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Bounded-confidence models in social dynamics describe multi-agent systems, where each
individual interacts only locally with others. Several models are written as systems of
ordinary differential equations with discontinuous right-hand side: this is a direct con-
sequence of restricting interactions to a bounded region with non-vanishing strength at
the boundary. Various works in the literature analyzed properties of solutions, such as
barycenter invariance and clustering. On the other side, the problem of giving a precise
definition of solution, from an analytical point of view, was often overlooked. However, a
rich literature proposing different concepts of solution to discontinuous differential equa-
tions is available. Using several concepts of solution, we show how existence is granted
under general assumptions, while uniqueness may fail even in dimension one, but holds
for almost every initial conditions. Consequently, various properties of solutions depend
on the used definition and initial conditions.
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1. Introduction

In the last decades, researchers from many different fields explored the behavior of
large systems of active particles or agents. The latter, also called self-propelled, in-
telligent or greedy, refers to entities with capability of decision making and, usually,
of altering the energy or other otherwise conserved quantities of the system. Ex-
amples include dynamics of opinions in social networks, animal groups, networked
robots, pedestrian dynamics and language evolution. The dynamics is written as
an Ordinary Differential Equation (ODE in the following) in large dimension and
various mean-field, kinetic and hydrodynamic limit descriptions were studied in the
literature, see 2,6,12,13,17,18,1,27 and references therein.
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One of the main phenomena is self-organization of the whole system, stem-
ming from simple interaction rules at particle level. Such interaction rules are often
motivated by relationships among agents and thus referred to as social dynamics
4,29,30. The most common self-organized configurations are: consensus 26, i.e. all
agents reaching a common state; alignment, i.e. agents reach consensus on a sub-
set of the state variables 11; clustering, i.e. agents grouping in a small number of
well-separated states 22,25.

Our attention is focused on bounded-confidence models, where each agent inter-
act only with agents located within a bounded surrounding zone 10,20,24. One of the
most well-known of such model is the Hegselmann-Krause with agents interacting is
placed within a given distance, see 8,21. A general model can be written as follows:

ẋi =

N∑
j=1

aij(‖xi−xj‖)(xj−xi) with aij(r) =

{
φij(r) if r ∈ [0, 1)

0 if r ∈ [1,+∞)
, (1.1)

where xi ∈ Rn is the state of agent i (e.g. position, opinion, speed), N the number
of agents. Functions φij : [0, 1]→ R+ represents the strength of interaction between
agent i and j, that are supposed to be symmetric (i.e. φij = φji) from now on. The
original model corresponds to φij ≡ 1 and was written in discrete time. However,
many extensions were considered in continuous time. As a consequence, we have
the following crucial observation: the right hand side of (1.1) is a discontinuous
function. For this reason, one needs to carefully select a concept of solution to
such discontinuous ODE. In our opinion, such aspect has been often overlooked
in the extensive literature about bounded-confidence models, with some notable
exceptions, such as 7,9,14.

The study of ODEs with discontinuous right-hand side, dating back to
Caratheodory, has played a crucial role in mathematical analysis and in control
theory. We refer to 16,19,32 for an extensive overview of the subject. In this article,
we will make use of the main concepts of solutions that have been defined in this
context, and in particular we will discuss: classical, Caratheodory, Filippov,
Krasovskii, Clarke-Ledyaev-Sontag-Subbotin (briefly CLSS), and strat-
ified solutions. We recall the precise definition of such solutions in Section 2.1
below.

It is easy to prove that classical solutions may not exist, but that they enjoy
uniqueness. Instead, the first surprising result about solutions of the Hegselmann-
Krause model will be the following.

Theorem 1.1. Consider (1.1) with φij Lipschitz continuous and φij = φji. Then,
there exists a solution (global in time) for every initial condition and for every def-
inition of solution, except for classical.
Uniqueness of solutions does not hold for any of the definitions, except for classi-
cal (and for stratified for a fixed stratification). Nevertheless, uniqueness holds for
almost every initial data for every definition.

The proof of the positive result can be found in Section 8. Many examples,



March 5, 2021 9:44 WSPC/INSTRUCTION FILE GenSolHK

Generalized solutions to bounded-confidence models 3

provided in the following sections, will show that the discontinuity can generate
parameteric families of solutions. The latter may be of combinatorial complexity in
terms of the number of agents N and the dimension of the state space n.

After solving the questions about existence and uniqueness, we will focus on some
properties of such solutions. In the rich literature about social dynamics models,
some crucial properties of solutions were explored. Among them, we want to recall
the following:

P1) The barycenter x̄ = 1
N

∑
i xi is invariant along trajectories.

P2) For every solution x(·), x(t) converges for t→∞ to x∞ = (x∞1 , . . . , x
∞
N ) ∈

RnN , x∞i ∈ Rn, such that for every 1 ≤ i, j ≤ N either x∞i = x∞j or
‖x∞i − x∞j ‖ ≥ 1. This property is called clustering and the number of
distinct agents among x∞i is the number of clusters.

P3) The asymptotic state x∞ of P2) only depends on the initial data of the
trajectory. In particular, the number of clusters only depends on the initial
condition.

As we will see, each of such properties may fail to hold, depending on the concept
of solution used. Indeed, our second main result is the following.

Theorem 1.2. Consider (1.1) with φij Lipschitz continuous, φij = φji, then the
following holds.
Classical solutions satisfy P1-2-3).
Caratheodory, Filippov, Krasovskii and CLSS solutions satisfy P1-P2) but not P3),
in general.
Stratified solutions satisfy P1-2-3) for a fixed stratification, but x∞ in P3) depends
on the stratification.

The proof of Theorem 1.2 is given in Section 8.
It is remarkable to observe that both solutions and their properties drastically vary
when replacing aij in (1.1) even in a single point, e.g. by choosing aij(1) = 1.
Indeed, the following last main result holds.

Theorem 1.3. Consider (1.1) with φij Lipschitz continuous, φij = φji, and aij(r)
replaced by

aij(r) =

{
1 if r ∈ [0, 1],

0 if r ∈ (1,+∞).
(1.2)

The sets of Krasovskii and Filippov solutions coincide with the ones of (1.1).
The sets of classical, Caratheodory, CLSS and stratified solutions are different in
the two cases.
All statements of Theorems 1.1 and 1.2 hold true in this case too.

This theorem shows that one cannot consider the right-hand side of an ODE as
a L∞ function, since the structure of the solution actually depends on the chosen
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representative. The proof of Theorem 1.3 is given in Section 8.

The structure of the article is the following. In Section 2 we provide notations
and definitions, including the various concepts of solution for discontinuous ODEs.
Section 3 presents the generalized Hegselmann-Krause model and various general
properties, while Section 4 deals with the linear case in R, already providing various
examples of violating uniqueness and properties P1-2-3). Section 5 deals with the
multidimensional case, providing other counterexamples. In Section 6, we prove
uniqueness for almost every initial datum, while Section 7 focuses on the clustering
property P2). Finally, Section 8 contains the proofs of the main Theorems.

2. Notations and definitions

In this article, we denote by λm the Lebesgue measure on Rm. For x ∈ Rm, B(x, r)

is the ball of radius r > 0 centered at x and B(r) = B(0, r) is the ball centered at the
origin. A cone K ⊂ Rm is a set with 0 ∈ K and such that α ·K = {αx : x ∈ K} ⊂ K
for every α > 0. Given an embedded manifold M ⊂ Rm, the symbol ∂M denotes
the topological boundary. Given A ⊂ Rm, we set

co(A) =

{∑̀
i=1

αixi : ` ∈ N, λi ∈ [0, 1],
∑
i

λi = 1, xi ∈ A

}
the convex hull of A, and denote by co(A) its closure.
We denote by AC([0, T ],Rm) the space of absolutely continuous functions on a time
interval [0, T ]. Recall that every absolutely continuous function is differentiable for
almost every time, i.e. except for times on a set of zero Lebesgue measure.

We also introduce the following:

Definition 2.1. A set Γ ⊂ Rm, Γ = ∪mΓ
i=1Mi, with mΓ ∈ N ∪ {+∞} and Mi being

C1 embedded manifold of dimension ni ≤ m, is stratified if:

i) The family Mi is locally finite: given a compact K, it holds K ∩Mi 6= ∅
only for finite many i.

ii) for i 6= j it holds Mi ∩Mj = ∅, and if Mi ∩ ∂Mj 6= ∅ then Mi ⊂ ∂Mj and
ni < nj .

We call maxi ni the dimension of the stratified set Γ.

Remark 2.1. For simplicity we used the definition of topological stratification,
even if the examples we consider will admit Whithney or Boltianskii-Brunovsky
stratification. We refer the reader to 23,28,31 for a discussion of the different concepts
and the role played for discontinuous ordinary differential equation and optimal
feedback control.

An autonomous Ordinary Differential Equation (briefly ODE) is written as:

ẋ(t) = f(x(t)) (2.1)
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where x ∈ Rm and f : Rm → Rm is a measurable and locally bounded function
(defined at every point). The different concepts of solution will be discussed in the
next Section 2.1.

A multifunction on Rm is a function V : Rm → P(Rm), with P(Rm) being the
powerset of Rm, i.e. the set of subsets of Rm. Given a multifunction V , one can
consider the differential inclusion:

ẋ(t) ∈ V (x(t)). (2.2)

A solution is an absolutely continuous function x(·) which satisfies (2.2) for almost
every t.

We define the Hausdorff distance dH on the powerset of Rm as follows: given
x ∈ Rm and A,B ⊂ Rm we set d(x,A) = inf{d(x, y) : y ∈ A} and dH(A,B) =

sup{d(x,A), d(y,B) : x ∈ B, y ∈ A}. A multifunction V is continuous if it is
continuous for the Hausdorff distance, while V is upper semicontinuous at x if for
every ε > 0 there exists δ > 0 such that V (y) ⊂ V (x) + B(ε) for every y with
|x− y| < δ.
A continuous multifunction V is also upper semicontinuous. It is well known that
if V is upper semicontinuous with compact convex values, then the corresponding
differential inclusion (2.2) admits solutions for every initial condition, see 3. More
precisely, we have the following:

Proposition 2.1. Assume that the multifunction V in (2.2) is upper semicontinu-
ous and, for every x ∈ Rm, V (x) is a nonempty, compact and convex subset of Rm.
Then for every initial condition x0 there exists a solution to (2.2). Moreover, if V
satisfies supv∈V (x) |v| ≤ C(1 + ‖x‖) for some C > 0, then for every x0 ∈ Rm and
T > 0, the set of solutions to (2.2) with initial condition x(0) = x0 is a nonempty,
compact, connected subset of AC([0, T ],Rm).

2.1. Solutions to discontinuous ordinary differential equations

Given the ODE (2.1) with f discontinuous, it is convenient to define the associated
Filippov multifunction as:

F (x) =
⋂
δ>0

⋂
λm(N)=0

co{f(y) : y ∈ (x+Bδ \N)}. (2.3)

We have the following proposition, see 3.

Proposition 2.2. Consider an ODE (2.1) with f measurable and locally bounded.
Then the corresponding Filippov multifunction F defined by (2.3) is upper semicon-
tinuous with nonempty, compact and convex values, thus the differential inclusion
ẋ ∈ F (x) admits solutions for every initial condition.

Similarly, the Krasovskii multifunction, associated to (2.1), is defined as:

K(x) =
⋂
δ>0

co{f(y) : y ∈ (x+Bδ)}, (2.4)
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and it shares the same regularity as the Filippov one; thus, solutions exist to the
corresponding differential inclusion for every initial condition.

Remark 2.2. We will mostly consider examples of ODEs for which Filippov and
Krasovsky multifuction coincide, so we will mainly focus on the Filippov definition.
However, the set of solutions may differ significantly in the general case, as shown
by Example 2.1 below.

