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STABLE COHOMOLOGY OF THE PERFECT CONE

TOROIDAL COMPACTIFICATION OF Ag

SAMUEL GRUSHEVSKY, KLAUS HULEK, AND ORSOLA TOMMASI

Abstract. We show that the cohomology of the perfect cone (also
called first Voronoi) toroidal compactification APerf

g
of the moduli

space of complex principally polarized abelian varieties stabilizes
in close to the top degree. Moreover, we show that this stable
cohomology is purely algebraic, and we compute it in degree up
to 13. Our explicit computations and stabilization results apply in
greater generality to various toroidal compactifications and partial
compactifications, and in particular we show that the cohomology
of the matroidal partial compactification AMatr

g
stabilizes in fixed

degree, and forms a polynomial algebra. For degree up to 8, we
describe explicitly the generators of the cohomology, and discuss
various approaches to computing all of the stable cohomology in
general.

1. Introduction

The stabilization of cohomology is of great interest in the study of
the geometry of moduli spaces. The most notable results in this direc-
tion are the stabilization of the cohomology of the moduli space Ag of
g-dimensional complex principally polarized abelian varieties (ppav),
proved by Borel [Bor74], and of the moduli space Mg of non-singular
algebraic curves of genus g, first proved by Harer in [Har85]. In both
cases, the cohomology with Q coefficients is shown to stabilize, in the
sense that the degree k cohomology group of the moduli space is inde-
pendent of g when g is sufficiently large with respect to k. In both cases,
stable cohomology is freely generated by classes whose geometric mean-
ing is well understood: it follows from the work of Borel that the odd
λ-classes generate the stable cohomology Ag, while the fact that the
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κ-classes generate the stable cohomology of Mg is the celebrated the-
orem of Madsen and Weiss [MW07], proven using homotopy-theoretic
methods.
It is natural to wonder whether similar stability occurs also for com-

pactifications of moduli spaces. This is clearly not the case for the
Deligne–Mumford compactification Mg of Mg, because it is known
that the rank of the Picard group of Mg, and hence its second co-
homology, grows linearly in g. On the other hand, it was shown by
Charney and Lee [CL83] that the cohomology of the Satake (minimal)
compactification ASat

g of Ag stabilizes in the same range as Hk(Ag).
For questions in algebraic geometry, the toroidal compactifications of
Ag introduced in [AMRT10] are most relevant. The stabilization of co-
homology for any toroidal compactification in any range is a completely
open problem (see [Gr09, §6]), and as we shall see the answer also de-
pends on the compactification chosen. Moreover, the question is also
interesting for partial compactifications of Ag such as the matroidal
partial toroidal compactification.

The main purpose of this paper is to show the stabilization of coho-
mology in close to the top degree for the perfect cone toroidal compacti-
ficationAPerf

g ofAg. Throughout the paper we work with Q coefficients,
and our main result is the following

Theorem 1.1 (Main theorem). The cohomology and the homology of
the perfect cone compactification stabilize in close to the top degree,
i.e. the groups Hg(g+1)−k(APerf

g ,Q) and Hg(g+1)−k(A
Perf
g ,Q) are inde-

pendent of g for k < g.

Let us recall that the map Ag → Ag+1 defined by taking the product
with a fixed elliptic curve extends to a map APerf

g → APerf
g+1 which is a

transversal embedding with well-defined normal bundle, after passing
to a suitable finite cover. This ensures the existence of Gysin maps
H(g+1)(g+2)−k(A

Perf
g+1 ,Q) → Hg(g+1)−k(A

Perf
g ,Q). In the stable range,

these maps induce the stabilization isomorphisms in our theorem.
The method of our proof is by noting that APerf

g admits a stratifica-
tion with strata corresponding to various cones in the perfect cone or
first Voronoi decomposition. First, we prove in Theorem 8.1 that the
cohomology of each stratum stabilizes. Then we use the Gysin exact se-
quence to compute the cohomology of the union of all strata, using the
specifics of the perfect fan to argue that the resulting cohomology stabi-
lizes. This construction can be extended in a straightforward way to ho-
mology using long exact sequences in Borel–Moore homology. In partic-
ular, we obtain a stabilization isomorphism H(g+1)(g+2)−k(A

Perf
g+1 ,Q) →
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Hg(g+1)−k(A
Perf
g ,Q) in the stable range which restricts to the usual

Gysin map on each toroidal stratum.
If one considers the cycle map to homology on the singular space

APerf
g , the constructions above allow us to see where the stable homol-

ogy classes come from, proving the next result:

Theorem 1.2. The stable homology groups Hg(g+1)−k(A
Perf
g ,Q) for k <

g are generated by algebraic classes.

If Poincaré duality were to hold, one could relate the close to top
degree cohomology groups Hg(g+1)−k(APerf

g ,Q) to Hk(APerf
g ,Q). Since,

however, the perfect cone toroidal compactification is singular, there is
no a priori reason for Poincaré duality to hold. Indeed, our computa-
tions in genus 4 [HT12] show that Poincaré duality does fail, although
these computations still allow for the possibility for Poincaré duality
to hold in the stable range. A different approach would be to look at
the intersection cohomology of APerf

g . It was recently shown by Dutour
Sikirić, Schürmann, and the second author in [DSHS13], that for g ≥ 4
the locus of singular points of the stack APerf

g has codimension 10 in

APerf
g (while APerf

g is smooth as a stack for g ≤ 3). This implies by

[Dur95, Prop. 3] that IHk(APerf
g ,Q) = Hg(g+1)−k(APerf

g ,Q) for k ≤ 10

for the middle perversity intersection cohomology of APerf
g . Moreover,

by the results in [BBF+95] algebraic cycles can always be lifted to in-
tersection homology. Combining this with the two theorems above,
we get that the stable homology Hg(g+1)−k(A

Perf
g ,Q) can be lifted to

IHg(g+1)−k(A
Perf
g ,Q) ∼= IHk(APerf

g ,Q). This motivates the following

Question 1.3. Does the intersection cohomology of the perfect cone
compactification stabilize, more specifically, is it true that the homo-
morphism IHk(APerf

g ,Q) ։ Hg(g+1)−k(A
Perf
g ,Q) is an isomorphism for

all k < g?

