: D(M x Ry.)®® x D(M x R,) = D(M x R,)
are defined as follows, for Fy, Fy € D(M x R,),
Fy @ Fy:=Ryn(qi ' F © ;' F),
Thom™ (F1, Fy) := Rqi.RThom (g5 ' Fi, ' F).
Example 2.5.1. Let M = {pt} and let a,b € R.
(i) For a < b, one has
K0y & Ki>ay ~ Kiizay, K0y & Kiact<ry = Kiast<n),
Zhom™ (Kzop, Kieza}) ~ Kgreay (1], Thom™ (Kpsoy, Kia<ect}) =~ Koty
(ii) For 0 < a < b, one has
K{o<t<a) & Kio<i<ny = Ko<ica} ® Kpp<icarsr[—1].
Consider the standard classical t-structure
(D°(M x Ry), D*°(M x Ry.))
on D(M x R,) discussed in §2.4.

Lemma 2.5.2. Let M be a bordered space.
(i) Forn,n’ € Z one has

D<"(M x Ry) @ D (M x Ra.) C DS +(M x R.,),

D>"(M x R..) ® D (M x R.) € D> (M x R..).

Jr
In particular, the bifunctor ® is left exact.
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(i) Forn,n’ € Z one has
Thom™ (DS"(M x Ry.), D™ (M x Ry)) € D®" "M x Ry,).

Proof. Recall the maps (2.5.1).
(i) By the definition, for F}, F; € D(M x R,,) one has

P -1 -1
Fy @ Fy:=Run(q, F1®qy F).

Then the statement follows from Proposition 2.4.6.
(ii) The proof is similar, recalling that

Thom™ (F1, Fy) := Rqi.RThom (g5 ' Fi, ' F).

Remark 2.5.3. There are no estimates of the form
Thom™ (kg=03, D’(M x Ry)) € DS™(M x Ry)

with m € Z-, independent of M. In fact, setting,

M=R"(n2>1), F =Xz, =1/}
one has
(2.5.2) Thom™ (kgsoy, F) ¢ D" 7*(M x Ry,
which follows from

7 'kgzeoy @ Thom™ (kpsoy, F) ~ 7 'kgaeoy [1] @ 7 'kaeoy [2 — 1.

Lemma 2.5.4. For K € D(M x Ry,) and n € Z one has

+ + +
K0y @ 75" (kpzoy @ K) 25 75" (k) © K),
o~y

+ + +
K0y ® 77" (Kpiz0p ® K) 77" (kg0 ® K),

Let us give a proof of this result slightly different from that in [4,
Proposition 4.6.2].

Proof. Consider the distinguished triangle
+ + + +
kisoy @ 75" (Kgr0y @ K) = kgm0 @ (Kge0y @ K)
+ +
— k{t>0} X 7‘>n(k{t20} X K) +—1> .
Since the middle term vanishes, one has
+ + + +
Koy @ 77" (Kpsoy © K) = Kppsoy @ 75" (kg0 @ K)[1].

By Lemma 2.5.2, the first term belongs to D”"(M x R,) and the second
term belongs to DS"(M x R,). Hence they both vanish. O



ENHANCED PERVERSITIES 23

2.6. Enhanced ind-sheaves. Let M be a bordered space, and consider
the natural morphisms

M<"—Mx Ry —2>MxR—2=M.
Consider the full subcategories of D(M x Ry)

Ni = {K € D(M x Rey); Kpzrmgy @ K = 0}

= {K € D(M x Ry.); ZThom™ (k{zs=0y, K) ~ 0},
N =N, NN_

=71 'D(M),

where the equalities hold by [4, Corollary 4.3.11 and Lemma 4.4.3].
The categories of enhanced ind-sheaves are defined by

E} (Ikym) :=D(M x Ry.) /N5, EP(Iky) :=D(M x R)/N.
In this paper, we set for short
E.:(M):=EL(Iky), EM):=EP(Iky).
By [4, Proposition 4.4.4], there are natural equivalences
E:(M) ~ No/N ~ Nz = N ntN,
B(M) = A = E, (M) & E_ (M),

and the same equivalences hold when replacing left with right orthogo-
nals. Moreover, one has

+
TNz ={K e DM x Ry); kizz0y ® K =5 K},

+
TN ={K € D(M x Ry.); (kpsoy @ kyieoy) @ K =5 K}
={K € D(M xR,,); Rmy K ~ 0},

+
and the same equalities hold for right orthogonals, replacing ® with
Zhom™ and Rmy, with R,.
We use the following notations

Qm Qﬁ
E(M), D(M X ROO)

E E E E
LE, R LY, RY

D(M x Rs) Ex(M),

for the quotient functors and their left and right adjoints, respectively.
For FF € D(M x R,,) one has
L¥(QuF) =~ (kgzoy ® kyi<o}) & F,
R¥(QuF) =~ Thom™ (kg=0) ® kg<oy, F).
For a locally closed subset Z C M x R, we set
(2.6.1) kY = Qu(kz) € E(M).
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There are functors

(2.6.2) e: D(M) — E(M), Fs kg @ 'F,
ex: D(M) — EL(M), Fio k@ 'F

The functors e are fully faithful and e(F) ~ e, (F) @ e_(F).
The bifunctors

Thom®: E(M) x E(M) — D(M),
Hom": E(M)* x E(M) — D"(kg),
are defined by
Thom®(K, K') := Rm,RZhom (L* K, LF K’)
~ Rm,RZhom (L* K RF K')
~ Rm,RZhom (R* K, R K')
~ R7,RZhom (Rjy L* K,Rj, R® K') and
Hom" := apy o ThomP.
One has
(2.6.3) Hom ) (K, K') = Hom , y (kar, Zhom® (K, K')).
If M is a topological space, that is, if M — M is an isomorphism, one has
Hom (K, K') ~ H'RI (M; Hom" (K, K)).
Note, however, that HomE(M)(K, K') ~ HORF(M;HomE(K, K/)) does
not hold in general.
Definition 2.6.1 ([4, Definition 4.6.3]). For n € Z, set
ES*(M) :={K € E(M); LK € DS"(M x R,,)},
E”*(M):={K ¢ E(M); LEK € D""(M x Ry)}.
Note that
E'(M) = {F € I(knur.); (Kirsop ® kgpeg)) @ F =% F in D(M x Ro)}
={F € I(kmxr.,); RmnF ~0in D(M)}.

Proposition 2.6.2 (|4, Proposition 4.6.2]). (ES°(M),E*°(M)) is a clas-
sical t-structure on E(M).

Example 2.6.3. Let a,b € R with a < b. In the category E({pt}), one
has

Q ~ Q N
L® k{a<t} - k{‘1<t}> L® k{a<t<b} —= k{a<t<b}a
RPKY oy = kpcay[l],  RPK(ooy = Kacicn)-
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In particular,

K2, € E°({pt}).

Proposition 2.6.4. Let M be a good topological space. Then the prestack
on M given by U — E°(U) is a stack of abelian categories.

kQ

{a<t}’

Proof. The statement holds since U — E°(U) is a sub-prestack of the
direct image by 7 of the stack of ind-sheaves on M x R,,. More precisely,
one has

+
E0<U) ~ {F € I(kUXROO); (k{tZO} EB k{tSO}) ® F l} F}

Lemma 2.6.5. For anyn € Z one has
QuDS*(M x R,,) C ES"tH(M),
QuD>"(M x Ry) = EZ™"(M).
In particular, Qm is left exact.

+
Proof. (i) For F € D(M x Ry), one has L¥ QuF ~ (kg=0y ® kj<oy) @ F'.
Hence the inclusions “C” follow from Lemma 2.5.2.

(ii) It remains to show the opposite inclusion QuD>"(MxR,,) D E="(M).
If K € E>"(M), then F:=LP K € D*"(M x R.), and K ~ Qu(F). O

Lemma 2.6.6. For anyn € Z one has
REEZ"(M) Cc D" }(M x R,,).

Proof. By Lemma 2.6.5, the functor Qu[1] is right exact. Hence its right
adjoint RF[—1] is left exact. O

Remark 2.6.7. (i) It follows from Example 2.6.3 that the estimate in
Lemma 2.6.6 is optimal.
(ii) It follows from Remark 2.5.3 that there are no estimates of the form

REE’(M) € DS™"(M x Ry,)

with m € Z independent of M.
(iii) The example in Remark 2.5.3 shows that

({K € EIM); R" K € DS(M x Ry},
{K € E(M); R"K € D*°(M x Ry.)})
is not a classical t-structure on E(M), in general.

Proposition 2.6.8. The functors ZThom® and Hom" are left ezact, i.e.
forn,n’ € Z one has

(i) Zhom®(ES"(M), E*™(M)) C D> ~"(M),

. E/m<n >n/ >n'—n

(ii) Hom"(ES™"(M),E”™(M)) C D (kg )-
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Proof. (i) By the definition, for K, K’ € E(M) one has
Thom™(K, K') = Rm,RZhom (L* K,LF K').

Hence the statement follows from Proposition 2.4.6.

(i) One has Hom® = ay Zhom®. Since ay is exact, the statement
follows from (i). O

2.7. Operations. Let f: M — N be a morphism of bordered spaces.
The six Grothendieck operations for enhanced ind-sheaves
E(M) x E(M) — E(M),
Thom™ E(M)Op x E(M) — E(M),
Efy, Ef,: E(M) — E(N),
Ef"LEf': E(N) = E(M)

are defined as follows. Set fg = f X idg_: M xR — N x R,. For
F,F' € D(M x Ry) and G € D(N x R,), one sets

Qm I & QuF’ == Qu(F & F'),
Thom™ (QuF, QuF") := QuZhom™ (F, F'),
Ef1QuF == QnRfro 1 F,
Ef.QuE = QnRfr F,
Ef QNG = Qufa G
Ef'QnvG == Qufp. G
The duality functor is defined by
D2: E(M) = E(M)®, K — Thom™ (K, wg),
where wy = i wy € D(M) and wg} := e(wy) == 7wy ®k{t _oy € E(M).

Lemma 2.7.1 ([4, Lemma 4.3.2]). Let M = (M, J\VJ) For F € D(kp«r),
one has

Dy (QuF) = Qu(a™ ' DasxeF),
where a is the involution of M x R defined by a(x,t) = (z, —t).

Example 2.7.2. Let a,b € R with a < b. In the category E({pt}), one
has

Q Q
DQk{ <t = k{t< a}[l] kK <y

In particular,

DALY

{a<t

and DY, ~kE, (1]

, €E'({pt}) and D%P_,_,. € E'({pt}).

