#### **Supporting Information**

# Quasi-1D Mn<sub>2</sub>O<sub>3</sub> Nanostructures Functionalized with First-Row Transition Metal Oxides as Oxygen Evolution Catalysts

Lorenzo Bigiani,<sup>†</sup> Chiara Maccato, \*,<sup>†</sup> Teresa Andreu,<sup>§,||</sup> Alberto Gasparotto,<sup>†</sup> Cinzia Sada,<sup>#</sup> Evgeny Modin,<sup>⊥</sup> Oleg I. Lebedev, <sup> $\nabla$ </sup> Joan Ramon Morante,<sup>§,||</sup> and Davide Barreca<sup>‡</sup>

<sup>†</sup> Department of Chemical Sciences, Padova University and INSTM, 35131 Padova, Italy

§ IREC, Catalonia Institute for Energy Research, 08930 Sant Adrià de Besòs, Barcelona, Catalonia, Spain

Universitat de Barcelona (UB), 08028 Barcelona, Spain

<sup>#</sup> Department of Physics and Astronomy, Padova University and INSTM, 35131 Padova, Italy

 $^{\perp}$  CIC nanoGUNE BRTA, 20018 Donostia - San Sebastian, Spain

<sup>v</sup> Laboratoire CRISMAT, ENSICAEN UMR6508, 14050 Caen Cedex 4, France

<sup>‡</sup>CNR-ICMATE and INSTM, Department of Chemical Sciences, Padova University, 35131 Padova, Italy

\* Corresponding author; E-mail: chiara.maccato@unipd.it

### § S1. Chemico-Physical Characterization



**Figure S1.** Sketch of the electrochemical experimental setup. WE, RE, and CE represent working electrode (Ni foam-supported specimens), reference electrode (Hg/HgO), and counter electrode (Pt mesh), respectively.



**Figure S2.** (a-c) Field emission-scanning electron microscopy (FE-SEM) micrographs at different magnification levels for bare  $Mn_2O_3$  on Ni foam.



Figure S3. X-ray diffraction (XRD) patterns for Mn<sub>2</sub>O<sub>3</sub>-based specimens deposited on Ni foams.



**Figure S4.** (a) Surface X-ray photoelectron spectroscopy (XPS) surveys of  $Mn_2O_3$ -based electrodes. O1s photoelectron peaks, along with the resulting fitting components, for  $Mn_2O_3$  (b),  $Fe_2O_3-Mn_2O_3$  (c),  $Co_3O_4-Mn_2O_3$  (d), and NiO-Mn\_2O\_3 (e).



Figure S5. Secondary ion mass spectrometry (SIMS) depth profiles for the target samples.

In-depth compositional analyses by SIMS (Figure S4) revealed a good purity of the target materials (average C concentration < 100 ppm). In all cases, manganese and oxygen ionic yields were almost parallel throughout the investigated depth, a feature evidencing their common chemical origin. The trend of M (M = Fe, Co, Ni) signal as a function of thickness indicated that the functionalizing agents were present even in the inner regions of  $Mn_2O_3$  network. This phenomenon was attributed to the synergy between the porous structure of Ni foam-supported  $Mn_2O_3$  and the inherent RF-Sputtering infiltration power,<sup>1-2</sup> which was also the main origin of the broad deposit/substrate interface.