As the stability mapAPerf
g → APerf

g+1 is (in an orbifold sense) a transver-
sal embedding of pure dimension, there is a well-defined map for inter-
section cohomology IHk(APerf

g+1 ,Q) → IHk(APerf
g ,Q). Combining this

with the (hypothetical) isomorphism from Question 1.3 would prove
that also the intersection cohomology of APerf

g stabilizes in the range
k < g.
It is, at this stage, opportune to go briefly back and consider the

situation for the Satake compactification ASat
g . Recall that the stable

cohomology of the Satake compactification was computed by Charney
and Lee:



4 SAMUEL GRUSHEVSKY, KLAUS HULEK, AND ORSOLA TOMMASI

Theorem 1.4 ([CL83]). For k fixed and g > k the rational cohomology
Hk(ASat

g ,Q) does not depend on g, and the stable cohomology ring is
freely generated by classes λ1, λ3, λ5, . . ., and α3, α5, α7, . . . where both
λi and αi are in degree 2i.

Here the λ-classes are extensions of the Chern classes λi = ci(E) ∈
H2i(Ag,Q) of the Hodge bundle E. The Hodge bundle does not ex-
tend to ASat

g but by [Mum77], [FC90, §V.2] it extends to any toroidal

compactification and the pullback of the classes λi on ASat
g to a smooth

projective toroidal compactification are the Chern classes of the ex-
tended Hodge bundle.
The geometric meaning of the αi ∈ H2i(ASat

g ,Q) is less clear. By the
results of [Hai02] there is a non-algebraic class (it has a wrong Tate
twist) in H6(ASat

3 ), which is likely to be α3, and it follows from the
results of [HT12] that there is also a non-algebraic class in H8(ASat

4 ),
which is likely to be α3λ1. Furthermore, Chen and Looijenga [ChL15]
recently proved that all αi are of Hodge type (0, 0), which in particular
implies that they are not algebraic.
On the other hand using our methods it is easy to see that the

cohomology of ASat
g in close to top degree also stabilizes, and we can

compute it explicitly:

Theorem 1.5. The cohomology Hg(g+1)−k(ASat
g ,Q) is independent of

g for k < g, and is dual to the truncated free algebra generated by the
odd Hodge classes λ2i+1.

We recall that the starting point for the study of the stable cohomol-
ogy of Ag is the theorem of Borel (see Theorem 3.1 below), which says
that the cohomologyHk(Ag) for k < g is freely generated by the classes
λ1, λ3, λ5, . . .. Thus the theorem above says that the stable cohomology
in close to top degree of ASat

g is dual to this, which is expected to be

the algebraic part of the stable cohomology of ASat
g .

We shall now return to toroidal compactifications and partial com-
pactifications, in particular the perfect cone compactification APerf

g . As
we explained, the principal ingredient of our method is that we prove
the stabilization for each of the toroidal strata, using representation
theory, and then by assembling this information using the Gysin spec-
tral sequence. As at each step we are doing explicit manipulations, as
a result we get an effective procedure to compute the dimensions of
the stable cohomology groups (and also to say something about their
generators). While this quickly becomes very involved combinatorially,
for low degree we get the following result:
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Theorem 1.6. The stable Betti numbers of the perfect cone compacti-
fication (i.e. dimQHg(g+1)−k(APerf

g ,Q) for k < g) in even degree are as
follows:

k 0 2 4 6 8 10 12

dimQHg(g+1)−k(APerf
g ,Q) 1 2 4 9 18 38 83

Moreover, the stable cohomology Hg(g+1)−k(APerf
g ,Q) vanishes for odd

k ≤ 13.

Remark 1.7. We note that similar questions are also currently under
investigation by Jeffrey Giansiracusa and Gregory Sankaran [GS13].
Their techniques are mostly topological, and at the moment it appears
that their method would yield the stabilization of the cohomology of the
matroidal locus in low degree with Z[1/2] coefficients, i.e. the indepen-
dence of Hk(AMatr

g ,Z[1/2]) of g for g ≫ k. It does not at the moment
appear that their method would yield a way to explicitly identify the
generators or compute the dimensions of stable cohomology, and thus
their results are in a sense rather complementary to ours.

In fact, our technique also applies to show that the cohomology of the
matroidal locus stabilizes. We recall that the matroidal locus AMatr

g is a
partial toroidal compactification of Ag obtained by taking the union of
strata corresponding to all matroidal cones. Melo and Viviani [MV12]
showed that a cone is contained in both the perfect cone decomposition
and the second Voronoi decomposition if and only if it is a matroidal
cone. In particular the matroidal locus is the biggest partial toroidal
compactification contained in both APerf

g and AVor
g as a Zariski open

subset. Thus the results of Alexeev and Brunyate [AB11] imply that
the Torelli map Mg → Ag extends to a morphism Mg → AMatr

g from
the Deligne–Mumford compactification. Our result for the matroidal
locus is the following:

Theorem 1.8. The cohomology of the matroidal partial toroidal com-
pactification stabilizes, i.e. Hk(AMatr

g ,Q) does not depend on g for
k < g. The stable cohomology is generated by algebraic classes.

Since all matroidal cones are simplicial by [ER94, Theorem 4.1] and
thus define rationally smooth toric varieties, the coarse moduli space
of AMatr

g is a rational homology manifold. Hence the stability result
for cohomology in Theorem 1.8 is equivalent to a stability result for
cohomology with compact support in close to the top degree.
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Similarly to the above, as a corollary of our work for the perfect cone
compactification we obtain (essentially simply by omitting all the non-
matroidal strata) the dimensions of stable cohomology of the matroidal
locus in degree up to 12:

Theorem 1.9. The stable cohomology of the matroidal locus in low
degree vanishes in odd degree and is given by the following table in
even degree

k 0 2 4 6 8 10 12

dimHk(AMatr
g ,Q) 1 2 4 9 18 37 78

Proving stabilization in low degree has the advantage that in this
case, stable cohomology has a natural structure of a graded Hopf al-
gebra. As was pointed out to us by Nicholas Shepherd-Barron, when
the cohomology of a (partial) compactification Ag of Ag stabilizes, the
stable cohomology can be identified with the cohomology of the induc-
tive limit A∞ of the sequence of maps · · · → Ag → Ag+1 → · · · . In
particular, whenever the map Ag1 × Ag2 → Ag1+g2 defined by taking
the product of abelian varieties extends to a map of compactifications
Ag1×Ag2 → Ag1+g2 for all g1, g2 ≥ 0, the inductive limit A∞ has a nat-
ural structure as an H-space. Then one can apply Hopf’s theorem (see
e.g. [Hat02, Thm. 3C.4]) to conclude that the rational cohomology
of A∞, i.e. the stable cohomology of Ag, is a free graded-commutative
algebra, the tensor product of an exterior algebra on odd-degree gen-
erators and a polynomial algebra on even-degree generators.
In particular, in the case of AMatr

g , the two theorems above, together
with some results from Section 12, imply the following:

Corollary 1.10. The stable cohomology of AMatr
g is a polynomial al-

gebra generated by algebraic classes. In low degree k ≤ 12, a possible
choice of generators is given by λ1, λ3, λ5, the fundamental classes of
the strata of AMatr

g corresponding to the matroidal cones of dimension
smaller than or equal to 6, one additional generator in degree 10, and
two in degree 12.

In Section 12 we will also discuss two natural subrings of the coho-
mology ring of the partial compactification consisting of all the simpli-
cial (i.e. corresponding to stack-smooth strata) cones of APerf

g , which

includes the smooth locus and the matroidal locus AMatr
g as open sub-

sets. More precisely we will investigate what we call the strata algebra,
which is generated by the fundamental classes of the strata correspond-
ing to the various simplicial cones in the decomposition, and the bound-
ary algebra, which is generated by polynomials in divisorial boundary
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components of APerf
g (2) invariant under the deck group action, where

in each case we also add the Hodge classes λi. This gives a supply of
geometrically defined cohomology classes. It turns out that neither of
these subrings suffices to generate the entire cohomology.

Proposition 1.11. Neither the strata algebra nor the boundary algebra
span the stable cohomology of APerf

g .

This proposition is simply a numerical statement — at the end of
the paper we will see that both the boundary algebra and the strata
algebra in degree 12 have dimension less than the stable cohomology.
Indeed, one expects the geometrical interpretation of stable coho-

mology to be easier when restricting to suitable open subsets of APerf
g ,

as also the discussion of the matroidal locus AMatr
g shows. One can

ask this question not only for the matroidal locus, but also for other
geometrically relevant partial compactifications. A first step in this
direction is Theorem 9.8, where we prove that the stable cohomology
of the union AStd

g of the strata of APerf
g corresponding to the standard

cones 〈x2
1, . . . , x

2
n〉 is freely generated over the stable cohomology of Ag

by the fundamental classes of the strata.
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2. Method of proof

In this section, we review the ideas and the techniques involved in
computing cohomology of toroidal compactifications.
We start by pointing out that working in the stable range has the

powerful advantage that one can make use of Borel’s results on the sta-
ble cohomology of the group Sp(2g,Z). Indeed, the stable cohomology
of Ag, being a K(Sp(2g,Z), 1), is equal to the stable cohomology of
Sp(2g,Z), and was computed by Borel [Bor74, Bor81]. Moreover, it
is also known that the stable cohomology of all non-trivial irreducible
rational local systems on Ag (equivalently, of irreducible rational repre-
sentations of the algebraic group Sp(2g)) is simply zero by a strength-
ening [Hai97, Theorem 3.2] of Borel’s stability theorem.
We now proceed to compute the cohomology of various partial toroidal

compactifications of Ag obtained by adding various boundary strata.
To explain this, we first recall that any toroidal compactification Ator

g

of Ag admits a natural map ϕ : Ator
g → ASat

g to the Satake compactifi-
cation. The latter is the disjoint union

(1) ASat
g = Ag ⊔ Ag−1 ⊔ . . . ⊔A0,

and we set βi := ϕ−1(ASat
g−i) and β0

i := βi \ βi−1 = ϕ−1(Ag−i). Each β0
i

in turn is stratified by sets β(σ) where σ runs through all cones in the
perfect cone decomposition of Sym2

≥0(R
i) whose general element has

rank i. We shall refer to such cones as rank i cones. The stratum β(σ)
is the quotient of a torus bundle T (σ) over the i-fold fiber product
X×i

g−i := Xg−i ×Ag−i
. . .×Ag−i

Xg−i → Ag−i of the universal family by a
finite group G(σ), namely the stabilizer of the cone σ in GL(i,Z). The
codimension of β(σ) in Ator

g equals the dimension of σ.
Throughout this work we shall make use of the perfect cone toroidal

compactification APerf
g . Our method of computing the stable cohomol-

ogy of APerf
g , and the outline of the paper, are as follows. In section 3 we

recall the relevant results of Borel and Hain, and other necessary back-
ground on representations of the symplectic group. At the end of that
section, as a warmup, we prove by using Gysin’s exact sequence the
stabilization (in close to top degree) of the cohomology of the Satake
compactification, proving Theorem 1.5.
For the toroidal case, in Section 4 we compute the stable cohomol-

ogy of the universal family Xg. This result will be generalized later in
Section 6 to a computation of the stable cohomology of the fiber prod-
uct X×n

g for n fixed. Since Mumford’s partial toroidal compactification
Ag ⊔ β0

1 is equal to Ag ⊔ (Xg−1/ı), by using the Gysin exact sequence,
in Section 5 we are then able to compute the stable cohomology of
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the partial toroidal compactification. Note that these computations
are in fact easier in the stable cohomology than similar calculations in
[HT10, HT12] for g = 3, 4, as it turns out that in the stable range only
the even degree part of cohomology is non-zero, and thus the Gysin
long exact sequence breaks up into short exact sequences.
This idea — of computing the cohomology of an individual stratum,

and then gluing it to the union of the previously considered strata —
is the method that allows us to prove the existence of the stable co-
homology of the perfect cone compactification (and by restriction —
of the matroidal locus) in general. In Section 7 we review the con-
struction of the perfect cone toroidal compactification, and prove its
various combinatorial properties. In Section 8 we then use the Leray
spectral sequence to argue that the cohomology of the torus bundles
T (σ), with σ fixed, and g varying, stabilizes, and moreover (only in the
stable range!) vanishes in odd degree.
This computation requires dealing with certain local systems Vµ cor-