Proposition 2.7.3. Let M be a bordered space.
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(i) Forn,n’ € Z one has
E<"(M) @ E<" (M) € B (M),
B> (M) @ E2" (M) € B> (M),
+
In particular, the bifunctor ® is left exact.
(ii) Forn,n’ € Z one has
Thom™ (ES"(M),E*™(M)) C EZ" " (M).
Let f: M — N be a morphism of bordered spaces.
(iii) Efy and Ef, are left exact, i.e. for any n € Z one has
Ef E="(M) C EZ*(N),
Ef,E>™(M) C E**(N).
(iv) Ef ' is exzact, i.e. for anyn € Z one has
Ef'ES"(N) c ES*(M),
Ef'E*"(N) Cc E**(M).
Let d € Zsy and assume that f~(y) C M has soft-dimension < d for

any y € N.
(v) Efu(x)[d] is right ezact, i.e. for any n € Z one has

Ef,ES"(M) C ES"T(N).
(vi) BEf'(x)[—d] is left ezact, i.e. for any n € Z one has
Ef'E*"(N) c EZ"%(M).
Proof. (i) For K € E(M) and K’ € E(M) one has
LMK ® K) ~ TP K ©LF K.
Then the statement follows from Lemma 2.5.2.
(i) follows from (i) by adjunction. As we deal here with bifunctors,

let us spell out the proof. Let K € ES*(M), K’ € E*™ (M), and L €
E<"~"=1(M). Then one has
+
Hom gy (L, Zhom™ (K, K')) ~ Hom (L @ K, K')
€ Hom y (E< (M), EZ™ (M) = 0.
Then Zhom™ (K, K') € E<V~"~1(N)* = E>”~"~(N).

(iii-1) The fact that Ef,, is left exact follows from Proposition 2.4.6, since

one has
LE OEf!! ~ RfRoo” 0] LE,

where we recall that fg = f X idg__.
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(iv) also follows from Proposition 2.4.6, since one has
LYoEf™' ~ fpl o L.
(iii-2) The fact that Ef, is left exact follows from (iv) by adjunction.

(v) has a proof similar to (iii-1).
(vi) follows from (v) by adjunction. O

Proposition 2.7.4. Let f: M — N be a morphism of bordered spaces.
Let n € Z and L € E(N). Assume

(a) f is semi-proper,
(b) f: M — N s surjective.
Then
(i) f~'L € E2™(M) implies L € EZ"(N),
(ii) f~'L € ES"(M) implies L € ES"(N).

Proof. 1t is enough to apply Proposition 2.4.7 to the morphism fg__: M x
R. — N x R, and the object G = LE L € D(N x R,,). O

The bifunctors
7 1(%) ® (x): D(M) x E(M) — E(M),
RZhom (771 (*), *): D(M)°? x E(M) — E(M)
are defined as follows, for L € D(M) and F' € D(M x R),

—1 + -1
T LR QuF =Qu(rT L®F),
RZhom (7~ 'L,QuF) := QuRZhom (7~ 'L, F).
Lemma 2.7.5. Let M be a bordered space.
(i) The bifunctor 71 (%) ® (x) is exact, i.e. for n,n’ € Z one has
7 'DS(M) @ ES(M) € ES"(M),
7 "D (M) @ B2 (M) € EZ"(M).

In particular, the functor e from (2.6.2) is exact.
(ii) The bifunctor RZhom (w~1(x),*) is left eract, i.e. for n,n’ € Z
one has

RZhom (7~ 'DS"(M), E*™ (M)) C E>"~"(M).
Proof. (i) For F € D(M) and K € E(M) one has
LEa ' FQK)~ 1 'FQLFK.

Hence the statement follows from Proposition 2.4.6.
(ii) follows by adjunction from (i). O

Let us end this section stating some facts related to Notation 2.3.3.
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Lemma 2.7.6. Let Z be a locally closed subset of M, and K € E(M).
One has
7 'kz ® K ~ Eiz_,Ei,' K,
RZhom (7 'kz, K) ~ Eiz_ Eij, K.

Proof. Note that (Z x R)o = Zoo xRy and iz xidr,, = i(zxr).. . Hence
the statement follows from Lemma 2.4.5. ]

Lemma 2.7.7. Let Z be a locally closed subset of M, and Z' C Z a
closed subset. For K € E(M), there are distinguished triangles in E(Z)

BinBis ,n K — Bizl K — BiyFiyl K ——,

Ei\Biy, K — Biy K — Ei.Eilyzn K —,
where i: (Z\ Z')oo = Zoo and i': Z! — Z, are the natural morphisms.

Proof. Since the proofs are similar, we shall only construct the first dis-
tinguished triangle. By Lemma 2.7.6, applying the functor 7—!(x) @ K
to the distinguished triangle

1
kZ\Z/ —k; = ky +—),

one gets the distinguished triangle
Ei(2\ 20 i\ . K = BizEiy! K = Big Fiy K 2N

Since iz = iz, o 7 and U(Z\Z")os = 124 © 1, the distinguished triangle
in the statement is obtained by applying the functor Ei}; to the above
distinguished triangle. OJ

Lemma 2.7.8. Let ¢ € R and Z a locally closed subset of M.

(i) The following conditions are equivalent:
(a) Ei,' K € ES%(Zy),
(b) 7 'kz ® K € ES¢(M).

(ii) The following conditions are equivalent:
(a) Biy K € E*%(Zy,),
(b) RZhom (17 'kz, K) € E*¢(M).

Proof. (i) By Lemma 2.7.6, one has
7 'k; ® K ~ Eiy_Ei,' K,
Ei,! K ~Ei,' (n7'kz ® K).
The statement follows, since the functors Eiz_, and Ei;' are exact by

Proposition 2.7.3. (It follows that (a) and (b) remain equivalent when
replacing < ¢ by > ¢.)

(ii) is proved similarly. O
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2.8. Stable objects. Setting

k{t>>0} = “hﬂ” k{t)a}a k{t<*} = ul'ﬂ” k{t<a}7
a——+400 a—+00
Kio<rer) = “lim” Kgocs<ay,
a——+400

there are distinguished triangles in D(M x R)

kiso0y = Ky [1] = karxr[1] —,
k{0<t<*} — k{t>o} — k{t>>0} SN
The objects of E(M)
k}l;:/l = QM(k{t>>0}) = QM(k{t<*}[1]) and
klt\jl)r = QM(k{0<t<*})
enter the distinguished triangle
(2.8.1) KT — kgsgy — ki —— .
Note that we have
K ok 2k, Kokl ~ kb and kK @ kb ~0.

Definition 2.8.1. The category Es (M) of stable enhanced ind-sheaves
is the full subcategory of E, (M) given by

Est(M) = {K - E+( ) ktor ® K ~ 0}
— (K €E,(M); K ~5 kb & K}
={K e€E,(M); K ~ kEA@Lfor some L € EP (Tky)}

—{K e BE,(M); K % k2

{t=a}

®K for any a > 0},

where the equivalences follow from (2.8.1) and [4, Proposition 4.7.5].
+
Similar equivalences hold by replacing ® with Zhom™.

+

The embedding Eg (M) — E(M) has a left adjoint kjj ® *, and a right
adjoint Zhom™ (kL. ). There is an embedding
(2.8.2) e: DIM) — Eg (M), F—kyon 'F.
Note that e(F) ~ kf, é e(F).

For a locally closed subset Z C M x R, we set

+

(2.8.3) kD =k @k} € Eq(M).

Lemma 2.8.2.
(i) The embedding e from (2.8.2) is fully faithful and exact.
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(i) The functor k&, é (x) is exact.

Proof. (i) follows from [4, Proposition 4.7.15] and Lemma 2.7.5, and (ii)
from [4, Lemma 4.7.4]. O

The duality functor for stable enhanced ind-sheaves is defined by
Dyp: E(M) — Eg(M)°P, K+ Thom™ (K, wy),
where we set wf; := e(wwm).

Lemma 2.8.3 (|4, Proposition 4.8.3|). Let M = (M, ]\>[) For F €
D" (kysxr), one has

+ + +
Dy (ki @ QuF) ~ ki @ (DuQuF) ~ kij ® Qu(a™'DasxeF),
where a is the involution of M x R defined by a(x,t) = (z, —t).

3. ENHANCED PERVERSE IND-SHEAVES

As we recalled in Section 1, a perversity endows the triangulated cate-
gory of R-constructible sheaves on a subanalytic space with a t-structure.
Here, we extend this result to the triangulated category of R-constructible
enhanced ind-sheaves. We allow the subanalytic space to be bordered,
and we also discuss exactness of the six Grothendieck operations.

3.1. Subanalytic bordered spaces. Recall Notation 2.3.1.

Definition 3.1.1. (i) A subanalytic bordered space M = (M, J\VJ) is a
bordered space such that M is a subanalytic space and M is an
open subanalytic subset of M.

(ii) A morphism f: M — N = (N, N ) of subanalytic bordered spaces is
a morphism f: M — N of subanalytic spaces such that its graph I'y
is a subanalytic subset of MxN ,and ¢ T, is proper. In particular,

f: M — N is a morphism of bordered spaces.

(iii) M is smooth of dimension d if M is locally isomorphic to R? as a
subanalytic space.

(iv) A subset S of M (see Definition 2.3.6) is called subanalytic if it is

subanalytic in M.
(v) A morphism f: M — N of subanalytlc bordered spaces is submersive

if the contmuous map f M — N is locally (in M) isomorphic to the
projection N x R? — N for some d.

Let M = (M, M ) be a subanalytic bordered space, and consider the
embedding jy: M — M.
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Definition 3.1.2. DY (ky) is the full subcategory of DP(kys) whose

objects F' are such that Ryjyn F' is an R-constructible object of Db(k]&).
We regard D2 (km) as a full subcategory of D(M).

Proposition 3.1.3. Let f: M — N be a morphism of subanalytic bor-
dered spaces.
(i) The functors f=* and f' send DR _(ky) to DR (k).
(ii) If f is semi-proper, then the functors Rfy and Rf. send DY (km)
to D]ﬁ)@_c(kN)-

In particular, the category D .(kyw) only depends on M.
Notation 3.1.4. For M a subanalytic bordered space, set
CSwm := {closed subanalytic subsets of M},
LCSw := {locally closed subanalytic subsets of M}.
For Z € LCSy, denote by
17 Zoo = M
the morphism induced by the embedding Z C M (see Notation 2.3.3).
For k € Z, set
CSy:={Z € CSw; dy < k},
CSyF:={Z € CSw; d; < k},
and similarly for LCSy* and LCSy.

Definition 3.1.5. Let p be a perversity, ¢ € R and k € Z-,. Consider
the following conditions for F' € D(M)

(Ips9): i(_]\Z\Z)OOF € DSPPR (M \ 7)) for some Z € CSgF,

(Ip;): iy F € D**P®(Z ) for any Z € CSy .
Consider the following strictly full subcategories of D(M)
PDSE(M) := {F € D(M); (Ips°) holds for any k € Z=o},
PDZ¢(M) := {F € D(M); (Ip7°) holds for any k € Z-o}.
Let us also set
"D’ (ku) := PD=(M) N DR (ku),
D’ (km) :="D*(M) N DR_.(kwm).

