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GENERATING SETS OF FINITE GROUPS

PETER J. CAMERON, ANDREA LUCCHINI, AND COLVA M. RONEY-DOUGAL

Abstract. We investigate the extent to which the exchange relation
holds in finite groups G. We define a new equivalence relation ≡m,
where two elements are equivalent if each can be substituted for the
other in any generating set for G. We then refine this to a new sequence

≡
(r)
m of equivalence relations by saying that x ≡

(r)
m y if each can be

substituted for the other in any r-element generating set. The relations

≡
(r)
m become finer as r increases, and we define a new group invariant

ψ(G) to be the value of r at which they stabilise to ≡m.
Remarkably, we are able to prove that if G is soluble then ψ(G) ∈

{d(G), d(G) + 1}, where d(G) is the minimum number of generators of
G, and to classify the finite soluble groups G for which ψ(G) = d(G).
For insoluble G, we show that d(G) ≤ ψ(G) ≤ d(G) + 5. However, we
know of no examples of groups G for which ψ(G) > d(G) + 1.

As an application, we look at the generating graph of G, whose ver-
tices are the elements of G, the edges being the 2-element generating

sets. Our relation ≡
(2)
m enables us to calculate Aut(Γ(G)) for all soluble

groups G of nonzero spread, and give detailed structural information
about Aut(Γ(G)) in the insoluble case.

1. Introduction

It is well known that generating sets for groups are far more complicated
than generating sets for, say, vector spaces. The latter satisfy the exchange
axiom, and hence any two irredundant sets have the same cardinality. Ac-
cording to the Burnside Basis Theorem, a similar property holds for groups
of prime power order.

Our starting point is the observation that, in order to understand better
the generating sets for arbitrary finite groups, we should investigate the
extent to which the exchange property holds. We define an equivalence
relation ≡m on a finite group G, in which two elements are equivalent if
each can be substituted for the other in any generating set for G. Then two
elements are equivalent if and only if they lie in the same maximal subgroups
of G.

We refine this relation to a sequence of relations ≡
(r)
m whose terms depend

on a positive integer r, where two elements are equivalent if each can be
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substituted for the other in any r-element generating set. The relations ≡
(r)
m

become finer as r increases; we observe in Lemma 2.4 that the smallest value

of r for which ≡
(r)
m is not the universal relation is the minimum number d(G)

of generators of G.
We define a new group invariant ψ(G) to be the value of r at which the

relations ≡
(r)
m stabilise to ≡m. Remarkably, it turns out (see Corollary 2.12)

that if G is soluble then ψ(G) ∈ {d(G), d(G) + 1}. In Theorem 2.21 we even
succeed in giving a precise structural description of the finite soluble groups
G for which ψ(G) = d(G).

In the general case, we show in Corollary 2.13 and Proposition 2.14 that
ψ(G) ≤ d(G) + 5, with tighter bounds when G is (almost) simple. However,
we know of no examples of groups G for which ψ(G) > d(G) + 1.

The relation ≡m can be a little tricky to work with, so in Section 3 we
introduce a far simpler relation, by defining x ≡c y if 〈x〉 = 〈y〉. This is
clearly a refinement of ≡m, and provides an easy-to-calculate upper bound
on the number of ≡m-classes, and lower bound on their sizes. In Theorem 3.4
we characterise the soluble groups G on which these two relations coincide;
it would be very interesting to determine for which insoluble groups they
are equal.

As an application, we notice that the relation ≡
(2)
m is particularly inter-

esting for two-generator groups. Such groups G have long been studied by
means of the generating graph, whose vertices are the elements of G, the
edges being the 2-element generating sets. The generating graph was de-
fined by Liebeck and Shalev in [16], and has been further investigated by
many authors: see for example [3, 5, 6, 12, 18, 19, 20, 23] for some of the
range of questions that have been considered. Many deep structural results
about finite groups can be expressed in terms of the generating graph.

We notice that two group elements are ≡
(2)
m -equivalent if and only if they

have the same neighbours in the generating graph. By identifying the ver-
tices in each equivalence class, we obtain a reduced graph Γ(G), which has
many fewer vertices, but the same spread, clique number and chromatic
number, amongst other properties. We conjecture that in a group G of

nonzero spread, the equivalence relations ≡m and ≡
(2)
m coincide.

The automorphism groups of generating graphs are extremely large, and
their study has up to now seemed intractable. However, we show in Theo-
rem 5.2 that the automorphism group of Γ(G) has a very compact descrip-

tion in terms of the sizes of the ≡
(2)
m -classes of G, and the group Aut(Γ(G)).

Using this, we are able to give a precise description of the automorphism
groups of the generating graphs of all soluble groups of nonzero spread, and
a detailed description in the insoluble case.

We have carried out many computational experiments on small insoluble
groups G of nonzero spread. In each case we found that ψ(G) = 2, and that
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Aut(Γ(G)) is completely and straightforwardly determined by the sizes of

the ≡
(2)
m -classes and Aut(G).

The paper is structured as follows. In Section 2 we study the relations

≡m and ≡
(r)
m , and the related invariant ψ(G). In Section 3 we look at the

relation ≡c. In Section 4 we introduce the generating graph Γ(G) and the
reduced generating graph Γ(G), and then in Section 5 we study the group
Aut(Γ(G)) for groups G of nonzero spread.

2. A hierarchy of equivalences

2.1. Definitions and elementary results. We shall now introduce our
main families of relations, and establish a few basic results concerning them.

Definition 2.1. Let G be a finite group. We define an equivalence relation
≡m (m for “maximal subgroups”) on G by letting x ≡m y if and only if x
and y lie in exactly the same maximal subgroups of G.

Note that the ≡m-class containing the identity is precisely the Frattini
subgroup ofG, and any ≡m-class is a union of cosets of the Frattini subgroup.

The equivalence relation ≡m can also be characterised by a substitution
property:

Proposition 2.2. Let G be a finite group, and let x and y be elements of
G. Then x ≡m y if and only if

(∀r)(∀z1, . . . , zr ∈ G)((〈x, z1, . . . , zr〉 = G) ⇔ (〈y, z1, . . . , zr〉 = G)).

Proof. Suppose first that 〈x, z1, . . . , zr〉 = G but 〈y, z1, . . . , zr〉 6= G. Then
there is a maximal subgroup M of G containing y, z1, . . . , zr. Clearly x /∈M ;
so x 6≡m y.

Conversely, suppose that x 6≡m y, so that (without loss of generality)
there is a maximal subgroup M containing y but not x. Choose genera-
tors z1, . . . , zr for M . Then 〈y, z1, . . . , zr〉 = M , but 〈x, z1, . . . , zr〉 properly
contains M , and so is equal to G. �

This means that, when considering generating sets (of any cardinality)
for a group G, we may restrict our attention to subsets of a set of ≡m-class
representatives.

Definition 2.3. For any positive integer r, define equivalence relations ≡
(r)
m

by the rule that x ≡
(r)
m y if and only if

(∀z1, . . . , zr−1 ∈ G)((〈x, z1, . . . , zr−1〉 = G) ⇔ (〈y, z1, . . . , zr−1〉 = G)).

Lemma 2.4. (1) The relations ≡
(r)
m get finer as r increases.

(2) The smallest value of r for which ≡
(r)
m is not the universal relation

is d(G). For r = d(G), there are at least r + 1 equivalence classes.
(3) The limit value of this sequence of relations is ≡m.