responding to irreducible representations of the algebraic group Sp(2g)
indexed by some partition µ. By the results of Borel and Hain we

know the stable cohomology Hk(Ag,Vµ), for k < g, of which we have

to compute the G(σ)-invariant part. We finally compute the stable
cohomology (still in low degree, as opposed to the close to top degree)
of each individual stratum β(σ), and note that this computation in
fact works for any cone, not necessarily just a cone in the perfect cone
decomposition.
Adding the strata one by one, we use the Gysin (excision) exact se-

quence for cohomology with compact support to compute the stable
cohomology of various partial toroidal compactifications of Ag. For
this, we need both the new stratum itself, and the total space obtained
to be smooth, so that we can use Poincaré duality to identify Htop−k

c

with the previously computed Hk (for k < g). In Section 9 we argue
that this process indeed stabilizes, thus proving our main Theorem 1.1
on the stabilization of the cohomology of APerf

g in close to top degree;

our proof also yields the stabilization of the cohomology of AMatr
g in low

degree, Theorem 1.8. Finally, we use the same techniques to describe
the stable cohomology of the open subset of AMatr

g consisting of degen-
erations given by standard cones and prove that its stable cohomology
is freely generated by the odd λ-classes and the fundamental classes of
the boundary strata (Theorem 9.8).
In Section 10 we demonstrate how this process works, by dealing

explicitly with β0
2 , which is the union of two strata corresponding to

semiabelic varieties with the normalization of the toric part being P1×
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P1 and two copies of P2, respectively. Moreover, applying methodically
the procedure described above yields in particular Htop−k(APerf

g ,Q) for
k ≤ 13, and we give the results of these computations in Section 11,
proving Theorem 1.6, from which Theorem 1.9 easily follows. We note
that computing the entire stable cohomology of APerf

g \ APerf
g,sing or of

the matroidal locus by our method currently seems out of reach, as
it would involve going through all the possible combinatorics of the
strata. Finally in Section 12 we construct algebraic representatives for
(much of) the stable cohomology in low degree. Moreover we discuss
the strata algebra and the boundary algebra.

3. Review of stable cohomology of local systems on Ag

Symplectic local systems over Ag play a central role in our computa-
tions. Let us start by fixing the notation. Let µ = (µ1 ≥ µ2 ≥ · · · ≥ µg)
be a Young diagram with at most g rows. Equivalently, we can view
µ as an arbitrary partition of length at most g. If we denote by V the
standard rational representation of the group scheme Sp(2g), then the
representation Vµ of Sp(2g) is the irreducible representation of highest
weight in the tensor product

Symµ1−µ2(V)⊗Symµ2−µ3
(

2
∧

V
)

⊗· · ·⊗Symµg−1−µg
(

g−1
∧

V
)

⊗
(

g
∧

V
)⊗µg

.

One can generalize the definition of Vµ to obtain a local system over
Ag, by applying the same construction as above, but now setting V to
be the local system R1π∗Q, where π : Xg → Ag is the universal family
over Ag. Note that Vµ, defined in this way, is naturally a Hodge module

of weight equal to the weight w(µ) =
∑g

i=1 µi of µ. One can obtain
more Hodge modules by taking Tate twists of Vµ. We will denote such
Tate twists by

Vµ(k) = Vµ ⊗Q(k)

for all Young diagrams µ with at most g rows and all k ∈ Z; the Hodge
weight of Vµ(k) is then w(µ)−2k. Such Tate twists can be interpreted
in the context of representation theory by working with representations
of the group of symplectic similitudes

GSp(2g,Q) =
{

M ∈ Mat(2g, 2g)|MJ tM = ηJ, η ∈ Q∗} ,

where J =
(

0 1g

−1g 0

)

denotes the symplectic matrix. The Tate Hodge

module Q(−1) is the inverse η−1 of the multiplier representation η :
GSp(2g,Q) → Q∗, and V is the product of the standard representation
of GSp(2g,Q) and η−1.
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Theorem 3.1 ([Bor74, Bor81], [Hai97, Theorem 3.2]). For the group
cohomology of the symplectic group with coefficients in the rational rep-
resentation Vµ, for all k < g we have

Hk(Sp(2g,Z),Vµ) =

{

Q[x2, x6, x10, . . .]k if µ = 0

0 otherwise,

where in the first case this is the degree k subspace of the graded ring
generated by classes xi. In particular the stable cohomology is zero in
every odd degree.

The classes xi in fact are algebraic and have a geometric meaning;
the geometric content of the above theorem is the following

Corollary 3.2 (Borel [Bor74, Bor81]). The stable cohomology of Ag

is freely generated by the Chern classes λ2i+1 := c2i+1(E) of the Hodge
bundle, i.e. for k < g the vector space Hk(Ag,Q) is the vector space
generated by monomials of total degree k in λ1, λ3, . . . (where the degree
of λ2i+1 is equal to 4i+ 2).

As a warmup, and to show one little step of our general machinery,
we now prove Theorem 1.5 on the stable cohomology of the Satake
compactification, by using the Gysin sequence (to be discussed in more
detail below).

Proof of Theorem 1.5. Indeed, recall that the Satake compactification
ASat

g is the union Ag⊔Ag−1⊔ . . .⊔A0, i.e. we have A
Sat
g = Ag⊔∂ASat

g =

Ag ⊔ ASat
g−1. Thus by the Gysin exact sequence for a closed subvariety

ASat
g−1 ⊂ ASat

g (see [PS08, Cor. 5.51])

(2) . . . → Hℓ−1(ASat
g−1,Q) → Hℓ

c(Ag,Q) → Hℓ(ASat
g ,Q) →

→ Hℓ(ASat
g−1,Q) → Hℓ+1

c (Ag,Q) → . . .