To define a third concept of solution, we introduce the following:

Definition 2.2. A stratification S for the ODE (2.1) is a quadruplet (Γ, N1, N2,Σ)

with Γ = Rm stratified, N1 ∪ N2 = {1, . . . ,mΓ}, N1 ∩ N2 = ∅ and Σ : N2 → N1

such that the following holds:

• the manifolds Mi, i ∈ N1, are called type I cells and the manifolds Mj ,
j ∈ N2, are called type II cells.
• if Mi is of type I, then f(x) ∈ TxMi for every x ∈ Mi and f restricted to
Mi is smooth.
• if Mj is of type II, then for every x ∈ Mj there exist ε > 0 and a unique
absolutely continuous curve ξx : [0, ε[→ Rm with ξx(0) = x, ξx(t) ∈ MΣ(j)

for t ∈]0, ε[ and ξ̇x(t) = f(ξx(t)) for every t ∈]0, ε[.

Many definitions of solutions for (2.1) are then available, most of which coincide
when f is sufficiently regular (e.g. locally Lipschitz). We summarize in the following
definition the concepts we are considering in the rest of the paper.

Definition 2.3. Given the ODE (2.1) and T > 0 we define the following:

(1) A classical solution is a function x : [0, T ]→ Rm, which is differentiable
and satisfies (2.1) at every time t ∈ [0, T ] (with one-sided derivatives at 0

and T ).
(2) A Caratheodory solution is an absolutely continuous function x :

[0, T ]→ Rm which satisfies (2.1) at almost every time t ∈ [0, T ].
(3) A Filippov solution is an absolutely continuous function x : [0, T ]→ Rm,

which satisfies:

ẋ ∈ F (x(t))

for almost every time t ∈ [0, T ], with F given by (2.3).
(4) A Krasovskii solution is is an absolutely continuous function x : [0, T ]→

Rm, which satisfies:

ẋ ∈ K(x(t))

for almost every time t ∈ [0, T ], with K given by (2.4).
(5) A limit of sample-and-hold solution or Clarke-Ledyaev-Sontag-

Subbotin (briefly CLSS) solution is a continuous function x : [0, T ]→
Rm, which is uniform limit of continuous and piecewise smooth functions
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xν , ν ∈ N, for which there exist 0 = t0ν < t1ν < · · · < tmνν = T such that
ẋν(t) = f(xν(tjν)) for t ∈ [tjν , t

j+1
ν [, j = 0, . . . ,mν−1, and maxj(t

j+1
ν −tjν)→

0 as ν →∞.
(6) If S = (Γ, N1, N2,Σ) is a stratification for f , then a stratified solution

generated by S is a continuous and piecewise smooth function x : [0, T ]→
Rm for which there exist 0 = t0 < t1 < t2 < · · · < t` = T and i1, . . . , i` ∈
{1, . . . ,mΓ} such that the following holds for k = 0, . . . , `−1: if ik ∈ N1 then
x(·) is a classical solution on [tk, tk+1[ contained in Mik , while if ik ∈ N2

then x(tk) ∈ Mik and x(·) is a classical solution on ]tk, tk+1[ contained in
MΣ(ik).

(7) A solution x : [0, T ] → Rm (in one of the previous senses) is said robust
if there exists a neighborhood N of x(0) and, for every y ∈ N , a solution
xy with xy(0) = y such that the following holds: for each yν ∈ N , with
yν → x(0) as ν → +∞, xyν converges to x uniformly on [0, T ].

(8) A solution x : [0, T ] → Rm (in one of the previous senses) is said cone-
robust if there exists a cone K with nonempty interior, a neighborhood N
of x(0) and, for every y ∈ ((x+K)∩N), a solution xy with xy(0) = y such
that the following holds: for each yν ∈ (x + K) ∩ N , with yν → x(0) as
ν → +∞, xyν converges to x uniformly on [0, T ].

Remark 2.3. The concept of classical solution is not used for discontinuous ODEs,
because of general lack of existence. Instead, Caratheodory solutions are the one
commonly used, as they are equivalent to solutions in the integral form:

x(t) = x(0) +

∫ t

0

f(x(s)) ds.

The concepts of Filippov and Krasovskii solutions are commonly used to deal with
general discontinuous ordinary differential equations. They have the advantage of
being based on the well-developed theory of differential inclusions, see 3,19.
CLSS solutions have been introduced to provide a suitable concept for discontinuous
stabilizing feedbacks 15. Notice that the sample-and-hold approximations are indeed
numerical solutions provided by the explicit Euler scheme. Thus CLSS solutions
represent solutions which may be generated by a numerical scheme in the theoretical
limit.
The concept of stratification and stratified solution is particularly convenient in
optimal control theory, especially to build optimal synthesis, see 28. The concept of
robust and cone-robust are useful to isolate solutions in the same context 23.

The different concepts give rise to very different sets of solutions, as illustrated
by next Example.

Example 2.1. Consider the ODE (2.1) on R2 with initial condition x(0) =
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M1

M2

M3

Fig. 1. Graphical representation of f and stratifications for Example 2.1.

(x1(0), x2(0)) and f given by:

f(x) =


(−1, 0) x2 > x1

(1, 1) x2 = x1

(1, 0) x2 < x1

(2.5)

See also Figure 1 for a graphical representation of f . Clearly for x2(0) 6= x1(0)

there exists a unique solution given by x2(t) = x2(0) and x1(t) = x1(0) ± t if
x1(0) ≷ x2(0) (for all concepts). Therefore, we focus on the initial condition for
which x1(0) = x2(0) and without loss of generality we assume x1(0) = x2(0) = 0.
We notice that F ((0, 0)) = {(α, 0) : α ∈ [−1, 1]} for F defined by (2.3) and K(0, 0)

is the convex hull of the three points (−1, 0), (1, 1) and (1, 0) for K defined by (2.4).
Then, the set of solutions is as follows:

• There exists a unique classical solution given by x(t) = (t, t).
• There exist two one-parameter families of Caratheodory solutions: for fixed
t̄ ∈ [0,+∞] consider the continuous function x± such that x±(t) = (t, t) on
[0, t̄[ and x±(t) = (t̄± (t− t̄), t̄) on ]t̄,+∞[.
• The set of Filippov solutions is given by two one-parameter families: for
fixed t̄ ∈ [0,+∞], consider the continuous function x± such that x±(t) =

(0, 0) on [0, t̄[ and x±(t) = (±(t− t̄), 0) on ]t̄,+∞[.
• The set of Krasovskii solutions includes Caratheodory and Filippov so-
lutions, and is given by the following infinite dimensional family. Given
t̄ ∈ [0,+∞] and a Lipschitz continuous function ϕ : [0,+∞[→ R with
0 ≤ ϕ′(t) ≤ 1 for almost every t, define the continuous function xt̄,±ϕ such
that xt̄,±ϕ (t) = (ϕ(t), ϕ(t)) on [0, t̄[ and xt̄,±ϕ (t) = (ϕ(t̄) ± (t − t̄), ϕ(t̄)) on
[t̄,+∞[.
• The only CLSS solution coincides with the classical one.
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• There exists three possible stratifications: Si, i = 1, 2, 3 defined as follows.
First set M1 = {(x1, x2) : x2 > x1}, M2 = {(x1, x2) : x2 < x1}, M3 =

{(x1, x2) : x2 = x1}, Γ = R2 = ∪iMi and mΓ = 3.
The first stratification is S1 = {Γ, {1, 2}, {3},Σ1}, with Σ1(3) = 1. The
only stratified solution for S1 is x(t) = (−t, 0).
The second is S2 = {Γ, {1, 2}, {3},Σ2}, with Σ2(3) = 2. The only stratified
solution for S2 is x(t) = (t, 0).
Finally, the third is S3 = {Γ, {1, 2, 3}, ∅, ∅} and the only stratified solution
for S3 is x(t) = (t, t).
• No solution is robust and the only cone robust are the stratified solutions
for S1 and S2.

3. The Hegselmann-Krause model

One of the most known examples of social dynamics is the celebrated Hegselmann-
Krause (briefly HK) model:

ẋi =

N∑
j=1

aij(‖xi−xj‖)(xj−xi) with aij(r) =

{
φij(r) if r ∈ [0, 1)

0 if r ∈ [1,+∞).
(3.1)

where xi ∈ Rn, i = 1, . . . , N , φij : [0, 1] → R+ are Lipschitz continuous, and
φij = φji. Each xi represents the (possibly multidimensional) opinion of the i-
th agent. To be precise, the original model was formulated in discrete-time with
φij ≡ 1, see 21. Obviously, existence and uniqueness for the discrete time version is
granted, while (3.1) is the natural extension to the continuous-time case with φij
arbitrary. We will provide various examples of lack of uniqueness and some positive
results. Many examples will be provided for the special case φij ≡ 1, i.e. with linear
dynamics for interacting agents, while results will be given for the general case.

3.1. Relationships between concepts of solution

In this section, we will prove first results about the connection between different
kinds of solutions. In particular, we will prove the following result.

Proposition 3.1. The set of Filippov solutions to (3.1) coincides with the set of
Krasovskii solutions and contains the set of Caratheodory solutions. The set of
Caratheodory solutions includes classical, CLSS and stratified solutions.

The system (3.1) can be written in standard from (2.1) by setting m = nN ,
x = (x1, . . . , xN ) ∈ RnN , f = (f1, . . . , fN ) with fi : Rn → Rn given by (3.1). To
prove some general properties of the system (3.1), we first need to provide some
definition.

Definition 3.1. Given i, j ∈ {1, . . . , N}, i 6= j, we define the subset of RnN :

Mij = {(x1, . . . , xN ) : ‖xi − xj‖ = 1}, (3.2)
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and the union of such subsets as:

M = ∪i,j:i6=jMij . (3.3)

For x ∈M we let J(x) = {J1, . . . , J`(x)} be the unique partition of {1, . . . , N} (i.e.
Jk ⊂ {1, . . . , N} are disjoint and ∪kJk = {1, . . . , N}) such that both j1 ∈ Jk and
j2 ∈ Jk for some k if and only if xj1 = xj2 .

We have:

Proposition 3.2. The map f = (f1, . . . , fN ), with fi : Rn → Rn given by (3.1), is
locally Lipschitz continuous at every x ∈ RnN \M. Moreover, the setM is stratified.

Proof. The locally Lipschitz continuity of f outside M follows directly from the
definition of fi.
The set M is stratified by defining the strata as follows. Given any partition J =

{J1, . . . , J`} of {1, . . . , N}, we set MJ = {x : J(x) = J}. Notice that dim(MJ) = `.
Property i) of Definition 2.1 follows from the finiteness of partitions of {1, . . . , N}.
For property ii), write J1 ≺ J2 if the partition J1 is a strict refinement of J2.
Then it is easy to check that J1 ≺ J2 if and only if MJ1 ⊂ ∂MJ2 and, in this case,
dim(MJ1

) < dim(MJ2
).

Proposition 3.3. Let F be the Filippov multifunction defined as in (2.3) for f =

(f1, . . . , fN ), with fi given by the right hand side of (3.1). It holds F (x1, . . . , xN ) =

(F1, F2, . . . , FN ), where

Fi =

 ∑
j 6=i:‖xi−xj‖=1

αjφij(1)(xj − xi) : αj ∈ [0, 1]

+ (3.4)

∑
j 6=i:‖xi−xj‖<1

φij(‖xi − xj‖)(xj − xi).

There exists C > 0 such that supv∈F (x) |v| ≤ C(1 + ‖x‖), thus for every x0 ∈ RnN
and T > 0, the set of Filippov solutions to (3.1) with initial condition x(0) = x0 is
a nonempty, compact, connected subset of AC([0, T ],Rm).
Moreover, the Krasovskii multifunction K defined as in (2.4) coincides with that
defined by (2.3), thus the set of Krasovskii solutions coincide with the set of Fillippov
solutions.
Finally, the property P1) holds for Filippov and Krasovskii solutions.

