
FRACTIONAL PERIMETERS FROM A FRACTAL PERSPECTIVE
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Abstract. The purpose of this paper consists in better understanding the fractional nature
of the nonlocal perimeters introduced in [5]. Following [22], we exploit these fractional
perimeters to introduce a definition of fractal dimension for the measure theoretic boundary
of a set.

We calculate the fractal dimension of sets which can be defined in a recursive way and
we give some examples of this kind of sets, explaining how to construct them starting from
well known self-similar fractals. In particular, we show that in the case of the von Koch
snowflake S ⊆ R2 this fractal dimension coincides with the Minkowski dimension.

We also obtain an optimal result for the asymptotics as s→ 1− of the fractional perimeter
of a set having locally finite (classical) perimeter.
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1. Introduction and main results

The s-fractional perimeter and its minimizers, the s-minimal sets, were introduced in [5] in
2010 and since then they have attracted a lot of interest, especially concerning the regularity
theory of the boundaries of the s-minimal sets, which are the so-called nonlocal minimal
surfaces. We refer the interested reader to the recent survey [11] and the references cited
therein.
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Even if finding the optimal regularity of nonlocal minimal surfaces is still an engaging open
problem, it is known that nonlocal minimal surfaces are (n− 1)-rectifiable. More precisely,
they are smooth, except possibly for a singular set of Hausdorff dimension at most equal to
n − 3 (see [5], [20] and [15]). In particular, an s-minimal set has (locally) finite perimeter
(in the sense of De Giorgi and Caccioppoli).

On the other hand, the boundary of a generic set E having finite s-perimeter can be
very irregular and indeed it can be “nowhere rectifiable”, like in the case of the von Koch
snowflake.

Actually, the s-perimeter can be used (following the seminal paper [22]) to define a “fractal
dimension” for the measure theoretic boundary

∂−E := {x ∈ Rn | 0 < |E ∩Br(x)| < ωnr
n for every r > 0},

of a set E ⊆ Rn.
Before going on, it is useful to recall the definition of the s-perimeter. Given a fractional

parameter s ∈ (0, 1), we define the interaction

Ls(A,B) :=

∫
A

∫
B

1

|x− y|n+s
dx dy,

for every couple of disjoint sets A, B ⊆ Rn. Then the s-fractional perimeter of a set E ⊆ Rn

in an open set Ω is defined as

Ps(E,Ω) := Ls(E ∩ Ω, CE ∩ Ω) + Ls(E ∩ Ω, CE \ Ω) + Ls(E \ Ω, CE ∩ Ω).

We observe that we can rewrite the s-perimeter as

Ps(E,Ω) =
1

2

∫∫
R2n\(CΩ)2

|χE(x)− χE(y)|
|x− y|n+s

dx dy. (1.1)

Formula (1.1) shows that the fractional perimeter is, roughly speaking, the Ω-contribution
to the W s,1-seminorm of the characteristic function χE.

This functional is nonlocal, in that we need to know the set E in the whole of Rn even
to compute its s-perimeter in a small bounded domain Ω (contrary to what happens with
the classical perimeter or the Hn−1 measure, which are local functionals). Moreover, the
s-perimeter is “fractional”, in the sense that the W s,1-seminorm measures a fractional order
of regularity.

The main purpose of this paper consists in clarifying and better understanding the “frac-
tional” nature of the s-perimeter.

In 1991, in the paper [22] the author suggested using the index s of the fractional semi-
norm [χE]W s,1(Ω) (and more general continuous families of functionals satisfying appropriate
generalized coarea formulas) as a way to measure the codimension of the measure theoretic
boundary ∂−E of the set E in Ω. He proved that the fractal dimension obtained in this way,

DimF (∂−E,Ω) := n− sup{s ∈ (0, 1) | [χE]W s,1(Ω) <∞}.
is less than or equal to the (upper) Minkowski dimension.

The relationship between the Minkowski dimension of the boundary of E and the fractional
regularity (in the sense of Besov spaces) of the characteristic function χE was investigated
also in [21], in 1999. In particular, in [21, Remark 3.10], the author proved that the dimension
DimF of the von Koch snowflake S coincides with its Minkowski dimension, exploiting the
fact that S is a John domain.
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The Sobolev regularity of a characteristic function χE was further studied in [14], in
2013, where the authors consider the case in which the set E is a quasiball. Since the von
Koch snowflake S is a typical example of quasiball, the authors were able to prove that the
dimension DimF of S coincides with its Minkowski dimension.

In this paper we compute the dimension DimF of the von Koch snowflake S in an el-
ementary way, using only the roto-translation invariance and the scaling property of the
s-perimeter and the “self-similarity” of S.

The proof can be extended in a natural way to all sets which can be defined in a recursive
way similar to that of the von Koch snowflake.
As a consequence, we compute the dimension DimF of all such sets, without having to require
them to be John domains or quasiballs.

Furthermore, we show that we can easily obtain a lot of sets of this kind by appropriately
modifying well known self-similar fractals like e.g. the von Koch snowflake, the Sierpinski
triangle and the Menger sponge. An example is depicted in Figure 1.

Figure 1. Example of a “fractal” set constructed exploiting the structure of
the Sierpinski triangle (seen at the fourth iterative step).

The previous discussion shows that the s-perimeter of a set E with an irregular, eventually
fractal, boundary can be finite for s below some threshold, s < σ, and infinite for s ∈ (σ, 1).
On the other hand, it is well known that sets with a regular boundary have finite s-perimeter
for every s and actually their s-perimeter converges, as s tends to 1, to the classical perimeter,
both in the classical sense (see [6]) and in the Γ-convergence sense (see [2] and also [19] for
related results).

In this paper we exploit [7, Theorem 1] to prove an optimal version of this asymptotic
property for a set E having finite classical perimeter in a bounded open set with Lipschitz
boundary. More precisely, we prove that if E has finite classical perimeter in a neighborhood
of Ω, then

lim
s→1

(1− s)Ps(E,Ω) = ωn−1P (E,Ω).

We observe that we lower the regularity requested in [6], where the authors required the
boundary ∂E to be C1,α, to the optimal regularity (asking E to have only finite perimeter).
Moreover, we don’t have to ask E to intersect ∂Ω “transversally”, i.e. we don’t require

Hn−1(∂∗E ∩ ∂Ω) = 0,
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with ∂∗E denoting the reduced boundary of E.
Indeed, we prove that the “nonlocal part” of the s-perimeter converges to the perimeter

on the boundary of Ω, i.e. we prove that

lim
s→1

(1− s)PNL
s (E,Ω) = ωn−1Hn−1(∂∗E ∩ ∂Ω),

which is, to the best of the author’s knowledge, a new result.

Now we give precise statements of the results obtained, starting with the fractional analysis
of fractal dimensions.

1.1. Fractal boundaries. We observe that we can split the fractional perimeter as the sum

Ps(E,Ω) = PL
s (E,Ω) + PNL

s (E,Ω),

where

PL
s (E,Ω) := Ls(E ∩ Ω, CE ∩ Ω) =

1

2
[χE]W s,1(Ω),

PNL
s (E,Ω) := Ls(E ∩ Ω, CE \ Ω) + Ls(E \ Ω, CE ∩ Ω).

We can think of PL
s (E,Ω) as the local part of the fractional perimeter, in the sense that if

|(E∆F ) ∩ Ω| = 0, then PL
s (F,Ω) = PL

s (E,Ω).
We sometimes refer to PNL

s (E,Ω) as the nonlocal part of the s-perimeter.
We say that a set E has locally finite s-perimeter if it has finite s-perimeter in every

bounded open set Ω ⊆ Rn.
When Ω = Rn, we simply write

Ps(E) := Ps(E,Rn) =
1

2
[χE]W s,1(Rn).

First of all, we prove in Section 3.1 that in some sense the measure theoretic boundary
∂−E is the “right definition” of boundary for working with the s-perimeter.

To be more precise, we show that

∂−E = {x ∈ Rn |PL
s (E,Br(x)) > 0, ∀ r > 0},

and that if Ω is a connected open set, then

PL
s (E,Ω) > 0 ⇐⇒ ∂−E ∩ Ω 6= ∅.

This can be thought of as an analogue in the fractional framework of the fact that for a
Caccioppoli set E we have ∂−E = supp |DχE|.

Now the idea of the definition of the fractal dimension consists in using the index s of
PL
s (E,Ω) to measure the codimension of ∂−E ∩ Ω,

DimF (∂−E,Ω) := n− sup{s ∈ (0, 1) |PL
s (E,Ω) <∞}.

As shown in [22] (Proposition 11 and Proposition 13), the fractal dimension DimF defined
in this way is related to the (upper) Minkowski dimension (whose precise definition we recall
in Definition 3.4) by

DimF (∂−E,Ω) ≤ DimM(∂−E,Ω). (1.2)

For the convenience of the reader we provide a proof of inequality (1.2) in Proposition 3.6.
If Ω is a bounded open set with Lipschitz boundary, (1.2) means that

Ps(E,Ω) <∞ for every s ∈
(
0, n−DimM(∂−E,Ω)

)
,
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since the nonlocal part of the s-perimeter of any set E ⊆ Rn is

PNL
s (E,Ω) ≤ 2Ps(Ω) <∞, for every s ∈ (0, 1).

We show that for the von Koch snowflake (1.2) is actually an equality.
Namely, we prove the following:

Theorem 1.1 (Fractal dimension of the von Koch snowflake). Let S ⊆ R2 be the von Koch
snowflake. Then

Ps(S) <∞, ∀ s ∈
(

0, 2− log 4

log 3

)
, (1.3)

and

Ps(S) =∞, ∀ s ∈
[
2− log 4

log 3
, 1
)
. (1.4)

Therefore

DimF (∂S) = DimM(∂S) =
log 4

log 3
.

Actually, exploiting the self-similarity of the von Koch curve, we have

DimF (∂S,Ω) =
log 4

log 3
,

for every Ω such that ∂S∩Ω 6= ∅. In particular, this is true for every Ω = Br(p) with p ∈ ∂S
and r > 0 as small as we want.

We remark that this represents a deep difference between the classical and the fractional
perimeter.
Indeed, if a set E has (locally) finite perimeter, then by De Giorgi’s structure Theorem we
know that its reduced boundary ∂∗E is locally (n− 1)-rectifiable. Moreover ∂∗E = ∂−E, so
the reduced boundary is, in some sense, a “big” portion of the measure theoretic boundary.

On the other hand, we have seen that there are (open) sets, like the von Koch snowflake,
which have a “nowhere rectifiable” boundary (meaning that ∂−E ∩ Br(p) is not (n − 1)-
rectifiable for every p ∈ ∂−E and r > 0) and still have finite s-perimeter for every s ∈ (0, σ0).