C

It is easy to check that ("Dg< (km),” Dﬂi_cc(kM))ceR satisfies the analogue

of Proposition 1.7.5 (i) and (ii).

Note that (PDS¢(M),”D>%(M)),_p is not a t-structure if dim M > 0.

Lemma 3.1.6. For any c € R one has
<c <c
am ("D¥(M)) C PD=*(ke ).
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Proof. This follows from the fact that o commutes with i71. OJ

Remark 3.1.7. Since o does not commute with the functors i', the
statement

am(PD74(M)) C PD**(ke )
does not hold in general. For example, as in [13, Exercise 5.1], let

M=R, S={0}, F="lig k...
e—>0+

Then amF ~ kg € 1/2DO(ky) and iy F ~ kg[—1], isamF ~ ks. Hence
F € ?D12(M) but amF ¢ Y?D>Y2(ky).

3.2. Intermediate enhanced perversities. Let M = (M, ]\Z/) be a
subanalytic bordered space.

Definition 3.2.1. Let p be a perversity, ¢ € R and k € Z-,. Consider
the following conditions for K € E(M):

(Ep;°): Ez’&&l\z)wl{ € ESP®) (M \ 7)) for some Z € CSyF,
(Ep;°): Ez'!ZooK c 7P (Z,) for any Z € CSyF.
Consider the following strictly full subcategories of E(M)
LESM) :={K € E(M); (Ep;°) holds for any k € Zs},
EZ¢(M) :={K € E(M); (Ep{°) holds for any k € Z-0}.

p

Note that (,ES¢(M), pE>C(M))CeR is not a t-structures if dim M > 0.
However, we write
LMY= JES(M),  EA(M) = ESS(M) N
c'<c
Remark 3.2.2.

(i) Conditions (Ep;°) and (Ep;°) can be rewritten using the equiva-
lences

Ei -l

(M\Z)ooK € ES((M\ 2)x) <= WﬁlkM\Z ® K € ES¢(M),

Ei, K € E*°(Zy) <= RZhom (1 'kz, K) € E**(M),

which follow from Lemma 2.7.8.
(ii) One has
Ei(—A}\Z)wK EES(M\ 2)s) = Ei(—A}\Z,)wK cES((M\ Z')s)

for any Z, Z' € CSy such that Z C 7.
Similarly,

Eiy K € E°%(Zy) = Biy, K € E°(Z},)
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for any Z € CSy and any locally closed subanalytic subset Z’ of Z.
Indeed, one has

Eigp . = Ej o Bigh . and  Eiy, ~Ej oEij_,

and Ej ! is exact and Ej’ 'is left exact for the standard t-structure.
Here, j: (M \ Z')oc = (M \ Z) and j': Z! — Z, are the canon-
ical morphisms.

The following lemma is obvious.
Lemma 3.2.3. For any c € R, one has
<c+p(d <c <c+p(0
Eserdn)(M) ¢ E<¢(M) C ES“PO(M),
E>c+p(0)<|\/|) C pE>C(M) C E>C+p(dlw)<|\/|).

Note that the following lemma is a particular case of Proposition 3.3.21
below.

Lemma 3.2.4. For any c € R and any Z € LCS\, one has
2 (EM) € (2 :

(pE>c ) E>c
E’LZOO : (pE>C x)) C EZ(M
EiZoo 0 (pE<c ) E<c

Proof. Since the proofs are similar, let us only discuss the third inclusion.
Let K € E*%(Zy). For W € CSy, consider the Cartesian diagram of
bordered spaces

(ZOW)oe — We

Noticing that Z NW € CSEZ and that Ei’ is left exact by Proposi-
tion 2.7.3, one has

Eiy, Biz K ~Ei\Ei'K
€ Eil (B> H((Z N W)s))
c EZrR(W,).
O

Lemma 3.2.5. For any ¢ € R and K € E(M), the following conditions
are equivalent:

(i) K € E>(M),
(ii) Big K € E>tP®(S) for any k € Zso and any S € LCSy',
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(ili) Big K € E>P0)(S) for any k € Zsy and any smooth S €
LCSy,

(iv) for any k € Zs¢ and any Z € CSf,lk, there exists an open subana-
lytic subset Zy of Zs such that dim(Z \ Zy) < k and EZ.EZO)OOK €
EZH0((Zo)o0 ),

(v) for any k € Z=o and any S € LCS,%,Ik, there exists an open suban-
alytic subset Sy of Se such that dim(S \ Sp) < k and Eiéso)ooK €
B0 (50).c).

Proof. The implications in the following diagram are clear
__ (iii) -

(i) — (id) (iv).

\(V)/

Here the less trivial implication (i)=(ii) follows from Remark 3.2.2 (ii).
It remains to show that (iv) = (i). That is, we have to show that for
any Z € CSfA}C one has

(3.2.1) RZhom (1~ 'k, K) € EZP®) (M),

We shall prove it by induction on k € Zso. When k& = 0, (3.2.1) is true,
because Zj in (iv) coincides with Z. Assume that k£ > 0. Let Zy C Z be
an open subanalytic subset as in (iv), so that

RZhom (1~ 'kz,, K) € EZ<PH(M).
Since Z \ Zy € CS,f,lkfl, the induction hypothesis implies
RZhom (1~ 'k z,, K) € EZPED (M) € EZ<PR(M).
Then (3.2.1) follows from the distinguished triangle
RZhom (1~ k2, K) = RZhom (7 'kz, K)
+1

— RZhom (77 'ky,, K) — .

Proposition 3.2.6. For any ¢, € R, one has:
Thom®(,E<(M), E*¢(M)) C D*“~¢(M),
Hom"(,E<(M), E>(M)) C D**~“(ke).

In particular, Hom g, (,E<(M), (M) =0 if d > c.

Proof. (i) Let K € JES¢(M) and K’ € E>(M). Reasoning by decreasing
induction on k € Z~_4, let us show that

(i) there exists Z; € CSy" such that
RZhom (kap z,, Thom®(K, K')) € D*“~¢(M).
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The above statement is obvious for k£ > dj;. Assuming that (i), holds
true for k > 0, let us prove (i)y_;. Since K’ € ;E>¢ (M), one has

RZhom (1~ 'k, , K') € EZ“TP®(\M).
Moreover, since K € ;E<¢(M), there exists Wj_; € CSy*" with
T kanw,_, ® K € ESCPE (M),
Then
RZhom (kz\w,_,, Zhom" (K, K'))

~ RZhom (kanw,_, ®kz,, Zhom" (K, K'))
~ Thom" (7 'kanw,_, ® K,RThom (77 'kz,, K'))
€ Thom" (ES“PW) (M), E>“P0) (M)
C D>“7¢(M),

where the last inclusion follows from Proposition 2.6.8.
Considering the distinguished triangle

RZhom (kza\w,_,, Zhom" (K, K'))
— RZhom (Kan\(zeow,_y), Zhom" (K, K'))
— RZhom (Kap z,, Thom® (K, K')) ==,
we deduce (1)1 for Zy_1 = Zp N Wi_;.
(ii) The second inclusion follows from the first since Hom®™ ~ ay Zhom®.
(iii) The last assertion follows from (2.6.3). O
Lemma 3.2.7. For any c¢,c € R, one has:
Thom®(E<¢(M), ,E*¢(M)) C "D ~¢(M),
and in particular,
Thom®(ky, ,E*°(M)) C PD>*(M).
Proof. Let k € Z=y, Z € CSyF, K € ES¢(M) and K’ € LEZ¢(M). One
has
RZhom (kz, Thom® (K, K')) ~ Zhom®(K,RThom (1 'kz, K'))
€ Thom®(E<¢(M), E>P*)(M))
- DZc'chrp(k)(M)’
where the last inclusion follows from Proposition 2.6.8. U

Remark 3.2.8. For ¢, ¢ € R, the inclusion
Ep<c > >c'—c
Hom™(ES“(M), E7¢(M)) C PD (ke)
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does not hold in general. For example, with notations as in Remark 3.1.7,
let M =R, K = ki and K’ = ki; @ 7 'F. Then K € E°(M), K’ €
12E21/2(M) and

Hom®(K,K') ~ ayF ¢ Y?D>12(ky).
Here, 1 5E:=E and /2D := ™D for m(n) := —n/2 the middle perversity.

Proposition 3.2.9. For c € R one has

(LE<(M))" = E*(M).

p
Proof. One has E>“(M) C (pE<C(M))L by Proposition 3.2.6.

Let K € (pE<C(M))L. We have to show that for any Z € CS5" one
has

Eiy, K € B> (7).

Since E>tP®) (7)) = (E<C+p(k)(Zoo))L, this is equivalent to show that
for any L € E<¢*?®)(Z_) one has

Homy, (L, Eij, K)~0.
By Lemma 3.2.3, one has E<“"*®)(Z_) € E<¢(Z). Then Lemma 3.2.4
implies Fiz, L € JE<¢(M), so that
Homy, (L, Ei, K)=~ Hom  (Eiz nL, K) ~ 0.
0

Proposition 3.2.10. Let M be a subanalytic space. For any interval
I C R such that I — R/Z is injective, the prestack on M

U~ E(U)
is a stack.
Proof. (i) Let K, L € JE'(M). By Proposition 3.2.6, one has
Hom"(K,L) € D M) = D°(M).
Hence the presheaf
U~ Hom g1 (Ei;' K, Ei;'L) ~ I"(U; H'(Hom"(K, L)))
is a sheaf. Thus U — E/(U) is a separated prestack on M.

(ii) Let M = U,y Ua be an open cover. Let K, € E'(U,) and let
Uap: Kplu,nu, == Kal|v,nu, be isomorphisms such that we, o upe = wge
on U, NU,NU. (a,b,c € A). We have to show that there exist K €
pEI(M) and isomorphisms u,: K|y, =~ K, such that wuy, o u, = u, on
U,NU, (a,b € A). This follows from Proposition 2.4.8 by applying it to
Rj., L¥ K, € D(U, x R), where j,: U, x Ry, — U, x R is the canonical
morphism. O
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Lemma 3.2.11. Let M be a bordered space. Let ¢ € R, Z € CSy and
K € E(M). Set U =M\ Z. Then, considering the morphisms

Zoo—i>|\/|<j—Uoo,

one has:
(i) K € JES¢(M) if and only if

Ei 'K € ES(Zx) and Ej 'K € ES9(Uy),
(ii) K € JEZ¢(M) if and only if
Ei'K € FE*°(Zy) and Bj'K € E>*(Us).