Proof. The explicit expression (3.4) can be verified by computation. Set Cij =

supr∈[0,1] φij(r) < +∞, i, j = 1, . . . , N , and C ′ = maxij Cij . Given x ∈ RnN ,
we have ‖xi − xj‖ ≤ ‖xi‖ + ‖xj‖ ≤

√
2‖x‖, thus ‖fi(x)‖ ≤ N

√
2C ′‖x‖. Finally,

‖f(x)‖ ≤ N
√

2NC ′‖x‖ and the sublinear estimate holds for F .
Now fix x ∈M and consider J(x) = {J1, . . . , J`(x)}. Define the open set

A(x) = {y : ∀k ∈ {1, . . . , `(x)}, ∀ i, j ∈ Jk, i 6= j, we have ‖yi − yj‖ > 1} .
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Then f(x) = limy→x,y∈A(x) f(y). Thus, the definition of K given by (2.4) coincides
with F given by (2.3).
Last statement was proved in 14 for the case n = 1, and can be easily adapted to
the case n ≥ 1. Indeed, observe that any vector field (v1, . . . , vN ) ∈ F (x) satisfies∑N
i=1 vi = 0, thus any (convex) combination of vector fields in F (x) satisfies it too.

The barycenter x̄ is a continuous function satisfying ˙̄x =
∑N
i=1 vi = 0 for a.e. time,

then it is constant.

Proposition 3.4. Consider the system (3.1) with φij Lipschitz continuous. Then,
the set of Caratheodory solutions is contained within the set of Filippov and
Krasovskii solutions.

Proof. Notice that f(x) is continuous outsideM and, as in the proof of Proposition
3.3, it holds f(x) = limy→x,y∈A(x) f(y). Therefore f(x) ∈ F (x) for all x ∈ RnN ,
thus we conclude.
Since a solution x(·) in Caratheodory sense satisfies the equation for almost every
time, one has ˙̄x(t) = 0 for almost every t, thus P1) holds true.

We are now ready to prove the inclusions given in Proposition 3.1 above.
Proof of Proposition 3.1. We proved in Proposition 3.3 that Filippov and
Krasovskii solutions coincide. We proved in Proposition 3.4 that Caratheodory so-
lutions are included in the set of Filippov solutions. By definition, stratified solutions
are Krasovskii solutions and also satisfy the equation for almost every time, thus
they are also Caratheodory solutions. Since both CLSS and Caratheodory solutions
are Lipschitz functions of time (due to boundedness of the right hand side), one
has that CLSS solutions are Caratheodory: indeed, they can be seen as limits of
Euler explicit schemes for Caratheodory solutions. Finally, it is also evident from
the Definition 2.3 (and Remark 2.3) that classical solutions are also Caratheodory
ones. 2

3.2. Existence of solutions

We now deal with existence of solutions. The existence of Fillippov (and Krasovskii)
solutions are guaranteed by the general theory of differential inclusions, as recalled
in Proposition 3.3. Also, CLSS solutions exist, as they are uniform limits of Lipschitz
approximated trajectories. We now prove that, for every initial datum there exists
at least one Caratheodory solution defined for all times under the more general
conditions of φij only continuous.

Proposition 3.5. Let us consider the general HK system (3.1) and assume that
φij ∈ C([0, 1], ]0,+∞[). Then for every initial datum x̄ ∈ RnN there exists at least
one Caratheodory solution defined for all times t ≥ 0.
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Proof. Given an initial condition x̄, if x̄ ∈ RnN \M then (3.1) is continuous and
locally bounded, thus by Peano Theorem there exists a local (in time) solution x(·).
This solution can be extended until the first time t1M such that x1 = x(t1M) ∈M.
Given a (not directed) graph G = (V,E), with V = {v1, . . . , vn}, we consider the
equation

ẋi =
∑

j:{i,j}∈E

aij(‖xi − xj‖)(xj − xi). (3.5)

Since (3.5) has a continuous right-hand side, by Peano Theorem for a fixed G and
an initial condition, there always exist a solution to (3.5). Thus our strategy is to
construct a G so that the solution to (3.5) from x1 is also a Caratheodory solution
to (3.1).
Define I = {{i, j} : ‖x1

i − x1
j‖ = 1} and let G1 = (V1, E1) be the (not directed)

graph with V1 = {v1, . . . , vn} and {i, j} ∈ E1 if and only if |x1
i − x1

j | < 1. We now
build a new graph G′1 = (V1, E

′
1), with E1 ⊂ E′1. First we order the elements of I,

then we proceed as follows by recursion on the elements of I. If {i, j} ∈ I then set:

αij = (x1
i − x1

j ) ·

 ∑
(i,k)∈E1

aik(x1
k − x1

i )−
∑

(j,k)∈E1

ajk(x1
k − x1

j )

 ,

α′ij = (x1
i − x1

j ) ·

 ∑
(i,k)∈E1∪{{i,j}}

aik(x1
k − x1

i )−
∑

(j,k)∈E1∪{{i,j}}

ajk(x1
k − x1

j )

 ,

where, for simplicity, we dropped the arguments in aik and ajk. We add the edge
{i, j} to E1 if and only if αij ≤ φij(1). Now, if αij > φij(1) > 0 then ‖xi − xj‖
is increasing along the solution to (3.5) for G = G1. Otherwise, since α′ij = αij −
2φij(1) and αij ≤ φij(1), then α′ij < −φij(1) < 0, thus ‖xi−xj‖ is decreasing along
the solution to (3.5) for G obtained from G1 by adding the edge {i, j}. In both cases
the dynamics given by the graph is compatible with (3.1).
Let G′1 be the graph obtained at the end. We have that the solution to (3.5) for
G = G′1 is also a Caratheodory solution to (3.1) on some interval [t1M, t

1
M+δ1] with

δ1 > 0.
Let now T > 0 be the maximal time so that x(·) can be defined on [0, T ]. Assume,
by contradiction, T < +∞. Then by the boundedness of φij , we have that x(·) is
Lipschitz continuous, thus we can define x(T ). Applying the same reasoning as for
x(t1M) we can extend the solution beyond T , thus reaching a contradiction.

As for stratified solutions, their existence is ensured by Definition 2.2 itself as
proved in next Proposition.

Proposition 3.6. Let us consider the general HK system (3.1) with φij ∈
C([0, 1], ]0,+∞[). Then for every stratification and initial datum x̄ ∈ RnN , there
exists a unique stratified solution defined for all times t ≥ 0.
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Proof. Let Mi0 be the stratum so that x̄ ∈ Mi0 . If Mi0 is of type I then a local
solution x(·) exists since f is smooth on Mi0 . Let t1 = sup{t : x(t) ∈Mi0}, then by
boundedness of φij there exists x1 = limt↗t1 x(t).
If Mi0 is of type II, then by definition there exists a local solution ξx̄ belonging to
MΣ(i0) for positive times. In this case we define t1 = sup{t : x(t) ∈MΣ(i0)} and, by
boundedness of φijs, there exists x1 = limt↗t1 x(t).
In both cases we letMi1 be the stratum so that x1 ∈Mi1 and proceed by recursion.
Again by boundedness of φij , we can prolong the solution for every time. Moreover,
such solution is unique by definition of stratification for (3.1).

3.3. Contractivity of the support

In this section, we prove that the support of solutions (in any of the sense given
above) is weakly contractive. This is a well-known property of Caratheodory solu-
tions of HK models, see e.g. 9. The proof of such property for Krasovskii solutions
on the real line can be found in 14 . We will give a general proof for Krasovskii
solutions in any dimension, again in the more general case of φij only continuous.

Proposition 3.7. Let x(t) = (x1(t), x2(t), . . . , xN (t)) be a solution to (3.1), with
φij ∈ C([0, 1], ]0,+∞[), in any of the senses given in Definition 2.3, and 0 ≤ T 1 <

T 2. It then holds

co
({
x1(T 1), x2(T 1), . . . , xN (T 1)

})
⊇ co

({
x1(T 2), x2(T 2), . . . , xN (T 2)

})
. (3.6)

Proof. Let x(·) be a given Krasovskii solution and define the set X(t) :=

co ({x1(t), x2(t), . . . , xN (t)}). Also define the sets

A(T 1) :=
{
T 2 ∈ (T 1,+∞) s.t. X(T 1) 6⊇ X(T 2)

}
.

The statement is equivalent to A(T 1) being empty for every T 1 ≥ 0. Assume, by
contradiction, that there exists T 1 ≥ 0 such that A(T 1) 6= ∅ and define T 3 = inf{T :

T ∈ A(T 1)} ≥ T 1. We first prove the following:
Claim a) It holds either inf(A(T 1)) = T 1 or inf(A(T 3)) = T 3.
The claim is proved as follows: if T 3 = T 1, the first condition holds. If T 3 > T 1,
first notice that X(T 1) ⊇ X(T 3) by definition of T 3. Take a sequence T 2

k ∈ A(T 1)

with T 2
k ↘ T 3 and observe that X(T 1) 6⊇ X(T 2

k ) implies X(T 3) 6⊇ X(T 2
k ). Thus

T 2
k ∈ A(T 3) for all k, hence T 3 = inf(A(T 3)).
Thanks to Claim a), by shifting the time origin without loss of generality we

can assume inf(A(0)) = 0. Consider now a sequence of times tk ↘ 0 such that there
exists i = 1, . . . , N for which xi(tk) 6∈ X(0). Since the number of agents is finite,
eventually passing to a subsequence, there exists a single agent (that we relabel as
agent 1) satisfying x1(tk) 6∈ X(0). By continuity of x1(t), it holds x1(0) ∈ ∂X(0),
that is the boundary of X(0). Since X(0) is a n-dimensional convex polyhedron,
there exists a small ball B(x1(0), ε) and a finite number of hyperplanes passing
through x1(0) identified by outer unitary vectors ν1, . . . νj such that:
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• for all x ∈ X(0) it holds (x− x1(0)) · νl ≤ 0 for all l = 1, . . . , j;
• for all x ∈ B(x1(0), ε) \X(0) it holds (x − x1(0)) · νl > 0 for at least one
index l = 1, . . . , j.

Since chosen unitary vectors are in finite number, eventually passing to a subse-
quence of tk, one can select a single unitary vector (denoted simply as ν from now
on) such that (x1(tk)− x1(0)) · ν > 0 for all tk.

We now define the functions fi := (xi(t) − x1(0)) · ν, that are absolutely
continuous, and f(t) := maxi=1,...,N fi(t), that is the maximum of a finite num-
ber of absolutely continuous functions, hence absolutely continuous itself. Since
f(tk) ≥ f1(tk) > 0, for any choice of ε′ > 0 the set Aε′ := (f(t) > 0) ∩ (0, ε′) is
nonempty. For almost every t ∈ Aε′ , one has that f, f1, . . . , fN are differentiable.
Observe that, if xi(t) realizes f(t) = fi(t), then for each j 6= i it holds

(xj(t)−xi(t))·ν = (xj(t)−x1(0))·ν+(x1(0)−xi(t))·ν = fj(t)−fi(t) ≤ f(t)−f(t) = 0.

(3.7)
We now compute ḟi(t) for t such that f(t) = fi(t) > 0 and fi(t) is differentiable.

Since the Krasovskii multifunction satisfies (3.4), there exist αj ∈ [0, 1] such that

ḟi(t) = ẋi(t) · ν =
∑

j 6=i:‖xi−xj‖=1

αjφij(1)(xj(t)− xi(t)) · ν +

∑
j 6=i:‖xi−xj‖<1

φij(‖xi − xj‖)(xj(t)− xi(t)) · ν ≤ 0.

Here we used (3.7) and positivity of φij . By Danskin Theorem 5, it holds ḟ =

maxi s.t. f(t)=fi(t)
ḟi(t), hence ḟ ≤ 0 whenever f > 0 and it is differentiable. This

implies that f is never strictly positive. This contradicts f(tk) > 0. Thus, for the
chosen Krasovskii solution, (3.6) holds.