1.1.1. Self-similar fractal boundaries. Our argument for the von Koch snowflake is quite gen-
eral and can be adapted to compute the dimension DimF of all sets which can be constructed
in a similar recursive way.

To be more precise, we start with a bounded open set T0 ⊆ Rn with finite perimeter
P (T0) <∞, which is, roughly speaking, our basic “building block”.

Then we go on inductively by adding roto-translations of a scaling of the building block
T0, i.e. sets of the form

T ik = F i
k(T0) := Ri

k

(
λ−kT0

)
+ xik,

where λ > 1, k ∈ N, 1 ≤ i ≤ abk−1, with a, b ∈ N, Ri
k ∈ SO(n) and xik ∈ Rn. We ask that

these sets do not overlap, i.e.

|T ik ∩ T
j
h | = 0, whenever i 6= j or k 6= h.

Then we define

Tk :=
abk−1⋃
i=1

T ik and T :=
∞⋃
k=1

Tk. (1.5)
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The final set E is either

E := T0 ∪
⋃
k≥1

abk−1⋃
i=1

T ik, or E := T0 \
( ⋃
k≥1

abk−1⋃
i=1

T ik

)
.

For example, the von Koch snowflake is obtained by adding pieces.
Examples obtained by removing the T ik’s are the middle Cantor set E ⊆ R, the Sierpinski
triangle E ⊆ R2 and the Menger sponge E ⊆ R3.

We will consider just the set T and exploit the same argument used for the von Koch
snowflake to compute the fractal dimension related to the s-perimeter.
However, we observe that the Cantor set, the Sierpinski triangle and the Menger sponge are
such that |E| = 0, i.e. |T0∆T | = 0.
Therefore neither the perimeter nor the s-perimeter can detect the fractal nature of the
(topological) boundary of T and indeed, since

P (T ) = P (T0) <∞,
we have Ps(T ) <∞ for every s ∈ (0, 1).

For example, in the case of the Sierpinski triangle, T0 is an equilateral triangle and ∂−T =
∂T0, even if ∂T is a self-similar fractal.

The reason of this situation is that the fractal object is the topological boundary of T ,
while the s-perimeter “measures” the measure theoretic boundary, which is regular. Roughly
speaking, the problem is that in these cases there is not room enough to find a small ball
Bi
k = F i

k(B) ⊆ CT near each piece T ik.
Therefore, we will make the additional assumption that

∃S0 ⊆ CT s.t. |S0| > 0 and Sik := F i
k(S0) ⊆ CT ∀ k, i. (1.6)

We remark that it is not necessary to ask that these sets do not overlap.

Theorem 1.2. Let T ⊆ Rn be a set which can be written as in (1.5). If log b
log λ
∈ (n − 1, n)

and (1.6) holds true, then

Ps(T ) <∞, ∀ s ∈
(

0, n− log b

log λ

)
and

Ps(T ) =∞, ∀ s ∈
[
n− log b

log λ
, 1
)
.

Thus

DimF (∂−T ) =
log b

log λ
.

Furthermore, we show how to modify self-similar sets like the Sierpinski triangle, without
altering their “structure”, to obtain new sets which satisfy the hypothesis of Theorem 1.2
(see Remark 3.10 and the final part of Section 3.4). An example is given in Figure 1 above.

However, we also remark that the measure theoretic boundary of such a new set will look
quite different from the original fractal (topological) boundary and in general it will be a
mix of smooth parts and unrectifiable parts.

The most interesting examples of this kind of sets are probably represented by bounded
sets, because in this case the measure theoretic boundary does indeed have, in some sense,
a “fractal nature” (see Remark 3.11).
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Indeed, if T is bounded, then its boundary ∂−T is compact. Nevertheless, it has infinite
(classical) perimeter and actually ∂−T has Minkowski dimension strictly greater than n− 1,
thanks to (1.2).

However, even unbounded sets can have an interesting behavior. Indeed we obtain the
following

Proposition 1.3. Let n ≥ 2. For every σ ∈ (0, 1) there exists a Caccioppoli set E ⊆ Rn

such that

Ps(E) <∞ ∀ s ∈ (0, σ) and Ps(E) =∞ ∀ s ∈ [σ, 1).

Roughly speaking, the interesting thing about this Proposition is the following. Since E
has locally finite perimeter, χE ∈ BVloc(Rn), it also has locally finite s-perimeter for every
s ∈ (0, 1), but the global perimeter Ps(E) is finite if and only if s < σ < 1.

1.2. Asymptotics as s → 1−. In Section 1.1 we have shown that sets with an irregular,
eventually fractal, boundary can have finite s-perimeter.

On the other hand, if the set E is “regular”, then it has finite s-perimeter for every
s ∈ (0, 1). Indeed, if Ω ⊆ Rn is a bounded open set with Lipschitz boundary (or Ω = Rn),
then BV (Ω) ↪→ W s,1(Ω). As a consequence of this embedding, we find that

P (E,Ω) <∞ =⇒ Ps(E,Ω) <∞ for every s ∈ (0, 1).

Actually we can be more precise and obtain a sort of converse, using only the local part
of the s-perimeter and adding the condition

lim inf
s→1−

(1− s)PL
s (E,Ω) <∞.

Indeed one has the following result, which is a combination of [4, Theorem 3’] and [7,
Theorem 1], restricted to characteristic functions:

Theorem 1.4. Let Ω ⊆ Rn be a bounded open set with Lipschitz boundary. Then E ⊆ Rn

has finite perimeter in Ω if and only if PL
s (E,Ω) <∞ for every s ∈ (0, 1), and

lim inf
s→1

(1− s)PL
s (E,Ω) <∞. (1.7)

In this case we have

lim
s→1

(1− s)PL
s (E,Ω) =

nωn
2
K1,nP (E,Ω). (1.8)

We briefly show how to get this result (and in particular why the constant looks like that)
from the two Theorems cited above. Then we compute the constant K1,n in an elementary
way, proving that

nωn
2
K1,n = ωn−1.

Moreover we show the following:

Remark 1.5. Condition (1.7) is necessary. Indeed, there exist bounded sets (see Example
1.1) having finite s-perimeter for every s ∈ (0, 1) which do not have finite perimeter. This
also shows that in general the inclusion

BV (Ω) ⊆
⋂

s∈(0,1)

W s,1(Ω)

is strict.
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Example 1.1. Let 0 < a < 1 and consider the open intervals Ik := (ak+1, ak) for every
k ∈ N. Define E :=

⋃
k∈N I2k, which is a bounded (open) set. Due to the infinite number

of jumps χE 6∈ BV (R). However it can be proved that E has finite s-perimeter for every
s ∈ (0, 1). We postpone the proof to Appendix A.

Remark 1.6. For completeness, we also mention a related result contained in [9], where the
authors provide an example (Example 2.10) of a bounded set E ⊆ R which does not have
finite s-perimeter for any s ∈ (0, 1). In particular, this example proves that in general the
inclusion ⋃

s∈(0,1)

W s,1(Ω) ⊆ L1(Ω)

is strict.

The main result of Section 2 is the following Theorem, which extends the asymptotic
convergence of (1.8) to the whole s-perimeter.

Theorem 1.7 (Asymptotics). Let Ω ⊆ Rn be an open set and let E ⊆ Rn. Then, E has
locally finite perimeter in Ω if and only if E has locally finite s-perimeter in Ω for every
s ∈ (0, 1) and

lim inf
s→1

(1− s)PL
s (E,Ω′) <∞, ∀Ω′ b Ω.

If E has locally finite perimeter in Ω, then

lim
s→1

(1− s)Ps(E,O) = ωn−1P (E,O),

for every open set O b Ω with Lipschitz boundary. More precisely,

lim
s→1

(1− s)PL
s (E,O) = ωn−1P (E,O)

and

lim
s→1

(1− s)PNL
s (E,O) = ωn−1P (E, ∂O) = ωn−1Hn−1(∂∗E ∩ ∂O). (1.9)

The proof of Theorem 1.7 relies only on [4, Theorem 3’], [7, Theorem 1] and on an appro-
priate estimate of what happens in a neighborhood of ∂O. The main improvement of the
known asymptotics results is the convergence (1.9).

1.3. Notation and assumptions.

• We write A b B to mean that the closure of A is compact in Rn and A ⊆ B.
• In Rn we will usually write |E| = Ln(E) for the n-dimensional Lebesgue measure of

a set E ⊆ Rn.
• We write Hd for the d-dimensional Hausdorff measure, for any d ≥ 0.
• We define the dimensional constants

ωd :=
π
d
2

Γ
(
d
2

+ 1
) , d ≥ 0.

In particular, we remark that ωk = Lk(B1) is the volume of the k-dimensional unit
ball B1 ⊆ Rk and k ωk = Hk−1(Sk−1) is the surface area of the (k − 1)-dimensional
sphere

Sk−1 = ∂B1 = {x ∈ Rk | |x| = 1}.
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• Since

|E∆F | = 0 =⇒ P (E,Ω) = P (F,Ω) and Ps(E,Ω) = Ps(F,Ω),

in Section 2 we implicitly identify sets up to sets of negligible Lebesgue measure.
Moreover, whenever needed we can choose a particular representative for the class of
χE in L1

loc(Rn), as in Remark 1.8.
We will not make this assumption in Section 3, since the Minkowski content can be
affected even by changes in sets of measure zero, that is, in general

|Γ1∆Γ2| = 0 6⇒ Mr
(Γ1,Ω) =Mr

(Γ2,Ω)

(see Section 3 for a more detailed discussion).
• We consider the open tubular %-neighborhood of ∂Ω,

N%(∂Ω) := {x ∈ Rn | d(x, ∂Ω) < %} = {|d̄Ω| < %} = Ω% \ Ω−%

(see Appendix B).

Remark 1.8. Let E ⊆ Rn. Up to modifying E on a set of measure zero, we can assume
(see Appendix C) that

Eint ⊆ E, E ∩ Eext = ∅
and ∂E = ∂−E = {x ∈ Rn | 0 < |E ∩Br(x)| < ωnr

n, ∀ r > 0}.

2. Asymptotics as s→ 1−

We say that an open set Ω ⊆ Rn is an extension domain if there exists a constant C =
C(n, s,Ω) > 0 such that for every u ∈ W s,1(Ω) there exists ũ ∈ W s,1(Rn) with ũ|Ω = u and

‖ũ‖W s,1(Rn) ≤ C‖u‖W s,1(Ω).