Proof. Since the proofs are similar, let us only discuss (i).
If K € JE<(M), then Ei 'K and Ej 'K satisfy the required condi-

tions since the functors Ei~! and Ej ' are right exact by Lemma 3.2.4.
Conversely, assume that Ei 'K € JB5(Zs) and Ej 'K € L5 (Us).

For k € Z~q, let Sy € CSEZ be such that

7 ki, @Ej K € BESPR(U),
and Sz € CS3* be such that

T kps, @EiTIK € BESPR) (7).

Set S = S; U Sy € CS§ and S% = Sz U (ZNSy) € CSz*. (Here the
closure of Sy is taken in I\O/I) Then SNU = Sy and SN Z = S. Since

ks, ® K € EXPO(M), 17k @ K € ESPR)(M),

one concludes that 7 'kyns @ K € ES“*P)(M) by considering the dis-
tinguished triangle

T ks, @K = 1 kans @ K — 1 lkag, 9 K —s
0

A subanalytic stratification {My}aea of M:= (M, ]\v4) is a locally finite
(in M) family of smooth M, € LCSy such that M = || ., M, and
M, N Mpg # 0 implies M, D Msp.

aEA

Proposition 3.2.12. Let {M,}aca be a subanalytic stratification of M,
and set M, = (M,)so- Let K € E(M).

(i) K € ES¢(M) if and only if Eiy! K € ES¢(My) for any o € A,
(ii) K € ,E**(M) if and only if Eiy K € JE>*(M,) for any a € A.

Proof. The statement follows from Lemma 3.2.11. U
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3.3. R-constructible enhanced ind-sheaves. Here, we extend the
definition of R-constructible enhanced ind-sheaves from [4, §4.9] to the
case of subanalytic bordered spaces.

Let M = (M, M ) be a subanalytic bordered space.

Definition 3.3.1. (i) An object K € E(M) is R-constructible if for
any relatively compact subanalytic open subset U of M, one has

+
Eij' K ~k;; ®Qu._F in E(Ux) for some F € DY (ky. xr..)-

In particular, K is stable.
(ii) Er.c(M) is the strictly full subcategory of E(M) whose objects are
R-constructible.

Recall the morphism jy: M — M.
Lemma 3.3.2. Let K € E(M). Then K € Eg.(M) if and only if
EjvnK € ER_C(M).

Proposition 3.3.3 ([4]). Let f: M — N a morphism of subanalytic bor-
dered spaces.

(i) Erc(M) is a triangulated subcategory of E(M).
(ii) The duality functor DY, gives an equivalence Eg_(M)°P =2 Eg_ (M),
and there is a canonical isomorphism of functors idg, . m) == Dy o
DE|
(iii) The functors Ef ' and Ef' send Eg(N) to Eg..(M), and
DEoEf ' ~Ef' oDE and DEoEf ~Ef'oDE.
(iv) Assume that f is semi-proper. Then the functors Ef, and Ef, send
Egr(M) to Egr.(N), and
DN oEf, ~Ef,oDy; and DioEf,~Ef, oDy
See [4, Corollary 4.9.4, Theorem 4.9.12, Propositions 4.9.14, 4.8.2].
Definition 3.3.4. (i) An E-type on M is the datum

(331> ‘C = (Spaa ma7wl§|:7 nb)aEA, beB

consisting of

(a) finite sets A, B,

(b) integers m, and n; for any a € A and b € B,
(c) morphisms of subanalytic bordered spaces

G, UiF T M — Ry,

for any a € A and b € B, such that ¢, (z) < ¢, (z) for any
x € M.
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(ii) An E-type £ as in (3.3.1) is called stable if for any b € B
(332) {(v.1) € M xR t = (x) — ¢, ()} N (M x {+00}) # 2,

where ¥ denotes the closure in M x R.
Notation 3.3.5. For an E-type £ on M as in (3.3.1), set
B0 = {(z,1) € M X R; t > (2},
Wy = {(z,t) € M x R; 1, () <t < ¢y (2)},
and
k% = (@aeAkga[_ma]) ® (@beBkgb[_”b]) € E(M),
ki = (Docake,[-ma]) & (Byepku,[—ml)
+
~ ki @ k2 € Eg(M).
Note that ki, 9 0 if and only if (3.3.2) holds true.

Definition 3.3.6. One says that K € E(M) is free (resp. stably free) on

M if, for any connected component S of I\O/I, there exists an E-type £ on S
such that Eig' K ~ k (resp. Eig' K ~k%). (Note that Eig' ~ Eig_.)

If K € E(M) is stably free, then it is R-constructible. If K is free, then
it is constructible in the sense of Remark 3.5.12 below.
A regular filtration (My)gez of M is an increasing sequence of closed

subanalytic subsets M}, of M such that M, = @ for k < —1, M, = M for
k> d|\°/|’ and My, \ My_; is smooth of dimension k. In particular,

@IM,1 CM(] c .- CMdel CMdM Il\o/l
Lemma 3.3.7 (|4, Lemma 4.9.9]). For any K € Eg..(M) there ex-

ists a regular filtration (My)rez of M such that both Ei(l\}i\Mk_l)ooK and
Ei(]!wk\Mk—l)ooK are stably free.

Definition 3.3.8. Consider an E-type on M

+
L= (Spaa Mg, wb >nb)aeA, beB)

and assume that M is smooth of dimension d. The dual of £, denoted by

* * * +x %
L —(Spaamaa b 7nb>a€A, bEB)

is the E-type on M defined by
Qo= "Pa; Mg i=—Mg —d,
= —F, npi=—ny—d— 1
Accordingly, we set
&, = {(1,1) € M xR; 1> —pa(0)},
U ={(z,t) e M xR; —¢f(x) <t <9, (z)}.
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Lemma 3.3.9. Let L be an E-type on M. Assume that M is smooth and
equidimensional. Then

D%kg o~ kg* and Dyky ~ k7. .
Proof. This follows from Lemma 3.3.10 below. 0

Lemma 3.3.10. Recall Notation 3.3.5 and Definition 3.3.8. If M s
smooth of dimension d, one has

Dyi(ks,) = kg, [d], D (ks,) =~ kg, [d],
DY) ~ k. [d+ 1, DE(E, ) = KE, [d + 1.
Proof. By Lemma 2.8.3, one has
DI(\Q/I (kga) ~ k )}[d +1] =~ kgg [d],

{t<—pa(z
Q,Q \ ~ 1.Q _ 1.Q
D (ky,) = k{—w:(m)<t<—w;(m)}[d +1] = k; [ +1].
The other statements also follow from Lemma 2.8.3. ]

Definition 3.3.11. For p a perversity and ¢ € R, we set
JESS (M) i= ES(M) N Ero(M),
pEfR_CC(M) = pEEC(M) N Egr.(M).

Proposition 3.3.12. The following properties hold.

(i) (LERS(M), pEﬂifC(M))ce]R is a t-structure on Eg_.(M).

(ii) Assume that M = M is a subanalytic space. For any interval
I C R such that I — R/Z is injective, the prestack on M

U Ef (V)
1s a stack of quasi-abelian categories.

Plan of the proof. (i) We have to prove that the conditions in Defini-
tion 1.2.2 are satisfied. Conditions (a) and (b) are clear. Condition
(c) follows from Proposition 3.2.6. Condition (d) is checked in Proposi-
tion 3.3.19 below.

(ii) follows from Proposition 3.2.10. O
Notation 3.3.13. We denote by
(1/2EI§&—CC<M>’ 1/2E]1>§—CC<M))c€]R

the t-structure associated with the middle perversity m(n) = —n/2.

Remark 3.3.14. The t-structures (pE]E_cC(M), pEi_cC(M))Ce]R are not well
behaved with respect to duality, as one observes in Lemma 3.3.15 below.

We will come back to this point in §3.5.

Lemma 3.3.15. Assume that M is smooth of dimension d. Using Nota-
tion 3.3.5, one has
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C

(i) DGKE, € ERY(M) and DKy € EX?7'(M).

(i) k5, k5, € E" (M),

Proof. (i) As the proofs are similar, let us only discuss ki, .
(i-1) It is straightforward that k§ € Ex'” @ (m).
(i-2) Let us show that k§ € pEﬂi__cp(d)(M). We have to prove that for

<k

any smooth Z € LCSy;" one has
Eiy (k§, )€ EZ @k (z ).

We may assume that £ < d. Note that

B (k5) ~ kb © Qu (i} (ki)
~ kb © Qu (i (ki) @5k
Locally on Z, one has i ky ~ ky[k — d]. Hence
Eiy_(kg,) € B2 (Zy)

by Lemmas 2.6.5 and 2.8.2. One concludes since d — k > —p(d) + p(k)
by perversity.
(ii) Using Lemma 3.3.10 and (i), one has

—p*(d)—d d
DKy, ~ kb [d € B2 WUM) = EED (M),
—p*(d)—d— d)—
Dk, ~ ki [d+1] € B 77 (M) = EEDT (M),
L]

Lemma 3.3.16. Assume that M is non empty and smooth of dimension
d. For

‘C - (900,7 Mme, wl:)t7 nb)aGA, beB
a stable E-type on M, and c € R, one has
(i) k% e pEEfC(M) if and only if for anya € A and b € B
ma<0+p(d)a 7’Lb<0+p(d),
(ii) kZ e pE]ﬁfC(M) if and only if for anya € A and b € B
Mme = c+p(d), ny = c+p(d),
(iii) DEKE € p*E]ﬁ__Cc M) if and only if for anya € A and b € B

—

/N

c+p(d), m<c+p(d) -1,
(iv) DRKE e p*Eﬂi_c(M) if and only if for anya € A andb € B

-C

Mg

mg = c+p(d), ny=c+p(d)—1.
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Proof. Since
ki = (D ks, [-ma]) @ (Dki,[-m)),
acA beB

the statement follows from Lemma 3.3.15. Note that a non-zero object
of JE°(M) belongs to ,E<“ (M) (resp. ;E=“(M)) if and only if ¢ < ¢ (resp.
¢ > ) by Proposition 3.2.6. OJ

Corollary 3.3.17. Assume that M is smooth of dimension d. Let K €
Er.(M) be a stably free object. Then, for ¢ € R, one has

(i) K € B35 (M) if and only if K € ES-@ (M),

(i) K € Ez°(M) if and only if K € EZ57 (M),
Lemma 3.3.18. Let c € R and K € Eg..(M). Assume that M is smooth
and K s stably free on M. Then there are distinguished triangles in
Er.(M)

Kee 5 K > Koo 4 and Koo — K = Koy —

with Ky, € pEf&_C(M) for L equal to < ¢, > ¢, <c or = c.