Since the proof holds for any Krasovskii solution, the statement holds for any
definition of solution, by recalling Proposition 3.1 above.

4. The linear Hegselmann-Krause model in R

Here we focus on the Hegselmann-Krause model (3.1) with n = 1, φij ≡ 1, i.e.
on the linear case in dimension one. Even in this simplified setting, the set of
solutions is highly dependent on the choice of the definition. Moreover, uniqueness
and properties P1-2-3) may fail.

4.1. A toy example: two agents

The simplest non-trivial example of (3.1) is given by the case n = 1, N = 2 and
φij ≡ 1, i.e. by the system:

ẋ1 = χ|x1−x2|<1(x2 − x1), ẋ2 = χ|x1−x2|<1(x1 − x2), (4.1)

where χ is the indicator function. We consider the initial condition:

x(0) = (x1,0, x2,0). (4.2)
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For initial conditions such that |x1,0 − x2,0| 6= 1, the solution is unique (for all
considered concepts): constant for the case |x1,0 − x2,0| > 1 and verifying:

x1(t)− x2(t) = e−2t(x1,0 − x2,0), x1(t) + x2(t) = x1,0 + x2,0, (4.3)

for the case |x1,0 − x2,0| < 1.
To deal with the case |x1,0−x2,0| = 1, we first distinguish two possible stratifications,
both based on the stratified set:

Γ = M1 ∪M2 ∪M3 (4.4)

with M1 = {(x1, x2) : |x1 − x2| < 1}, M2 = {(x1, x2) : |x1 − x2| > 1} and
M3 = {(x1, x2) : |x1 − x2| = 1}. The first is given by S1 = (Γ, {1, 2, 3}, ∅, ∅), and
the second by S2 = (Γ, {1, 2}, {3},Σ) with Σ(3) = 1. We have the following:

Proposition 4.1. Consider the Cauchy problem (4.1)-(4.2) with |x1,0 − x2,0| = 1.
Then, the following holds:

i) The only classical solution is the constant one x(t) ≡ x(0).
ii) There is an infinite number of Caratheodory solutions parameterized by t̄:

constant on the interval [0, t̄[, and for t ≥ t̄ given by

x1(t)− x2(t) = e−2(t−t̄)(x1,0 − x2,0), x1(t) + x2(t) = x1,0 + x2,0.

iii) Filippov (and Krasovsky) solutions coincide with Caratheodory solutions.
iv) The unique CLSS solution is the constant one.
v) The only stratified solution for S1 is the constant solution, while the only

one for S2 is (4.3).
vi) There is no robust solution.
vii) The constant solution and (4.3) are the only cone-robust solutions (for any

definition for which they are solutions).

In particular the only concept of solution for which (4.3) is the unique solution is
that of stratified solution for the stratification S2.

Remark 4.1. If we consider the variant model (1.2), then (4.3) is the only classical,
Caratheodory, CLSS and stratified solution. This special situation of uniqueness
does not occur for more than two agents, see Section 4.2.

Proof. Let us start with Filippov solutions. If x(·) is a solution, we have
d |x1−x2|

dt (t) ≤ 0 for almost every t, thus we can define t̄ = inf{t : |x1(t)−x2(t)| < 1},
possibly t̄ = +∞. For t ≥ t̄, x(·) is a solution to a linear ODE, thus it is unique.
This shows that Fillippov (and Krasovsky) solutions are those given by ii). Since
they satisfy (4.1) for almost every time, they are also Caratheodory solutions. This
proves ii) and iii).
The only Caratheodory solution satisfying (4.1) for all times is the constant one,
thus i) is proved. Similarly, each sample-and-hold solution is constant, thus iv) is
proved.
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For S1 the cellM3 is of type I, thus the constant solution is the stratified one, while
for S2 the cell M3 is of type two and the solution must enter M1, thus it coincides
with (4.3). This proves v).
Notice that, if we perturb the initial datum so that |x1,0−x2,0| > 1 then the only so-
lution is the constant one, while if perturb the initial datum so that |x1,0−x2,0| < 1

then (4.3) is the only solution. This proves vi) and vii).

For what concerns the solution properties P1-2-3), it is interesting to notice that
some properties hold true for all solutions. More precisely, we have the following:

Proposition 4.2. Consider the Cauchy problem (4.1)-(4.2) , then the following
holds. The properties P1) and P2) hold for all solutions. Property P3) only holds
for classical, CLSS and stratified solutions.

Proof. The proof follows directly from Proposition 4.1.

4.2. The case of 3 agents in R

The toy example of Section 4.1 is the minimal nontrivial example one can build.
Uniqueness of solution is already lost, however the set of solutions is given by a
one-parameter family and some properties, such as invariance of the barycenter, still
hold true. In this section we consider three agents in R, still with linear dynamics,
showing more complexity and a complete loss of such properties.

We consider the dynamics (3.1) for n = 1, N = 3 and φij = 1. The system reads
as 

ẋ1 = χ|x1−x2|<1(x2 − x1) + χ|x1−x3|<1(x3 − x1), x1(0) = x1,0,

ẋ2 = χ|x1−x2|<1(x1 − x2) + χ|x2−x3|<1(x3 − x2), x2(0) = x2,0,

ẋ3 = χ|x1−x3|<1(x1 − x3) + χ|x2−x3|<1(x2 − x3), x3(0) = x3,0.

(4.5)

Notice that we can always change the order of the agents and apply a translation,
thus we will assume x1,0 ≤ x2,0 = 0 ≤ x3,0. We will distinguish the following Initial
Conditions (IC for short) cases:

IC-A) x1,0 < −1 and x3,0 > 1;
IC-B) x1,0 > −1 and x3,0 < 1;
IC-C) x1,0 = −1 and x3,0 > 1 (or the symmetric case x1,0 < −1 and x3,0 = 1);
IC-D) x1,0 = −1 and 0 < x3,0 < 1 (or the symmetric case −1 < x1,0 < 0 and

x3,0 = 1);
IC-E) The most interesting case (IC-E) is when initial distances are exactly 1, i.e.

x1,0 = −1, x2,0 = 0, x3,0 = 1. (IC-E)

We have the following result for cases IC-A,B,C. See Figure 2.

Proposition 4.3. The unique solution to IC-A (for any concept of solution in
Definition 2.3) is the constant one:
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x1(t) = x1,0, x2(t) = x2,0, x3(t) = x3,0.

The unique solution to IC-B (for any concept of solution in Definition 2.3, except
for classical solution) is the one in which all agents exponentially converge to the
barycenter, that is invariant. Classical solutions for x3,0 − x1,0 ≥ 1 do not exist.

The unique solution to IC-C (for any concept of solution in Definition 2.3) is
the one in which x1, x2 exponentially converge to x1,0+x2,0

2 and x3 is constant. For
the symmetric case, x1 is constant and x2, x3 exponentially converge to x2,0+x3,0

2 .

Proof. The proof is straightforward, by direct computation. Moreover, uniqueness
of the Caratheodory solution in the IC-B case with the additional constraint x3,0−
x1,0 ≥ 1 ensures the non-existence of a classical solution: indeed, if a classical
solution exists, then it coincides with the Caratheodory one, that is not C1 in this
case.
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Fig. 2. Solutions for Initial Condition A (left), B (center), C (right).

In the remainder we focus on case (IC-E), as case IC-D and its symmetric are
treatable as a sub-case. We first define four special trajectories: xα, xβ , xγ , xδ. The
first trajectory xα is the constant solution:

xα1 (t) ≡ x1,0, xα2 (t) ≡ x2,0, xα3 (t) ≡ x3,0. (4.6)

The second trajectory xβ is the one exponentially converging to the barycenter:

xβ1 (t) = −e−tχ[0,ln(2)[ +
−e−3(t−ln(2))

2
χ[ln(2),+∞[, x

β
2 ≡ 0, xβ3 (t) = −xβ1 (t). (4.7)

The third trajectory xγ has the first two agents exponentially converging and the
third constant:

xγ1(t) = −1 + e−2t

2
, xγ2 =

e−2t − 1

2
, xγ3 ≡ 1. (4.8)
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Finally, the fourth trajectory xδ has the second and third agents exponentially
converging and the first constant:

xδ1(t) ≡ −1, xδ2 =
1− e−2t

2
, xδ3(t) =

1 + e−2t

2
. (4.9)

4.2.1. Caratheodory and Filippov solutions

We now study the family of Caratheodory solutions with initial data (IC-E). We
have the following:

Proposition 4.4. Consider the Cauchy problem (4.5) in case (IC-E). Then the
following holds:

i) The set of Caratheodory solutions is given by the union of three one-
parameter families parameterized by t̄ ∈ [0,+∞]:

{
xα(t) for t ∈ [0, t̄[,

xi(t− t̄), with i = β, γ, δ for t ≥ t̄.
(4.10)

ii) For the modified model (1.2), the set of Caratheodory solutions is given by
{xi(t) : i = β, γ, δ}.

iii) All Caratheodory solutions satisfy P1-2), while P3) fails, even for the mod-
ified model (1.2). In particular the final clusters’ number and positions de-
pend on the solution: 3 clusters for xα, 1 cluster for xβ and 2 clusters for
xγ (in positions − 1

2 and 1) and xδ (in positions −1 and 1
2).

See a representation of Caratheodory solutions in Figure 3.
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Fig. 3. Caratheodory solutions for Initial Condition E.

Proof. It is easy to prove that all trajectories given in (4.10) are Caratheodory
solutions of (4.5) with initial data (IC-E). We now prove that there exists no other
solution. With this goal, we first prove the following two claims:
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Claim a) If there exists t̄ such that |x2(t̄) − x1(t̄)| < 1 then for all t ≥ t̄ we have
|x2(t)− x1(t)| < 1. The same result holds for x2 and x3.

We prove the claim by contradiction. Assume that |x2(t̄)−x1(t̄)| < 1 and |x2(t̃)−
x1(t̃)| ≥ 1 for some t̃ > t̄. Since x1 and x2 are differentiable almost everywhere there
exists t ∈ (t̄, t̃) such that |x2(t)− x1(t)| ∈

(
1
2 , 1
)
, and |x1(·)− x2(·)| is differentiable

at t with strictly positive derivative. Then, it holds:

d

dt
(x2(t)− x1(t)) = −2(x2(t)− x1(t)) + χ|x3(t)−x2(t)|<1(x3(t)− x2(t)) ≤

−2(x2(t)− x1(t)) + 1 < −2
1

2
+ 1 = 0.

This leads to a contradiction. The claim is proved.

Claim b) If there exists t̄ such that |x2(t̄) − x1(t̄)| > 1 then for all t ≥ t̄ we have
x1(t) = x1(t̄) and similarly for x2 and x3.

The proof is easy: notice that ẋ1 = 0 and ẋ2 ≥ 0 for almost every t ≥ t̄. This implies
that |x2(t̄)− x1(t̄)| is increasing, thus the claim is proved.

We now define the times:

t12 = inf{t : |x1(t)− x2(t)| < 1}, t23 = inf{t : |x2(t)− x3(t)| < 1},

possibly equal to +∞ when sets are empty, and prove the following:

Claim c) If 0 < t12, t23 < +∞ then t12 = t23.

Assume, by contradiction, that t12 < t23 (the other case being similar). On the
interval [t12, t23] we have |x2(t) − x3(t)| ≥ 1 by definition of t23. Claim b) ensures
that |x2(t)− x3(t)| = 1 for all t ∈ [t12, t23], otherwise we would have t23 = +∞.

Take now the definition of t12 and apply Claim a), that ensures that |x2(t) −
x1(t)| < 1 for all t > t12. Merging it with |x2(t)−x3(t)| = 1 on the interval [t12, t23],
we have both ẋ2(t) < 0, ẋ3(t) = 0. This contradicts |x2(t)− x3(t)| = 1 on the same
interval. This proves the claim.