In the stable range g > k we have ℓ = g(g + 1) − k > g(g − 1) =
2 dimCA

Sat
g−1, hence the cohomology of ASat

g−1 vanishes, so that we sim-

ply get H
g(g+1)−k
c (ASat

g ,Q) = H
g(g+1)−k
c (Ag,Q) for g > k. The latter

cohomology by the Poincaré duality for the smooth (stack) Ag is dual
to Hk(Ag), which equals Q[λ1, . . . , λ2m+1, . . . ]k by Borel’s stability the-
orem (see corollary 3.2). This implies our claim. �

Remark 3.3. We note that if trying to compute the stable cohomol-
ogy of the image of the Deligne–Mumford compactification Mg of the
moduli space of curves in AVor

g ,APerf
g , or AMatr

g , to which the Torelli
maps extends by [Nam80],[AB11],[MV12], respectively, we would fail,
i.e. the cohomology would not stabilize. Indeed, for any i > 1 the
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Torelli map on the boundary divisor ∆i ⊂ Mg would extend to an
embedding of Mi×Mg−i into the Satake compactification of Mg, and
then to any compactification of Ag, so that we would have ⌊g/2⌋ − 2
loci in the Torelli image of Mg each of codimension 3, which similarly
to above would each contribute a class to the stable cohomology in
degree top−6.

Our proof of stabilization theorems 1.1 and 1.8 for APerf
g and AMatr

g

will also use the Gysin exact sequence to compute the cohomology
step-by-step by gluing the strata together. However, notice that the
situation will be much more involved, as in both of these cases the
boundary has complex codimension 1, and its cohomology will play a
role in the computation. We will thus need to understand the stable
cohomology of individual boundary strata, and will start by investigat-
ing the first one, the boundary of the partial toroidal compactification,
which is the universal Kummer family.

4. Leray spectral sequence and the stable cohomology

of the universal family of ppav Xg → Ag

In this section we use the Leray spectral sequence to set up the
computation of the stable cohomology of a fixed stratum in a toroidal
compactification, and demonstrate how this method works by comput-
ing the stable cohomology of the universal family of ppav.
Indeed, let π : Xg → Ag be the universal family of ppav, considered

as a stack. In particular all fibers of π are abelian varieties, whereas the
generic fiber of the associated map on coarse moduli spaces is actually
the Kummer variety, as any ppav has the involution ı : z 7→ −z.
The Leray spectral sequence computes the cohomology of the uni-

versal family H•(Xg,Q) in terms of local systems on the base. In-
deed, it has terms of the form Ep,q

2 := Hp(Ag, R
qπ∗Q), and converges

Ep,q
• ⇒ Hp+q(Xg,Q). To understand the higher direct images under π∗,

recall that the cohomology of an abelian variety is the exterior algebra
over the space of one-forms, i.e. H•(A,Q) =

∧•H1(A,Q). This de-
scription globalizes to describe the higher direct images of the constant
sheaf Q on Xg. Since globally the first cohomology gives the local sys-
tem V1 on Ag (corresponding to the standard representation of Sp(2g)
on Q2g), we need to recall the formula for the decomposition of exterior
powers of the standard representation of the symplectic group into a
sum of irreducible representations, which by [FH91, Theorem 17.5] is

(3)

i
∧

V1 =

⌊i/2⌋
⊕

j=0

V1i−2j (−j)
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for i ≤ g. We thus obtain

Lemma 4.1. For the universal family π : Xg → Ag, for any q ≤ g

Rqπ∗Q =

q
∧

V1 = V1q(0)⊕ V1q−2(−1)⊕ · · · ⊕ Vp(q)(−⌊q/2⌋),

with p(q) being the remainder of q modulo 2.

Remark 4.2. The cohomology of local systems of odd weight over Ag

vanishes in odd degrees. In particular, this means that the cohomology
ofRqπ∗Q vanishes if q is odd. This reflects the fact that the cohomology
of Xg (recall that we always work with rational coefficients) coincides
with the cohomology of its coarse moduli space, the universal Kummer
family, and that the odd degree cohomology of the Kummer variety
A/ı is 0 for every abelian variety A because it is simply the subspace
of the cohomology of the ppav A that is invariant under the involution
ı : z 7→ −z.

Using the Leray spectral sequence now allows us to compute the
stable cohomology of the universal family:

Proposition 4.3. The stable cohomology of the universal family Xg

is generated over the stable cohomology of Ag by the class Θ of the
universal theta divisor trivialized along the zero section. More precisely,
this means that for any k < g, the vector space Hk(Xg) is generated by
degree k monomials in the classes Θ, λ1, λ3, . . ., where Θ has degree 2
and λ2i+1 has degree 4i+2. In particular the stable cohomology in any
odd degree is zero.

Proof. Indeed, combining Lemma 4.1 above with Theorem 3.1 on the
stable cohomology of local systems on Ag, we get for p < g

Ep,q
2 = Hp(Ag, R

qπ∗Q) =

{

Hp(Ag,Q) if p and q are even

0 else.

From a theorem of Deligne [Del68] it follows that the Leray spectral
sequence for the projective map π degenerates at E2. In our case this
is in fact immediate to see directly: in the stable range p+ q ≤ g only
the terms of E2 with both p and q even are non-zero, thus for any
differential

dr : E
p,q
r → Ep+r,q−r+1

r

either the source or the target space is zero, and therefore all differen-
tials vanish. We thus obtain

Hk(Xg,Q) =
⊕

p+q=2k

Ep,q
∞ =

⊕

p+q=2k

Ep,q
2 =

k
⊕

i=0

H2i(Ag,Q)(i− k),
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for k = 2j < g even, while Hk(Xg,Q) = 0 for k < g odd. (Here we
have a direct sum of Hodge structures because for p + q = k < g all
Ep,q

2 carry Tate Hodge-structures of the same weight.) In words, the
above statement says that the stable cohomology of Xg in degree 2j
is the sum of stable cohomology of Ag in all even degrees up to 2j,
i.e. for each i ≤ j we have a copy of H2i(Ag). This means that as an
algebra over the stable cohomology of Ag, the stable cohomology of Xg

is generated by one element, of degree 2 and Hodge type (1, 1). Indeed,
denote by Θ ⊂ Xg the universal symmetric theta divisor trivialized
along the zero section. Then under the decomposition H2(Xg,Q) =
H0(Ag, R