4 PETER J. CAMERON, ANDREA LUCCHINI, AND COLVA M. RONEY-DOUGAL

Proof. (1) Choosing zr−1 to be the identity we see that x ≡
(r)
m y implies

x ≡
(r−1)
m y.

(2) The first claim is clear, for this second, notice that the identity and
the elements of any d(G)-element generating set are pairwise inequivalent.

(3) This is clear. �

Definition 2.5. Let ψ(G) be the value of r for which the equivalences

≡
(r)
m stabilise, that is, the least r such that ≡

(r)
m coincides with the limiting

relation ≡m.

2.2. Bounds on ψ(G). In this subsection, we prove various upper and lower
bounds on ψ(G) in terms of other numerical invariants of G. We start with
some straightforward lower bounds on ψ(G).

Lemma 2.6. Let G be a finite group, and let d = d(G). Then ψ(G) ≥ d,
and if G has a normal subgroup N such that N 6≤ Frat(G) and d(G/N) = d,
then ψ(G) ≥ d+ 1.

Proof. The first claim is immediate from Lemma 2.4(2). For the second,
notice that elements of N lie in no d-element generating set of G, and so are

≡
(d)
m -equivalent to the identity. However, the ≡m-equivalence class of the

identity is Frat(G). �

These lower bounds are best possible in a very strong sense: we know of
no groups that do not attain them.

Problem 2.7. Is it true that ifG is a finite group, then ψ(G) ∈ {d(G), d(G)+
1}?

Whilst we are not able to answer this question in general, in the rest
of this subsection we prove some upper bounds on ψ(G). In particular, in
Corollary 2.12 we show that if G is soluble then ψ(G) ≤ d(G) + 1.

Definition 2.8. Let G be a finite group and let M be a core-free maximal
subgroup of G. For every g ∈ G\M , let δG,M (g) be the smallest cardinality
of a subset X of M with the property that G = 〈g,X〉 and let

νM(G) = sup
g /∈M

δG,M (g).

Notice that νM(G) ≤ d(M).

Definition 2.9. Let m̃(G) be the maximum of νM/N (G/N) over all maximal
subgroups M of G, where N = CoreG(M).

Theorem 2.10. ψ(G) ≤ max{m̃(G), d(G)} + 1.

Before proving this result, we briefly recall a necessary definition and
result. Given a subset X of a finite group G, we will denote by dX(G) the
smallest cardinality of a set of elements of G generating G together with the
elements of X. The following generalizes a result originally obtained by W.
Gaschütz [10] for X = ∅.



GENERATING SETS OF FINITE GROUPS 5

Lemma 2.11 ([6] Lemma 6). Let X be a subset of G and N a normal
subgroup of G and suppose that 〈g1, . . . , gk,X〉N = G. If k ≥ dX(G), then
there exist n1, . . . , nk ∈ N so that 〈g1n1, . . . , gknk,X〉 = G.

Proof of Theorem 2.10. Let t = max{m̃(G), d(G)}. Since the relations ≡
(r)
m

become finer with r, it suffices to prove that if x and y are two elements of G

and x 6≡m y, then x 6≡
(t+1)
m y. So assume that x 6≡m y. It is not restrictive to

assume that there exists a maximal subgroup M of G such that x /∈M and
y ∈ M. Let N = CoreG(M) and let X = {x}. Since t ≥ m̃(G), we have t ≥
νM/N (G/N), hence there exist g1, . . . , gt ∈M such that 〈x, g1, . . . , gt〉N = G.
Moreover t ≥ d(G) ≥ dX(G). So we deduce from Lemma 2.11 that there
exist n1, . . . , nt ∈ N such that G = 〈x, g1n1, . . . , gtnt〉. On the other hand

〈y, g1n1, . . . , gtnt〉 ≤M. Hence x 6≡
(t+1)
m y. �

We are now able to prove a tight upper bound on ψ(G) for all finite soluble
groups G.

Corollary 2.12. If G is a finite soluble group, then ψ(G) ≤ d(G) + 1.

Proof. Let M be a maximal subgroup of G, and let K = CoreG(M). Then

G̃ = G/K is a soluble group with a faithful primitive action on the cosets of

M/K, and d(G̃) ≤ d(G). Moreover M/K is a complement in G̃ of Soc(G̃),

so νM/K(G/K) ≤ d(M/K) = d(G̃/Soc(G̃)) ≤ d(G̃) ≤ d(G). This holds for
every maximal subgroup of G, so m̃(G) ≤ d(G) and the conclusion follows
from Theorem 2.10. �

Now we prove an upper bound on ψ(G) for an arbitrary finite group G.

Corollary 2.13. If G is a finite group, then ψ(G) ≤ d(G)+5. Furthermore,
if G is simple, then ψ(G) ≤ 5, and if G is almost simple then ψ(G) ≤ 7.

Proof. Burness, Liebeck and Shalev prove (see [4, Theorem 7]) that the
point stabiliser of a d-generated finite primitive permutation group can be
generated by d + 4 elements. Hence if G is a finite group, then m̃(G) ≤
d(G) + 4 and our first claim follows from Theorem 2.10.

In the same paper (see [4, Theorems 1 and 2]) they show that any maximal
subgroup of a finite simple group can be generated by 4 elements, and that
any maximal subgroup of an almost simple group can be generated by 6
elements. Hence our final two claims follow in the same way. �

We conclude this subsection by mentioning a relationship with another
well-known parameter, µ(G), the maximum size of a minimal generating set
for G (a generating set for which no proper subset generates), studied by
Diaconis and Saloff-Coste, Whiston, Saxl, and others [9, 14, 27].

Proposition 2.14. Let G be a finite group. Then ψ(G) ≤ µ(G). Hence if
G = PSL2(p) with p 6∈ {7, 11, 19, 31} then ψ(G) ≤ 3, and ψ(PSL2(p)) ≤ 4
in the remaining cases.
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Proof. To prove that ψ(G) ≤ µ(G), we show that if µ = µ(G), and x ≡
(µ)
m y,

then x ≡m y. So suppose that x ≡
(µ)
m y, and let G = 〈x, z1, . . . , zr−1〉.

Case r ≤ µ. Since the relations ≡
(r)
m get finer as r increases, in this case

G = 〈y, z1, . . . , zr−1〉.
Case r > µ. In this case, our generating set is larger than µ, and so
some element is redundant. If x is redundant, then G = 〈z1, . . . , zr−1〉 =
〈y, z1, . . . , zr−1〉, as required. Suppose that x is not redundant. Then G is
generated by a subset of the given generators of size µ including x, without

loss of generality {x, z1, . . . , zµ−1}. Since, by assumption, x ≡
(µ)
m y, we have

G = 〈y, z1, . . . , zµ−1〉 = 〈y, z1, . . . , zr−1〉.
The final claim follows from [14], where the stated bounds on µ(PSL2(p))

are determined. �

In general µ(G) can be much larger than d(G). For example, if G is
soluble, than m(G)−d(G) ≥ π(G)−2 (see [17, Corollary 3]) and in any case
µ(G) is at least the number of complemented factors in a chief series of G
(see [17, Theorem 1]). Hence the difference µ(G) − d(G) (and consequently,
by Corollary 1.10, the difference µ(G) − ψ(G)) can be arbitrarily large.

2.3. Groups with ψ(G) = d(G). In this subsection, we study groups G for
which ψ(G) = d(G); in particular in Theorem 2.21 we describe the structure
of such soluble groups G.

Definition 2.15. A finite group G is efficiently generated if for all x ∈ G,
d{x}(G) = d(G) implies that x ∈ Frat(G).