## § S2. Electrochemical Tests

| Material                                                       | Electrolyte | j @ 1.65 V<br>(mA/cm <sup>2</sup> ) | η @<br>10 mA/cm <sup>2</sup><br>(mV) | Tafel slope<br>(mV/decade) | Ref.         |
|----------------------------------------------------------------|-------------|-------------------------------------|--------------------------------------|----------------------------|--------------|
| Ni foam                                                        | 1.0 M KOH   | 4.0                                 | 477                                  | 99                         | Present work |
| Mn <sub>2</sub> O <sub>3</sub>                                 |             | 20                                  | 379                                  | 93                         |              |
| Fe <sub>2</sub> O <sub>3</sub> -Mn <sub>2</sub> O <sub>3</sub> |             | 32                                  | 352                                  | 71                         |              |
| C0 <sub>3</sub> O <sub>4</sub> -Mn <sub>2</sub> O <sub>3</sub> |             | 24                                  | 360                                  | 95                         |              |
| NiO-Mn <sub>2</sub> O <sub>3</sub>                             |             | 26                                  | 361                                  | 84                         |              |
| Mn <sub>3</sub> O <sub>4</sub>                                 | 1.0 M NaOH  | 4                                   | 501                                  | 107                        | 3            |
| Mn <sub>3</sub> O <sub>4</sub>                                 |             | 10                                  | 421                                  | 121                        |              |
| Mn <sub>5</sub> O <sub>8</sub>                                 |             | 5                                   | 481                                  | 108                        |              |
| Mn <sub>2</sub> O <sub>3</sub>                                 |             | 18                                  | 351                                  | 99                         |              |
| Mn <sub>2</sub> O <sub>3</sub>                                 | 0.1 M KOH   | 5                                   | 511                                  | 128                        | 4            |
| MnO <sub>2</sub>                                               | 0.1 M KOH   | 2                                   | 570                                  | 152                        | 5            |
| MnO <sub>2</sub> -<br>CoFe <sub>2</sub> O <sub>4</sub> /C      | 0.1 M KOH   | 6                                   | 471                                  | 130                        | 6            |
| Li-MnO <sub>x</sub>                                            | 0.1 M KOH   | 4                                   | 521                                  | 231                        | 7            |
| MnO <sub>2</sub> -Mn <sub>2</sub> O <sub>3</sub>               | 1.0 M KOH   | 10                                  | 421                                  | 109                        | 8            |
| Mn <sub>0.8</sub> Ru <sub>0.2</sub> O <sub>2</sub>             | 0.1 M KOH   | 12                                  | 411                                  | 86                         | 9            |
| Co doped MnO <sub>2</sub>                                      | 0.1 M KOH   | 3                                   | 491                                  | 73                         | 10           |
| Mn <sub>2</sub> O <sub>3</sub>                                 | 1.0 M NaOH  | 2                                   | 601                                  | 130                        | - 11         |
| RuO <sub>2</sub> -Mn <sub>2</sub> O <sub>3</sub>               |             | 15                                  | 371                                  | 70                         |              |
| Mn <sub>2</sub> O <sub>3</sub>                                 | 0.1 M KOH   | 10                                  | 421                                  | 81                         | . 12         |
| Mn <sub>3</sub> O <sub>4</sub>                                 |             | 5                                   | 491                                  | 95                         |              |
| Mn <sub>2</sub> O <sub>3</sub>                                 | 1.0 M KOH   | 60                                  | 291                                  | 85                         | 13           |

**Table S1.** Comparison of oxygen evolution reaction (OER) performances of the actual  $Mn_2O_3$ -based materials with selected literature data reported for manganese oxide electrocatalysts operating in alkaline media.

| Material         | Electrolyte | j @ 1.65 V<br>(mA/cm²) | E @<br>10 mA/cm <sup>2</sup><br>(V vs<br>RHE) | Tafel slope<br>(mV/decad<br>e) | Ref. |
|------------------|-------------|------------------------|-----------------------------------------------|--------------------------------|------|
| IrO <sub>2</sub> | 1.0 M KOH   | 65                     | 331                                           | 62                             | 14   |
| IrO <sub>2</sub> | 1.0 M KOH   | 50                     | 331                                           | 54                             | 15   |
| IrO <sub>2</sub> | 1.0 M KOH   | 18                     | 391                                           | 149                            | 16   |
| IrO <sub>2</sub> | 1.0 M KOH   | 53                     | 321                                           | 91                             | 17   |
| IrO <sub>2</sub> | 0.1 M KOH   | 8                      | 461                                           | 113                            | 12   |
| IrO <sub>2</sub> | 1.0 M KOH   | 27                     | 351                                           | 67                             | 18   |
| RuO <sub>2</sub> |             | 15                     | 371                                           | 89                             |      |
| RuO <sub>2</sub> | 0.1 M KOH   | 17                     | 391                                           | 71                             | 19   |
| RuO <sub>2</sub> | 0.1 M KOH   | 52                     | 301                                           | 62                             | 20   |
| RuO <sub>2</sub> | 1.0 M KOH   | 13                     | 411                                           | 74                             | 21   |

Table S2. OER performances of selected IrO<sub>2</sub> and RuO<sub>2</sub> electrocatalysts operating in alkaline media.