We are now ready to prove i). If t12 = t23 < +∞ then by Claim a), the solution
is constant on [0, t12], then given by xβ(t−t12) on [t12,+∞[. If t12 < t23 = +∞, then
the solution is constant on [0, t12] then given by xγ(t− t12) on [t12,+∞[. Similarly,
if t23 < t12 = +∞ then the solution is constant on [0, t23] then given by xδ(t− t23)

on [t12,+∞[. In the last case t12 = t23 = +∞, from Claims a) and b) we deduce
ẋ1 ≡ ẋ2 ≡ ẋ3 ≡ 0, thus the solution is the constant one xα. This proves i).

To prove ii), it is enough to notice that the constant solution is no more a
Caratheodory solution. Finally, iii) follows directly by i) and ii).

Remark 4.2. One might expect that solutions to (3.1) with φij(r) = 1 exhibit
uniform exponential convergence to their limit, in the following sense: there exist
C, k > 0 such that for any trajectory x(t) it holds

‖x(t)‖ ≤ Ce−kt‖x(0)‖. (4.11)
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Indeed, beside the points in which x(t) crossesM, the dynamics is linear. Yet, ex-
ponential convergence does not hold for Caratheodory solutions, as Proposition 4.4
shows. Indeed, given the initial condition (IC-E), one can wait an arbitrarily long
time t̄ before starting exponential convergence to 0. Thus, a global constant C in
(4.11) does not exist.
This also shows that Filippov-Krasovskii solutions do not satisfy exponential con-
vergence either, due to Proposition 3.1.

4.2.2. Filippov solutions

We now study the family of Filippov solutions with initial data (IC-E). Besides
Caratheodory solutions studied above, we look for solutions x(·) such that x2(t) =

x1(t) + 1 and x2(t) > x3(t)− 1 for all times t > 0. If such a Filippov solution exists
on an interval [0, T ], then x(·) must satisfy

ẋ1(t) = α(t), ẋ2(t) = −α(t) + (x3(t)− x2(t)), ẋ3(t) = (x2(t)− x3(t)) (4.12)

for some measurable functions α : [0, T ] → [0, 1]. The condition x2(t) = x1(t) + 1

for all times implies

α(t) =
x3(t)− x2(t)

2
. (4.13)

Defining y(t) = x3(t) − x2(t), we get ẏ(t) = − 3
2y(t), thus y(t) = e−

3
2 t and the

solution is given by:

x1(t) = −2

3
− 1

3
e−

3
2 t, x2(t) =

1

3
− 1

3
e−

3
2 t, x3(t) =

1

3
+

2

3
e−

3
2 t. (4.14)

We get the following:

Proposition 4.5. Consider the Cauchy problem (4.5) with initial data (IC-E). The
set of Fillippov solutions contains the set of Caratheodory solutions and the follow-
ing two-parameters families.
Given 0 ≤ t1 < t2 ≤ +∞ define a solution z(·) as follows. On the interval [0, t1] the
solution is constant, on the interval [t1, t2] the solution is given by z(t) = x(t−t1) for
x(·) given by (4.14), and on the interval [t2,+∞[ the solution satisfies z1(t) ≡ z1(t2),
while ż2(t) = z3(t)− z2(t) = −ż3(t). The solution z converge to an asymptotic state
with the first agent at x̄1 ∈ [−1,− 2

3 ] and the other two at x̄2 = − x̄1

2 .
Given 0 ≤ t1 < t2 ≤ +∞ define a solution w(·) as follows. On the interval [0, t1] the
solution is constant, on the interval [t1, t2] the solution is given by w(t) = x(t− t1)

for x(·) given by (4.14), and on the interval [t2,+∞[ all agents interact converging
to zero.
Similarly we can define other two-parameters families by symmetry exchanging the
roles of agent 1 and 3.

Proof. Claims a) and b) of Proposition 4.4 hold true for Filippov solutions using
the same proof. With notations as in Claim c), assume that t12 < t23 then again
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we conclude |x2(t) − x3(t)| = 1 and |x1(t) − x2(t)| < 1 on [t12, t23]. Therefore the
solution on the interval [t12, t23] is given by x(t − t12), with x(·) given by (4.14).
The other claims easily follow.

In Figure 4, we depict representatives for Filippov solutions described in Propo-
sition 4.5.

Fig. 4. Filippov solutions for Initial Condition E.

4.2.3. Stratified solutions

In this Section we focus on stratified solutions. The latter are unique for a given
stratification, but the stratification is not unique. In particular, the final number
of clusters is dependent on the initial datum but also on the chosen stratification.
Here, we build a stratification ensuring the minimal number of clusters in the final
configuration for any initial datum.

The construction of the stratification is based on a careful analysis of singu-
larities. Since stratified solutions satisfy the equation (4.5) for almost every time,
then the barycenter x̄ is invariant. By eventually applying a translation, we assume
x̄ = 0 from now on. It thus holds

x3(t) = −x1(t)− x2(t). (4.15)

The problem of finding a stratification can be solved on R2, as the stratification in
R3 can be obtained by using (4.15). Define the following lines for i, j ∈ {1, 2, 3},
i 6= j:

l±ij = {(x1, x2) : xi = xj ± 1}, (4.16)

where we used the equality (4.15): this means that l±32, that are the sets x3 = x2±1,
is given by x2 = −x1

2 ∓
1
2 . Similarly, l±31 are given by x1 = −x2

2 ∓
1
2 . These lines

meet at 12 points, with 4 on the coordinate axes. See Figure 5.
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The following points belong to the first orthant:

l+21 ∩ l
−
31 = (0, 1), l−21 ∩ l

−
32 = (1, 0), l−32 ∩ l

−
31 =

(
1

3
,

1

3

)
. (4.17)

Points in the third orthant are obtained by symmetry with respect to the origin.
The following points belong to the second orthant (two lie on axes, thus they are
shared with other orthants):

l+21 ∩ l
−
31 = (0, 1), l+21 ∩ l

+
32 = (−1, 0), l+21 ∩ l

−
32 =

(
−1

3
,

2

3

)
, (4.18)

l+21 ∩ l
+
31 =

(
−2

3
,

1

3

)
, l−32 ∩ l

+
31 = (−1, 1).

Points in the fourth orthant are obtained by symmetry with respect to the origin.
We are now ready to define the strata of our stratification.

Definition 4.1. The strata M0
1 , . . . ,M

0
12 of dimension 0 are given by the points

(4.17), (4.18) and their symmetric with respect to the origin.
The strata M1

1 , . . . ,M
1
30 of dimension 1 are given by the connected components of

the lines defined in (4.16) after removing the strata of dimension 0.
The strataM2

1 , . . . ,M
2
19 are given by the connected components of R2 after removing

the strata of dimension 0 and 1.
The strata of dimension 0 and 1 are all of type II. Define Σ(M0

i ) = M2
j , where M2

j

is such that M0
i ⊂ ∂M2

j and M2
j is the stratum containing the point of least norm

among those with such property. Similarly, define Σ(M1
i ) = M2

j , where M2
j is such

that M1
i ⊂ ∂M2

j and M2
j is the stratum containing the point of least norm among

those with such property.

We refer the reader to Figure 5 for a graphical illustration of the stratification
and the dynamics in some of the strata.

Proposition 4.6. Consider the Cauchy problem (4.5) and the stratification defined
in Definition 4.1. Then, stratified solutions are unique and converge asymptotically
to a configuration with the minimal number of clusters.

Proof. Let us start by analyzing the dynamics on the strata of dimension two.
Case A) There are six unbounded regions where |xi − xj | > 1, for all pairs i, j =

1, . . . , 3, i 6= j. See A in Figure 5. The stratified solutions on these regions are
constant.
Case B) There are other six unbounded regions where |xi − xj | < 1 for only one
couple (i, j), i 6= j. The stratified solutions verify xi(t) − xj(t) → 0, while the
remaining agent remains fixed. For the region B in Figure 5, the dynamics satisfies:

ẋ1 + ẋ2 = 0, ẋ1 − ẋ2 = −2 (x1 − x2),

thus all solutions tend to the dotted (red) line x1 = x2.
Case C) There are four bounded regions intersecting the coordinate axes but not
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Fig. 5. Graphical representation of the stratification given in Definition 4.1.

containing the origin. For the region marked as C in Figure 5, the dynamics is given
by:

ẋ1 = −3x1, ẋ2 = x1 − x2,

thus solutions exit towards the region marked E.
Case D) There are two bounded regions not intersecting the coordinate axis. For
region D in Figure 5 the dynamics is given by:

ẋ1 = −2x1 − x2, ẋ2 = −2x2 − x1,

and solutions exit towards the region marked E.
Case E) Finally, there is a bounded region containing the origin, named E in Figure
5, where all agents are interacting and trajectories converge to the origin.

The stratum of dimension one M1
i have trajectories exiting to the stratum

Σ(M1
i ). For instance, trajectories from l+21 ∩ ∂B enter the region B and the same

for l−21 ∩ ∂B. Trajectories from l−31 ∩ ∂B enter region C.
Similarly, trajectories from from l−32 ∩ ∂D enter the region D and the same for
l+31 ∩ ∂D. Trajectories from l+21 ∩ ∂D enter region E.

Finally, the stratum of dimension zero M0
i have trajectories exiting to the stra-

tum Σ(M1
i ). For instance, the trajectory from (0, 1) enters region C and the one

from (−1, 1) enters region D.
We are now ready to complete the proof. For two dimensional strata the analysis

is as follows. For strata as A there is uniqueness of trajectories and three final
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clusters. For strata as B, trajectories never exit the region and converge to two
clusters. For all other strata, trajectories converge to the origin, which corresponds
to a unique cluster.
For one dimensional strata there are two cases. If the stratum is at the boundary of
a region of type A and a region of type B, then trajectories enter the B region and
converge to two clusters. For all other strata, trajectories converge to the origin,
which corresponds to a unique cluster.
Finally, trajectories from zero dimensional strata converge to the origin, thus a
unique cluster.
We conclude that all stratified trajectories converge to a configuration with the
minimum number of clusters.

4.3. Many agents in R: Caratheodory solution

In this section, we briefly describe the combinatorial complexity of Caratheodory
solutions for N agents in R following the dynamics (3.1) with φij = 1. From Propo-
sition 3.4 we know that such solutions are also solutions in the sense of Fililppov
and Krasovskii.

Fix N ∈ N \ 0 and consider an initial condition such that:

xi+1 − xi = 1, i = 1, . . . , N − 1. (4.19)

Such initial conditions form a one-dimensional manifold in RN . The results we state
are valid for any permutation of the agents numbering, so will hold for the union
of N ! one-dimensional manifolds.

To compute the combinatorics related to the number of solutions we need to
introduce some notation. For the fixed number N of agents, we define the sets:

∆1(N) = {(n1, . . . , n`) : nk ∈ N,
∑
k

nk = N}, (4.20)

∆2(N) = {(n1, . . . , n`) : nk ∈ N,
∑
k

nk = N and nk+nk+1 ≥ 3 for k = 1, . . . , `−1}.

(4.21)
In other words, ∆1(N) is formed by the ordered `-tuple of natural numbers summing
up to N , while ∆2(N) has the further restriction that no two consecutive numbers
are equal to 1.
Given (n1, . . . , n`) ∈ ∆i(N), i = 1, 2, we define a partition P = {P1, . . . , P`} of
{1, . . . , N} as follows:

P1 := {1, . . . , n1}, and Pk =

{
1 +

k−1∑
h=1

nh, . . . ,

k∑
h=1

nh

}
, for k = 2, . . . `

In other words, Pk+1 are the nk+1 numbers following those in P1 ∪ · · · ∪ Pk.
The corresponding solutions are described in the next propositions. See also a

representation in Figure 6.
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Fig. 6. Caratheodory solutions corresponding to (3, 1, 1, 2) ∈ ∆1(7) \ ∆2(7) (Left, see Proposition
4.7) and (2, 1, 4) ∈ ∆2(7) (Right, see Proposition 4.8).