Lemma 2.16. If ψ(G) = d(G), then G is efficiently generated.

Proof. Let d = d(G). If G is not efficiently generated, then there exists

x /∈ Frat(G) such that d{x}(G) = d. This implies in particular x ≡
(d)
m 1.

However since x /∈ Frat(G), we have x 6≡m 1, hence ψ(G) > d. �

Lemma 2.17. If G is efficiently generated and m̃(G) < d(G), then ψ(G) =
d(G).

Proof. Let d = d(G). By Theorem 2.10, our assumption that m̃(G) < d(G)

implies that ψ(G) ≤ d + 1, and hence that ≡
(d+1)
m coincides with ≡m. It

therefore suffices to prove that if x 6≡
(d+1)
m y, then x 6≡

(d)
m y.

Assume that x 6≡
(d+1)
m y and let dx = d{x}(G) and dy = d{y}(G). It is

clear that dx, dy ≥ d − 1. If dx = dy = d, then our assumption that G is
efficiently generated implies that x, y ∈ Frat(G), and hence that x ≡m y,
a contradiction. Therefore we may assume that dx = d − 1; in partic-
ular G = 〈x, g1, . . . , gd−1〉 for some g1, . . . , gd−1 ∈ G. If dy = d, then

G 6= 〈y, g1, . . . , gd−1〉 and therefore x 6≡
(d)
m y, and we are done.

So assume that dx = dy = d− 1. Since x 6≡m y, without loss of generality
there exists a maximal subgroup M of G such that x /∈ M, y ∈ M. Let
N = CoreG(M). Since d−1 ≥ m̃(G), there exist g1, . . . , gd−1 ∈M such that
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〈x, g1, . . . , gd−1〉N = G. As dx = d − 1, we deduce from Lemma 2.11 that
there exist n1, . . . , nd−1 ∈ N such that G = 〈x, g1n1, . . . , gd−1nd−1〉. On the

other hand 〈y, g1n1, . . . , gd−1nd−1〉 ≤M. Hence x 6≡
(d)
m y. �

Notice that if d(M) < d(G) for every maximal subgroup M of G, then G
is efficiently generated. Indeed if x /∈ Frat(G), then there exists a maximal
subgroup M of G with x /∈ M and consequently d{x}(G) ≤ d(M) < d(G).
But then from Lemma 2.17 we deduce the following result.

Corollary 2.18. If d(M) < d(G) for every maximal subgroup M of G, then
ψ(G) = d(G).

Lemma 2.19. Let G be a finite soluble group. If G is efficiently generated
then m̃(G) < d(G).

Proof. If suffices to prove that for every maximal subgroup M of G, we
have d(M/CoreG(M)) < d(G) = d. Assume otherwise. Then there exists a
maximal subgroup M of G such that d(M/N) = d (where N = CoreG(M)).
Furthermore, G/N = A/N : M/N and Frat(G) ≤ N. Let a ∈ A \ Frat(G).
Then d{a}(G) = d, contradicting the assumption that G is efficiently gener-
ated. �

The following result is now immediate from Lemmas 2.16 and 2.19.

Corollary 2.20. Let G be a finite soluble group. Then ψ(G) = d(G) if and
only if G is efficiently generated.

Theorem 2.21. A finite soluble group G satisfies ψ(G) = d(G) if and only if
either G is a finite p-group or there exist a finite vector space V , a nontrivial
irreducible soluble subgroup H of Aut(V ) and an integer d > d(H) such that

G/Frat(G) ∼= V r(d−2)+1 : H,

where r is the dimension of V over EndH(V ) and H acts in the same way
on each of the r(d− 2) + 1 factors.

Proof. Assume that G is soluble group with ψ(G) = d(G) = d and let
F = Frat(G). By Corollary 2.20, G is efficiently generated. If N is a normal
subgroup of G properly containing F, then d(G/N) < d (otherwise we would
have d{n}(G) = d for every n ∈ N). So G/F has the property that every
proper quotient can be generated by d− 1 elements, but G/F cannot. The
groups with this property have been studied in [8]. By [8, Theorem 1.4 and
Theorem 2.7] either G/F is an elementary abelian p-group of rank d (and
consequently G is a finite p-group) or there exist a finite vector space V and a
nontrivial irreducible soluble subgroup H of Aut(V ) such that d(H) < d and

G/Frat(G) ∼= V r(d−2)+1 : H, where r is the dimension of V over EndH(V ).
Conversely, if G is a finite p-group it follows immediately from Burn-

side’s basis theorem that G is efficiently generated, and so ψ(G) = d(G)
by Corollary 2.20. Clearly a group G is efficiently generated if and only
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if G/Frat(G) is efficiently generated. So to conclude the proof it suf-
fices to prove that if H is a (d − 1)-generated soluble irreducible sub-
group of Aut(V ) and r is the dimension of V over F = EndH(V ), then

X = V r(d−2)+1 : H is efficiently generated. Notice that d(X) = d, so we
have to prove that d{x}(X) ≤ d − 1 for every x 6= 1. Let n = r(d − 2) + 1.
Fix a nontrivial element x = (v1, . . . , vn)h ∈ X and let a = dimF CV (h) and
b = n − dimF 〈[V, h], v1, . . . , vn〉 + dimF [V, h]. By [7, Lemma 5] we have
d{x}(X) ≤ d − 1 if and only if a + b − 1 < r(d − 1). If h 6= 1, then
a ≤ r − 1 and b ≤ n; if h = 1, then a ≤ r and b ≤ n − 1. In any case
a+ b− 1 ≤ r + n− 2 = r + r(d− 2) − 1 < r(d− 1). �

Apart from p-groups, there are many examples of soluble groups that are
efficiently generated. The smallest example of a soluble group which is not
efficiently generated is S4 (we have d{x}(S4) = 2 for every x in the Klein
subgroup): by the previous results we can conclude that ψ(S4) = 3.

Problem 2.22. Characterise the insoluble groups that are efficiently gen-
erated.

2.4. Calculating ≡m. Whilst we have not been able to determine ψ(G) for
an arbitrary group G, we have calculated it for many small almost simple
groups G with d(G) = 2. It is computationally expensive to repeatedly cal-
culate whether various sets of elements generates a group. In this subsection

we describe an efficient way to calculate ≡m- and ≡
(2)
m -classes in a group,

and present a theorem summarising the results of these calculations.
The equivalence relation ≡m can be thought of another way. Construct

the permutation action of G which is the disjoint union of the actions on
the cosets of maximal subgroups, one for each conjugacy class. Let Ω be the
domain of this action. For brevity, we call this the m-universal action of G.

Lemma 2.23. Let G be a finite group, and let x, y ∈ G and S ⊆ G.

(1) x ≡m y if and only if x and y have the same fixed point sets in the
m-universal action of G.

(2) G = 〈S〉 if and only if the intersection of the fixed point sets of
elements of S in the m-universal action of G is empty.

Proof. Notice that in the orbit corresponding to a non-normal maximal sub-
group M , the point stabilisers are the conjugates of M ; whereas, if M is
normal, then its elements fix every point in the corresponding orbit, while
the elements outside M fix none. Hence the fixed point set of an element x
describes precisely which maximal subgroups of G contain x, and (1) follows.
For (2), notice that G = 〈S〉 if and only if S is contained in no maximal
subgroup of G. �

Definition 2.24. A permutation group action has property G if it satisfies:
each set S of group elements generates the group if and only if the fixed-point
sets of elements of S have empty intersection.
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Lemma 2.25. The m-universal action is the smallest degree permutation
action of G with property G.