Proof. Tt is obvious since K is a direct sum of objects belonging to
(M) for some a € R by Lemma 3.3.15. O

Proposition 3.3.19. Let ¢ € R and K € Er.(M). Then there are
distinguished triangles in Eg_.(M)
Kee s K > Koo =5 and Koy — K — Kop —
with K, € Eg (M) for L equal to < ¢, > ¢, <c or > c.
Proof. Since the proof of the existence of the second distinguished trian-

gle follows from the first one, we will construct only the first distinguished
triangle. The arguments we use are standard (see e.g. [10, Lemma 5.8]).

Let M = (M, M ). Reasoning by decreasing induction on k € Z>_1, let
us show that

(dt), there exists Z;, € CSy" and a distinguished triangle
K}, — Ejy 'K — K 1,
with Kj, € ERS(M\ Zi)so) and K} € B3¢ ((M\ Zi)so)-

Here, ji is the morphism indicated in the diagram below, where we pic-
ture all the morphisms that will be used in the proof.

(Zi\ Zio)oo —m (M Zot)oe <2 (M Z4)os

T e

M
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The statement (dt)g is obvious for & > dj;. Assuming that (dt), holds
true for some k& > 0, let us prove (dt)_1.

The morphism Kj — Ej, 'K ~ Ej,' K induces by adjunction a mor-
phism EjpnKj — K, that we complete in a distinguished triangle in
Er..(M)

Ejon K, — K — L — .

Let Z,,_1 € CS,f,lkf1 be such that Z; \ Zx_; is smooth and Ei,!gL is stably
free. By Lemma 3.3.18, there is a distinguished triangle

(3.3.3) L' > EilL - L'

with L' € EZ((Zy \ Zk_ll)oo) and L/"e RS ((Zk\ Zi-1)oo)-

The morphism L' — Ei; L ~ Ei}'Ej;_, L induces by adjunction a mor-
phism Ei\, L/ — Ej,_,L ~ Ej;}, L, that we complete in a distinguished
triangle in Egp (M \ Zr_1)0)

(3.3.4) Eil L' — Ej 'L — KI' | —

Consider the composite morphism Ej,' K — Ej,',L — K} ,, and
complete it in a distinguished triangle in Eg o((M \ Zx-1)0)

o 1
K, =B\ K-> K/ | ——.

We claim that this satisfy (dt)g_;.
Note that

Bji Ky ~ By L K€ JBRL((M\ Zi)eo),
Bji ' Kioy = K € JER5((M\ Zi)s).

Hence, by Lemma 3.2.11, we are reduced to prove

(3.3.5) Bi, Koy € JEBR(Zk\ Zi-1)oo),
(3.3.6) Ei, Ki_1 € EZS((Zi\ Zi-1)oo)-

Applying the functor Ei} to (3.3.4), we get a distinguished triangle
L' - EilL - EilK} | — .

Thus (3.3.3) gives Ei K} | ~ L" € BEZ%((Z \ Zi—1)s), which proves
(3.3.6).
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By the octahedral axiom, there is a diagram in E((M \ Zx_1)x)
Ki

“ A

Ejit Eju k! “ Eil, L/
l >/ >< TH
+1
Ejit K / Ky
Ej. L L

k—1

and hence a distinguished triangle
Ej " EjinK, — K. | — Eil, L' — .
Applying the functor Ei;;l, we get
Bi, 'K ~ L' e ERS((Zk\ Zi-1)),
which proves (3.3.5). O

Definition 3.3.20. For p: Z-y — R a perversity and d € Z-, the
shifted perversity p[d] is given by

pld](n) = p(d+n).

Note that the soft dimension of a subanalytic space is equal to its
dimension.

Proposition 3.3.21. Let f: M — N be a morphism of subanalytic bor-

dered spaces, and d € Z=q. Assume that dim f‘l(y) < d for any y € N.
Then, for any ¢ € R one has

(1) Ef 7 (B~ (N)) C ES(M),

(ii) Ef (B °(N)) C E=I(M).

(iif) Ef,(,E>(M)) C ,izE7°(N),

(iv) Erc(N) NEfy(,E<(M)) C p[d}E<C+d(N)-

Proof. Let M = (M, M) and N = (N, N).
(i) Let L € p[d]Egc(N). We have to prove that, for any k € Z-q, there
exists Z GdeS,f,lk such that Ei(A}[\IZ)OOEf_lL € EStPR)((M\ Z)s). Let
—_ pp— <c

W e CSy"™ be such that Eiyy, L € ES PE((N\W)s). Note
that if 0 < k < d, then W = @ will do because L € EstPldO(N) ¢
E<c+p(k)<|\|)_

Then Z := f~Y(W) € CSy" satisfies the desired condition. Indeed,
denoting fo: (M \ Z)os = (IN \ W) the morphism induced by f|anz,
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one has

Ei o Bf L =~ EfolEz(;;\W) L
€ Efy ESPE((N\W)x)
CESHE((M\ Z)w),

where the last inclusion follows from Proposition 2.7.3.

(ii) Let L € p[d}E%(N) We have to show that for any Z € CSy* there

exists an open subanalytic subset Zy of Z,, such that dim(Z \ Zy) < k
and

(3.3.7) Eij,, Ef'L € E>"M7((Z)),).

Recall Notation 2.3.1. Replacing M with T f; We may assume that f
extends to a morphism of subanalytlc spaces f M — N.
Since (3.3.7) is local on M , we may assume that Z is relatively compact

in M. Then, there exists an open subanalytic subset Z, of Z satisfying
the following properties:
(a) dim(Z \ Zy) < k,
(b) Zo = || S, where {S;}ics is a family of subanalytic smooth subsets
iel

of dimension k,
(c) T; := f(95;) is a smooth equidimensional subset of N for any i € I,
(d) f induces a submersive morphism f;: (S;)oo — (7i)oo for any i € I.

We claim that Z, satisfies (3.3.7). In fact, for any ¢ € I, one has
Bijg) Ef'L~EfEig L
€ Bf; B2t (1) ).

Since f; is submersive, we have Ef; ~ org, 7, ®Ef; '[ds, — d,], where
org, /1, is the relative orientation sheaf (see §1.5). Hence we have

B f{ BP0 0(T,)) C BP0, () )
C E>c+p(dsi)_d((5i)oo)-

Here, the last inclusion follows from dr, +d > dg, and p(dr,+d)+dr,+d >
p(ds,) + ds, by perversity
Thus we obtain EZ(S Ef'L € E><tP®)=4((S,)) ) for any i € I, which
implies (3.3.7).

(iii) and (iv) follow from (i) and (ii) by adjunction using Proposition 3.2.9
and Proposition 3.3.12 (i), respectively. O

Remark 3.3.22. Concerning (iv) above, the inclusion

Efy(,ES(M)) C p[d]E@er(N)
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does not hold in general, since JES°(M) is not stable by “@®”. For ex-
ample, let M = R\ {0}, N = R and let f: M — N be the inclusion
map. Let z, = 1/n and set F, = 7'k} @ kisoy € Mod(Karxr.,)-
Let K = Qu(@,>, F.) € E(M). Then K € ,,E°(M) but Ef K =~
Qn (“®” fryFn) € E(N) does not belong to 1/2E<0(N). Here fg:= f %
n=1

idg: M x R — N x R. Indeed, there is no Z € CS<}(N) such that
Ei 2. EfuK € ESTV2((N '\ Z)o), Le. such that Eijy, 5 EfyK ~0.

3.4. Dual intermediate enhanced perversity. Let p be a perver-
sity and let M be a subanalytic bordered space. Since the t-structure
(pEE_CC(M), pEi_CC(M))cE]R is not well behaved with respect to duality, we
consider also its dual t-structure.

Notation 3.4.1. For c € R, set
JERC(M) = {K € Bre(M); DuK € B2 (M)},
JERS (M) :={K € Eg(M); DyK € .E3°(M)}.
The following result is a consequence of Proposition 3.3.12.

Proposition 3.4.2. (;EE_CC(M), JT:E]ﬁ_cC(M)) is a t-structure on Eg_(M).

ceR

Note that, by the definition, for any ¢ € R the duality functor Df; in-
terchanges B9 (M) and /EZT°(M), as well as EZ (M) and /E°(M).
Lemma 3.4.3. Let M be a bordered space. Let ¢ € R, Z € CSn, and
K € Eg(M). Set U =M\ Z. Then, considering the morphisms

o ——=M=2-U_,

one has:
(i) K € I;EE_CC(M) if and only if
Ei"'K € B3 (Zx) and Ej 'K € JE3%(Us),
(i) K € I;Eﬂi_cc(M) if and only if
Ei'K € JEz'.(Zs) and Ej'K € JEZ’ (Us).
Proof. The statement follows from Lemma 3.2.11, noticing that
DY Ei'K ~Ei'DyK, Di_Ej 'K ~E;jDyK,
DY Ei'K ~Ei 'DyK, D Ej'K ~Ej 'DyK,
which is a consequence of Proposition 3.3.3. O]
Lemma 3.4.4. For any c € R one has:
ERC(M) € ERL(M) € JEZLTH(M),
ALre(M) C JERL(M) € EZH(M).
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Proof. Let K € E(M). By Lemma 3.3.7, there exists a regular filtration
(Mg)rez of M such that both El’(l\_di\Mkfl)ooK and E,L.(]!Mk\Mk—l)ooK are
stably free. In order to check the inclusions in the statement, by Lem-
mas 3.2.11 and 3.4.3, we may assume that M is smooth equidimensional,

and that K is stably free. Then one concludes using Lemma 3.3.16. [

Proposition 3.4.5. Let f: M — N be a morphism of subanalytic bor-

dered spaces, and d € Z=q. Assume that dim f~1(y) < d for any y € N.
Then, for any c € R one has

() Bf 7 (B (N)) € JERS(M),
(i) Bf'(,qBzs(N) € B (M)

(i) Ere(N) NEL(GERLM)) C L BERL(N),
iv)

(iv) Bro(N) NEfy (JERC(M)) C B (N).

Proof. (i) Let K € p[diEﬂ%_cc(N), that is, DEK €
pld]*(n) = p*[d](n) + d, Proposition 3.3.21 implies

DREf 'K ~EfDRK € ,EZ‘(M).

)

p[d]*E]ﬁ__Cc(M). Since

Hence

Ef 'K € JE;5(M).
(ii) is proved similarly.
(iii) and (iv) follows from (i) and (ii) by adjunction. O
3.5. Enhanced perversity. Let p be a perversity and M a subanalytic
bordered space.