Proposition 4.7. Consider the ODE (3.1) with n = 1, φij = 1 and an initial
condition satisfying (4.19), then the following holds. For every (n1, . . . , n`) ∈ ∆1(N)

there exists an `-dimensional parametrized family of distinct Caratheodory solutions
converging to a limit x∞ such that x∞i = x∞j for every i, j ∈ Pk, k = 1, . . . , `.

Proof. Fix (n1, . . . , n`) ∈ ∆1(N). Given t̄1 ∈ [0,+∞[ we can define a dynamics for
the first n1 agents: constant on [0, t̄1] and satisfying:

ẋ1(t) = (x2 − x1)(t), ẋi = (xi−1 − xi)(t) + (xi+1 − xi)(t), i = 2, . . . , n1 − 1,

ẋn1
(t) = (xn1−1 − xn1

)(t),

for t ≥ t̄1. Notice that the first n1 agents eventually converge to their barycenter.
Similarly for every i, i = 2, . . . , `, given t̄i ∈ [0,+∞[ we can define a dynamics for
the ni agents following n1 + . . . + ni−1: constant on [0, t̄i] and with all ni agents
interacting on [t̄i,+∞[. All ni agents will converge to their barycenter. We thus
proved the statement.

Proposition 4.8. Consider the variant model (1.2). Let n = 1, φij = 1 and an
initial condition satisfying (4.19), then solutions are parametrized by ∆2(N) as
follows. For each (n1, . . . , n`) ∈ ∆2(N) there exists a single Caratheodory solution
converging to a limit x∞ such that x∞i = x∞j if and only i, j belong to the same Pk,
k = 1, . . . , `. Moreover, there is no other Caratheodory solution.

Proof. Given (n1, . . . , n`) ∈ ∆2(N), there exists a Caratheodory solution for (1.2)
such that the first n1 agents interact for all times and converge to their barycenter
and, in general, the ni agents following n1 + . . . + ni−1 interact for all times and
converge to their barycenter. This corresponds to solutions constructed in the proof
of Proposition 4.7 for the case t̄i = 0, i = 1, . . . , `. Moreover, for a group with
more than one agent, no Caratheodory solution to (1.2) can be constant on a time
interval [0, t̄], t̄ > 0, as in Proposition 4.4 case ii), due to aij(1) = 1 forcing agents
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to attract each other if they keep their distance equal to 1. Similarly, we can not
have two consecutive groups consisting of only one agent.
This proves the statement.

5. Hegselmann-Krause in higher dimensions

As we have seen in Section 4, solutions may not be unique for all the concepts,
except for classical, CLSS and stratified solutions, already in dimension one. Here
we show some additional complexity in the set of Caratheodory solutions in higher
dimension, as well as loss of uniqueness for CLSS solutions.

First consider (3.1) with n = 2, N = 4, φij = 1 with initial condition:

x1,0 = (0, 0), x2,0 = (1, 0), x3,0 = (1, 1), x4,0 = (0, 1). (5.1)

1 2

3

4

5

6

7

8

9

10

11

12

Fig. 7. Representation of potential family of solutions for the initial data (5.1).

We have the following:

Proposition 5.1. The set of Caratheodory solutions to (3.1), with n = 2, N = 4,
φij = 1, and initial datum (5.1), contains 12 parametric families of solutions as
follows. We refer to Figure 7 where in each box agents connected by edges converge
to their barycenter:

i) Case 1: single constant solution;
ii) Cases 2-5 and 8-12: one-parameter family. Given t̄ ∈ [0,+∞[ the solution

is constant on [0, t̄] then connected agents converge to their barycenter;



March 5, 2021 9:44 WSPC/INSTRUCTION FILE GenSolHK

Generalized solutions to bounded-confidence models 27

ii) Cases 6,7: family parameterized by two two-parameter sets T = A1 ∪ A2,
with A1 = {(t1, t2) : 0 ≤ t1, t2}, A2 = {(t1, t3) : 0 ≤ t1, t3}. If (t1, t2) ∈ A1,
then the solution is constant on [0,min{t1, t2}], then agents x1 and x2 for
case 6 (respectively x1 and x4 for case 7) start converging to their barycenter
( 1

2 , 0) (respectively (0, 1
2 ) for case 7) at time t1, while agents x3 and x4 for

case 6 (respectively x2 and x3 for case 7) start converging to their barycenter
( 1

2 , 1) (respectively (1, 1
2 ) for case 7) at time t2. If (t1, t3) ∈ A2, then the

solution is as for A1 with t1 = t2 up to time t1 + t3 = t2 + t3, then for
t ≥ t1 + t3 all agents interact and converge to a unique cluster at ( 1

2 ,
1
2 ).

In particular the number of asymptotic clusters can be 1, 2, 3 or 4. There is 1
asymptotic configuration with 4 clusters, 4 asymptotic configurations with 3 clusters,
6 asymptotic configurations with 2 clusters, and 1 asymptotic configuration with 1
cluster.

Proof. The proof follows the same arguments as in the proof of Proposition 4.7.

Following the logic of Proposition 4.8, we obtain the following:

Proposition 5.2. Consider the variant system (1.2), with n = 2, N = 4, φij =

1. The set of Caratheodory solutions for the initial datum (5.1) has 5 elements,
corresponding to cases 8-12 above.

As pointed out in Section 4.2, solutions from the same initial data may con-
verge to different clusters. Here we show that this effect becomes more dramatic in
dimension two, with different solutions converging to arbitrarily far away clusters.

Proposition 5.3. Consider the ODE (3.1) with n = 2 and φij = 1. Given R > 0,
there exists a system of N agents with an initial condition such that there exists
two Caratheodory solutions x1, x2 to the Cauchy Problem with limt→∞ supi |x1

i (t)−
x2
i (t)| > R.

Proof. The proof will be constructive, by recursion, by adding agents at distance 0,
1 or bigger than 1. The solution x1 is taken to be constant, while x2 is constructed
recursively by making all agents at distance 1 interact. See a representation in
Figure 8.

We start with a single agent x1 in position (0, 0). Then we add N1 (to be chosen)
agents with the following initial condition:

xi,0 = (1, 0), i = 2, . . . , N1 + 1. (5.2)

The solution x2 has all agents converging to the barycenter:

x̄1 =

(
N1

N1 + 1
, 0

)
,
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Fig. 8. The first two steps in the proof of Proposition 5.3: 1 agent (blue) starting at (0,0), N1 = 5

agents (green) starting at (1,0), N2 = 10 agents (black) starting at (.75,.998).

which is close to (1, 0) for N1 sufficiently big. Notice that, since the barycenter is
invariant, at every time t ≥ 0, there exists ε = ε(t), with 0 ≤ ε ≤ 1

N1
, such that the

agents are in the following position:

x1 =

(
N1

N1 + 1
−N1 ε, 0

)
, xi,0 =

(
N1

N1 + 1
+ ε, 0

)
, i = 2, . . . , N1. (5.3)

The final distance between the asymptotic state of the first agent along x1 and x2

is given by N1

N1+1 , which is close to 1.
We now add N2 > N1 (to be chosen) agents in position:

(y1, y2) =

 N1

N1 + 1
+ ε2

1−N1

2
,

√
1−

(
ε2(N1 + 1)

2

)2
 , (5.4)

with ε2 sufficiently small to be chosen. Then the first N1 + 1 agents reach distance
1 to the other N2 agents at the same time t such that ε(t) = ε2. We deduce that
along the solution x2 all agents converges to: N1

N1 + 1
+

N2

N2 +N1 + 1
ε2

1−N1

2
,

N2

N2 +N1 + 1

√
1−

(
ε2(N1 + 1)

2

)2


which, for N2 sufficiently large, is close to (y1, y2) of (5.4). Therefore the final
distance between the asymptotic state of the first agent along x1 and x2 is close
to the norm of (5.4), which is close to

√
2 for N1 < N2 sufficiently big and ε2

sufficiently small.
Now, by recursion, we can add N3 > N2 agents in position (y1 + 1− ε3,1, y2 − ε3,2)

choosing ε3,1 and ε3,2 so that all 1 + N1 + N2 first agents will reach distance 1
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at the same time to the other N3 agents. Reasoning as before, we can choose N3

sufficiently big and ε3,1, ε3,2, sufficiently small so that the final distance between
the asymptotic state of the first agent along x1 and x2 is close to

√
3.

By recursion, at each step we add a new group of agents at distance close to 1 to the
previous group along alternating directions (1, 0) and (0, 1). In this way, for every ν
we can choose 1 +N1 + . . .+Nν agents in initial positions so that the final distance
between the asymptotic state of the first agent along x1 and x2 is arbitrarily close
to
√
ν. Taking ν > R2 we conclude.

5.1. Non-uniqueness of CLSS solutions

In this section, we show that CLSS solutions may not be unique in dimension 2.
We first study the easier case of the variant model (1.2).

Proposition 5.4. Consider the ODE (1.2) with n = 2, N = 2, φij = 1 and initial
condition x1(0) = (0, 0), x2(0) = (1, 0) and x3(0) = ( 1

3 , 1). Then there exist two
CLSS solutions to the associated Cauchy problem.

The ODE (3.1) with the same initial data has a single CLSS solution.

Proof. Consider an approximate solution x(·) having constant derivative on the
intervals with endpoints 0 = t0 < t1 < · · · < tm = T , T sufficiently big, as in the
Definition of CLSS solution (Definition 2.3, case 5.) If x(ti) = 1

3 for some i, then
at time ti the first agent is influenced by the third agent and the solution will tend
to a unique cluster. If x(ti) 6= 1

3 for every i, then the first agent will never interact
with the third agent, so the first two agents will converge to ( 1

2 , 0) while the third
will remain constant. Since both situations can occur with arbitrarily close times
ti, there are two CLSS solutions.

It is easy to prove that the ODE (3.1) with the same initial data has a single
CLSS solution, as the case x(ti) = 1

3 does not change the dynamics.

We now prove non-uniqueness of a CLSS solution for the dynamics (3.1). The
construction is more complicated, as we study a system of 10 agents in R2 for which
two Caratheodory solutions exists. We then give two sequences of approximated
solutions, each uniformly converging to one of the two Caratheodory solutions.
Detailed computations are omitted, as they can be numerically checked.

We first define the two Caratheodory solutions. We start by fixing the following
constant values:

ε := 1/10, T := 1/100, B =
127

10
√

91
.

We also fix the initial data for the system:

x1(0) = (0, B − (B −
√

1− (1/2− 2ε)2)e2T ),

x2(0) = (0, B + (B −
√

1− (1/2− 2ε)2)e2T ),
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x3,4,5,6(0) = ((1/2− 2ε)e8T , 0), x7,8,9,10(0) = (−(1/2− 2ε)e8T , 0).

We have two Caratheodory solutions in which the groups of agents {3, 4, 5, 6}
and {7, 8, 9, 10} are kept together. The first solution x(t) is given by keeping agents
1, 2 not interacting with agents 3, . . . , 10. Thus, agents 1,2 exponentially converge
to their barycenter (0, B), following the trajectories

x1(t) = (0, B − (B −
√

1− (1/2− 2ε)2)e2T−2t), (5.5)

x2(t) = (0, B + (B −
√

1− (1/2− 2ε)2)e2T−2t).

The other agents exponentially converge to their barycenter (0, 0) following the
trajectories

x3,4,5,6(t) = ((1/2− 2ε)e8T−8t, 0), x7,8,9,10(t) = (−(1/2− 2ε)e8T−8t, 0). (5.6)

A direct computation shows that, for all t ∈ (0,+∞) it holds ‖x1(t) − x2(t)‖ < 1,
‖x3(t)−x7(t)‖ < 1 and ‖x2(t)−x3(t)‖ > ‖x1(t)−x3(t)‖ ≥ 1, with ‖x1(t)−x3(t)‖ = 1

for t = T only. This already shows that (5.5)-(5.6) is a classical and Caratheodory
solution for (3.1).