Proof. First notice that by Lemma 2.23(2), the m-universal action has prop-
erty G. Now suppose that we have an action of G with property G. We must
show that it contains the m-universal action. So let M be a maximal sub-
group of G. Choose generators g1, . . . , gr of M . Since these elements do
not generate G, property G implies that they have a common fixed point,
say ω. Thus M ≤ Gω, and maximality of M implies equality. So the coset
space of M is contained in the given action. Since this holds for all maximal
subgroups M , we are done. �

Our algorithm to test whether ψ(G) = 2 proceeds as follows, on input a
finite group G.

(1) Construct the maximal subgroups of G, and hence the m-universal
action of G.

(2) For each g ∈ G, compute the fixed point set Fix(g) of g in the
m-universal action, and hence construct a set of equivalence class
representatives for the ≡m-classes of G.

(3) For each pair x, y of distinct ≡m-class representatives, check that
there exists a z ∈ G such that either Fix(x)∩Fix(z) = ∅ and Fix(y)∩
Fix(z) is non-empty, or vice versa.

If the test in Step 3 succeeds for all distinct x and y, then the set of distinct

≡m-class representatives is also a set of distinct ≡
(2)
m -class representatives.

That is, ψ(G) = 2.
We have implemented the algorithm in MAGMA [2], and used it to prove

the following:

Theorem 2.26. Let G be an almost simple group with socle of order less
than 10000 such that all proper quotients of G are cyclic. Then ψ(G) = 2.

The socle of such a group G is one of: An for 5 ≤ n ≤ 7, PSL2(q) for
q ≤ 27 a prime power, PSL3(3), PSU3(3) or the sporadic group M11.

The only almost simple groups with socle of order less than 10000 with a
proper non-cyclic quotient are A6.2

2 and PSL2(25).22. Using similar ideas
to the above we were able to show that ψ(A6.2

2) = 3.
Notice that in all of these instances, the lower bounds from Lemma 2.6

are attained.

3. c-equivalence

In this section we define another equivalence relation, which can be used
to give an easy-to-calculate upper bound on the number of ≡m-classes, and
investigate when this new relation coincides with ≡m.

Definition 3.1. Let G be a finite group, and let x, y ∈ G. We define x ≡c y
if 〈x〉 = 〈y〉. We use c for cyclic.
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The following is clear.

Lemma 3.2. Let G be a finite group. For all x, y ∈ G, if x ≡c y then
x ≡m y. Hence if n is the order of an element of G, then at least one
≡m-class of G contains at least φ(n) elements.

The converse implication of the first statement holds for many groups
(including Sn and An for n ∈ {5, 6}, and PSL2(q) for q ∈ {7, 11, 13}), but
not for all groups.

Proposition 3.3. Let G be a finite group. If the relations ≡m and ≡c

coincide, then

(1) Frat(G) = 1;
(2) if G is soluble then every minimal normal subgroup of G is cyclic;
(3) if G is soluble then G is metabelian.

Proof. (1) All of the elements of Frat(G) are ≡m-equivalent.
(2) Let G be soluble and let N be a minimal normal subgroup of G. Every
maximal subgroup of G either contains or complements N . This implies
that all the elements of N \ {1} are ≡m equivalent, and consequently N is
cyclic (of prime order).
(3) Let G be soluble and let F = Fit(G). Since Frat(G) = 1, it follows from
[24, 5.2.15] that Fit(G) = Soc(G), and hence F = CG(F ) = ∩N∈NCG(N),
where N is the set of the minimal normal subgroups of G. But then

G

F
=

G⋂
N CG(N)

≤
∏

N

Aut(N)

is abelian. �

The conditions listed in the previous proposition are not sufficient to
ensure that the relations ≡m and ≡c coincide on soluble groups G. In order
to obtain a more precise result, let us fix some notation. Assume that G is
soluble and satisfies the conclusions of Proposition 3.3. We set F = Fit(G)
and Z = Z(G). Then

F = V r1
1 × · · · × V rt

t × Z,

where V r1
1 , . . . , V rt

t are the non-central homogeneous components of F as a
G-module. In particular, Vi is cyclic of prime order for every i. Moreover
G = F : H, where H is a subdirect product of

∏
iHi, with Hi ≤ Aut(Vi).

Finally, for h = (h1, . . . , ht) ∈ H, define Ω(h) = {i ∈ {1, . . . , t} | hi = 1}.

Theorem 3.4. Let G = F : H as above be a soluble group satisfying the
conclusions of Proposition 3.3. The relations ≡m and ≡c coincide on G if
and only if the following property is satisfied, for all (z1, h1), (z2, h2) ∈ Z×H

(∗) if 〈(z1, h1)〉FratH = 〈(z2, h2)〉FratH and Ω(h1) = Ω(h2), then
〈(z1, h1)〉 = 〈(z2, h2)〉.
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Proof. Let x1 = (z1, h1), x2 = (z2, h2) ∈ Z × H, with h1 = (α1, . . . , αt)
and h2 = (β1, . . . , βt). Assume that 〈x1〉FratH = 〈x2〉FratH and Ω(h1) =
Ω(h2). We claim that a maximal subgroup M of G contains x1 if and only
if it contains x2, and hence that x1 ≡m x2.

Let W = V r1
1 ×· · ·×V rt

t and let L = Frat(Z×H) = Frat(H). If W ≤M,
then W : L ≤ M, so 〈xi〉 ⊆ M if and only if 〈xi〉L ⊆ M . Since 〈x1〉L =
〈x2〉L, we deduce that x1 ∈ M if and only if x2 ∈ M. If W 6≤ M , then
there exists i ∈ {1, . . . , t}, a maximal H-invariant subgroup Ui of V ri

i and
wi ∈ V ri

i such that

M = (V r1
1 × · · · × V

ri−1

i−1 × Ui × V
ri+1

i+1 × · · · × V rt
t × Z) : Hwi .

Notice in particular that if (γ1, . . . , γr) ∈ H, then (γ1, . . . , γr) ∈ M if and
only if γi ∈ UiH

wi

i . In this case we can write γi = ui[wi, h
−1
i ]hi = hi, so

that [wi, γ
−1
i ] ∈ Ui. Since V ri

i /Ui
∼=Hi

Vi, we have that if [wi, γ
−1
i ] ∈ Ui then

either γi = 1 or wi ∈ Ui. If wi ∈ Ui then x1, x2 ∈ M. So assume wi 6∈ Ui.
Since Ω(h1) = Ω(h2), we have that αi = 1 if and only only if βi = 1, hence
x1 ∈M if and only if x2 ∈M. We have proved that if ≡m and ≡c coincide,
then (∗) holds.