2π∗Q)(−1) ⊕ H2(Ag,Q) we see that Θ has zero projection
onto the second summand, and thus it generates the first summand,
which implies that it is a generator of the stable cohomology of Xg over
the stable cohomology of Ag, as claimed. Moreover, since the class
Θg on Xg is algebraically equivalent to g! times the zero section of the
universal abelian variety, see [DM91],[Hai13],[Voi14], it follows that Θ
is stably algebraically independent with the classes pulled back from
Ag. �

5. Gysin exact sequence and the stable cohomology of

the partial toroidal compactification

In this section we set up the method, using the Gysin exact sequence,
to compute the cohomology of the union of some partial toroidal com-
pactification and one more stratum, and we demonstrate how this
method works by computing the stable cohomology of Mumford’s par-
tial toroidal compactification A′

g of Ag.
Recall that Mumford’s [Mum83] partial toroidal compactification is

the union A′
g = Ag ⊔ (Xg−1/ı) (where Xg−1/ı is still considered as a

stack, i.e. is the universal Kummer family). The Gysin, also sometimes
called excision long exact sequence for a closed subvariety of a quasi-
projective variety is then the following:

(4) . . . → Hℓ−1
c (Xg−1,Q) → Hℓ

c(Ag,Q) → Hℓ
c(A

′
g,Q) →

→ Hℓ
c(Xg−1,Q) → Hℓ+1

c (Ag,Q) → . . .

We remark here that this sequence respects mixed Hodge structures
(see [PS08, Cor. 5.51]). Since both A′

g and Xg−1 are smooth Deligne–
Mumford stacks, it follows from the usual Poincaré duality that the co-
homology Hℓ

c is dual to H
top−ℓ, where top denotes the real dimension of

the space. Noticing that the boundary Xg−1 has complex codimension 1
in A′

g, from the above we thus get the dual long exact sequence (where
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to keep track of things we denote k = dimR Ag−ℓ = dimRXg−1+2−ℓ)

(5) . . . → Hk−2(Xg−1,Q)(−1) → Hk(A′
g,Q) →

→ Hk(Ag,Q) → Hk−1(Xg−1,Q)(−1) → . . .

In general, for k and g arbitrary, this exact sequence is non-degenerate.
For instance, the connecting homomorphisms are non-trivial already for
g = 3, 4, as described in [HT10, HT12]. However, in the stable range
the situation is very simple, as all the odd cohomology of each term
turns out to be zero, and we immediately obtain the stable cohomology
of Mumford’s partial toroidal compactification.

Proposition 5.1. The stable cohomology of Mumford’s partial toroidal
compactification A′

g is generated by the classes λi and by the class D of

the boundary. More precisely, for any k < g, the vector space Hk(A′
g)

is generated by degree k monomials in the classes D, λ1, λ3, . . ., where
D has degree 2 and λ2i+1 has degree 4i+ 2.

Proof. We use the Gysin exact sequence (5) above to obtain the stable
cohomology ofA′

g. Recall that in the stable range the cohomology ofAg

was computed by Borel, see Corollary 3.2, and the stable cohomology of
the universal Kummer family is given in Proposition 4.3. In particular,
both of them vanish in odd degree, and thus the long exact sequence
(5) splits into short exact sequences. We thus obtain

Hk(A′
g) = Hk(Ag)⊕Hk−2(Xg−1)(−1)

for k = 2j, while all the odd-dimensional stable cohomology of A′
g is

zero. For k = 2 we see that the two generators are λ1 for the first
summand, and the fundamental class of the boundary — which we
denote D — for the second summand. It follows from [Mum83, Prop.
1.8] or [vdG98, Lemma 1.1] that D|D = −2Θ . The result now follows
from Proposition 4.3. �

Remark 5.2. We observe that the stable cohomology of A′
g is equal

to that of Xg. The above proof gives a geometric reason for this: we
consider the inclusion Xg−1 →֒ A′

g, and pull back cohomology under it.
Then the classes λi on A′

g pull back to λi on Xg−1, while the class D
pulls back to −2Θ.

While the above proposition does not let us deduce anything about
the stabilization of Hk(APerf

g ) for k ≪ g, on the dual side we have
computed the first few cohomology groups with compact support:

Corollary 5.3. For g > 4 we have

Hg(g+1)(APerf
g ,Q) = Q · 1, Hg(g+1)−2(APerf

g ,Q) = Q · λ∨
1 ⊕Q ·D∨,
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Hg(g+1)−1(APerf
g ,Q) = Hg(g+1)−3(APerf

g ,Q) = 0,

where λ∨
1 andD∨ denote the images under H•

c (A
′
g,Q) → H•

c (A
Perf
g ,Q) =

H•(APerf
g ,Q) of the cohomology classes in H

g(g+1)−2
c (A′

g,Q) that are
Poincaré dual to λ1 and D, respectively.

Proof. Since A′
g is smooth, applying Poincaré duality the above propo-

sition yields the statement that for k < g the group H
g(g+1)−k
c (A′

g)
is generated by classes dual to λ2j+1 and to D. The complement
APerf

g \ A′
g has real codimension 4 in APerf

g . Indeed, this is a spe-
cial case of Proposition 7.1 (we note that this is special to the per-
fect cone compactification, and for example does not hold for the
second Voronoi compactification, for which we thus have no result).