**Figure S6.** Chronoamperometry curves for the target specimens at a fixed potential of 1.60 V *vs*. the reversible hydrogen electrode (RHE).



**Figure S7.** Linear sweep voltammetry (LSV) curves collected on as-prepared samples (solid line) and after 6 months (dashed line) for (a)  $Mn_2O_3$ , (b)  $Fe_2O_3-Mn_2O_3$ , (c)  $Co_3O_4-Mn_2O_3$ , and (d) NiO-Mn\_2O\_3. Grey curves represent LSV data recorded monthly over a period of 6 months.



**Figure S8.** XPS spectra of (a) Mn2p, (b) Mn3s, (c) O1s, (d) Fe2p, (e) Co2p, (f) Ni2p for  $Mn_2O_3$ -based electrodes after 6 months.

#### References

- (1) Carraro, G.; Gasparotto, A.; Maccato, C.; Bontempi, E.; Bilo, F.; Peeters, D.; Sada, C.; Barreca,
   D. A Plasma-Assisted Approach for the Controlled Dispersion of CuO Aggregates into β Iron(III)
   Oxide Matrices. *CrystEngComm* 2014, *16*, 8710-8716.
- (2) Carraro, G.; Maccato, C.; Gasparotto, A.; Kaunisto, K.; Sada, C.; Barreca, D. Plasma-Assisted Fabrication of Fe<sub>2</sub>O<sub>3</sub>-Co<sub>3</sub>O<sub>4</sub> Nanomaterials as Anodes for Photoelectrochemical Water Splitting. *Plasma Processes Polym.* 2016, *13*, 191-200.
- (3) Liu, G. Y.; Hall, J.; Nasiri, N.; Gengenbach, T.; Spiccia, L.; Cheah, M. H.; Tricoli, A. Scalable Synthesis of Efficient Water Oxidation Catalysts: Insights into the Activity of Flame-Made Manganese Oxide Nanocrystals. *ChemSusChem* 2015, *8*, 4162-4171.
- (4) Jahan, M.; Tominaka, S.; Henzie, J. Phase Pure α-Mn<sub>2</sub>O<sub>3</sub> Prisms and their Bifunctional Electrocatalytic Activity in Oxygen Evolution and Reduction Reactions. *Dalton Trans.* 2016, 45, 18494-18501.
- (5) He, J.; Wang, M.; Wang, W.; Miao, R.; Zhong, W.; Chen, S.-Y.; Poges, S.; Jafari, T.; Song, W.;
  Liu, J.; Suib, S. L. Hierarchical Mesoporous NiO/MnO<sub>2</sub>@PANI Core–Shell Microspheres,
  Highly Efficient and Stable Bifunctional Electrocatalysts for Oxygen Evolution and Reduction
  Reactions. ACS Appl. Mater. Interfaces 2017, 9, 42676-42687.
- (6) Wang, Y.; Liu, Q.; Hu, T.; Zhang, L.; Deng, Y. Carbon Supported MnO<sub>2</sub>-CoFe<sub>2</sub>O<sub>4</sub> with Enhanced Electrocatalytic Activity for Oxygen Reduction and Oxygen Evolution. *Appl. Surf. Sci.* 2017, 403, 51-56.
- (7) Kosasang, S.; Ma, N.; Wuamprakhon, P.; Phattharasupakun, N.; Maihom, T.; Limtrakul, J.;

Sawangphruk, M. Insight into the Effect of Intercalated Alkaline Cations of Layered Manganese
Oxides on the Oxygen Reduction Reaction and Oxygen Evolution Reaction. *Chem. Commun.*2018, *54*, 8575-8578.