For the converse, let x1 = w1z1h1, x2 = w2z2h2 be two elements of G with
h1, h2 ∈ H, z1, z2 ∈ Z and w1, w2 ∈ W. Assume that x1 ≡m x2. Since w1h1
and h1 are conjugate in G, it is not restrictive to assume that x1 = z1h1. We
claim that this implies that w2 = 1. Indeed, assume that w2 = (v1, . . . , vt) 6=
1. Then there exists an i such that vi 6= 1, and consequently there exists
a maximal H-invariant subgroup Ui of V ri

i with vi /∈ Ui. This leads to a
contradiction, since the maximal subgroup

M = (V r1
1 × · · · × V

ri−1

i−1 × Ui × V
ri+1

i+1 × · · · × V rt
t × Z) : H

contains x1 but not x2.
Having w1 = w2 = 1, the argument used in the first part of this proof

shows that the condition Ω(h1) = Ω(h2) is equivalent to saying that a max-
imal subgroup of G not containing W contains x1 if and only if it con-
tains x2. On the other hand the maximal subgroups of G containing W
are in bijective correspondence with those of G/FratH, hence the con-
dition 〈x1〉FratH = 〈x2〉FratH is equivalent to saying that a maximal
subgroup of G containing W contains x1 if and only if it contains x2.
We have therefore proved that x1 ≡m x2 implies that Ω(h1) = Ω(h2) and
〈x1〉FratH = 〈x2〉FratH, and therefore if (∗) holds, then x1 ≡c x2. �

Here are two examples of groups which satisfy the conclusions of Propo-
sition 3.3, but do not satisfy condition (∗). Hence ≡c-equivalence is finer
than ≡m-equivalence.

(1) Let G be the sharply 2-transitive group of degree 17, the semidirect
product of C17 with a Singer cycle C16. The maximal subgroups
are C17 : C8 and the conjugates of C16. In particular, we see that
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elements of orders 2, 4 and 8 in a fixed complement C16 are all ≡m-
equivalent. However, ≡c-equivalent elements have the same order.

(2) A second example is (〈x〉 : 〈y〉) × 〈z〉 with |x| = 19, |y| = 9, |z| = 3
(indeed (y3, z) ≡m (y6, z)).

Proposition 3.5. Assume that a finite group G contains a minimal normal
subgroup N = S1 × · · · × St, with Si ∼= S a finite nonabelian simple group.
If either t ≥ 3, or t = 2 and S is not isomorphic to PΩ+

8 (q) with q = 2 or
3, then the relations ≡m and ≡c do not coincide on G.

Proof. It is standard (see, for example, [1, Remark 1.1.040]) that if a maxi-
mal subgroup M of G does not contain N , then one of the following occurs:

(1) M ∩N = 1;
(2) M is of product type: in this case there exist α2, . . . , αt ∈ Aut(S),

independent of the choice of M , s2, . . . , st ∈ S and a proper subgroup
K of S such that M ∩N ≤ K ×Ks2α2 × · · · ×Kstαt ;

(3) M is of diagonal type: in this case there exists a partition Φ :=
{B1, . . . , Bu} of {1, . . . , t} into blocks of the same size such that
M∩N ≤

∏
B∈ΦDB whereDB is a full diagonal subgroup of

∏
j∈B Sj.

By [15, Theorem 5.1] or [11, Theorem 7.1], there exist a, b ∈ S with the
property that 〈aγ , bδ〉 = S for each choice of γ, δ ∈ S. Moreover if S 6=
PΩ+

8 (q), q = 2 or 3, then a and b are not conjugate in Aut(S).
Let x, y ∈ S and consider

gx,y =
(ax, byα2 , a, . . . , a, 1) if t > 2
(ax, byα2) otherwise.

There is no maximal subgroup of product type containing gx,y. Otherwise

we would have ax ∈ K, byα2 ∈ Ks2α2 , hence S = 〈ax, bys
−1
2 〉 ≤ K, contradict-

ing the fact that K is a proper subgroup of S. Moreover, since either t ≥ 3
or a and b are not conjugate in Aut(S), no maximal subgroup of diagonal
type contains gx,y. Therefore gx,y ∈M if and only if N ≤M , for all maximal
subgroups M . Hence, all the elements of the subset {gx,y | x, y ∈ S} are
≡m equivalent, and therefore the relations ≡m and ≡c do not coincide on
G. �

Corollary 3.6. Let G be a finite group. If the relations ≡m and ≡c coincide
on G, then G/Soc(G) is soluble.

Proof. Since the relations ≡m and ≡c coincide, Frat(G) = 1 by Proposi-
tion 3.3(1), and consequently Soc(G) = F ∗(G), where F ∗(G) is the general-
ized Fitting subgroup of G.

Let F ∗(G) = Z(G) × N1 × · · · × Nt, where N1, . . . , Nt are non-central
minimal normal subgroups. Since Z(G) = CG(F ∗) =

⋂
i CG(Ni), we have

G/Z(G) ≤
∏

iG/CG(Ni). To conclude, notice that if Ni is abelian, then
Ni is cyclic and G/CG(Ni) is abelian, while if Ni is nonabelian, then by

Proposition 3.5 the group Ni
∼= Sti

i with ti ≤ 2 and G/(NiCG(Ni)) ≤
OutS ≀ Sym(ti), which is soluble. �
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Problem 3.7. Find an equivalence relation that is easier to calculate than
≡m, but coarser than ≡c. Determine for which insoluble groups G the
relations ≡m and ≡c coincide.

3.1. Asymptotics and enumeration. We now briefly suggest some direc-
tions for further study of the asymptotics of our new relations.

Proposition 3.8. Let G be Sn or An. Then for almost all elements x, y ∈ G
(all but a proportion tending to 0 as n→ ∞), the following are equivalent:

(1) x ≡m y;

(2) x ≡
(2)
m y;

(3) the cycles of x and y induce the same partition of {1, . . . , n}.

Proof. This depends on a theorem of  Luczak and Pyber [21], which states
that for almost all x ∈ Sn, the only transitive subgroups of Sn containing x
are Sn and (possibly) An. We restrict our attention to these elements x.

Consider first the case where G = Sn. Then, apart from An, the maximal
subgroups containing x are of the form Sk × Sn−k, where the two orbits are
unions of cycles of x. Moreover, the cycle lengths determine whether or not
x ∈ An. So (1) and (3) are equivalent.

In addition, for all z ∈ G, we see that 〈x, z〉 = G whenever 〈x, z〉 is
transitive, and z /∈ An if it happens that x ∈ An. Membership of this set is
also determined by the cycles of x: the transitivity condition requires that
the hypergraph whose edges are the cycles of x and z is connected. So (2)
is also equivalent to (3).

If G = An, then only simple modifications are required; the argument is
simpler because no parity conditions are necessary. �

Shalev in [26] proved a similar result for GLn(q) to  Luczak and Pyber’s
result for Sn: a random element of GLn(q) lies in no proper irreducible
subgroup not containing SLn(q). This could be used to prove a similar
statement for groups lying between PSLn(q) and PGLn(q).

Question 3.9. Are there only finitely many finite almost simple groups on
which the relations ≡m and ≡c coincide?

Another very natural question is: how many ≡c- and ≡m-classes are there
in the symmetric group Sn? The numbers of ≡c-classes in the symmetric
groups Sn form sequence A051625 in the On-line Encyclopedia of Integer
Sequences [22]. The sequence of numbers of ≡m classes, which begins

1, 2, 5, 15, 67, 362, 1479, 12210, . . .

has recently been added to the OEIS, where it appears as Sequence A270534.
If we cannot find a formula for these sequences, can we say anything

about their asymptotics? We saw above that, for almost all elements of Sn,
the ≡m-equivalence class is determined by the cycle partition, which might
suggest that the sequence grows like the Bell numbers (sequence A000110 in
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the OEIS). However, the elements not covered by this theorem can destroy
this estimate.

For example, let p be a prime such that the only insoluble transitive
groups of degree p are the symmetric and alternating groups. Then the
above analysis applies to all elements whose cycle type is not a single p-
cycle or a fixed point and l k-cycles (where 1 + kl = p). It is easy to show
that two elements x and y with one of these excluded cycle types satisfy
x ≡m y if and only if they satisfy x ≡c y. So there are (p − 2)! equivalence
classes of p-cycles, for example; this number is much greater than the pth
Bell number. (In this special case, we can write down a formula for the
number of ≡m-equivalence classes.)