Every open set with bounded Lipschitz boundary is an extension domain (see [8] for a proof).
By definition we consider Rn itself as an extension domain.

We begin with the following embedding.

Proposition 2.1. Let Ω ⊆ Rn be an extension domain. Then there exists a constant C =
C(n, s,Ω) ≥ 1 such that for every u : Ω −→ R

‖u‖W s,1(Ω) ≤ C‖u‖BV (Ω). (2.1)

In particular we have the continuous embedding

BV (Ω) ↪→ W s,1(Ω).

Proof. The claim is trivially satisfied if the right hand side of (2.1) is infinite, so let u ∈
BV (Ω). Let {uk} ⊆ C∞(Ω) ∩ BV (Ω) be an approximating sequence as in [16, Theorem
1.17], that is

‖u− uk‖L1(Ω) −→ 0 and lim
k→∞

∫
Ω

|∇uk| dx = |Du|(Ω).

We only need to check that the W s,1-seminorm of u is bounded by its BV -norm.
Since Ω is an extension domain, we know (see [8, Proposition 2.2]) that ∃C(n, s) ≥ 1 such
that

‖v‖W s,1(Ω) ≤ C‖v‖W 1,1(Ω).
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Then
[uk]W s,1(Ω) ≤ ‖uk‖W s,1(Ω) ≤ C‖uk‖W 1,1(Ω) = C‖uk‖BV (Ω),

and hence, using Fatou’s Lemma,

[u]W s,1(Ω) ≤ lim inf
k→∞

[uk]W s,1(Ω) ≤ C lim inf
k→∞

‖uk‖BV (Ω) = C lim
k→∞
‖uk‖BV (Ω)

= C‖u‖BV (Ω),

proving (2.1). �

Given a set E ⊆ Rn and r ∈ R, we denote

Er := {x ∈ Rn | d̄E(x) < r},
where d̄E is the signed distance function from E (see Appendix B).

Corollary 2.2. (i) If E ⊆ Rn has finite perimeter, i.e. χE ∈ BV (Rn), then E has also
finite s-perimeter for every s ∈ (0, 1).

(ii) Let Ω ⊆ Rn be a bounded open set with Lipschitz boundary. Then there exists r0 > 0
such that

sup
|r|<r0

Ps(Ωr) <∞. (2.2)

(iii) If Ω ⊆ Rn is a bounded open set with Lipschitz boundary, then

PNL
s (E,Ω) ≤ 2Ps(Ω) <∞

for every E ⊆ Rn.
(iv) Let Ω ⊆ Rn be a bounded open set with Lipschitz boundary. Then

P (E,Ω) <∞ =⇒ Ps(E,Ω) <∞ for every s ∈ (0, 1).

Proof. Claim (i) follows from

Ps(E) =
1

2
[χE]W s,1(Rn)

and Proposition 2.1 with Ω = Rn.
(ii) Let r0 be as in Proposition B.1 and notice that

P (Ωr) = Hn−1
(
{d̄Ω = r}

)
,

so that
‖χΩr‖BV (Rn) = |Ωr|+Hn−1

(
{d̄Ω = r}

)
.

Thus

sup
|r|<r0

Ps(Ωr) ≤ C
(
|Ωr0|+ sup

|r|<r0
Hn−1

(
{d̄Ω = r}

))
<∞.

(iii) Notice that

Ls(E ∩ Ω, CE \ Ω) ≤ Ls(Ω, CΩ) = Ps(Ω),

Ls(CE ∩ Ω, E \ Ω) ≤ Ls(Ω, CΩ) = Ps(Ω),

and use (2.2) (with Ω0 = Ω).
(iv) The nonlocal part of the s-perimeter is finite thanks to (iii). As for the local part,

recall that

P (E,Ω) = |DχE|(Ω) and PL
s (E,Ω) =

1

2
[χE]W s,1(Ω),

then use Proposition 2.1. �
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2.1. Asymptotics of the local part of the s-perimeter. We recall the results of [4]
and [7], which straightforwardly give Theorem 1.4.

Theorem 2.3 (Theorem 3’ of [4]). Let Ω ⊆ Rn be a smooth bounded domain. Let u ∈ L1(Ω).
Then u ∈ BV (Ω) if and only if

lim inf
n→∞

∫
Ω

∫
Ω

|u(x)− u(y)|
|x− y|

%n(x− y) dxdy <∞,

and then

C1|Du|(Ω) ≤ lim inf
n→∞

∫
Ω

∫
Ω

|u(x)− u(y)|
|x− y|

%n(x− y) dxdy

≤ lim sup
n→∞

∫
Ω

∫
Ω

|u(x)− u(y)|
|x− y|

%n(x− y) dxdy ≤ C2|Du|(Ω),

for some constants C1, C2 depending only on Ω.

This result was refined by Dávila:

Theorem 2.4 (Theorem 1 of [7] ). Let Ω ⊆ Rn be a bounded open set with Lipschitz boundary.
Let u ∈ BV (Ω). Then

lim
k→∞

∫
Ω

∫
Ω

|u(x)− u(y)|
|x− y|

%k(x− y) dxdy = K1,n|Du|(Ω),

where

K1,n =
1

nωn

∫
Sn−1

|v · e| dσ(v),

with e ∈ Rn any unit vector.

In the above Theorems %k is any sequence of radial mollifiers i.e. of functions satisfying

%k(x) ≥ 0, %k(x) = %k(|x|),
∫
Rn
%k(x) dx = 1 (2.3)

and

lim
k→∞

∫ ∞
δ

%k(r)r
n−1dr = 0 for all δ > 0. (2.4)

In particular, for R big enough, R > diam(Ω), we can consider

%(x) := χ[0,R](|x|)
1

|x|n−1

and define for any sequence {sk} ⊆ (0, 1), sk ↗ 1,

%k(x) := (1− sk)%(x)csk
1

|x|sk
,

where the csk are normalizing constants. Then∫
Rn
%k(x) dx = (1− sk)csknωn

∫ R

0

1

rn−1+sk
rn−1 dr

= (1− sk)csknωn
∫ R

0

1

rsk
dr = csknωnR

1−sk ,
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and hence taking csk := 1
nωn

Rsk−1 gives (2.3); notice that csk → 1
nωn

.
Also

lim
k→∞

∫ ∞
δ

%k(r)r
n−1 dr = lim

k→∞
(1− sk)csk

∫ R

δ

1

rsk
dr

= lim
k→∞

csk(R
1−sk − δ1−sk) = 0,

giving (2.4). With this choice we obtain∫
Ω

∫
Ω

|u(x)− u(y)|
|x− y|

%k(x− y) dxdy = csk(1− sk)[u]W sk,1(Ω).

Then, if u ∈ BV (Ω), Dávila’s Theorem gives

lim
s→1

(1− s)[u]W s,1(Ω) = lim
s→1

1

cs
(cs(1− s)[u]W s,1(Ω))

= nωnK1,n|Du|(Ω).
(2.5)

2.2. Proof of Theorem 1.7. We split the proof of Theorem 1.7 into several steps, which
we believe are interesting on their own.

2.2.1. The constant ωn−1. We need to compute the constant K1,n. Notice that we can choose
e in such a way that v · e = vn.
Then using spheric coordinates for Sn−1 we obtain |v · e| = | cos θn−1| and

dσ = sin θ2(sin θ3)2 . . . (sin θn−1)n−2dθ1 . . . dθn−1,

with θ1 ∈ [0, 2π) and θj ∈ [0, π) for j = 2, . . . , n− 1. Notice that

Hk(Sk) =

∫ 2π

0

dθ1

∫ π

0

sin θ2 dθ2 . . .

∫ π

0

(sin θk−1)k−2 dθk−1

= Hk−1(Sk−1)

∫ π

0

(sin t)k−2 dt.

Then we get∫
Sn−1

|v · e| dσ(v) = Hn−2(Sn−2)

∫ π

0

(sin t)n−2| cos t| dt

= Hn−2(Sn−2)
(∫ π

2

0

(sin t)n−2 cos t dt−
∫ π

π
2

(sin t)n−2 cos t dt
)

=
Hn−2(Sn−2)

n− 1

(∫ π
2

0

d

dt
(sin t)n−1 dt−

∫ π

π
2

d

dt
(sin t)n−1 dt

)
=

2Hn−2(Sn−2)

n− 1
.

Therefore

nωnK1,n = 2
Hn−2(Sn−2)

n− 1
= 2Ln−1(B1(0)) = 2ωn−1,

and hence (2.5) becomes

lim
s→1

(1− s)[u]W s,1(Ω) = 2ωn−1|Du|(Ω),

for any u ∈ BV (Ω).
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2.2.2. Estimating the nonlocal part of the s-perimeter. The aim of this subsection consists
in proving that if Ω ⊆ Rn is a bounded open set with Lipschitz boundary and E ⊆ Rn has
finite perimeter in Ωβ, for some β ∈ (0, r0) and r0 as in Proposition B.1, then

lim sup
s→1

(1− s)PNL
s (E,Ω) ≤ 2ωn−1 lim

%→0+
P (E,N%(∂Ω)). (2.6)

Actually, we prove something slightly more general than (2.6). Namely, that to estimate the
nonlocal part of the s-perimeter we do not necessarily need to use the sets Ω%: any “regular”
approximation of Ω will do.

More precisely, let Ak, Dk ⊆ Rn be two sequences of bounded open sets with Lipschitz
boundary strictly approximating Ω respectively from the inside and from the outside, that
is

(i) Ak ⊆ Ak+1 b Ω and Ak ↗ Ω, i.e.
⋃
k Ak = Ω,

(ii) Ω b Dk+1 ⊆ Dk and Dk ↘ Ω, i.e.
⋂
kDk = Ω.

We define for every k

Ω+
k := Dk \ Ω, Ω−k := Ω \ Ak Tk := Ω+

k ∪ ∂Ω ∪ Ω−k ,

dk := min{d(Ak, ∂Ω), d(Dk, ∂Ω)} > 0.

In particular, we observe that we can consider Ω% with % < 0 in place of Ak and with % > 0
in place of Dk. Then Tk would be N%(∂Ω) and dk = %.

Proposition 2.5. Let Ω ⊆ Rn be a bounded open set with Lipschitz boundary and let E ⊆ Rn

be a set having finite perimeter in D1. Then

lim sup
s→1

(1− s)PNL
s (E,Ω) ≤ 2ωn−1 lim

k→∞
P (E, Tk).

In particular, if P (E, ∂Ω) = 0, then

lim
s→1

(1− s)Ps(E,Ω) = ωn−1P (E,Ω).

Proof. Since Ω is regular and P (E,Ω) <∞, we already know that

lim
s→1

(1− s)PL
s (E,Ω) = ωn−1P (E,Ω).