- (8) Liu, P.-P.; Li, T.-T.; Zhu, H.-L.; Zheng, Y.-Q. Manganese Oxide with Hollow Rambutan-Like Morphology as Highly Efficient Electrocatalyst for Oxygen Evolution Reaction. J. Solid State Electrochem. 2018, 22, 2999-3007.
- (9) Kang, B.; Jin, X.; Oh, S. M.; Patil, S. B.; Kim, M. G.; Kim, S. H.; Hwang, S.-J. An Effective Way to Improve Bifunctional Electrocatalyst Activity of Manganese Oxide via Control of Bond Competition. *Appl. Catal.*, B 2018, 236, 107-116.
- (10) West, P. J.; Byles, B. W.; Pomerantseva, E. Creation of Controllable Cationic and Anionic Defects in Tunnel Manganese Oxide Nanowires for Enhanced Oxygen Evolution Reaction.
   *Polyhedron* 2019, 171, 32-40.
- (11) Browne, M. P.; Nolan, H.; Twamley, B.; Duesberg, G. S.; Colavita, P. E.; Lyons, M. E. G. Thermally Prepared Mn<sub>2</sub>O<sub>3</sub>/RuO<sub>2</sub>/Ru Thin Films as Highly Active Catalysts for the Oxygen Evolution Reaction in Alkaline Media. *ChemElectroChem* 2016, *3*, 1847-1855.
- (12) Sim, H.; Lee, J.; Yu, T.; Lim, B. Manganese Oxide with Different Composition and Morphology as Electrocatalyst for Oxygen Evolution Reaction. *Korean J. Chem. Eng.* 2018, 35, 257-262.
- (13) Liu, P.-P.; Zheng, Y.-Q.; Zhu, H.-L.; Li, T.-T. Mn<sub>2</sub>O<sub>3</sub> Hollow Nanotube Arrays on Ni Foam as Efficient Supercapacitors and Electrocatalysts for Oxygen Evolution Reaction. *ACS Appl. Nano Mater.* 2019, *2*, 744-749.
- (14) Qin, F.; Zhao, Z.; Alam, M. K.; Ni, Y.; Robles-Hernandez, F.; Yu, L.; Chen, S.; Ren, Z.; Wang,Z.; Bao, J. Trimetallic NiFeMo for Overall Electrochemical Water Splitting with a Low Cell

Voltage. ACS Energy Lett. 2018, 3, 546-554.

- (15) Yu, M. Q.; Jiang, L. X.; Yang, H. G. Ultrathin Nanosheets Constructed CoMoO<sub>4</sub> Porous Flowers with High Activity for Electrocatalytic Oxygen Evolution. *Chem. Commun.* 2015, *51*, 14361-14364.
- (16) Jiao, L.; Zhou, Y.-X.; Jiang, H.-L. Metal–Organic Framework-Based CoP/Reduced Graphene Oxide: High-Performance Bifunctional Electrocatalyst for Overall Water Splitting. *Chem. Sci.* 2016, 7, 1690-1695.
- (17) Qazi, U. Y.; Yuan, C.-Z.; Ullah, N.; Jiang, Y.-F.; Imran, M.; Zeb, A.; Zhao, S.-J.; Javaid, R.; Xu, A.-W. One-Step Growth of Iron–Nickel Bimetallic Nanoparticles on FeNi Alloy Foils: Highly Efficient Advanced Electrodes for the Oxygen Evolution Reaction. *ACS Appl. Mater. Interfaces* 2017, *9*, 28627-28634.
- (18) Xiao, Q.; Zhang, Y.; Guo, X.; Jing, L.; Yang, Z.; Xue, Y.; Yan, Y.-M.; Sun, K. A High-Performance Electrocatalyst for Oxygen Evolution Reactions based on Electrochemical Post-Treatment of Ultrathin Carbon Layer Coated Cobalt Nanoparticles. *Chem. Commun.* 2014, *50*, 13019-13022.
- (19) Ahmed, M. S.; Choi, B.; Kim, Y.-B. Development of Highly Active Bifunctional Electrocatalyst Using Co<sub>3</sub>O<sub>4</sub> on Carbon Nanotubes for Oxygen Reduction and Oxygen Evolution. *Sci. Rep.* 2018, *8*, 2543.
- (20) Li, X.; Wang, H.; Cui, Z.; Li, Y.; Xin, S.; Zhou, J.; Long, Y.; Jin, C.; Goodenough, J. B.
   Exceptional Oxygen Evolution Reactivities on CaCoO<sub>3</sub> and SrCoO<sub>3</sub>. *Sci. Adv.* 2019, *5*, eaav6262.
- (21) Das, D.; Das, A.; Reghunath, M.; Nanda, K. K. Phosphine-Free Avenue to Co<sub>2</sub>P Nanoparticle Encapsulated N,P co-Doped CNTs: A Novel Non-Enzymatic Glucose Sensor and an Efficient

Electrocatalyst for Oxygen Evolution Reaction. Green Chem. 2017, 19, 1327-1335.