4. The generating graph of a group

In the remainder of the paper, we use the relations that we have defined
to study an object of general interest, the generating graph of a finite group.

Definition 4.1. The generating graph of a finite group G is the graph with
vertex set G, in which two vertices x and y are joined if and only if 〈x, y〉 = G.

Of course this graph is null unless G is 2-generated. We adopt the con-
vention that, if the group is cyclic, then any generator of the group carries
a loop in the generating graph.

A useful concept when studying the generating graph is the spread of a
group.

Definition 4.2. A group G has spread k if k is the largest number such that
for any set S of k nonidentity elements, there exists x such that 〈x, s〉 = G
for all s ∈ S.

Thus the spread is nonzero if and only if no vertex of the generating
graph except the identity is isolated; and spread at least 2 implies diameter
at most 2.

Among the graph-theoretic invariants which have been studied for this
graph are the following.

(1) The spread.
(2) The clique number : the largest size of a set of group elements, any

two of which generate the group.
(3) The chromatic number : the smallest number of parts in a partition

of the group into subsets containing no 2-element generating set.
(4) The total domination number : the smallest size of a set S with the

property that, for any element x, there exists s ∈ S such that x and
s generate the group.

(5) The isomorphism type: if Γ(G) ∼= Γ(H) for two groups G and H,
then when is G ∼= H?

Definition 4.3. In any graph X, we can define an equivalence relation ≡Γ

by the rule x ≡Γ y if x and y have the same set of neighbours in the graph.
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(Think of Γ as meaning “graph”, or “generating” if we are thinking of the
generating graph.) Then we define a reduced graph X whose vertices are the
≡Γ-classes in X, two classes joined in X if their vertices are joined in X.

Alternatively, we can take the vertex set to be any set of equivalence class
representatives, and the graph to be the induced subgraph on this set. (The
term “reduced graph” was used by Hall [13] in his work on copolar spaces,
and consequentially we term the process of producing it “reduction”; but we
warn readers that the term “graph reduction” has a very different meaning
in computer science.)

The reduction process preserves the graph parameters noted above:

Proposition 4.4. The clique number, chromatic number, total domination
number, and spread of the generating Γ(G) are equal to the corresponding
parameters of the reduced generating graph Γ(G). Furthermore, if Γ(G) ∼=
Γ(H) then Γ(G) ∼= Γ(H).

Proof. Clear. �

The following is immediate from the definition of ≡
(r)
m .

Proposition 4.5. Let G be a finite group. Then the relations ≡Γ on Γ(G)

and ≡
(2)
m on G coincide; hence ≡m is a refinement of ≡Γ, and is equal to

≡Γ if and only if ψ(G) ≤ 2.

Hence, in what follows, we shall write ≡Γ to denote ≡
(2)
m .

Recall Definition 2.15 of efficient generation.

Theorem 4.6. Let G be a finite group with d(G) = 2.

(1) G has nonzero spread if and only if G is efficiently generated and
has trivial Frattini subgroup.

(2) If G is soluble and has nonzero spread, then ψ(G) = 2.

Proof. (1) Since the spread of G is nonzero, every nonidentity element of G
lies in a 2-element generating set of G, so dx(G) = 1 unless x = 1. Hence G
is efficiently generated and Frat(G) = 1. The converse is clear.

(2) By Part (1), the assumption that G has nonzero spread implies that
G is efficiently generated. Hence from Corollary 2.20, we see that ψ(G) =
d(G) = 2. �

Notice that it is immediate from Theorem 4.6 that if G is a 2-generator
group of spread 0 and trivial Frattini subgroup, then ψ(G) ≥ 3. For example,
double transpositions are isolated vertices in Γ(S4), and so are equivalent to
the identity under ≡Γ, though clearly not under ≡m. In fact this group has
fourteen ≡Γ-classes but fifteen ≡m-classes, and as previously noted ψ(S4) =
3.

We shall therefore proceed for much of the following section by restricting
to groups with nonzero spread, despite that fact that we don’t know whether
Theorem 4.6(2) is also true without the solubility assumption.
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Conjecture 4.7. LetG be a finite group of nonzero spread. Then ψ(G) ≤ 2.

By Lemma 2.17, if G is a group with nonzero spread, then ψ(G) = 2
whenever for all maximal subgroups M , and for all x /∈ M , there exists
z ∈ M such that 〈x, z〉 = G. This approach can be applied to S5, PSL2(7),
and PSL2(11). However, it fails in the case of A5 with respect to the smallest
maximal subgroups (isomorphic to S3). It also fails for PSL2(q) for q =
8, 9, 13, even though ψ(G) = 2 for all of these groups.

5. Automorphism groups

A striking thing about generating graphs is that they have huge automor-
phism groups, and these groups are poorly understood. For example, the
automorphism group of the generating graph of the alternating group A5

has order 231375.
The reason is simple. Any nontrivial element of A5 has order 2, 3 or 5.

An element of order 3 or 5 can be replaced by a nonidentity power of itself
in any generating set. Thus the sets of nonidentity powers can be permuted
arbitrarily, and we find a group of order 210(4!)6 = 22836 of automorphisms
fixing these sets. The quotient has order 120 and is isomorphic to Aut(A5) =
S5.

Hence, for G = A5, the automorphism group of the generating graph Γ(G)
has a normal subgroup which is the direct product of symmetric groups on
the ≡Γ-classes, and the quotient is the automorphism group of the reduced
graph Γ(G). In general, a similar statement holds, but to state it we require
one further definition.

Definition 5.1. We define a weighting of the reduced generating graph, by
assigning to each vertex a weight which is the cardinality of the correspond-
ing ≡Γ-class. Now let Γw(G) denote the weighted graph, and let Aut(Γw(G))
be the group of weight-preserving automorphisms of Γw(G).

Note that the restriction to Aut(Γw(G)) is necessary, as in general an
automorphism of Γ(G) can fail to lift to an automorphism of Γ(G). For an
example of this, take G = PSL2(16). Then Aut(Γ(G)) ∼= 2×Aut(PSL2(16)).
However, the central involution interchanges elements of order 3 with ele-
ments of order 5. The ≡m-class of the elements of order 3 has size 2, and
contains only the elements and their inverses. However, the ≡m-class of ele-
ments of order 5 has size 4 (it clearly contains all nontrivial elements of the
cyclic subgroup, but in fact contains no more than this).

The following theorem shows that to describe the automorphism group
of Γ(G), it suffices to know the multiset of sizes of the ≡Γ-classes of G, and
the automorphism group of Γw(G).

Theorem 5.2. Let the ≡Γ-classes of a finite group G be of sizes k1, . . . , kn.
Then

A := Aut(Γ(G)) = (Sk1 × · · · × Skn) : Aut(Γw(G)).
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Proof. Let N :=
∏n

i=i Ski . First we show that N ≤ A, then that A is an

extension of N by a subgroup of Aut(Γw(G)), and finally that the whole of
Aut(Γw(G)) is induced by A, and the extension splits.

For the first claim, let x, y ∈ G such that x ≡Γ y. Then for all z ∈ G,
there is an edge from x to z if and only if there is an edge from y to z. Hence
the map interchanging x and y and fixing all other vertices in Γ(G) is an
automorphism of Γ(G), so N ≤ A.