We now define a second Caratheodory solution for (3.1) denoted by yi as follows:

yi(t) =



xi(t) for i = 1, . . . , 10 and t ∈ [0, T ],

Ỹ bi (t− T ) for i = 1, 2 and t ∈ [T, Tb],

Ỹ b3 (t− T ) for i = 3, 4, 5, 6 and t ∈ [T, Tb],

Ỹ b7 (t− T ) for i = 7, 8, 9, 10 and t ∈ [T, Tb],

Ỹ ci (t− Tb) for i = 1, 2 and t ∈ [Tb,+∞),

Ỹ c3 (t− Tb) for i = 3, 4, 5, 6 and t ∈ [Tb,+∞),

Ỹ c7 (t− Tb) for i = 7, 8, 9, 10 and t ∈ [Tb,+∞),

(5.7)

where Y b, Y c are the unique solutions of the 8D-linear systems

Ẏ b =


−9 Id2 02 4 Id2 4 Id2

Id2 −Id2 02 02

Id2 02 −5 Id2 4 Id2

Id2 02 4 Id2 −5 Id2

Y b, (5.8)

Ẏ c =


−9 Id2 Id2 4 Id2 4 Id2

Id2 −9 Id2 4Id2 4Id2

Id2 Id2 −6 Id2 4 Id2

Id2 Id2 4 Id2 −6 Id2

Y c

starting at (x1, x2, x3, x7)(T ) and (x1, x2, x3, x7)(Tb), respectively, where Tb is the
first time for which ‖x2(t) − x3(t)‖ = 1. Here, the notations Id2, 02 denote the
identity and zero matrices of dimension 2, respectively. The definition of matrices
and time Tb reflect the fact that y represents the case in which agent 1 starts
interacting with agents 3, . . . , 10 at time T . This ensures that agents move closer,
up to time Tb in which agent 2 also starts interacting with all agents. It is easy
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to prove that y(t) is a Caratheodory solution to (3.1). Finally, one can prove that
there exist no other Caratheodory solutions to (3.1) keeping together the agents in
the groups 3,4,5,6 and 7,8,9,10.

We now build two sequence of sample-and-hold solutions for (3.1). First fix
the finite time interval [0, T̄ ] with T̄ ∈ (T, Tb) chosen to be of the form r+1

r T

with r ∈ N \ {0}. This allows us to focus on the simple case in which agent 2
does not interact with agents 3, . . . , 10. Define the parameter ∆t := T̄ /K for some
K ∈ r2(N \ {0, 1})2, i.e. K being a positive multiple of r2 and a perfect square
strictly larger than 3r2. This choice ensures that K −

√
K,K + 3

√
K, r+1

r K ∈ N
and K + 3

√
K ≤ r+1

r K; these properties will be useful in the following.
Consider now the sample-and-hold solution defined on the uniform sequence

tk := k∆t as

yKi (tk+1) = yKi (tk) +
∑
j 6=i

aij(‖yKi (tk)− yKj (tk)‖)(yKj (tk)− yKi (tk)), (5.9)

starting from yKi (0) = xi(0). Direct computations show that yK(t) converges to
y(t), i.e. to the second Caratheodory solution given above. Indeed, it is sufficient to
check that, if yK(t) converges to x(t) on [0, T ], then it holds

‖yK1 (T )− yK3 (T )‖2 = 1− 27

62500
K−1 + o(K−1) < 1

for K sufficiently large, i.e. agent 1 starts interacting with agents 3, . . . , 10. This
implies that yK(t) starts converging to the solution y(t) on [T, T̄ ], as it is the only
Caratheodory solution keeping groups 3,4,5,6 and 7,8,9,10 coinciding and agent 1
interacting with them.

We now build a second sequence of sample-and-hold solutions, now converging
to the Caratheodory solution x(t). We use the standard sample-and-hold solution
with uniform step ∆t = T/K defined above, up to time ∆t(K −

√
K). We then

use a single time step of length 4
√
K∆t, then the necessary steps T̄−T−3

√
K

∆t of
length ∆t to reach time T̄ . We denote such solution by xK(t). Direct computations
show that ‖xK1 (t) − xK3 (t)‖ is decreasing for t < (K −

√
K)∆t and increasing for

t > (K + 3
√
K)∆t. Moreover, it holds

‖xK1 ((K −
√
K)∆t)− xK3 ((K −

√
K)∆t)‖ = 1 +

36

56875
K−1 + o(K−1),

‖xK1 ((K + 3
√
K)∆t)− xK3 ((K + 3

√
K)∆t)‖ = 1 +

3186

1421875
K−1 + o(K−1).

This implies that, for K sufficiently large, the sequence xK defined above satisfies
‖xK1 (tk) − xK3 (tk)‖ > 1 for each tk. As a consequence, for each K, there is no
interaction between agent 1 and agents 3, . . . , 10. The sequence xK then converges
to the Caratheodory solution x(t).



March 5, 2021 9:44 WSPC/INSTRUCTION FILE GenSolHK

32 Benedetto Piccoli and Francesco Rossi

6. Uniqueness results

In this section, we provide positive results for uniqueness. As shown in Sections 4 and
5, uniqueness fails for most concept of solutions. However, this can be guaranteed
for almost every initial data for Filippov, thus also for Krasovskii and Caratheodory
solutions.

Recall Definition 3.1 and observe that eachMij is a (smooth) manifold of codi-
mension 1 in RnN , i.e. dim(Mij) = nN − 1. This implies thatM is a stratified set
of codimension 1.

We first need the following auxiliary result about uniqueness of Filippov solu-
tions. It shows that uniqueness can be lost only after reachingM.

Proposition 6.1. Let x(·), y(·) be Filippov solutions to (3.1) defined on the time
interval [0, T ], with T > 0, that satisfy x(t), y(t) 6∈ M for all t ∈ [0, T ) and x(T ) =

y(T ). It then holds x(t) = y(t) for all t ∈ [0, T ].
Similarly if x(t), y(t) 6∈ M for all t ∈ (0, T ] and x(0) = y(0), then it holds x(t) =

y(t) for all t ∈ [0, T ].

Proof. Recall that (3.1) is uniformly Lipschitz continuous on the open set RnM\M.
For the first statement, since x(t), y(t) 6∈ M on [0, T ), then the functions x(·) and
y(·) are differentiable and satisfy (3.1) on [0, T ). For every ε we can apply Gronwall
Lemma backward in time on [0, T − ε[, thus getting

‖x(t)− y(t)‖ ≤ eL(T−ε)‖x(T − ε)− y(T − ε)‖.

By letting ε→ 0 we conclude.
The second statement follows similarly, by using Gronwall Lemma forward in time.

We then prove the following result.

Proposition 6.2. Consider the system (3.1) with φij Lipschitz continuous. The
set of initial data x̄ ∈ RnN for which there exist more than one Filippov solutions
for (3.1) has zero Lebesgue measure in RnN .

Proof. Given an initial condition x̄, we define Xx̄ to be the set of solutions x(·)
to (3.1) defined on some time interval [0, T (x(·))[, with 0 < T (x(·)) ≤ +∞, and
satisfying x(0) = x̄. We set:

tU = inf{t : ∃x(·), y(·) ∈ Xx̄, t ≤ min{T (x(·)), T (y(·))}, x(t) 6= y(t)}, (6.1)

thus lack of uniqueness occurs when tU < +∞. Since M is a stratified set of
codimension 1, it has zero Lebesgue measure in RnN . Thus we only need to prove
that the following set has zero Lebesgue measure:

A = {x̄ ∈ RnN \M : tU < +∞}. (6.2)

For x̄ ∈ A, we define:

t̃ = inf{t : ∃x(·) ∈ Xx̄, x(t) ∈M}. (6.3)
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Since (3.1) is Lipschitz continuous on RnN \ M, all solutions x(·) in Xx̄ coincide
up to time t̃, and, sinceM is closed, we have x(t̃) ∈ M. Therefore x̃ = x(t̃), with
x(·) ∈ Xx̄, depends only on x̄ and not on the chosen solution x(·) ∈ Xx̄. Now, given
i, j ∈ {1, . . . , N}, i 6= j, consider the expression:

αij(x) = (xi−xj)·

∑
k 6=i,j

ai,k(‖xi − xk‖)(xk − xi)−
∑
k 6=i,j

aj,k(‖xj − xk‖)(xk − xj)


(6.4)

and define the following sets:

M̂ij = {x ∈Mij : αij(x) ∈ {0, 2}}. (6.5)

Define the set of quadruplets of indexes I ⊂ {1, . . . , N}4 by

I = {(i, j, k, l) : i 6= j, k 6= l, (i, j) 6= (k, l), (i, j) 6= (l, k)}.

Finally set:

M̂ijkl =Mij ∩Mkl, M̂ = ∪i,j:i 6=jM̂ij

⋃
∪(i,j,k,l)∈IM̂ijkl. (6.6)

Notice that each set M̂ij is of codimension two and the same is true for M̂ijkl if
(i, j, k, l) ∈ I. Therefore M̂ is of codimension 2. We now state the following claim:
Claim a) If x̃ ∈M \M̂, then there exists ε > 0 such that x(t) /∈M for t ∈]t̃, t̃+ ε[,
and x ≡ y on [0, t̃+ ε[ for every x(·), y(·) ∈ Xx̄.

We prove Claim a). By assumption there exists a unique (not ordered) couple
{i, j}, i 6= j, such that x̃ ∈Mij . Define the function:

θij(t) = ‖xi(t)− xj(t)‖2. (6.7)

Notice that θij is twice continuously differentiable on [0, t̃[ with bounded derivatives,
thus we can define ξ̃ = limt→t̃− θ̇ij(t), i.e. the left limit of the first derivative of θij
at t̃.
Assume first ξ̃ > 0. Then there exists ε > 0 such that θij is strictly increasing on
]t̃−ε, t̃[, thus θij(t) < 1 on ]t̃−ε, t̃[. Moreover, since x(t̃) /∈ M̂, possibly restricting ε,
we have that x(t) /∈ M̂ on ]t̃−ε, t̃+ε[. Recalling (6.4), we deduce ξ̃ = αij(x̃)−2 > 0.
Now, given x(·) ∈ Xx̄ for almost every t ∈]t̃, t̃ + ε[ there exists β1, β2 ∈ [0, 1] such
that:

θ̇ij(t) = (xi(t)− xj(t)) ·
( ∑
k 6=i,j

ai,k(xk(t)− xi(t))−
∑
k 6=i,j

aj,k(xk(t)− xj(t)) +

β1(xj(t)− xi(t))− β2(xj(t)− xi(t))
)
,

where we omitted the arguments of ai,k and aj,k for simplicity. It follows θ̇ij(t) ≥
αij(x(t))−2 > 0 for ε sufficiently small. Thus θij(t) > 1 on ]t̃, t̃+ε[ and x(t) /∈M on
the same interval. Proposition 6.1 implies that all solutions coincide on the interval
]t̃, t̃+ ε[ and we proved Claim a) for ξ̃ > 0.
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The case ξ̃ < 0 can be treated in an entirely similar way, concluding that θij < 1

on on ]t̃, t̃ + ε[. Finally, notice that the case ξ̃ = 0 is excluded since x̃ /∈ M̂. The
proof of Claim a) is finished.

We now state the next claim:
Claim b) Assume there exists x(·) ∈ Xx̄ such that x(t) /∈ M̂ for t ∈ [0, T [,

T > 0. Then, it either holds x(T ) ∈ M̂ or there exists ε > 0 such that all solutions
in Xx̄ coincide in [0, T + ε).