Hence for k < 4 we have H
g(g+1)−k
c (APerf

g \ A′
g) = 0 and thus, by

the Gysin exact sequence for (APerf
g \ A′

g) ⊂ APerf
g , for k < 4 we

have H
g(g+1)−k
c (APerf

g ) = H
g(g+1)−k
c (A′

g). Since APerf
g is compact, we

finally have H
g(g+1)−k
c (APerf

g ) = Hg(g+1)−k(APerf
g ) and this gives the

corollary. �

6. Stabilization of the cohomology of X×n
g

In this section we describe the stable cohomology of the n’th fiber
product X×n

g of the universal family Xg → Ag, for a fixed n. It turns
out (we thank Ben Moonen for pointing this out and explaining it to
us) that the description of the subring in the cohomology of a very gen-
eral ppav generated by divisors follows from the results of Thompson
[Tho07] on invariant theory for the symplectic group (this construc-
tion is also a special case of a much more general deep construction of
Looijenga and Lunts [LL97] in cohomology and of Moonen [Moo13] in
the Chow ring). The results of Thompson [Tho07] are formulated in
terms of representations of the symplectic group, which we think of as
local systems on Ag; we give the reformulation in terms of cohomology
classes.
Indeed, X×n

g admits projection maps pi : X
×n
g → Xg for i = 1, . . . , n,

and pjk : X×n
g → X×2

g for 1 ≤ j < k ≤ n. Let Θ ⊂ Xg be the class
of the universal theta divisor trivialized along the zero section, and
let P ⊂ X×2

g be the class of the universal Poincaré divisor trivialized
along the zero section. Denote then Ti := p∗iΘ, and Pjk := p∗jkP . For
a very general ppav A, the restrictions of these classes to An generate
the Néron–Severi group. We will now prove that these classes freely
generate the stable cohomology of X×n

g .
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Theorem 6.1. The cohomology Hk(X×n
g ) is independent of g for k <

g, and as an algebra over the stable cohomology of Ag, is generated by
the classes Ti, Pjk. In particular, all stable cohomology classes on X×n

g

are algebraic.

Proof. We want to compute the stable cohomology of the n-th fiber
product of the universal family using the Leray spectral sequence as-
sociated with the natural map π×n : X×n

g → Ag. Since π×n is a
projective map, the Leray spectral sequence degenerates at E2, so that
we have

Ep,q
∞ = Ep,q

2 = Hp(Ag, R
qπ×n

∗ Q).

Recall that the constant local system Q = V0 is the only one with
non-zero stable cohomology (from now on by abuse of language we
will call V0 the trivial local system, as it corresponds to the trivial
representation). A first consequence of this is that in the stable range
p < g the E∞-terms carry Tate Hodge-structures of weight p + q, and
hence

(6) Hm(X×n
g ,Q) =

⊕

p+q=m

Ep,q
∞ =

⊕

p+q=m

Hp(Ag, R
qπ×n

∗ Q)

holds for m ≤ g.
To compute the stable cohomology of X×n

g , it only remains to com-
pute the Sp(2g)-invariant part ofHq(An,Q) for an abelian g-fold A and
q ≤ g, because this is what contributes the trivial summands (which
recall, means equal to V0) in the local system Rqπ×n

∗ Q. As local sys-
tems of odd weight have zero cohomology, we only have to deal with
the case q = 2l.
The cohomology ring of an abelian variety is the exterior algebra of

its first cohomology group, so that we have

H2l(An,Q) =
2l
∧

(H1(A,Q)⊗Qn).

and by [Tho07, Theorem 3.7], for 2l ≤ g the Sp(2g)-invariant part of
the above cohomology group is isomorphic to Syml(Sym2Qn).
The restriction to An of the classes Ti, Pjk lies in H1,1(An), and

thus the action of the symplectic group on their span is given by the
symmetric square of the standard representation of Sp(2g) acting on
H1(An). Therefore, for l = 1 the Sp(2g)-invariant part of the coho-
mology is generated by these classes, so that we can identify Sym2Qn

with the span of the classes Ti, Pjk and Syml(Sym2Qn) with the space
of degree l polynomials in Ti, Pjk. In view of the isomorphism (6), this
implies that in the stable rangem ≤ g the classes Ti, Pjk ∈ H2(X×n

g ,Q)



18 SAMUEL GRUSHEVSKY, KLAUS HULEK, AND ORSOLA TOMMASI

are algebraically independent generators of the cohomology of X×n
g as

an algebra over the stable cohomology of Ag. �

Remark 6.2. Thompson’s results allow us to describe completely the
subalgebra of the rational cohomology of X×n

g generated by Ti, Pjk,
also outside the stable range. Specifically, Theorem 3.4 of [Tho07]
corresponds to the statement that the ideal of relations among the
classes Ti and Pjk is generated by (g + 1)’st powers of divisors, i.e. by

relations of the form (
∑

m2
iTi +

∑

mjmkPjk)
g+1

= 0, for arbitrary
m1, . . . , mn ∈ Z. In fact [Tho07, Theorem 3.7] describes the cohomol-
ogy H•(An) as a representation of the symplectic group.

In the following sections, we will often consider the action of the
group GL(n,Z) on X×n

g . Indeed, on each fiber An of the map X×n
g →

Ag a matrix N ∈ GL(n,Z) acts by the corresponding automorphism
M = tN−1, adding the points together: (a1, . . . , an) 7→ M(a1, . . . , an)
considered as points of An. Since the classes Ti and Pij lie in H1,1(An),
the action on them is given by the symmetric square of the action of
M on H1(An). To write it down explicitly, it is convenient to denote
Pii := 2Ti for i = 1, . . . , n (and also Pij := Pji for i > j), and then the
action is given by the symmetric square of the standard representation
of the symmetric group (we are grateful to Ben Moonen and Dmitry
Zakharov for discussions on these topics)

(7) M(Pij) =
∑

1≤a≤n

∑

1≤b≤n

MiaMjbPab.

7. The perfect cone compactification and details of our

approach

Our results are specific to the perfect cone compactification. As we
shall make use of some of the properties of the perfect cone (also known
as first Voronoi) fan decomposition, we shall review this here. For the
original definition of this fan we refer the reader to [Vor08a], [Vor08b],
[Vor09], for modern treatments and further results see [Nam80], [SB06],
or [MV12].
To define the perfect cone decomposition, we consider the open cone

Sym2
>0(R

g) of all real positive definite g × g matrices and its rational
closure Sym2

rc(R
g), i.e. the cone of all semi-positive definite matrices

whose kernel is defined over Q. The function

µ : Sym2
rc(R

g) → R>0

µ(Q) := min{Q(ξ) | ξ ∈ Zg \ 0}
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defines for every Q ∈ Sym2
>0(R

g) a finite and non-empty set

M(Q) := {ξ ∈ Zg | Q(ξ) = µ(Q)}.

The perfect cone decomposition is then given by the union of the convex
hulls

σ(Q) :=
∑

ξ∈M(Q)

R≥0
tξξ.