Definition 3.5.1. For ¢ € R, consider the strictly full subcategories of
Er..(M) given by
PERS(M) == EZ5 (M) N RS2 (M)
= {K € Er.(M); K € E5°.(M), DEEK € Bz “'*(M)},
PEZL(M) = B2 A(M) N JEZS (M)
— {K € Exo(M); DEK € "E5 (M)}
= {K € Er.(M); K € Ez° 2 (M), DK € E5 (M)},
By Lemma 3.4.4 one has
san  PEM)CTEEM)C B M) and
Lre(M) C PERS(M) € JERS (M),
In the rest of this section, we will give a proof of the following result.
Theorem 3.5.2. Let M be a subanalytic bordered space.
(1) ("ERZ(M),"EZ5(M))

wer 08 @ t-structure on Eg(M).
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ii) For anyc e e duality functor interchanges "Eg” an

(i) For any c € R, the duality functor DY, interchanges PES°.(M) and

prp=—c

E]R-c (M)

(iii) Assume that M = M is a subanalytic space. For any interval

I C R such that I — R/7Z is injective, the prestack on M

U — "Eg (U)
is a stack of quasi-abelian categories.

Plan of the proof. (i) As in the proof of Proposition 3.3.12, the statement
follows from Propositions 3.5.4 and 3.5.5 below.

(ii) is clear from the definitions.

(iii) has a proof analogous to that of Proposition 3.2.10. O

Lemma 3.5.3. Assume that M is non empty and smooth of dimension
d. Forc € R and L a stable E-type on M as in (3.3.1), one has

(i) k% € PESC.(M) if and only if for any a € A and b € B
me < c+p(d), ny<c+pld) —1/2,
(ii) k% € PE2C (M) if and only if for any a € A and b € B
me = c+p(d), ny>c+p(d) —1/2
Proof. The statement follows from Lemma 3.3.16. OJ

Proposition 3.5.4. The bifunctors Thom® and Hom® are left exact,
i.e., for any ¢, € R one has:

Thom®(PE5", (M), PEZ.(M)) C D¢ ~¢(M),

/

Hom®("EZ5,(M), "EZ(M)) € D™ (k).
In particular, HomER_C(M)(pEE_CC(M),pEHii(M)) =0ifc<c.

Proof. The second inclusion follows from the first one, since Hom® ~
amZhomP. Let us prove the first inclusion.

Let K € PES%(M) and K’ € PEZS(M). As in the proof of Proposi-
tion 3.2.6, reasoning by decreasing induction on k& € Z-_4, let us show
that

(i) there exists Z; € CSy" such that
RZhom (kap z,, Thom®(K, K')) € D*“~¢(M).

The above statement is obvious for k > dj;. Assuming that (i) holds
true for some k, let us prove (i);_1. There exists Z;_; € CS,f,lkf1 such

that Z,_1 C Zy, Zi \ Zr_1 is smooth of dimension k, and Eizzlk\zk,l)mK
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and Ezé Z\Zr 1) I8 are stably free. Consider the distinguished triangle
RZhom (kz,\z,_,, Zhom" (K, K"))
— RZhom (kanz,_,, Thom" (K, K'))
— RZhom (Kyp z,, Thom® (K, K')) =
Then (i),_; will follow if we show that
RZhom (kz,\z,_,, Zhom®(K, K')) € D*~¢(M).
This is equivalent to
is_Thom"(K,K') € D**~(S.)
for any connected component S of Z; \ Z;_;. One has
is_TZhom"(K, K') ~ Thom"(Eig! K ,Eiy_K').
By the assumption, Eig! K ~ k% and Eig_K’ ~ k& for some stable
E-types
L= (‘Paa Mg, wf, nb)aeA, pep and L= (Soaﬁma/, wbj,:’ nb')a/eA’, beB -

Then we are reduced to prove

/

(3.5.2) Thom®(kp, k) € D7 7¢(S,).
Recall that

k; = (P ks, [—ma) @ (P kS, [—m]) € "E(Sx),

acA beB
ki = (D ks, [-mal) © (P K5, [-n]) € "EZ5(Sw)-
a’eA’ veB’

By Lemma 3.5.3 and Proposition 2.6.8, one has
Thom® (K5, [~ny], K5, [~ny))
€ Thom®(ESetP®)=1/2(g_ ) pre+p)=1/2(g )
C D>7¢(S,).
Similarly, one has
Thom® (kg [—ma], kG, [-ny]) € D> 12(S,),
Thom" (ky, [~ny), K [~my]) € D7 H2(S),
Thom® (ki [~ma], Ky, [~ma]) € D7 *(Sx).
Hence (3.5.2) reduces to show that for any a € A and V' € B’
H"Thom® (kg [—ma), kgb, [—ny]) ~ 0
for any m € Z such that ¢ — ¢ —1/2 < m < ¢ — ¢. Since we have

H™Thom" (kg [-ma), kg, [-ny]) > H™ ™™ Thom® (kg , ky,,),
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we may assume that m + m, — ny > 0. Since m, < ¢ + p(k) and
ny = ¢ +p(k) —1/2, one has m+m, —ny <m—c +c+1/2 <1/2.
Then, we have m +m, — ny = 0.

Let m: Soo X Roo — Soo and T: Seo X R = So be the projections. Then
one concludes by noticing that

H™Thom" (kga [—ma), kEb, [—ny])
~ H'Thom" (kg k5 ) ~ HThom" (kg Kj )
+
~ HOR']T*R,Zhom (k{t>g0a )} k{t>>0} & k{w_(x)<t<¢; (JI)})
~ HORWIIRIhOm (k{t>§0a(l‘)}7 lﬂ k{w )+S<t<1/);;(1’)+s})
s—4

~ TZhom (K>, ()} Lﬂ k{w;(m)+s<t<¢;(m)+s})
s —+00

= S%oo TuLhom (Kiizp, ()} Kpyr (o) 1s<i<uss (o) 45)

‘Eﬂ” T Hom (K> g, (2)) k{w;(m)+s<t<¢;(m)+s}) ~ 0,
s “+00

12

where (%) holds because 7y and Zhom (K{i>y, ()}, +) commute with in-
ductive limits. O

Proposition 3.5.5. For any ¢ € R and K € Eg_.(M) there are distin-
guished triangles in Eg_.(M)

1 1
K<C—>K—>K>c+—> K<c—>K—>K>C+—>,

with Kj, € PEL (M) for L equal to < ¢, > ¢, < c or > c.

Proof. Since the proofs are similar, we will construct only the first dis-
tinguished triangle.

As in the proof of Proposition 3.3.19, one reduces to the case where M
is smooth and connected, and K is stably free. Then K is a direct sum
of objects in "Eg (M) for some a € R by Lemma 3.5.3. O

As a corollary of Propositions 3.3.21 and 3.4.5, one has

Proposition 3.5.6. Let f: M — N be a morphzsm of subanalytic bor-

dered spaces, and d € Z=q. Assume that dlmf Yy) <d foranyy € N.
Then, for any c € R one has

(i) Ef” ( TS (N)) € PERS(M
(i) Bf'("EZS(N)) € PEZS (M
(iii) Er.o(N) NEf, ("EZ%(M)) < "B (N),

(iv) Ero(N) NEf,("Es%.(M)) C [C”E\C*C‘(N).

Proof. (i) and (ii) follow from Propositions 3.3.21 and 3.4.5, and (iii) and
(iv) follow from them by adjunction. O

),
);
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Proposition 3.5.7. Let M be a subanalytic bordered space. The embed-
ding

e: Dp.(km) = Eg.c(M)
induced by (2.8.2) is exact, i.e., for any ¢ € R one has

("DE (k) € "ES.(M),
("D (k) C PEZ,(M).
Proof. 1t follows from the exactness of e with respect to the standard
t-structures and
kg ®e(F) ~e(kg ® F),
RZhom (7 kg, e(F)) ~ e(RZhom (kg, F))
for any F' € DP(ky) and S € LCS(M), by [4, Corollary 4.7.11]. O
Definition 3.5.8. The enhanced middle perversity t-structure
1/2<c 1/2~>c
(M), VR (M))
is the one associated with the middle perversity m(n) = —n/2. It is a
self-dual t-structure indexed by %Z
Example 3.5.9. Let M = {pt}. Note that one has:
(i) k]{“jagkb} ~ ( for a,b € R with a < b,
(ii) kfjopy ~ ki for a € R,
(iii) DPKE, ~ kE.
Hence kf, € Y 2EHO%_C({pt}), and any object of Eg .({pt}) is a finite direct
sum of shifts of copies of ki.

Example 3.5.10. Let M = M = R and let

ceR

K= k]{ax>o, 0<t<1/z}u{z=0, t=0}»
so that
D]]%/[K = k]{ax>0, —1/z<t<0} [2].
Noticing that

Biggy K ~ D, Ei, DY, K ~ 0,

{o}
.1 E ~ NE —1 ~ NE E J1E
EZ{O}DMK = D{O}EZ{O}K - D{O}k{O} - k{O}’
one has K € 1/2E]§/_i (R) and DEK € 1/2E11§-3c/2 (R), so that K € l/éE%{z(R).

1/211
Hence K € V/ Ep .(R).

Example 3.5.11. Let {M,}, be a subanalytic stratification of M, and
set My := (My)o. Let K € Ego(M). Assume that Eiy,' K and Eiy K
are stably free. Recall Notation 3.3.5. Even if only direct summands
containing ¥, appear in Ei[AiK , direct summands containing ¥, can

. .l . .
appear in Eiy_ K, as seen in this example.
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Let M = R? x R with coordinates (z,y, z), consider the bordered
space M := (M, R? x R), and set

S::{(:c,y,z,t)eMx]R; =20, y>0,t=> sl }v
r+y

K =kt € E(M).
Set Z ={z =y =0} C M. Then one has:
Biy! K ~0, Eiy K ~Kkj.,[-1],
Biy DK ~0, Ei,' DyK ~DY Bi, K~k . 3]

We deduce that K € E?’/Z(M) and DEK € E_?’/z(M). Hence K €

1/27R-c 1/2-R-c
1/2/E]‘;{3(M), so that

K € "PEY2 (™).

Remark 3.5.12. Let M be a subanalytic space. The triangulated cate-
gory of enhanced sheaves on M (cf. [19, 5]) is defined by

E”(kar) := D" (karxe) /7~ D" (ka),

where m: M x R — M is the projection. One similarly defines E- (kyy),
so that EP(kys) ~ Eb (k) @ EP (kp). Note that

E} (ky) ~ {K € E.(M); L*K € D"(kpxr..)}-

We say that an object K € Eb (kj/) is R-constructible if so is LF K €
DP(kyrxr..). Let p: Z=o — R be a perversity. Then, with obvious nota-
tions,

("Eg(kar), "Eg% (kar)) cp

satisfies the analogue of Theorem 3.5.2. Moreover, a description analo-
gous to that in Lemma 3.3.7 holds, replacing “stably free” with “free”.