Notice that, since |DχE| is a finite Radon measure on D1 and Tk ↘ ∂Ω as k ↗∞, we have
that

∃ lim
k→∞

P (E, Tk) = P (E, ∂Ω).

Consider the nonlocal part of the fractional perimeter,

PNL
s (E,Ω) = Ls(E ∩ Ω, CE \ Ω) + Ls(CE ∩ Ω, E \ Ω),
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and take any k. Then

Ls(E ∩ Ω, CE \ Ω) = Ls(E ∩ Ω, CE ∩ Ω+
k ) + Ls(E ∩ Ω, CE ∩ (CΩ \Dk))

≤ Ls(E ∩ Ω, CE ∩ Ω+
k ) +

nωn
s
|Ω| 1

dsk

≤ Ls(E ∩ Ω−k , CE ∩ Ω+
k ) + 2

nωn
s
|Ω| 1

dsk

≤ Ls(E ∩ (Ω−k ∪ Ω+
k ), CE ∩ (Ω−k ∪ Ω+

k )) + 2
nωn
s
|Ω| 1

dsk

= PL
s (E, Tk) + 2

nωn
s
|Ω| 1

dsk
.

Since we can bound the other term in the same way, we get

PNL
s (E,Ω) ≤ 2PL

s (E, Tk) + 4
nωn
s
|Ω| 1

dsk
.

By hypothesis we know that Tk is a bounded open set with Lipschitz boundary

∂Tk = ∂Ak ∪ ∂Dk.

Therefore using (1.8) we have

lim
s→1

(1− s)PL
s (E, Tk) = ωn−1P (E, Tk),

and hence

lim sup
s→1

(1− s)PNL
s (E,Ω) ≤ 2ωn−1P (E, Tk).

Since this holds true for any k, we get the claim. �

2.2.3. Convergence in almost every Ω%. Having a “continuous” approximating sequence (the
Ω%) rather than numerable ones allows us to improve Proposition 2.5.

We first recall that if E has finite perimeter, then De Giorgi’s structure Theorem (see,
e.g., [17, Theorem 15.9]) guarantees in particular that

|DχE| = Hn−1x∂∗E

and hence

P (E,B) = Hn−1(∂∗E ∩B) for every Borel set B ⊆ Rn,

where ∂∗E is the reduced boundary of E.

Corollary 2.6. Let Ω ⊆ Rn be a bounded open set with Lipschitz boundary and let r0 be as
in Proposition B.1. Let E ⊆ Rn be a set having finite perimeter in Ωβ, for some β ∈ (0, r0),
and define

S := {δ ∈ (−r0, β) |P (E, ∂Ωδ) > 0} .
Then the set S is at most countable. Moreover

lim
s→1

(1− s)Ps(E,Ωδ) = ωn−1P (E,Ωδ), (2.7)

for every δ ∈ (−r0, β) \ S.
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Proof. We observe that

P (E, ∂Ωδ) = Hn−1(∂∗E ∩ {d̄Ω = δ}),
for every δ ∈ (−r0, β), and

M := Hn−1(∂∗E ∩ (Ωβ \ Ω−r0)) ≤ P (E,Ωβ) <∞. (2.8)

Then we define the sets

Sk :=
{
δ ∈ (−r0, β) |Hn−1(∂∗E ∩ {d̄Ω = δ}) > 1

k

}
,

for every k ∈ N and we remark that

S =
⋃
k∈N

Sk.

Since by (2.8) we have

Hn−1
( ⋃
−r0<δ<β

(∂∗E ∩ {d̄Ω = δ})
)

= M,

the number of elements in each Sk is at most

]Sk ≤M k.

As a consequence the set S is at most countable, as claimed.
Finally, since Ωδ is a bounded open set with Lipschitz boundary for every δ ∈ (−r0, r0)

(see Proposition B.1), we obtain (2.7) by Proposition 2.5. �

2.2.4. Conclusion. We are now ready to prove Theorem 1.7.

Proof of Theorem 1.7. We begin by observing that if E ⊆ Rn and we have two open sets
O1 ⊆ O2, then

Ps(E,O1) ≤ Ps(E,O2).

More precisely, we have

Ps(E,O2) = Ps(E,O1) + Ls
(
E ∩ (O2 \ O1), CE ∩ (O2 \ O1)

)
+ Ls

(
E ∩ (O2 \ O1), CE \ O2

)
+ Ls

(
CE ∩ (O2 \ O1), E \ O2

)
.

(2.9)

Moreover, we also have

PL
s (E,O1) ≤ Ps(E,O2) and P (E,O1) ≤ P (E,O2).

Now suppose that E has locally finite perimeter in Ω and let Ω′ b Ω. Notice that we can
find a bounded open set O with Lipschitz boundary, such that

Ω′ b O b Ω.

Since E has finite perimeter in O, by point (iv) of Corollary 2.2, we know that E has finite
s-perimeter in O (and hence also in Ω′ b O) for every s ∈ (0, 1). Moreover, by Theorem 1.4
we obtain

lim inf
s→1

(1− s)PL
s (E,Ω′) ≤ lim inf

s→1
(1− s)PL

s (E,O) <∞.

The converse implication is proved similarly.

Now suppose that E has locally finite perimeter in Ω and let O b Ω have Lipschitz
boundary. Let r0 = r0(O) > 0 be as in Proposition B.1. Since O b Ω, we can find
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β ∈ (0, r0) small enough such that Oβ b Ω. Moreover, since E has locally finite perimeter
in Ω, E has finite perimeter in Oβ.

Then, by Corollary 2.6, we can find δ ∈ (0, β) such that P (E, ∂Oδ) = 0 and we have

lim
s→1

(1− s)Ps(E,Oδ) = ωn−1P (E,Oδ). (2.10)

We also remark that, since |∂O| = 0, we can rewrite (2.9) as

Ps(E,Oδ) = Ps(E,O) + PL
s (E,Oδ \ O)

+ Ls
(
E ∩ (Oδ \ O), CE \ Oδ

)
+ Ls

(
CE ∩ (Oδ \ O), E \ Oδ

)
.

(2.11)

Let

Is := Ls
(
E ∩ (Oδ \ O), CE \ Oδ

)
+ Ls

(
CE ∩ (Oδ \ O), E \ Oδ

)
and notice that

Is ≤ PNL
s (E,Oδ). (2.12)

Hence, since P (E, ∂Oδ) = 0, by (2.12) and Proposition 2.5 we obtain

lim
s→1

(1− s)Is = 0. (2.13)

Furthermore, since E has finite perimeter in Oδ \ O, which is a bounded open set with
Lipschitz boundary, by (1.8) of Theorem 1.4, we find

lim
s→1

(1− s)PL
s (E,Oδ \ O) = ωn−1P (E,Oδ \ O). (2.14)

Therefore, by (2.11), (2.10), (2.13) and (2.14), and exploiting the fact that P (E, · ) is a
measure, we get

lim
s→1

(1− s)P (E,O) = ωn−1

(
P (E,Oδ)− P (E,Oδ \ O)

)
= ωn−1P (E,O).

(2.15)

Finally, since by (1.8) we know that

lim
s→1

(1− s)PL
s (E,O) = ωn−1P (E,O), (2.16)

by (2.15) and (2.16) we obtain

lim
s→1

(1− s)PNL
s (E,O) = ωn−1P (E, ∂O),

concluding the proof of the Theorem. �

3. Irregularity of the boundary

3.1. The measure theoretic boundary as “support” of the local part of the s-
perimeter. First of all we show that the (local part of the) s-perimeter does indeed measure
a quantity related to the measure theoretic boundary.

Lemma 3.1. Let E ⊆ Rn be a set of locally finite s-perimeter. Then

∂−E = {x ∈ Rn |PL
s (E,Br(x)) > 0 for every r > 0}.
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Proof. The claim follows from the following observation. Let A, B ⊆ Rn such that A∩B = ∅;
then

Ls(A,B) = 0 ⇐⇒ |A| = 0 or |B| = 0.

Therefore

x ∈ ∂−E ⇐⇒ |E ∩Br(x)| > 0 and |CE ∩Br(x)| > 0 ∀ r > 0

⇐⇒ Ls(E ∩Br(x), CE ∩Br(x)) > 0 ∀ r > 0,

concluding the proof �

This characterization of ∂−E can be thought of as a fractional analogue of (C.7). However
we can not really think of ∂−E as the support of

PL
s (E, · ) : Ω 7−→ PL

s (E,Ω),

in the sense that, in general

∂−E ∩ Ω = ∅ 6⇒ PL
s (E,Ω) = 0.

For example, consider E := {xn ≤ 0} ⊆ Rn and notice that ∂−E = {xn = 0}. Let
Ω := B1(2en) ∪B1(−2en). Then ∂−E ∩ Ω = ∅, but

PL
s (E,Ω) = Ls(B1(2en), B1(−2en)) > 0.

On the other hand, the only obstacle is the non connectedness of the set Ω and indeed we
obtain the following

Proposition 3.2. Let E ⊆ Rn be a set of locally finite s-perimeter and let Ω ⊆ Rn be an
open set. Then

∂−E ∩ Ω 6= ∅ =⇒ PL
s (E,Ω) > 0.

Moreover, if Ω is connected

∂−E ∩ Ω = ∅ =⇒ PL
s (E,Ω) = 0.

Therefore, if Ô(Rn) denotes the family of bounded and connected open sets, then ∂−E can
be considered as the “support” of

PL
s (E, · ) : Ô(Rn) −→ [0,∞)

Ω 7−→ PL
s (E,Ω),

in the sense that, if Ω ∈ Ô(Rn), then

PL
s (E,Ω) > 0 ⇐⇒ ∂−E ∩ Ω 6= ∅.

Proof. Let x ∈ ∂−E ∩ Ω. Since Ω is open, we have Br(x) ⊆ Ω for some r > 0 and hence

PL
s (E,Ω) ≥ PL

s (E,Br(x)) > 0.

Let Ω be connected and suppose ∂−E ∩ Ω = ∅. Notice that we have the partition of Rn as
Rn = Eext ∪ ∂−E ∪ Eint (see Appendix C). Thus we can write Ω as the disjoint union

Ω = (Eext ∩ Ω) ∪ (Eint ∩ Ω).