For the second, we show that A acts on the ≡Γ-classes of Γ(G). For z ∈ G,
write N(z) for the set of neighbours of z in Γ(G). Suppose that x ≡Γ y, as
before. Then for all a ∈ A we see that

N(xa) = N(x)a = N(y)a = N(ya),

and so xa ≡Γ y
a, as required. Hence A is an extension of N by a subgroup

of Aut(Γw(G)).
For the final claim, fix an ordering of the elements in each ≡Γ class of G,

and identify the vertices of Γ(G) with the ordered pairs {(i, j) : 1 ≤ j ≤
n, 1 ≤ i ≤ kj}. Let σ ∈ Aut(Γw(G)), and let j1, j2 be adjacent vertices

in Γw(G), so that jσ1 and jσ2 are also adjacent. Then kj1 = kjσ1 , and for
1 ≤ i ≤ kj1 vertex (i, j1) is adjacent to vertex (i, j2). Hence we can define τ
to be the map sending (i, j) to (i, jσ), and then τ ∈ Aut(Γ(G)) induces σ.
The result follows. �

Note that Aut(G) preserves the generating graph Γ(G), and hence auto-
morphisms of G permute the ≡Γ-classes. We define Aut∗(G) be the group
induced by Aut(G) on Γ(G). The following is clear.

Proposition 5.3. Let G be a group with d(G) ≤ 2. Then

Aut∗(G) ≤ Aut(Γw(G)) ≤ Aut(Γ(G)).

In the remainder of the paper we shall analyse these three automorphism
groups, concentrating on the groups G with nonzero spread. Such a group
G has no non-cyclic proper quotients. Moreover (see for example [20]), it
satisfies one of the following:

(1) G is cyclic;
(2) G ∼= Cp × Cp for some prime p;
(3) G is the semi-direct product of its unique minimal normal subgroup

N (which is elementary abelian) by an irreducible subgroup C of a
Singer cycle acting on N ;

(4) G has a normal subgroup N ∼= T1 × · · · × Tr, where T1, . . . , Tr are
isomorphic nonabelian simple groups; G/N has order rm for some m
dividing |Out(T1)|, and induces a cyclic permutation of the factors.

We shall show that Aut∗(G) is trivial for groups of type (1), and is equal
to Aut(G) for groups of type (3) and (4). Furthermore, we shall show
that in type (1) there is a spectacularly large gap between Aut(Γ(G)) and
Aut(Γw(G)), whilst in type (2) and (3) we find that Aut∗(G) 6= Aut(Γw(G)).

First we consider the groups of type (1).
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Proposition 5.4. Let G be the cyclic group of order n = pa11 p
a2
2 · · · parr .

Then Γ(G) has 2r vertices. The group Aut∗(G) = Aut(Γw(G)) is trivial,
while Aut(Γ(G)) ∼= Sr. Hence Aut(Γ(G)) =

∏
I⊆{1,...,r} SnI

, where

nI =
n

p1p2 · · · pr

∏

i∈I

(pi − 1).

Proof. First, vertices in the same coset of the Frattini subgroup Φ(G) get
identified when we reduce the generating graph, and the weights are mul-
tiplied by |Φ(G)| = n

p1···pr
. So we can assume that the Frattini subgroup is

trivial, that is, n = p1p2 · · · pr.
We know that in this case the ≡Γ- and ≡m-relations coincide, and it is

more convenient to use the latter. The group has r maximal subgroups
(one of index pi for each i) and the lattice of their intersections is the lat-
tice of subsets of {1, . . . , r}. So, for any subset I of {1, . . . , r}, there is a
unique vertex vI of the reduced graph corresponding to the intersection of
the subgroups of index pi for i ∈ I; and vI is joined to vJ if and only if
I ∩ J = ∅.

We claim that the automorphism group of Γ(G) is the symmetric group
Sr. It is clear that Sr acts as automorphisms of the graph; it suffices to
prove that there are no more.

There is a unique vertex v∅ joined to all others. Apart from this ver-
tex, there are r vertices whose neighbour sets are maximal with respect
to inclusion, namely v{i} for i = 1, . . . , r, which must be permuted by the
automorphism group. It suffices to show that only the identity fixes all
these vertices. But any further vertex is uniquely specified by its neighbours
within this set: vI is joined precisely to v{j} for j /∈ I.

What is the subgroup of Sr fixing the weights? Recall that the weight
of a vertex vI is the number of elements of G which are equivalent to this
vertex of the reduced graph, that is, which lie in the maximal subgroups of
index pi for i ∈ I and no others. This is the number of generators of the
intersection of these maximal subgroups, which is

∏

j /∈I

(pj − 1).

Now it can happen that two of these weights are equal, even for elements in
the same Sr-orbit. (For example, let n = 2.3.7.13 = 546. The subgroups of
orders 2.13 and 3.7 each have 12 generators.)

However, only the identity element of Sr preserves all the weights. For
the minimal nonidentity elements Cpi have distinct weights pi − 1, and so
all are fixed by the weight-preserving subgroup. �

Proposition 5.5. Let G ∼= C2
p . Then Γ(G) has p+2 vertices, with Aut(G) ∼=

GL2(p) and Aut∗(G) ∼= PGL2(p). On the other hand, Aut(Γ(G)) and
Aut(Γw(G)) are both isomorphic to Sp+1, fixing the isolated vertex corre-
sponding to the identity. Furthermore, the group Aut(Γ(G)) = Sp−1 ≀ Sp+1.
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Proof. Thinking of G as a vector space, two nonidentity elements x, y ∈ G
fail to generate G if and only if they lie in the same 1-dimensional subspace.
Furthermore, they lie in the same 1-dimensional subspace if and only if
x ≡Γ y. Thus Γ(G) is the disjoint union of the complete graph Kp+1 and
a vertex representing the identity, and all weights in Kp+1 are equal to
p− 1. �

Before considering the groups of type (3), we require a standard graph-
theoretic definition.

Definition 5.6. The categorical product X × Y of two graphs X and Y is
the graph whose vertex set is the cartesian product of the vertex sets, with
(x1, y1) joined to (x2, y2) if and only if x1 is joined to x2 in X and y1 is
joined to y2 in Y .

Proposition 5.7. Let G ∼= Ck
p : Cn be nonabelian with all proper quotients

cyclic, and let n = pa11 p
a2
2 · · · parr . The graph Γ(G) has (2r −1)pk + 2 vertices

if n is squarefree, and 2rpk + 2 otherwise. The groups Aut(G) and Aut∗(G)
are both isomorphic to Ck

p : ΓL1(pk). Furthermore, Aut(Γw(G)) ∼= Spk ,

whilst Aut(Γ(G)) ∼= Spk × Sr.

Proof. The elementary abelian subgroupCk
p is characteristic inG, so Aut(G) ≤

AGLk(p). The cyclic subgroup must embed as an irreducible subgroup of a
Singer cycle, and so its centraliser in GLk(p) is the full Singer cycle Cpk−1,

and its normaliser is the normaliser of the Singer cycle, which is ΓL1(pk).
We claim that Γ(G) is obtained from the categorical product of Γ(Cn)

and the complete graph Kpk by the following procedure:

(1) (a) If n is squarefree, identify all the vertices whose first component
corresponds to the identity in Cn.

(b) Otherwise, add a vertex adjacent to all vertices whose first com-
ponent corresponds to a generator in Cn.

The vertex in either case corresponds to the nonidentity elements
of the minimal normal subgroup of G.

(2) Then add an isolated vertex corresponding to the identity.

Note that generators of Cn carry loops in Γ(Cn); these give rise to edges in
the categorical product between any two elements whose first components
are equal and correspond to generators of Cn.