We now prove Claim b). Given x̄, we find t̃ such that x(t) 6 inM for all t ∈ [0, t̃)

and x̃ = x(t̃) ∈ M. If x̃ ∈ M̂, then T = t̃. Otherwise, define t1M = t̃ and, using
Claim a), extend x(·) on the time interval (t1M, t

2
M), where the right extremum is

given by

t2M = inf{t : t > t̃,∃x(·) ∈ Xx̄, x(t) ∈M}. (6.8)

If x(t2M) /∈ M̂, then we can define t3M and so on. That is, as long as the trajectory
from x̄ does not reach M̂, we can set:

tνM = inf{t : t > tν−1
M ,∃x(·) ∈ Xx̄, x(t) ∈M}. (6.9)

Again by Claim a), observe that the trajectory starting from x̄ is unique on all
intervals [0, tνM]. Thus, if there exists tνM > T , there exists ε > 0 such that all
solutions in Xx̄ coincide in [0, T + ε).

Otherwise, assume that tνM ≤ T for all ν. Since this is an increasing and bounded
function, it admits a limit t̄ := limν→+∞ tνM. We aim to prove t̄ = T . Since pairs
i, j are in finite number, there exists i, j, i 6= j, anda subsequence, still indicated
by tνM, such that x(tνM) ∈ Mij and thus θij(tνM) = 1 (see (6.7)). From the proof
of Claim a), we deduce that θij is continuously differentiable and not equal to 1 on
every interval ]tνM, t

ν+1
M [, and satisfies θij(tνM) = θij(t

ν+1
M ) = 1. Thus there exists

τν ∈]tνM, t
ν+1
M [ such that θ̇ij(τν) = 0. From the proof of Claim a), we have that for

every ν either θ̇ij(τν) = αij(x(τν)) or θ̇ij(τν) = αij(x(τν))− 2. Passing to the limit
in ν, we get x(t̄) ∈ M̂. We thus have t̄ = T , that proves the claim.

We now use Claim b) to prove the main result. Define:

t“M = inf{t : ∃x(·) ∈ Xx̄, x(t) ∈ M̂)}, (6.10)

and recall the definition of tU in (6.1). Claim b) ensures that, for tU < +∞, it
holdst“M ≤ tU .

This implies that A = {x̄ ∈ RnN \ M : t“M ≤ tU < +∞}. We denote by
Hr the Hausdorff measure of dimension r in RnN . Each x(·) ∈ Xx̄, x̄ ∈ A, is
Lipschitz continuous and, by Proposition 6.1, it coincides (at least) up to t“M, thus
H1+ε({x(t) : t ∈ [0, t“M], x(·) ∈ Xx̄}) = 0 for every ε > 0. By Fubini Theorem, since
M̂ is of codimension 2, for 0 < ε < 1 we have:

HnN (A) ≤
∫“M (H1+ε({x(t) : t ∈ [0, t“M], x(·) ∈ Xx̄})

)
dHnN−2+ε(x̄) = 0.
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SinceHnN coincides with the Lebesgue measure on RnN , the setA has zero measure.

7. Property P2): clustering for general solutions

In this section, we discuss property P2), also called clustering, for solutions of (3.1).
We prove that P2) holds for Filippov solutions, even though the limit is not uniquely
determined by the initial data. This implies that P3) fails, as already shown in
Section 4.

First observe that (3.1) can be written as a gradient flow as follows. Define

Φij(r) =

{∫ r
0
φij(s)s ds for r < 1∫ 1

0
φij(s)s ds for r ≥ 1

and observe that, if ‖xi − xj‖ 6= 1, for every i 6= j, then

ẋi = −
∑
j 6=i

∇Φij(|xi − xj |).

This suggests to define the following candidate Lyapunov function:

V (x) =
∑
i,j 6=i

Φij(|xi − xj |)

and observe that it holds V̇ (x(t)) ≤ 0 for a.e. time, since ∇V (x) · v ≤ 0 for each
v ∈ F (x). We now prove the following result about clustering.

Proposition 7.1. Let x1(t), . . . , xN (t) be a Filippov solution of (3.1). The follow-
ing clustering properties hold:

• each agent satisfies limt→+∞ xi(t) = x∞i for some x∞i ∈ Rn;
• the limits satisfy the following: for each i 6= j it either holds x∞i = x∞j or
‖x∞i − x∞i ‖ ≥ 1.

The same result holds for the variant model (1.2).

Remark 7.1. One might try to use a LaSalle principle to prove this result. Even
though the proof below is based on the same ideas, we need to observe that V is
not proper, it is not differentiable, and that the largest invariant set of ∇V = 0 (for
any reasonable definition of it) is never reduced to a point.

Proof. The proof is identical in the two cases (3.1)-(1.2). It is first necessary to
observe that V is not proper, i.e. it does not satisfy V (x)→ +∞ when |x| → +∞,
as it depends on pairwise distances only. Nevertheless, recall that the set Ω(t) :=

co(xi(t)) is weakly contracting, see Proposition 3.7. As a consequence, we have that
x(t) is a compact trajectory, hence it converges to its ω-limit, that is bounded.

Let now x∞ = (x∞1 , . . . , x
∞
N ) being a point in the ω-limit and assume that it

exists i, j such that |x∞i − x∞j | = L ∈ (0, 1). By definition of ω-limit, it exists an
increasing sequence tk → +∞ such that |xi(tk) − xj(tk)| ∈ (L − ε, L + ε) for any
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ε > 0. By observing that velocities for (3.1) are bounded, there exists a uniform
δ such that |xi(t) − xj(t)| ∈ (L − 2ε, L + 2ε) for all t ∈ (tk − δ, tk + δ). Choose
ε < 1

2 min(L, 1− L) and observe that

V (x(tk + δ))− V (x(tk − δ)) ≤ −2δφij(L− 2ε).

By eventually taking a subsequence of tk, one can always assume tk + δ < tk+1− δ.
By recalling that V is decreasing in time, it then holds V (tk + δ) ≤ V (x(0)) −
2δφij(L− 2ε)k, hence limk→+∞ V (tk + δ) = −∞. This contradicts the fact that V
is bounded from below.

We have now proved that any x∞ in the ω-limit satisfies either x∞i = x∞j or
‖x∞i − x∞j ‖ ≥ 1. We now need to prove that the ω-limit is reduced to a point. We
first define the transitive relation

i ∼ j when lim
t→+∞

xi(t)− xj(t) = 0.

It is crucial to observe that either it holds i ∼ j or lim inft→+∞ |xi(t)−xj(t)| ≥ 1.
Indeed, if lim inft→+∞ |xi(t)− xj(t)| ∈ (0, 1), there exist times tk → +∞ such that
|xi(tk) − xj(tk)| ∈ (L − ε, L + ε) with L ∈ (0, 1) and ε > 0 sufficiently small, that
in turn ensure limk→+∞ V (tk + δ) = −∞ as explained above. Contradiction.

It then makes sense to define clusters C1, . . . , Ck, each being the class of equiva-
lence of indexes i = 1, . . . N with respect to∼. By definition, given ε > 0, there exists
a time T0 such that all agents satisfy either |xi(t)−xj(t)| < ε or |xi(t)−xj(t)| > 1−ε
for all times t > T0. Eventually translating such time, we assume T0 = 0 from now
on.

We are now ready to prove that the center of each cluster converges. Let y1 be
the center of cluster C1, i.e. y1 = 1

N1

∑
xi where N1 is the number of elements of

C1. Since ẏ1 is defined for almost every time, one can write ẏ1 by the following
observation: for each index i ∈ C1, the contribution to ẋi of each agent j satisfying
‖xi − xj‖ 6= 1 is uniquely determined, while for j such that ‖xi − xj‖ = 1 there
exists αij ∈ [0, 1] such that the contribution is αijaij(xj − xi). By choosing αij = 1

for j 6∈ C1 with ‖xi − xj‖ 6= 1, one has

∫ T

0

|ẏ1(t)| dt =
1

N1

∫ T

0

∣∣∣∣∣∣
∑
i,j∈C1

aij(xj − xi) +
∑

i∈C1,j 6∈C1

αij(t)aij(xj − xi)

∣∣∣∣∣∣ ≤
≤ 0 +

1

N1

∫ T

0

∑
i∈C1,j 6∈C1

aij |xi(t)− xj(t)| ≤

≤ 1

N1(1− ε)

∫ T

0

∑
i,j 6=i

aij |xi(t)− xj(t)|2 =

=
1

N1(1− ε)

∫ T

0

−V̇ (x(t)) dt ≤ V (0)− V (T )

N1(1− ε)
< +∞.
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where we first used antisymmetry for i, j ∈ C1, then we recalled that V (t) is de-
creasing and bounded from below. Since ẏ1 is integrable, then y1(t) admits a limit
for t→ +∞. Since xi−xj → 0 for all i, j ∈ C1 and the center of the cluster admits
a limit, then all xi converge to such limit.

Remark 7.2. For the system (1.2) final clusters may be at distance one as shown
by next example with three agents in dimension two. Consider the initial condition
x1,0 = (0, ε), x2,0 = (0,−ε), and x3,0 = (1, 0), with ε < 1

2 . The unique Caratheodory
solution is given by

x1,0 = (0, εe−t), x2,0 = (0,−εe−t), x3,0 = (1, 0),

thus converging to two clusters (0, 0) and (1, 0).

8. Proof of main Theorems

In this section, we prove the three theorems stated in the introduction. Proofs ac-
tually collect results given in previous sections.

Proof of Theorem 1.1. Existence of solutions in the Filippov, Krasovskii,
Caratheodory, CLSS and stratified sense was shown in Section 3.2. Non-existence
of classical solutions is well-known, as shown in the counterexample in Proposition
4.3.
Uniqueness of classical solutions is standard, using Cauchy-Lipschitz argument of
uniqueness. Non-uniqueness of Filippov, Krasovskii, and Caratheodory solutions
is proved by the counterexamples of Proposition 4.1. Non-uniqueness of CLSS so-
lutions is proved in Proposition 5.4. Uniqueness of stratified solutions for a fixed
stratification is given by definition.
Uniqueness of Filippov solutions for almost every initial data was proved in Propo-
sition 6.2. This induces the same result for all other concepts of solutions, due to
Proposition 3.1. 2

Proof of Theorem 1.2. Filippov and Krasovskii solutions coincide, and they do
not satisfy P3) as shown in Proposition 4.2. They satisfy P1), as proved in Propo-
sition 3.3. They satisfy P2), as shown in Proposition 7.1.
Classical, Caratheodory, CLSS, stratified solutions satisfy P1)-P2) due to the inclu-
sion in Filippov solutions, see Proposition 3.1.

Caratheodory solutions do not satisfy P3), again by Proposition 4.2. CLSS so-
lutions do not satisfy P3), as shown by the counterexample in Section 5.1.

Classical solutions satisfy property P3), as a direct consequence of uniqueness
of the solution. Similarly, stratified solutions for a fixed stratification are unique, by
definition, thus satisfy P3). However, the asymptotic state depends on the stratifi-
cation as shown in Proposition 4.1. 2
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Proof of Theorem 1.3. Krasovskii and Filippov multifunctions are insensitive
to the value of aij(1) by definition, thus the structure of Krasovskii and Filippov
solutions does not change.
As for classical solutions, consider the Cauchy problem (4.1)-(4.2), as in Proposition
4.1. If aij(1) = 0, the Proposition states that the only classical solution is the
constant one. Instead, if aij(1) = 1, it is easy to prove that the unique classical
solution is given by

x1(t)− x2(t) = e−2t(x1,0 − x2,0), x1(t) + x2(t) = x1,0 + x2,0.

Caratheodory solutions of the variant model (1.2) are different than Caratheodory
solutions of (3.1), as shown in the examples of Poposition 5.2.
CLSS solutions are distinct in the two cases, as shown in Proposition 5.4.
For stratified solution, consider the Cauchy problem (4.1)-(4.2), as in Proposition
4.1. For (1.2) the first stratification S1 is not admissible, thus stratified solutions
are different than those for (3.1).
Proof and counterexamples for Properties P1-2-3) are identical to the study of (3.1).
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