However, since Ω is connected and both Eext and Eint are open, we must have Eext ∩ Ω = ∅
or Eint∩Ω = ∅. Now, if Eext∩Ω = ∅ (the other case is analogous), then Ω ⊆ Eint and hence
|CE ∩ Ω| = 0. Thus

PL
s (E,Ω) = Ls(E ∩ Ω, CE ∩ Ω) = 0,

concluding the proof. �
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3.2. A notion of fractal dimension. Let Ω ⊆ Rn be an open set. Then

t > s =⇒ W t,1(Ω) ↪→ W s,1(Ω),

(see, e.g., [8, Proposition 2.1]). As a consequence, for every u ∈ L1(Ω) there exists a unique
R(u) ∈ [0, 1] such that

[u]W s,1(Ω)

{
<∞, ∀ s ∈ (0, R(u))
=∞, ∀ s ∈ (R(u), 1)

that is

R(u) = sup
{
s ∈ (0, 1)

∣∣ [u]W s,1(Ω) <∞
}

= inf
{
s ∈ (0, 1)

∣∣ [u]W s,1(Ω) =∞
}
.

(3.1)

In particular, exploiting this result for characteristic functions, in [22] the author suggested
the following definition of fractal dimension.

Definition 3.3. Let Ω ⊆ Rn be an open set and let E ⊆ Rn such that |E ∩ Ω| < ∞. If
∂−E ∩ Ω 6= ∅, we define

DimF (∂−E,Ω) := n−R(χE),

the fractal dimension of ∂−E in Ω, relative to the fractional perimeter. If Ω = Rn, we drop
it in the formulas.

Notice that in the case of sets (3.1) becomes

R(χE) = sup
{
s ∈ (0, 1)

∣∣PL
s (E,Ω) <∞

}
= inf

{
s ∈ (0, 1)

∣∣PL
s (E,Ω) =∞

}
.

(3.2)

We observe that, since PL
s (CE,Ω) = PL

s (E,Ω), in order to define the fractal dimension of
∂−E in Ω, it is actually enough to require that either |E∩Ω| <∞ or |CE∩Ω| <∞. Clearly,
when the open set Ω is bounded, such assumptions are trivially satisfied.

In particular we can consider Ω to be the whole of Rn, or a bounded open set with Lipschitz
boundary. In the first case the local part of the fractional perimeter coincides with the whole
fractional perimeter, while in the second case we know that we can bound the nonlocal part
with 2Ps(Ω) < ∞ for every s ∈ (0, 1). Therefore, in both cases in (3.2) we can as well take
the whole fractional perimeter Ps(E,Ω) instead of just the local part.

Now we recall the definition of Minkowski dimension, given in terms of the Minkowski
contents. For equivalent definitions of the Minkowski dimension and for the main properties,
we refer to [18] and [13] and the references cited therein.

For simplicity, given Γ ⊆ Rn we set

N̄Ω
% (Γ) := N%(Γ) ∩ Ω = {x ∈ Ω | d(x,Γ) ≤ %},

for any % > 0.

Definition 3.4. Let Ω ⊆ Rn be an open set. For any Γ ⊆ Rn and r ∈ [0, n] we define
the inferior and superior r-dimensional Minkowski contents of Γ relative to the set Ω as,
respectively

Mr(Γ,Ω) := lim inf
%→0

|N̄Ω
% (Γ)|
%n−r

, Mr
(Γ,Ω) := lim sup

%→0

|N̄Ω
% (Γ)|
%n−r

.
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Then we define the lower and upper Minkowski dimensions of Γ in Ω as

DimM(Γ,Ω) := inf
{
r ∈ [0, n] |Mr(Γ,Ω) = 0

}
= n− sup

{
r ∈ [0, n] |Mn−r(Γ,Ω) = 0

}
,

DimM(Γ,Ω) := sup
{
r ∈ [0, n] |Mr

(Γ,Ω) =∞
}

= n− inf
{
r ∈ [0, n] |Mn−r

(Γ,Ω) =∞
}
.

If they agree, we write
DimM(Γ,Ω)

for the common value and call it the Minkowski dimension of Γ in Ω. If Ω = Rn or Γ b Ω,
we drop the Ω in the formulas.

Remark 3.5. Let DimH denote the Hausdorff dimension. In general one has

DimH(Γ) ≤ DimM(Γ) ≤ DimM(Γ),

and all the inequalities might be strict (for some examples, see, e.g., [18, Section 5.3]). How-
ever for some sets, like self-similar sets which satisfy appropriate symmetric and regularity
conditions, they are all equal (see, e.g., [18, Corollary 5.8]).

Now we give a proof of the relation (1.2) (obtained in [22]). For related results, see also [21]
and [14].

Proposition 3.6. Let Ω ⊆ Rn be a bounded open set. Then for every E ⊆ Rn such that
∂−E ∩ Ω 6= ∅ and DimM(∂−E,Ω) ≥ n− 1 we have

DimF (∂−E,Ω) ≤ DimM(∂−E,Ω).

Proof. By hypothesis we have

DimM(∂−E,Ω) = n− inf
{
r ∈ (0, 1) |Mn−r

(∂−E,Ω) =∞
}
,

and we need to show that

inf
{
r ∈ (0, 1) |Mn−r

(∂−E,Ω) =∞
}
≤ sup{s ∈ (0, 1) |PL

s (E,Ω) <∞}.
Up to modifying E on a set of Lebesgue measure zero we can suppose that ∂E = ∂−E, as
in Remark 1.8. Notice that this does not affect the s-perimeter.

Now for any s ∈ (0, 1)

2PL
s (E,Ω) =

∫
Ω

dx

∫
Ω

|χE(x)− χE(y)|
|x− y|n+s

dy

=

∫
Ω

dx

∫ ∞
0

d%

∫
∂B%(x)∩Ω

|χE(x)− χE(y)|
|x− y|n+s

dHn−1(y)

=

∫
Ω

dx

∫ ∞
0

d%

%n+s

∫
∂B%(x)∩Ω

|χE(x)− χE(y)| dHn−1(y).

Notice that
d(x, ∂E) > % =⇒ χE(y) = χE(x), ∀ y ∈ B%(x),

and hence ∫
∂B%(x)∩Ω

|χE(x)− χE(y)| dHn−1(y) ≤
∫
∂B%(x)∩Ω

χN̄%(∂E)(x) dHn−1(y)

≤ nωn%
n−1χN̄%(∂E)(x).
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Therefore

2PL
s (E,Ω) ≤ nωn

∫ ∞
0

d%

%1+s

∫
Ω

χN̄%(∂E)(x) = nωn

∫ ∞
0

|N̄Ω
% (∂E)|
%1+s

d%.

We claim that

Mn−r
(∂E,Ω) <∞ =⇒ PL

s (E,Ω) <∞, ∀ s ∈ (0, r). (3.3)

Indeed

lim sup
%→0

|N̄Ω
% (∂E)|
%r

<∞ =⇒ ∃C > 0 s.t. sup
%∈(0,C]

|N̄Ω
% (∂E)|
%r

≤M <∞.

Hence

2PL
s (E,Ω) ≤ nωn

{∫ C

0

|N̄Ω
% (∂E)|

%1−(r−s)+r d%+

∫ ∞
C

|N̄Ω
% (∂E)|
%1+s

d%
}

≤ nωn

{
M

∫ C

0

1

%1−(r−s) d%+ |Ω|
∫ ∞
C

1

%1+s
d%
}

= nωn

{ M

r − s
Cr−s +

|Ω|
sCs

}
<∞,

proving (3.3). This implies that

r ≤ sup{s ∈ (0, 1) |PL
s (E,Ω) <∞},

for every r ∈ (0, 1) such that Mn−r
(∂E,Ω) <∞.

Thus, for ε > 0 very small, we have

inf
{
r ∈ (0, 1) |Mn−r

(∂−E,Ω) =∞
}
− ε ≤ sup{s ∈ (0, 1) |PL

s (E,Ω) <∞}.
Letting ε tend to zero, we conclude the proof. �

In particular, if Ω has Lipschitz boundary we obtain:

Corollary 3.7. Let Ω ⊆ Rn be a bounded open set with Lipschitz boundary. Let E ⊆ Rn

such that ∂−E ∩ Ω 6= ∅ and DimM(∂−E,Ω) ∈ [n− 1, n). Then

Ps(E,Ω) <∞ for every s ∈
(
0, n− DimM(∂−E,Ω)

)
.

Remark 3.8. Actually, Proposition 3.6 and Corollary 3.7 still remain true when Ω = Rn,
provided the set E we are considering is bounded. Indeed, if E is bounded, we can apply the
previous results with Ω = BR such that E b Ω. Moreover, since Ω has a regular boundary,
as remarked above we can take the whole s-perimeter in (3.2), instead of just the local part.
But then, since Ps(E,Ω) = Ps(E), we see that

DimF (∂−E,Ω) = DimF (∂−E,Rn).

3.2.1. Remarks about the Minkowski content of ∂−E. In the beginning of the proof of Propo-
sition 3.6 we chose a particular representative for the class of E in order to have ∂E = ∂−E.
This can be done since it does not affect the s-perimeter and we are already considering the
Minkowski dimension of ∂−E.

On the other hand, if we consider a set F such that |E∆F | = 0, we can use the same
proof to obtain the inequality

DimF (∂−E,Ω) ≤ DimM(∂F,Ω).
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It is then natural to ask whether we can find a “better” representative F , whose (topological)
boundary ∂F has Minkowski dimension strictly smaller than that of ∂−E.

First of all, we remark that the Minkowski content can be influenced by changes in sets
of measure zero. Roughly speaking, this is because the Minkowski content is not a purely
measure theoretic notion, but rather a combination of metric and measure.

For example, let Γ ⊆ Rn and define Γ′ := Γ ∪Qn. Then |Γ∆Γ′| = 0, but Nδ(Γ
′) = Rn for

every δ > 0.
In particular, considering different representatives for E we will get different topological

boundaries and hence different Minkowski dimensions.
However, since the measure theoretic boundary minimizes the size of the topological

boundary, that is

∂−E =
⋂

|F∆E|=0

∂F,

(see Appendix C), it minimizes also the Minkowski dimension.
Indeed, for every F such that |F∆E| = 0 we have

∂−E ⊆ ∂F =⇒ N̄Ω
% (∂−E) ⊆ N̄Ω

% (∂F )

=⇒ Mr
(∂−E,Ω) ≤Mr

(∂F,Ω)

=⇒ DimM(∂−E,Ω) ≤ DimM(∂F,Ω).

3.3. Fractal dimension of the von Koch snowflake. The von Koch snowflake S ⊆ R2 is
an example of a bounded open set with fractal boundary, for which the Minkowski dimension
and the fractal dimension introduced above coincide.

Moreover its boundary is “nowhere rectifiable”, in the sense that ∂S∩Br(p) is not (n−1)-
rectifiable for any r > 0 and p ∈ ∂S.