Remark 3.5.13. Let M be a subanalytic space. It is shown in [16] that
Hom"® induces a functor

Hom" (kiZg, *): Eg (M) — Dp_.(Kar)-

This is neither left nor right exact with respect to the middle perversity t-
structures. For example, let M = R" and K = k]{aﬁéo’ t=—1/]a]}- Then K €
UQE%{?(M) and F := Hom"(ky,, K) ~ kg, .0 by [16, Corollary 6.6.6.].
Hence, ?H"?(F) ~ ky; and Y2H'(F) ~ ko when n > 3. Therefore,
Hom"(ki, *) is not left exact. Since Hom"(kily,*) commutes with
duality, Hom" (k;%, *) is not right exact either.



54 A. D’AGNOLO AND M. KASHIWARA

4. RIEMANN-HILBERT CORRESPONDENCE

On a complex manifold, the Riemann-Hilbert correspondence embeds
the triangulated category of holonomic D-modules into that of R-constructible
enhanced ind-sheaves. We prove here the exactness of the embedding,
when the target category is endowed with the middle perversity t-structure.

4.1. Subanalytic ind-sheaves. For subanalytic sheaves and ind-sheaves
we refer to [13] (where subanalytic sheaves are called ind-R-constructible
sheaves).

Let M be a subanalytic space. An ind-sheaf on M is called subanalytic
if it is isomorphic to a small filtrant ind-limit of R-constructible sheaves.
Then, being subanalytic is a local property.

Let us denote by Igupan(kas) the category of subanalytic ind-sheaves.
Note that it is a strictly full subcategory of I(ky;) stable by kernels,
cokernels and extensions.

Let Op,,., be the category of relatively compact subanalytic open sub-
sets of M, whose morphisms are inclusions.

Definition 4.1.1 (cf. [12, 13]). A subanalytic sheaf F is a functor Opy; —
Mod(k) which satisfies
(i) F(2) =0,
(ii) For U,V € Opy,,,, the sequence
0— FUUV)-“s FU)o F(V) =5 FUNV)

is exact. Here r; is given by the restriction maps and r, is given by
the restriction F(U) — F(UNV') and the opposite of the restriction
F(V)=>FUNV).

Denote by Mod(kj,,,) the category of subanalytic sheaves.
The following result is proved in [13].

Proposition 4.1.2. The category Isupan(kar) of subanalytic ind-sheaves
and the category Mod(kyy,) of subanalytic sheaves are equivalent by the
functor associating with F' € Igypan(kas) the subanalytic sheaf

Opar, 2 U +— Homy (ko F).
4.2. Enhanced tempered distributions. Hereafter, we take the com-
plex number field C as the base field k.

Let M be a real analytic manifold. Denote by Dby, the sheaf of
Schwartz’s distributions on M. The subanalytic sheaf of tempered dis-
tributions on M is defined by

Dbt (U) := Im(Dbys (M) — Dby (U))
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for any U € Op,,.. We still denote by Dbj, the corresponding subana-
lytic ind-sheaf.

Denote by P the real projective line, and let t € R C P be the affine
coordinate. Considering the natural morphism of bordered spaces

Ji M xRy —MXxP,
one sets
DbL, = j* (Dbl p —— Dbl p) € D(M x Ry),

where the above complex sits in degrees —1 and 0.
By the results in [4, §8.1| one has

Proposition 4.2.1.
(i) There are isomorphisms in D(M x Ry,)
Dby, =% Thom™ (Cyysoy, Dbyy)
<~ Thom™ (Cyysay, Dby,)  for any a > 0.

(ii) The complex Db}, is concentrated in degree —1.
(iii) There are natural monomorphisms in 1(Cyxr..)

Clresy @ 71D, —> H Db, — 771Dy

The enhanced ind-sheaf of tempered distributions is defined by
Dby, := Qu(Dby,) € E(M).
Part (iii) in the following proposition is new.
Proposition 4.2.2.

+
(i) DbY, is stable, i.e. C¥, @ DbY, ~ Db,
(i) REDVY, ~ Dbi,. In particular, it is concentrated in degree —1.
(iii) DbY, € E%(M). In other words, the complex LF DbY, is concen-
trated in degree 0.

Proof. (i) follows from Proposition 4.2.1 (i).

(ii) By Proposition 4.2.1 (i), one has RF DbY, ~ Db},. This is concen-
trated in degree —1 by Proposition 4.2.1 (ii),

iii) By (ii), REDbY, ~ Db}, is concentrated in degree —1. Hence

y M M g
Lemma 2.5.2 implies
+
LE Dby, ~ Cyiz0p @ Dby, € DY x R.),

and we are reduced to prove that H~!LE¥DbE, ~ 0.
By [4, Proposition 4.3.10], there is a distinguished triangle

7 Ry DY, — LEDVE, — Dbl
By Proposition 4.2.1 (iii),
H_lRﬂ'M”DbJ\Td ~ WM!!H_lpr C 7TM”7T_1DbM =0.
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Thus, the above distinguished triangle induces the exact sequence
0— H'LEDVY, - H'DbY, L = 'RimpH'DLY,.
To conclude, we have to show that v is a monomorphism.
By Proposition 4.2.1 (iii), there is a commutative diagram

HDbY, — = 7, 'Rimy H DT,

| |

—1 ~_ _—1pl ~1
Ty Dby —— my Rimarumy; Dby
Hence ~ is a monomorphism. 0

4.3. D-modules. Let X be a complex manifold. We denote by d% its
complex dimension. Denote by Ox and Dy the sheaves of algebras of
holomorphic functions and of differential operators, respectively. Denote
by Q2x the sheaf of differential forms of top degree.

Denote by Mod(Dy) the category of left Dx-modules, and by D(Dy)
its bounded derived category. For f: X — Y a morphism of complex
manifolds, denote by ®P, Df*, Df, the operations for D-modules.

Consider the dual of M € DP(Dy) given by
Dy M =RHom,, (M, Dx &, Q% ")[d%].

A Dx-module M is called quasi-good if, for any relatively compact
open subset U C X, M|y is isomorphic (as an Ox|y-module) to a filtrant
inductive limit of coherent Ox|y-modules. A Dx-module M is called
good if it is quasi-good and coherent.

Recall that to a coherent Dx-module M one associates its character-
istic variety char(M), a closed conic involutive subset of the cotangent
bundle 7*X. If char(M) is Lagrangian, M is called holonomic. For the
notion of regular holonomic Dy-module, refer e.g. to [8, §5.2].

Denote by DP.(Dx) and DP (Dx) the full subcategories of DP(Dy)
whose objects have holonomic and regular holonomic cohomologies, re-
spectively. These are triangulated categories.

Let f: X — Y be a morphism of complex manifolds. For z, € X
consider

rank (f) := rank®(T,, X o), Tt@yY) and
ﬂat—dimpx’zo (DX—>Y,m0)7

the complex dimension of the image of df (x¢), and the flat dimension of
Dx—y.a, as aleft Dx ,,-module, respectively.

Proposition 4.3.1. Let f: X — Y be a morphism of complex manifolds.
For xqg € X one has

flat-dimp, (Dx—va0) < s — rank&o (f)-
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Proof. Set n = d%, m = d%, d = rank’ (f), and yo = f(x0).

Choose a system of local coordinates y = (y1,...,¥m) of Y on a neigh-
borhood of yo, such that 0y, ...,0,, generate df (2)(T2,X) C Ti@y)Y
Set zp, = yr o f for k < d, and complete them to a system of local
coordinates z = (x1,...,x,) of X on a neighborhood of z.

Consider the subring

R :=0x. 240215 -+ 0n,] CD:=Dx 4.
Then Dx—y zp =~ Ox, 4 Roy. " Dy, is a free R-module. In fact, one
has
DX—>Y, xo = @ Rag
Be{0}4x2T5 4z,

The statement follows by Lemma 4.3.2 below. OJ

Lemma 4.3.2. Use notations as in the proof above. Let M be a left
D-module. If M is flat as a left R-module, then

flat-dimp(M) < n —d.

Proof. Set O := Ox 4, and D' := O[0,,,,;---,0s,], so that D ~ D' ®,

R. Set K :=C0,,,, ® --- ® C0,,. Then the Spencer resolution of M,
considered as a D’-module, is
n—d
0= D N\KM-=- =D g, M- M-=0.

Since D' ®,, R ~ D, the above resolution reads as

n—d
0= DPNK) @M= =Dy M—M—0.

Since M is a flat left R-module, this is a flat resolution of M as a left
D-module. O

For a category C, let Pro(C) be the category of pro-objects in C, and
“lim” the projective limit in Pro(C).

Lemma 4.3.3. Let M be a quasi-good Dx-module, flat over Dx. Let
{M;}icr be a filtrant inductive system of coherent Dx-modules such that
M ~ hg./\/ll Then, for any x € X and any k # 0 one has

ul-&ln 5xtkDX(Mi,DX)$ ~0 n Pro(Mod(D‘)’gw)).

Proof. There exists a filtrant inductive system {L;};c; of free Dx .-
modules of finite rank such that M, =~ lim L; (see [17]). It implies
J
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that “lim” M, ~ “lim” L; in Ind(Mod(Dx .)). Hence, for any i € I
@ J

there exist j € J, a morphism u: i — ¢/ in [ and a commutative diagram

MZ'@- —— Mi’@ .
~N 7
L
It follows that the morphism induced by u,
Extl, (Mg, Dxy) = Eatly  (Miy, Dxy),

is the zero morphism. O
For a hypersurface Y of X, denote by Ox(xY") the sheaf of meromor-

phic functions on X with poles in Y. We set Dx(xY) = Ox(+Y) ®,

Dx ~ Dy Rp,, Ox(xY). It is a sheaf of C-algebras on X. For a Dx-

module M, we set M(xY) := Dx(xY) @, M.

Lemma 4.3.4. Let Y C X be a closed complex analytic hypersurface,

and let M be a quasi-good Dx-module. Assume that M\X\y is flat over

Dx\y. Let {M;}icr be a filtrant inductive system of coherent Dx-modules
such that M(xY') ~ hgl/\/lz Then, for any V CC X one has

(i) “@n &Etl%X (M, Dx(xY))|y ~ 0 in Pro (Mod(Dgp)) for any k # 0,
(i) “lim” RHom, (M, Dx (xY))|v
~ “Jin” Hom, | (M;, Dx(xY))|v in Pro(DP(D)).