The weights of the vertices are the weights of their first components in
Γ(Cn), except for the identified or added vertex in Step (1), whose weight is
pk in case (1)(a) and pk(|Φ(Cn)| − 1) in case (1)(b), and the identity which
has weight 1.

Now we demonstrate that this structure is correct.
First note that in Γ(G) all the nonidentity elements of the normal sub-

group Ck
p are adjacent to all (and only) the generators of the complements

Cn; so they all have the same neighbour sets and are ≡Γ-equivalent. Ele-
ments outside the normal subgroup are joined if and only if they lie in a
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different complements and their images in the Cn quotient generate Cn. So
two such elements are ≡Γ-equivalent if they lie in the same complement and
are Γ-equivalent in Cn. Thus the graph has the structure claimed.

We now use the results of Proposition 5.4, from which the number of
vertices of Γ(G) follows immediately. The automorphism group of Γ(Cn) is
Sr, so Aut(Γ(G)) is Spk × Sr.

Conversely, the group Aut(Γw(Cn)) is trivial, so the weight-preserving
automorphisms of Γ(G) are just the permutations of the pk vertices of the
complete graph.

Finally, we prove the claims about Aut∗(G). If Aut∗(G) 6= Aut(G), then
the unique minimal normal subgroup Ck

p of Aut(G) must act trivially on

Γw(G). However, this is not possible, for the following reason: let g be any
element of G that generates a complement to Ck

p in g, and let x be any

nontrivial element of Ck
p . Then 〈g〉 is a maximal subgroup of G, so gx 6∈ 〈g〉

and 〈g, gx〉 = G. Hence g and gx are incident in Γ(G), and so g 6≡Γ gx.
Hence x acts nontrivially on Γ(G). �

For groups G as in the previous result, the kernel of the homomorphism
from Aut(Γ(G)) to Aut(Γw(G)) is the direct product of symmetric groups
whose degrees are implicit in the proof: pk − 1 once, and the sizes of the
nontrivial ≡Γ-classes in Cn (which can be read off from Proposition 4.7)
each pk times. The action of Spk is to permute the factors apart from the
Spk−1.

Example 5.8. Consider the case G = C5 : C4. The generating graph for
C4 = 〈x〉 is the complete graph K4 with the edge {1, x2} deleted and loops
at x and x3. So the reduced graph identifies 1 and x2, and also x and x3, and
is an edge with a loop at one end. Thus, the reduced generating graph for
C5 : C4 has 12 vertices, say a1, . . . , a5, b1, . . . , b5, c, d, with all edges {ai, aj},
all edges {ai, bj}, and no edges {bi, bj} for i 6= j, all edges {ai, c}, and d
isolated. (Here ai corresponds to an inverse pair of elements of order 4,
bi to an element of order 2, c to the four elements of order 5, and d to
the identity.) Here the kernel of the homomorphism from Aut(Γ(G)) to
Aut(Γw(G)) is S4 × (S2)5.

It remains to perform the analysis for the groups of type (4).

Theorem 5.9. Let T be a finite simple group and let N = T r ≤ G ≤
Aut(T ) ≀ 〈σ〉, where σ acts as an r-cycle. Assume that there exists g =
(y1, . . . , yr)σ, with y1, . . . , yr ∈ Aut(T ), such that G = N〈g〉. By substituting
g by a conjugate in Aut(T ) ≀ 〈σ〉, if necessary, we may assume that g =
(y, 1, . . . , 1)σ. If there exist s, t ∈ T such that T ≤ 〈ys, (ys)t〉, then Aut(G) =
Aut∗(G).

Proof. Since N is the unique minimal normal subgroup of Aut(G), if the
conclusion is false, then N must act trivially on Γ(G). But this is impossible,
for the following reason.
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Let ȳ = ys and ḡ = (ȳ, 1, . . . , 1)σ ∈ G. Notice that G contains ḡr =
(ȳ, . . . , ȳ), z = (t, 1, . . . , 1) and (ḡr)z = (ȳt, ȳ, . . . , ȳ). Consider the sub-
group X of G generated by ḡ and (gr)z. Since X contains (ȳ, . . . , ȳ) and
(ȳt, ȳ, . . . , ȳ), we easily conclude that X = G = 〈ḡ, (gr)z〉. Now if N acts
trivially, then conjugacy classes under N are contained in ≡Γ-equivalence
classes. Hence, in particular, ḡr ≡Γ (ḡr)z , so G = 〈ḡ, (ḡr)z〉 = 〈ḡ, ḡr〉 = 〈ḡ〉,
a contradiction. �

Theorem 5.10. Let G be a group of nonzero spread. Then Aut∗(G) =
Aut(G) if and only if G is nonabelian.

Proof. The abelian groups of nonzero spread were considered in Proposi-
tions 5.4 and 5.5, where we showed that Aut∗(G) 6= Aut(G).

The soluble nonabelian groups of nonzero spread were considered in Propo-
sition 5.7, where we showed that Aut∗(G) = Aut(G).

The only remaining case is the insoluble groups of nonzero spread (that
is type (4)), so let G be such a group, and let N ∼= T r = Soc(G). We can
identify G with a subgroup of Aut(T )≀〈σ〉, where σ is the r-cycle (1, 2, . . . , r).
Let t be an involution in T and let n = (t, 1, . . . , 1). Since G is of nonzero
spread, there exists g ∈ G with G = 〈n, g〉. Up to conjugation by an element
of (AutT )r, we may assume g = (y, 1, . . . , 1)σ for some y ∈ Aut(T ). But
now G = 〈n, g〉 implies that H = 〈y, t〉 is almost simple with socle T . Since
|t| = 2, the subgroup 〈y, yt〉 is normal in H. From this we see that T ≤
〈y, yt〉, and so by Theorem 5.9, we conclude that Aut(G) = Aut∗(G). �

We finish this discussion with an open problem:

Question 5.11. LetG be an insoluble group of nonzero spread. Is Aut(G) =
Aut(Γw(G))?

We know of no examples where this is not the case.

5.1. Calculations with Γw(G). In this subsection we describe some exper-
iments that we have carried out on insoluble groups with nonzero spread.

Recall the definition of the m-universal action from Subsection 2.4, and
that we showed in Theorem 2.26 that if G is almost simple, with socle of
order less than 10000 and all proper quotients cyclic then ψ(G) = 2. It is
immediate from Lemma 2.23(2) that two group elements x, y are incident in
Γ(G) if and only if the fixed-point sets of x and y in the m-universal action
are disjoint.

For each such almost simple group G, we constructed Γ(G) and hence
Aut(Γ(G)). For all such groups except for PSL2(16) and PSL2(25) we found
that Aut(Γ(G)) ∼= Aut(G). In these remaining two cases, Aut(Γ(G)) ∼=
C2 × Aut(G), but the elements in the centre of Aut(Γ(G)) do not preserve
the graph weightings. From this we can conclude:

Theorem 5.12. Let G be an almost simple group with socle of order less
than 10000 such that all proper quotients of G are cyclic. Then Aut(Γw(G)) =
Aut(G).



22 PETER J. CAMERON, ANDREA LUCCHINI, AND COLVA M. RONEY-DOUGAL

In addition, we carried out the same calculation with the subgroups of
S5 ≀ S2 of nonzero spread (there are two of them), and for both such groups
G we found that ψ(G) = 2 and there are no additional automorphisms of
Γw(G). That is, both such groups satisfied Aut(Γw(G)) = Aut(G).
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