First of all we recall how to construct the von Koch curve. Then the snowflake is made of
three von Koch curves.

Let Γ0 be a line segment of unit length. The set Γ1 consists of the four segments obtained
by removing the middle third of Γ0 and replacing it by the other two sides of the equilateral
triangle based on the removed segment.
We construct Γ2 by applying the same procedure to each of the segments in Γ1 and so on.
Thus Γk comes from replacing the middle third of each straight line segment of Γk−1 by the
other two sides of an equilateral triangle.

As k tends to infinity, the sequence of polygonal curves Γk approaches a limiting curve Γ,
called the von Koch curve.
If we start with an equilateral triangle with unit length side and perform the same construc-
tion on all three sides, we obtain the von Koch snowflake Σ (see Figure 2). Let S be the
bounded region enclosed by Σ, so that S is open and ∂S = Σ. We still call S the von Koch
snowflake.

It can be shown (see, e.g., [13]) that the Hausdorff dimension of the von Koch snowflake
is equal to its Minkowski dimension and

DimH(Σ) = DimM(Σ) =
log 4

log 3

Now we explain how to construct S in a recursive way and we observe that

∂−S = ∂S = Σ.
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Figure 2. The first three steps of the construction of the von Koch snowflake

As starting point for the snowflake take the equilateral triangle T of side 1, with barycenter
in the origin and a vertex on the y-axis, P = (0, t) with t > 0.
Then T1 is made of three triangles of side 1/3, T2 of 3 · 4 triangles of side 1/32 and so on.

In general Tk is made of 3 · 4k−1 triangles of side 1/3k, call them T 1
k , . . . , T

3·4k−1

k . Let xik be
the baricenter of T ik and P i

k the vertex which does not touch Tk−1.
Then S = T ∪

⋃
Tk. Also notice that Tk and Tk−1 touch only on a set of measure zero.

For each triangle T ik there exists a rotation Ri
k ∈ SO(n) such that

T ik = F i
k(T ) := Ri

k

( 1

3k
T
)

+ xik.

We choose the rotations so that F i
k(P ) = P i

k.
Notice that for each triangle T ik we can find a small ball which is contained in the com-

plementary of the snowflake, Bi
k ⊆ CS, and touches the triangle in the vertex P i

k. Actually
these balls can be obtained as the images of the affine transformations F i

k of a fixed ball B.
To be more precise, fix a small ball contained in the complementary of T , which has the

center on the y-axis and touches T in the vertex P , say B := B1/1000(0, t+ 1/1000). Then

Bi
k := F i

k(B) ⊆ CS (3.4)

for every i, k. To see this, imagine constructing the snowflake S using the same affine
transformations F i

k but starting with T ∪B in place of T .
We know that ∂−S ⊆ ∂S (see Appendix C).

On the other hand, let p ∈ ∂S. Then every ball Bδ(p) contains at least a triangle T ik ⊆ S
and its corresponding ball Bi

k ⊆ CS (and actually infinitely many). Therefore

0 < |Bδ(p) ∩ S| < ωnδ
n

for every δ > 0 and hence p ∈ ∂−S.

Proof of Theorem 1.1. Since S is bounded, its boundary is ∂−S = Σ, and DimM(Σ) = log 4
log 3

,

we obtain (1.3) from Corollary 3.7 and Remark 3.8.
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Exploiting the construction of S given above and (3.4) we prove (1.4).
We have

Ps(S) = Ls(S, CS) = Ls(T, CS) +
∞∑
k=1

Ls(Tk, CS)

= Ls(T, CS) +
∞∑
k=1

3·4k−1∑
i=1

Ls(T ik, CS) ≥
∞∑
k=1

3·4k−1∑
i=1

Ls(T ik, CS)

≥
∞∑
k=1

3·4k−1∑
i=1

Ls(T ik, Bi
k) (by (3.4))

=
∞∑
k=1

3·4k−1∑
i=1

Ls(F i
k(T ), F i

k(B))

=
∞∑
k=1

3·4k−1∑
i=1

( 1

3k

)2−s
Ls(T,B) (by Proposition 3.12)

=
3

32−sLs(T,B)
∞∑
k=0

( 4

32−s

)k
.

We remark that

Ls(T,B) ≤ Ls(T, CT ) = Ps(T ) <∞,

for every s ∈ (0, 1).
To conclude, notice that the last series is divergent if s ≥ 2− log 4

log 3
. �

Exploiting the self-similarity of the von Koch curve, we show that the fractal dimension
of S is the same in every open set which contains a point of ∂S.

Corollary 3.9. Let S ⊆ R2 be the von Koch snowflake. Then

DimF (∂S,Ω) =
log 4

log 3

for every open set Ω such that ∂S ∩ Ω 6= ∅.

Proof. Since Ps(S,Ω) ≤ Ps(S), we have

Ps(S,Ω) <∞, ∀ s ∈
(

0, 2− log 4

log 3

)
.

On the other hand, if p ∈ ∂S ∩ Ω, then Br(p) ⊆ Ω for some r > 0. Now notice that
Br(p) contains a rescaled version of the von Koch curve, including all the triangles T ik which
constitute it and the relative balls Bi

k. We can thus repeat the argument above to obtain

Ps(S,Ω) ≥ Ps(S,Br(p)) =∞, ∀ s ∈
[
2− log 4

log 3
, 1
)
,

concluding the proof. �



FRACTIONAL PERIMETERS FROM A FRACTAL PERSPECTIVE 24

3.4. Self-similar fractal boundaries.

Proof of Theorem 1.2. Arguing as we did with the von Koch snowflake, we show that Ps(T )
is bounded both from above and from below by the series

∞∑
k=0

( b

λn−s

)k
,

which converges if and only if s < n− log b
log λ

.

Indeed

Ps(T ) = Ls(T, CT ) =
∞∑
k=1

abk−1∑
i=1

Ls(T ik, CT )

≤
∞∑
k=1

abk−1∑
i=1

Ls(T ik, CT ik) =
∞∑
k=1

abk−1∑
i=1

Ls(F i
k(T0), F i

k(CT0))

=
a

λn−s
Ls(T0, CT0)

∞∑
k=0

( b

λn−s

)k
,

and

Ps(T ) = Ls(T, CT ) =
∞∑
k=1

abk−1∑
i=1

Ls(T ik, CT )

≥
∞∑
k=1

abk−1∑
i=1

Ls(T ik, Sik) =
∞∑
k=1

abk−1∑
i=1

Ls(F i
k(T0), F i

k(S0))

=
a

λn−s
Ls(T0, S0)

∞∑
k=0

( b

λn−s

)k
.

Also notice that, since P (T0) <∞, we have

Ls(T0, S0) ≤ Ls(T0, CT0) = Ps(T0) <∞,
for every s ∈ (0, 1). �

Now suppose that T does not satisfy (1.6). Then we can obtain a set T ′ which does,
simply by removing a portion S0 from the building block T0.
To be more precise, let S0 ⊆ T0 be such that

|S0| > 0, |T0 \ S0| > 0 and P (T0 \ S0) <∞.
Then define a new building block T ′0 := T0 \ S0 and the set

T ′ :=
∞⋃
k=1

abk−1⋃
i=1

F i
k(T

′
0).

This new set has exactly the same structure of T , since we are using the same collection
{F i

k} of affine maps.
Notice that

S0 ⊆ T0 =⇒ F i
k(S0) ⊆ F i

k(T0),



FRACTIONAL PERIMETERS FROM A FRACTAL PERSPECTIVE 25

and

F i
k(T

′
0) = F i

k(T0) \ F i
k(S0),

for every k, i. Thus

T ′ = T \
( ∞⋃
k=1

abk−1⋃
i=1

F i
k(S0)

)
satisfies (1.6).

Remark 3.10. Roughly speaking, what matters in order to obtain a set which satisfies the
hypothesis of Theorem 1.2 is that there exists a bounded open set T0 such that

|F i
k(T0) ∩ F j

h(T0)| = 0, if i 6= j or k 6= h.

This can be thought of as a compatibility criterion for the family of affine maps {F i
k}. We

also need to ask that the ratio of the logarithms of the growth factor and the scaling factor
is log b

log λ
∈ (n− 1, n). Then we are free to choose as building block any set T ′0 ⊆ T0 such that

|T ′0| > 0, |T0 \ T ′0| > 0 and P (T ′0) <∞,

and the set

T ′ :=
∞⋃
k=1

abk−1⋃
i=1

F i
k(T

′
0).

satisfies the hypothesis of Theorem 1.2.

Therefore, even if the Sierpinski triangle and the Menger sponge do not satisfy (1.6), we
can exploit their structure to construct new sets which do.

However, we remark that the new boundary ∂−T ′ will look very different from the original
fractal. Actually, in general it will be a mix of unrectifiable pieces and smooth pieces. In
particular, we can not hope to get an analogue of Corollary 3.9. Still, the following Remark
shows that the new (measure theoretic) boundary retains at least some of the “fractal nature”
of the original set.

Remark 3.11. If the set T of Theorem 1.2 is bounded, exploiting Proposition 3.6 and
Remark 3.8 we obtain

DimM(∂−T ) ≥ log b

log λ
> n− 1.

Moreover, notice that if Ω is a bounded open set with Lipschitz boundary, then

P (E,Ω) <∞ =⇒ DimF (E,Ω) = n− 1.

Therefore, if T b BR, then

P (T ) = P (T,BR) =∞,

even if T is bounded (and hence ∂−T is compact).
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3.4.1. Sponge-like sets. The simplest way to construct the set T ′ consists in simply removing
a small ball S0 := B b T0 from T0.

In particular, suppose that |T0∆T | = 0, as with the Sierpinski triangle.
Define

S :=
∞⋃
k=1

abk−1⋃
i=1

F i
k(B) and T ′ :=

∞⋃
k=1

abk−1⋃
i=1

F i
k(T0 \B) = T \ S.

Then

|T0∆T | = 0 =⇒ |T ′∆(T0 \ S)| = 0. (3.5)

Now the set E := T0 \ S looks like a sponge, in the sense that it is a bounded open set with
an infinite number of holes (each one at a positive, but non-fixed distance from the others).

From (3.5) we get Ps(E) = Ps(T
′). Thus, since T ′ satisfies the hypothesis of Theorem 1.2,

we obtain

DimF (∂−E) =
log b

log λ
.

3.4.2. Dendrite-like sets. Depending on the form of the set T0 and on the affine maps {F i
k},

we can define more intricate sets T ′.
As an example we consider the Sierpinski triangle E ⊆ R2.