(2

Proof. (i) For i € I, denote by I the category whose objects are mor-
phism i — ¢ in [ with source ¢, and whose morphisms are commutative
diagrams in [

i
zi/ L\) Z'// .
It is enough to show that for any i € I there exists (ug: i — i) € I* such
that the induced morphism

ugy: ExtkDX(./\/liO,DX(*Y)HV — ExtkDX(./\/li,DX(*Y))W
is the zero morphism. For (u: 1 — ') € I', set
Nu = Im(&ptlz)x (MiHDX) — g[L‘tlz)X(MZ, Dx))

It is a coherent DF-module. Since I' is filtrant by [14, Corollary 3.2.3],
{supp(N.) fueri is a decreasing family of closed complex analytic subsets.
Hence it is locally stationary. Thus, there exists (ug: ¢ — ig) € I* such

that
supp(Noolv) = ) supp(Nav).

uel’
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By Lemma 4.3.3, one has
() suppWaly) € V-

uel’

Hence, supp(N,,|v) C Y and one has
0~ (Ny, ®@p, Dx(*Y))]y = Im (uyg).
Hence we obtain (i).
(ii) follows from (i). O

Proposition 4.3.5. Let Y C X be a closed complex analytic hypersur-
face, and let M be a quasi-good Dx-module. Assume that M|x\y is flat
over Dx\y. Then M(xY') is a flat Dx-module.

Proof. The question being local, we can write M(xY) =~ lim M; with
{M;}ics a filtrant inductive system of coherent DX—modules.i Set
M =Hom (M, Dx).

Then Homp (M;, Dx(xY)) =~ M;(xY). By Lemma 4.3.4, one has
“lim” RHomp (M;, Dx(xY)) ~ “@”M:(*Y) in Pro(D"(DY)),
by shrinking X if necessary. Let P € Mod(D%’). We have to show that,

for k£ <0,
(4.3.1) HY (P &y M(xY)) ~0.
One has
HY(P oy M(xY)) = HY(P(+Y) @5 M(+Y))
~ hgﬂk (P(+Y) @ M;).
Moreover,

“liny” P(+Y') ®p, M
Z ~ “liy” RHom pep (RHomp (M;, Dx), P(xY))
~ “liéq” RHomp_(yyer (RHOM (M, Dx (Y)), P(+Y))
~ hgn RHOM ()00 (M (5Y), P(+Y)).

Hence we obtain

H*(P @ M) = lig H*RHOm o) (M (+7), P(+Y))

which vanishes for k& < 0. ]
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Let us denote by E(DY) the category of enhanced ind-sheaves on X
with D-action (see [4, § 4.10] where E(DY) is denoted by EP(IDY)).
Consider the forgetful functor
for: E(DY) — E(X).

Lemma 4.3.6. Let ¢ € R, X a complex manifold, Y C X a complex
analytic subset, K € E(DY), and M a quasi-good Dx-module. Set U =
X\Y. Assume

(a) K ~ RZhom (7 'ky, K),
(b) for(K) € E>¢(X),
(¢) M|y is flat over Dy .
Then,
K @p M eE*(X).

Proof. (i) Let ¢: X’ — X be a projective morphism such that Y’ :=
0 1(Y) is a hypersurface, and ¢ induces an isomorphism U’:=¢o~1(U) =%
U. Set

K':=RZhom (7 'Cy/,E¢ 'K ®£—1DX Dx+x) € E(DY)),
M= (D" M) (xY").

Then we have for(K’) € E>¢(X’). Note that M’ is concentrated in degree
zero. Moreover, by Proposition 4.3.5, M’ is a flat Dy,-module. Since

K@l MeEp, (K@l M),

and since Egp, is left exact, we reduce to the case where M is flat over
Dx.

(i) Let M be a quasi-good flat Dy-module. Let {M,};c; be a filtrant
inductive system of coherent Dx-modules such that M ~ hgl/\/lz Set

M :=Homp (M;,Dx).
Then Lemma 4.3.4 implies that
“m” RHomp (M, Dx) ~ “lim” M7 in Pro(D*(DY)),

by shrinking X if necessary. Hence one has

Hk(K ®;X M) ~ 44%7’ Hk?(K ®;X Mz)
~ “liny” HICR’HongF(RHomDX(Mi, Dx), K)
~ “lim” H’“RHong(p(M;‘, K)~0

for k < ec. O
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Proposition 4.3.7. Let { € Z~o, c € R, X a complex manifold, Y C X
a complex analytic subset, K € E(DY), and M a quasi-good Dx-module.
Set U =X \Y. Assume
(a) for(K) € E*¢(X),
(b) flat-dimp, ,(M,) < € for any v € U.
Then,

RZhom (1~ 'ky, K) @5 M € EZ(X).

Proof. Replacing K with RZhom (7 'ky, K), we may assume that K ~
RZhom (7~ 'ky, K) from the beginning. We proceed by induction on /.
The case ¢ = 0 follows from Lemma 4.3.6. Let ¢ > 0. Then, there is
locally a short exact sequence

0N —=L—->M—=0,
with a free Dx-module £. Hence N is a quasi-good Dy-module such that
flat-dimp, , (N;) < €—1for any € U. One has K@%XN € EPet(X)
by the induction hypothesis. Moreover, K ®1L)X L € E>¢(X) since L is
free. One concludes by considering the distinguished triangle

Kb L—Keh M- Kb N1 —.
O

4.4. Enhanced tempered holomorphic functions. Let X be a com-
plex manifold.

Proposition 4.4.1. One has O% € 1/2E>d(§‘(X).

Proof. By Lemma 3.2.5, it is enough to show that for any k € Z-, and
any Z € CS?DZ there exists an open subanalytic subset Z; of Z such that
dim(Z \ Zy) < k and

(4.4.1) Ei(y).. O% € B 752((Zy)0).

Since the question is local on X, we may assume from the beginning that
Z is compact. Let Zy, Wy C N, { =dy and g: N — M be as obtained
by Lemma 4.4.3 below, for M = Xpg the real analytic manifold underlying
X. There exists a complexification Y of NV such that g: N — X extends
to a holomorphic map f: Y — X.

Then, d% = ¢ and there is a commutative diagram

J

— T

(Wo)oo:=(Wo, N) N , Y

{(Wp)oo iN
go l Lf

Z‘(ZO)oo

(Z0)oo:=(Z0, Z) X.
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Note that for any w € Wy, setting = = f(w) € Zy, one has
(4.4.2)  rankS(f) = dim“(T,Z + V-1T,2) > (dim T, 2)/2 = k/2.

Set
Vi={yeYv; rankf(f) > k/2}.

Then V' is an open subset of Y such that Y \ V is a closed complex
analytic subset. Moreover W, C V. Hence Proposition 4.3.1 implies

(4.4.3) flat-dimpg (Dxe—y) < dy —k/2=1(—k/2 foranyyeV.
By Proposition 2.7.4, in order to see (4.4.1) it is enough to show
(4.4.4) Egy 'Ei4,).. 0% € BPM2((Wp)a).
Since Wy — Zj is smooth, one has
EgglEi(Z!O)oo O ~ 0wy Zo ®Eg!0Ei(Z!O)oo O%[dz, — dn]
~ oty 2o @B i) BinEf OX [k — (]
~ oy, 70 @Ej 'Ein, EiyE f O% [k — 1],

where oryy, 7z, :=H"*(g5Cz,) is the relative orientation sheaf.
By [4, Theorem 9.1.2|, one has

Ef'O% ~ Dxy @5, Oyldy — dy].

Moreover, denoting by ory/y = iy Cy[l] the relative orientation sheaf,
one has

iy OF =~ oryy @DbY[—dy].
Thus, we obtain
OT'w, /2, ®EgalEi(Z!o)oo(9)E(
~ Ej'Bin.Eiy (Dx<y ®1I§Y Oy) [k — dx]
~ Ej'(Dxy &5, Ein.(ornyy @DbY))[k — dy — d]
~ Ej'(Dxy @ RZhom (n~'Cy, Eiy.(oryy ®DbY)))
[k —d5 — 1.
By Proposition 4.2.2, one has
Eiy.(ory/y @Dby) € EZ*(Y).
Hence Proposition 4.3.7 and (4.4.3) implies that
Dx«y @y RZhom (1'Cy, Ein.(ory/y @Dby)) € EZ*274(Y).
Finally, we obtain (4.4.4). O
Corollary 4.4.2. One has O% € /?D>%%(X).

Proof. Since O% ~ Thom®(C%, O%), the statement follows from Propo-
sition 4.4.1 and Lemma 3.2.7. U



ENHANCED PERVERSITIES 63

Here is the lemma which is used in the course of the proof of Proposi-
tion 4.4.1.

Lemma 4.4.3. Let M be a real analytic manifold, and let Z € CSE’“ for
k € Zsy. Assume that Z is compact. Then there exist

(i) an open subset Zy of Z which is a real analytic submanifold of di-
mension k,
(i) a real analytic manifold N of dimension ¢ > k,
(iii) a real analytic proper map g: N — M,
(iv) an open subanalytic subset Wy of N

such that one has

(a) dim(Z \ Zy) < k,
(b) g(N) = Z, g(Wy) = Zy and g induces a smooth morphism Wy — Zy
of real analytic manifolds.

Proof. Tt follows immediately from the existence of a real analytic man-
ifold N and a proper real analytic map ¢g: N — M such that g(N) = Z.
Note that we may assume that N is equidimensional, by multiplying each
connected component of N with a sphere if necessary. O

4.5. Riemann-Hilbert correspondence. Let X be a complex mani-
fold. The enhanced de Rham and solution functors
DRY: D*(Dx) — E(X),
Sol%: D(Dx)® — E(X),
are defined by
DRY(M) := 0% @5 M,
Sol% (M) = RHom, (M, O%),
where QF = Qy ®(15X o%.

The Riemann-Hilbert correspondence of [4, Theorem 9.5.3] implies
that these functors induce fully faithful functors

DRY: Diy(Dx) - Exc(X).

(4.5.1)
80[% : DE()l(Dx)Op — ER_C<X).

Theorem 4.5.1. The functors DRS and Sol%[d%] are exact. That is,
for any ¢ € R one has

DRE (DE5(Dy)) € V2ESS(X),  Solf(Di4(Dx)) € VB (x),
DRE(DZ5(Dy)) € V2B (X),  Sol®(DZ4(Dx)) € VEES(X).
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In particular, there are commutative diagrams of embeddings

DRE SolE
LR (X)) Modyg (D)o —— PR (x)

I | |

Mod,,(Dx) =% "?DY (Cx), Mod(Dy ) =2~ D% (Cy).

Modyol (DX)

Proof. 1t is enough to show that for any M € Mody(Dx) one has

DRE(M) € Ef (X).  Solf(M) € g (X).

(i) By the definition,
Sol3 (M) ~ RHomp (M, o%).

By Proposition 4.4.1,

>cl‘C
O € 1B (X).

Hence
Solf (M) € | EZ™ (x) ¢ "EZ5 (X),
where the inclusions follow from (3.5.1). Then
DRE (M) ~ Sol§ (Dx M)[d5] € B (X).

(ii) Note that Dx M € Modp,(Dx). Moreover, by [4, Theorem 9.4.8|,
DEDRE (M) ~ DRE (DxM).
We thus get from (i)
DRE(M) e/ *Ex’ (X), and hence
Solf (M) = DRE(DxM)[-d5] € B (X).
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