It is of the form E = T0 \ T , where the building block T0 is an equilateral triangle, say with
side length one, a vertex on the y-axis and baricenter in 0. The pieces T ik are obtained with
a scaling factor λ = 2 and the growth factor is b = 3 (see, e.g., [13] for the construction). As
usual, we consider the set

T =
∞⋃
k=1

3k−1⋃
i=1

T ik.

However, as remarked above, we have |T∆T0| = 0.
Starting from k = 2 each triangle T ik touches with (at least) a vertex (at least) another

triangle T jh . Moreover, each triangle T ik gets touched in the middle point of each side (and
actually it gets touched in infinitely many points).

Exploiting this situation, we can remove from T0 six smaller triangles, so that the new
building block T ′0 is a star polygon centered in 0, with six vertices, one in each vertex of T0

and one in each middle point of the sides of T0.

Figure 3. Removing the six triangles (in green) to obtain the new “building
block” T ′0 (on the right)
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The resulting set

T ′ =
∞⋃
k=1

3k−1⋃
i=1

F i
k(T

′
0)

will have an infinite number of ramifications.

Figure 4. The third and fourth steps of the iterative construction of the set T ′

Since T ′ satisfies the hypothesis of Theorem 1.2, we obtain

DimF (∂−T ′) =
log 3

log 2
.

3.4.3. “Exploded” fractals. In all the previous examples, the sets T ik are accumulated in a
bounded region.

On the other hand, imagine making a fractal like the von Koch snowflake or the Sierpinski
triangle “explode” and then rearrange the pieces T ik in such a way that d(T ik, T

j
h) ≥ d, for

some fixed d > 0.
Since the shape of the building block is not important, we can consider T0 := B1/4(0) ⊆ Rn,

with n ≥ 2. Moreover, since the parameter a does not influence the dimension, we can fix
a = 1.

Then we rearrange the pieces obtaining

E :=
∞⋃
k=1

bk−1⋃
i=1

B 1

4λk
(k, 0, . . . , 0, i). (3.6)

Define for simplicity

Bi
k := B 1

4λk
(k, 0, . . . , 0, i) and xik := k e1 + i en,

and notice that

Bi
k = λ−kB 1

4
(0) + xik.

Since for every k, h and every i 6= j we have

d(Bi
k, B

j
h) ≥

1

2
,
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the boundary of the set E is the disjoint union of (n− 1)-dimensional spheres

∂−E = ∂E =
∞⋃
k=1

bk−1⋃
i=1

∂Bi
k,

and in particular is smooth.
The (global) perimeter of E is

P (E) =
∞∑
k=1

bk−1∑
i=1

P (Bi
k) =

1

λ
P (B1/4(0))

∞∑
k=0

( b

λn−1

)k
= +∞,

since log b
log λ

> n− 1.

However E has locally finite perimeter, since its boundary is smooth and every ball BR

intersects only finitely many Bi
k’s,

P (E,BR) <∞, ∀R > 0.

Therefore it also has locally finite s-perimeter for every s ∈ (0, 1)

Ps(E,BR) <∞, ∀R > 0, ∀ s ∈ (0, 1).

What is interesting is that the set E satisfies the hypothesis of Theorem 1.2 and hence it
also has finite global s-perimeter for every s < σ0 := n− log b

log λ
,

Ps(E) <∞ ∀ s ∈ (0, σ0) and Ps(E) =∞ ∀ s ∈ [σ0, 1).

Thus we obtain Proposition 1.3.

Proof of Proposition 1.3. It is enough to choose a natural number b ≥ 2 and take λ := b
1

n−σ .
Notice that λ > 1 and

log b

log λ
= n− σ ∈ (n− 1, n).

Then we can define E as in (3.6) and we are done. �

3.5. Elementary properties of the s-perimeter. In the following Proposition we collect
some elementary but useful properties of the fractional perimeter which we have exploited
throughout the paper.

Proposition 3.12. Let Ω ⊆ Rn be an open set.

(i) (Subadditivity) Let E, F ⊆ Rn be such that |E ∩ F | = 0. Then

Ps(E ∪ F,Ω) ≤ Ps(E,Ω) + Ps(F,Ω).

(ii) (Translation invariance) Let E ⊆ Rn and x ∈ Rn. Then

Ps(E + x,Ω + x) = Ps(E,Ω).

(iii) (Rotation invariance) Let E ⊆ Rn and R ∈ SO(n) a rotation. Then

Ps(RE,RΩ) = Ps(E,Ω).

(iv) (Scaling) Let E ⊆ Rn and λ > 0. Then

Ps(λE, λΩ) = λn−sPs(E,Ω).
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Proof. (i) follows from the following observations. Let A1, A2, B ⊆ Rn. If |A1 ∩ A2| = 0,
then

Ls(A1 ∪ A2, B) = Ls(A1, B) + Ls(A2, B).

Moreover

A1 ⊆ A2 =⇒ Ls(A1, B) ≤ Ls(A2, B),

and

Ls(A,B) = Ls(B,A).

Therefore

Ps(E ∪ F,Ω) = Ls((E ∪ F ) ∩ Ω, C(E ∪ F )) + Ls((E ∪ F ) \ Ω, C(E ∪ F ) ∩ Ω)

= Ls(E ∩ Ω, C(E ∪ F )) + Ls(F ∩ Ω, C(E ∪ F ))

+ Ls(E \ Ω, C(E ∪ F ) ∩ Ω) + Ls(F \ Ω, C(E ∪ F ) ∩ Ω)

≤ Ls(E ∩ Ω, CE) + Ls(F ∩ Ω, CF )

+ Ls(E \ Ω, CE ∩ Ω) + Ls(F \ Ω, CF ∩ Ω)

= Ps(E,Ω) + Ps(F,Ω).

(ii), (iii) and (iv) follow simply by changing variables in Ls and the following observations:

(x+ A1) ∩ (x+ A2) = x+ A1 ∩ A2, x+ CA = C(x+ A),

RA1 ∩RA2 = R(A1 ∩ A2), R(CA) = C(RA),

(λA1) ∩ (λA2) = λ(A1 ∩ A2), λ(CA) = C(λA).

For example, for claim (iv) we have

Ls(λA, λB) =

∫
λA

∫
λB

dx dy

|x− y|n+s
=

∫
A

λn dx

∫
B

λn dy

λn+s|x− y|n+s

= λn−sLs(A,B).

Then

Ps(λE, λΩ) = Ls(λE ∩ λΩ, C(λE)) + Ls(λE ∩ C(λΩ), C(λE) ∩ λΩ)

= Ls(λ(E ∩ Ω), λCE) + Ls(λ(E \ Ω), λ(CE ∩ Ω))

= λn−s (Ls(E ∩ Ω, CE) + Ls(E \ Ω, CE ∩ Ω))

= λn−sPs(E,Ω).

This concludes the proof of the Proposition. �

Appendix A. Proof of Example 1.1

Note that E ⊆ (0, a2]. Let Ω := (−1, 1) ⊆ R. Then E b Ω and dist(E, ∂Ω) = 1 − a2 =:
d > 0. Now

Ps(E) =

∫
E

∫
CE∩Ω

dxdy

|x− y|1+s
+

∫
E

∫
CΩ

dxdy

|x− y|1+s
.

As for the second term, we have∫
E

∫
CΩ

dxdy

|x− y|1+s
≤ 2|E|

sds
<∞.
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We split the first term into three pieces∫
E

∫
CE∩Ω

dxdy

|x− y|1+s

=

∫
E

∫ 0

−1

dxdy

|x− y|1+s
+

∫
E

∫
CE∩(0,a)

dxdy

|x− y|1+s
+

∫
E

∫ 1

a

dxdy

|x− y|1+s

= I1 + I2 + I3.

Note that CE ∩ (0, a) =
⋃
k∈N I2k−1 =

⋃
k∈N(a2k, a2k−1).

A simple calculation shows that, if a < b ≤ c < d, then∫ b

a

∫ d

c

dxdy

|x− y|1+s
=

1

s(1− s)
[
(c− a)1−s + (d− b)1−s − (c− b)1−s − (d− a)1−s]. (A.1)

Also note that, if n > m ≥ 1, then

(1− an)1−s − (1− am)1−s =

∫ n

m

d

dt
(1− at)1−s dt

= (s− 1) log a

∫ n

m

at

(1− at)s
dt

≤ am(s− 1) log a

∫ n

m

1

(1− at)s
dt

≤ (n−m)am
(s− 1) log a

(1− a)s
.

(A.2)

Now consider the first term

I1 =
∞∑
k=1

∫ a2k

a2k+1

∫ 0

−1

dxdy

|x− y|1+s
.

Use (A.1) and notice that (c− a)1−s − (d− a)1−s ≤ 0 to get∫ 0

−1

∫ a2k

a2k+1

dxdy

|x− y|1+s
≤ 1

s(1− s)
[
(a2k)1−s − (a2k+1)1−s] ≤ 1

s(1− s)
(a2(1−s))k.

Then, as a2(1−s) < 1 we get

I1 ≤
1

s(1− s)

∞∑
k=1

(a2(1−s))k <∞.

As for the last term

I3 =
∞∑
k=1

∫ a2k

a2k+1

∫ 1

a

dxdy

|x− y|1+s
,

use (A.1) and notice that (d− b)1−s − (d− a)1−s ≤ 0 to get∫ a2k

a2k+1

∫ 1

a

dxdy

|x− y|1+s
≤ 1

s(1− s)
[
(1− a2k+1)1−s − (1− a2k)1−s]

≤ − log a

s(1− a)s
a2k by (A.2).
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Thus

I3 ≤
− log a

s(1− a)s

∞∑
k=1

(a2)k <∞.

Finally we split the second term

I2 =
∞∑
k=1

∞∑
j=1

∫ a2k

a2k+1

∫ a2j−1

a2j

dxdy

|x− y|1+s

into three pieces according to the cases j > k, j = k and j < k.
If j = k, using (A.1) we get

∫ a2k

a2k+1

∫ a2k−1

a2k

dxdy

|x− y|1+s
=

=
1

s(1− s)
[
(a2k − a2k+1)1−s + (a2k−1 − a2k)1−s − (a2k−1 − a2k+1)1−s]

=
1

s(1− s)
[
a2k(1−s)(1− a)1−s + a(2k−1)(1−s)(1− a)1−s

− a(2k−1)(1−s)(1− a2)1−s]
=

1

s(1− s)
(a2(1−s))k

[
(1− a)1−s +

(1− a)1−s

a1−s − (1− a2)1−s

a1−s

]
.

Summing over k ∈ N we get

∞∑
k=1

∫ a2k

a2k+1

∫ a2k−1

a2k

dxdy

|x− y|1+s
=

=
1

s(1− s)
a2(1−s)

1− a2(1−s)

[
(1− a)1−s +

(1− a)1−s

a1−s − (1− a2)1−s

a1−s

]
<∞.

In particular note that

(1− s)Ps(E) ≥ (1− s)I2

≥ 1

s(1− a2(1−s))

[
a2(1−s)(1− a)1−s + a1−s(1− a)1−s − a1−s(1− a2)1−s],

which tends to +∞ when s→ 1. This shows that E cannot have finite perimeter.
To conclude let j > k, the case j < k being similar, and consider

∞∑
k=1

∞∑
j=k+1

∫ a2j−1

a2j

∫ a2k

a2k+1

dxdy

|x− y|1+s
.
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Again, using (A.1) and (d− b)1−s − (d− a)1−s ≤ 0, we get∫ a2j−1

a2j

∫ a2k

a2k+1

dxdy

|x− y|1+s

≤ 1

s(1− s)
[
(a2k+1 − a2j)1−s − (a2k+1 − a2j−1)1−s]

=
a1−s

s(1− s)
(a2(1−s))k

[
(1− a2(j−k)−1)1−s − (1− a2(j−k)−2)1−s]

≤ a1−s

s(1− s)
(a2(1−s))k

(s− 1) log a

(1− a)s
a2(j−k)−2 by (A.2)

=
− log a

s(1− as)as+1
(a2(1−s))k(a2)j−k,

for j ≥ k + 2. Then
∞∑
k=1

∞∑
j=k+2

∫ a2j−1

a2j

∫ a2k

a2k+1

dxdy

|x− y|1+s

≤ − log a

s(1− as)as+1

∞∑
k=1

(a2(1−s))k
∞∑
h=2

(a2)h <∞.

If j = k + 1 we get
∞∑
k=1

∫ a2k+1

a2k+2

∫ a2k

a2k+1

dxdy

|x− y|1+s
≤ 1

s(1− s)

∞∑
k=1

(a2k+1 − a2k+2)1−s

=
a1−s(1− a)1−s

s(1− s)

∞∑
k=1

(a2(1−s))k <∞.

This shows that also I2 <∞, so that Ps(E) <∞ for every s ∈ (0, 1) as claimed.

Appendix B. Signed distance function

Given ∅ 6= E ⊆ Rn, the distance function from E is defined as

dE(x) = d(x,E) := inf
y∈E
|x− y|, for x ∈ Rn.

The signed distance function from ∂E, negative inside E, is then defined as

d̄E(x) = d̄(x,E) := d(x,E)− d(x, CE).

For the details of the main properties we refer e.g. to [1] and [3].
We also define the sets

Er := {x ∈ Rn | d̄E(x) < r}.
Let Ω ⊆ Rn be a bounded open set with Lipschitz boundary. By definition we can locally

describe Ω near its boundary as the subgraph of appropriate Lipschitz functions. To be more
precise, we can find a finite open covering {C%i}mi=1 of ∂Ω made of cylinders, and Lipschitz
functions ϕi : B′%i −→ R such that Ω ∩ C%i is the subgraph of ϕi. That is, up to rotations
and translations,

C%i = {(x′, xn) ∈ Rn | |x′| < %i, |xn| < %i},
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and

Ω ∩ C%i = {(x′, xn) ∈ Rn |x′ ∈ B′%i , −%i < xn < ϕi(x
′)},

∂Ω ∩ C%i = {(x′, ϕi(x′)) ∈ Rn |x′ ∈ B′%i}.
Let L be the sup of the Lipschitz constants of the functions ϕi.

We observe that [12, Theorem 4.1] guarantees that also the bounded open sets Ωr have
Lipschitz boundary, when r is small enough, say |r| < r0.
Moreover these sets Ωr can locally be described, in the same cylinders C%i used for Ω, as
subgraphs of Lipschitz functions ϕri which approximate ϕi (see [12] for the precise statement)
and whose Lipschitz constants are less than or equal to L.
Notice that

∂Ωr = {d̄Ω = r}.
Now, since in C%i the set Ωr coincides with the subgraph of ϕri , we have

Hn−1(∂Ωr ∩ C%i) =

∫
B′%i

√
1 + |∇ϕri |2 dx′ ≤Mi,

with Mi depending on %i and L but not on r.
Therefore

Hn−1({d̄Ω = r}) ≤
m∑
i=1

Hn−1(∂Ωr ∩ C%i) ≤
m∑
i=1

Mi

independently on r, proving the following

Proposition B.1. Let Ω ⊆ Rn be a bounded open set with Lipschitz boundary. Then there
exists r0 = r0(Ω) > 0 such that Ωr is a bounded open set with Lipschitz boundary for every
r ∈ (−r0, r0) and

sup
|r|<r0

Hn−1({d̄Ω = r}) <∞.

Appendix C. Measure theoretic boundary

Since

|E∆F | = 0 =⇒ P (E,Ω) = P (F,Ω) and Ps(E,Ω) = Ps(F,Ω), (C.1)

we can modify a set making its topological boundary as big as we want, without changing
its (fractional) perimeter.
For example, let E ⊆ Rn be a bounded open set with Lipschitz boundary. Then, if we set

F := (E \Qn) ∪ (Qn \ E),

we have |E∆F | = 0 and hence we get (C.1). However ∂F = Rn.
For this reason one considers measure theoretic notions of interior, exterior and boundary,

which solely depend on the class of χE in L1
loc(Rn).

In some sense, by considering the measure theoretic boundary ∂−E defined below we can also
minimize the size of the topological boundary (see (C.6)). Moreover, this measure theoretic
boundary is actually the topological boundary of a set which is equivalent to E. Thus we
obtain a “good” representative for the class of E.

We refer to [22, Section 3.2] (see also [16, Proposition 3.1]). For some details about the
good representative of an s-minimal set, see the Appendix of [10].
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Definition C.1. Let E ⊆ Rn. For every t ∈ [0, 1] we define the set

E(t) :=

{
x ∈ Rn

∣∣∃ lim
r→0

|E ∩Br(x)|
ωnrn

= t

}
, (C.2)

of points density t of E. We also define the essential boundary of E as

∂eE := Rn \
(
E(0) ∪ E(1)

)
.

Using the Lebesgue’s points Theorem for the characteristic function χE, we see that the
limit in (C.2) exists for a.e. x ∈ Rn and

lim
r→0

|E ∩Br(x)|
ωnrn

=

{
1 for a.e. x ∈ E,
0 for a.e. x ∈ CE.

So
|E∆E(1)| = 0, |CE∆E(0)| = 0 and |∂eE| = 0.

In particular a set E is equivalent to the set E(1) of its points of density 1.
Roughly speaking, the sets E(0) and E(1) can be thought of as a measure theoretic version
of, respectively, the exterior and the interior of the set E. However, notice that both E(1)

and E(0) in general are not open.

We have another natural way to define measure theoretic versions of interior, exterior and
boundary.

Definition C.2. Given a set E ⊆ Rn, we define the measure theoretic interior and exterior
of E by

Eint := {x ∈ Rn | ∃ r > 0, |E ∩Br(x)| = ωnr
n}

and
Eext := {x ∈ Rn | ∃ r > 0, |E ∩Br(x)| = 0},

respectively. Then we define the measure theoretic boundary of E as

∂−E := Rn \ (Eext ∪ Eint)
= {x ∈ Rn | 0 < |E ∩Br(x)| < ωnr

n for every r > 0}.

Notice that Eext and Eint are open sets and hence ∂−E is closed. Moreover, since

Eext ⊆ E(0) and Eint ⊆ E(1), (C.3)

we get
∂eE ⊆ ∂−E.

We observe that
F ⊆ Rn s.t. |E∆F | = 0 =⇒ ∂−E ⊆ ∂F. (C.4)

Indeed, if |E∆F | = 0, then |F ∩Br(x)| = |E∩Br(x)| for every r > 0. Thus for any x ∈ ∂−E
we have

0 < |F ∩Br(x)| < ωnr
n,

which implies

F ∩Br(x) 6= ∅ and CF ∩Br(x) 6= ∅ for every r > 0,

and hence x ∈ ∂F .
In particular, ∂−E ⊆ ∂E.
Moreover

∂−E = ∂E(1). (C.5)



FRACTIONAL PERIMETERS FROM A FRACTAL PERSPECTIVE 35

Indeed, since |E∆E(1)| = 0, we already know that ∂−E ⊆ ∂E(1). The converse inclusion
follows from (C.3) and the fact that both Eext and Eint are open.
From (C.4) and (C.5) we obtain

∂−E =
⋂
F∼E

∂F, (C.6)

where the intersection is taken over all sets F ⊆ Rn such that |E∆F | = 0, so we can think
of ∂−E as a way to minimize the size of the topological boundary of E. In particular

F ⊆ Rn s.t. |E∆F | = 0 =⇒ ∂−F = ∂−E.

From (C.3) and (C.5) we see that we can take E(1) as “good” representative for E, ob-
taining Remark 1.8.

Recall that the support of a Radon measure µ on Rn is defined as the set

supp µ := {x ∈ Rn |µ(Br(x)) > 0 for every r > 0}.
Notice that, being the complementary of the union of all open sets of measure zero, it is a
closed set. In particular, if E is a Caccioppoli set, we have

supp |DχE| = {x ∈ Rn |P (E,Br(x)) > 0 for every r > 0}, (C.7)

and it is easy to verify that
∂−E = supp |DχE| = ∂∗E,

where ∂∗E denotes the reduced boundary (see, e.g., [17, Chapter 15]). Moreover, ∂∗E ⊆ ∂eE
and by Federer’s Theorem (see, e.g., [17, Theorem 16.2]) we have

Hn−1(∂eE \ ∂∗E) = 0.

Figure 5. The point A belongs to ∂−E but A 6∈ ∂eE. The point B belongs to
∂eF but B 6∈ ∂∗F .

We remark that in general the inclusions

∂∗E ⊆ ∂eE ⊆ ∂−E ⊆ ∂E

are all strict. Indeed, we have already observed in the previous discussion that in general
∂−E is much smaller than the topological boundary ∂E. In order to have an example of a
point p ∈ ∂−E \ ∂eE it is enough to consider sublinear cusps. For example, if E := {(x, y) ∈
R2 | y < −|x| 12} and p := (0, 0), then it is easy to verify that p ∈ E(0) and hence p 6∈ ∂eE.
On the other hand, p ∈ ∂−E. Finally, the vertex of an angle is an example of a point
p ∈ ∂eE \ ∂∗E (see, e.g., [17, Example 15.4]).
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able advice and never lacking support.
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