The group GL(g,Z) operates on the collection of these cones with a
finite number of orbits. In the proof that the cohomology stabilizes we
use a special property of the perfect cone decomposition, namely the
fact that the number of codimension i strata stabilizes, i.e. is indepen-
dent of g if i ≤ g. This follows easily from the above definition (see
Proposition 7.1).
This is indeed a special property of the perfect cone decomposition.

In particular, one cannot expect that the second Voronoi decompo-
sition has stable cohomology. Recall that the boundary divisors of a
toroidal compactification correspond to the set of orbits under GL(g,Z)
of 1-dimensional cones in the corresponding fan. There is only one
such cone in the perfect cone decomposition, namely the square of
a primitive linear form. Let l(g) be the number of inequivalent 1-
dimensional cones in the second Voronoi decomposition. Note that l(g)
is the number of components of the boundary of AVor

g , so that l(g) =

dimHg(g+1)−2(∂AVor
g ) holds. As H

g(g+1)−1
c (Ag) vanishes (it is Poincaré

dual to H1(Ag)), the Gysin long exact sequence associated with the
inclusion of the boundary into AVor

g implies that Hg(g+1)−2(AVor
g ) sur-

jects onto Hg(g+1)−2(∂AVor
g ), so that dimHg(g+1)−2(AVor

g ) ≥ l(g) holds.
It is well known that l(2) = l(3) = 1, then we have l(4) = 2 [Vor08a],
[ER88], l(5) = 9 [DG04], while l(6) ≥ 20, 000 [DG04].
In general, and this was pointed out to us by V. Alexeev, we have

at least l(g) ≥ g − 3. This estimate comes from the root lattices Dn.
Indeed, the quadratic form associated to such a root lattice defines a
second Voronoi cone and by the results of Baranovskii and Grishukhin
[BG01] the barycentric rays of these cones for 4 ≤ n ≤ g give indepen-
dent rigid forms.
We have already introduced the stratification of APerf

g into the closed

subvarieties βi which lie over ASat
g−i under the map ϕ : APerf

g → ASat
g , see

(1). Recall that β0
i = βi \ βi−1. As for any toroidal compactification,

the locally closed sets β0
i are further stratified into strata β(σ) ⊂ βi,

corresponding to the orbits of rank i cones σ. More precisely let σ ⊂
Sym2

rc(R
i) be a rank i cone in the perfect cone decomposition. Given

such a cone σ, one associates with it a torus bundle q(σ) : T (σ) → X×i
g−i.
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The fiber of the torus bundle q(σ) is the torus Ti/Tσ where Ti =
Sym2(Zi)⊗C∗ and Tσ ⊂ Ti is given by Tσ = (Span(σ)∩Sym2(Zi))⊗C∗.
Denoting by pi : X

×i
g−i → Ag−i the universal i-fold product, we thus have

a double fibration π(σ) = pi ◦ q(σ) : T (σ) → Xg−i× . . .×Xg−i → Ag−i.
The stratum associated to σ is then equal to the quotient β(σ) =
G(σ)\T (σ) where G(σ) is the stabilizer of σ in GL(i,Z). We have
β0
i =

⊔

all σ of rank i β(σ) and βi =
⊔

all σ of rank≥i β(σ). Recall that the

complex codimension of β(σ) in APerf
g is equal to dim σ.

In the previous sections we discussed the topology of the partial
compactification A′

g. We now want to add further boundary strata and
at this point it becomes important to us that we make use of specific
properties of the perfect cone decomposition. The most important
property of the perfect cone decomposition for our purposes is that
the stratum βi has complex codimension i within APerf

g , a fact we have
already used in Corollary 5.3. As we have pointed out before, the
situation is very different for example forAVor

g , where boundary divisors
appear arbitrarily deep into the boundary.

Proposition 7.1. The following holds for the perfect cone decomposi-
tion APerf

g :
(i) The codimension of βi is equal to i.
(ii) Let ℓ be an integer. If g ≥ ℓ, then the number of strata β(σ) of
codimension ℓ in APerf

g is given by an integer N(ℓ) independent of g.

Proof. (i) We first show that the codimension of βi is at most i. This
follows since the standard cone 〈x2

1, . . . , x
2
i 〉 belongs to the perfect cone

decomposition, has dimension i and rank i. Conversely, consider a cone
σ ⊂ Sym2

rc(R
i) in the perfect cone decomposition of rank i. Since the

rays of σ are spanned by rank 1 matrices, there must be at least i
independent generators of σ and thus the dimension of σ is at least i.
Therefore, the same holds for the codimension of β(σ).
(ii) Let σ be a cone which gives rise to a stratum of codimension ℓ,
i.e. assume that σ is of dimension ℓ, and rank i. Then i ≤ ℓ. Choose
i rays in σ such that the corresponding linear forms are independent
(over Q). These linear forms generate a (not necessarily saturated)
sublattice L in Zg; let L′ be its saturation. Since the general element
in σ has rank i it follows that σ ⊂ Sym2

rc(L
′ ⊗ R). After acting by a

suitable element in GL(g,Z) we can assume that L′ is the sublattice of
Zg spanned by the first i unit vectors and thus that β(σ) ⊂ β0

i and in
particular β(σ) ⊂ APerf

g \ βℓ+1. Hence these strata are enumerated by
the GL(m,Z)-orbits of the cones in the perfect cone decompositions of
Sym2(Zm) for all integers m ≤ ℓ. Clearly, the number N(ℓ) of such
orbits is independent of g, for g ≥ ℓ. �
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As we already said, our approach is that we use Gysin sequences
to successively compute the cohomology of APerf

g . We start with the
strata β(σ) associated to rank i cones σ to compute the cohomology
of β0

i and then keep going deeper into the boundary to prove results
about the cohomology of APerf

g itself.
As we have just seen, β(σ) = G(σ)\T (σ) with π(σ) = pi ◦ q(σ) :

T (σ) → X×i
g−i → Ag−i. We will need to compute the (stable) coho-

mology of strata β(σ) in several cases. For this we must recall the
construction of the torus bundle T (σ) in more detail. We first of all fix
the cusp U over which we work. We shall want to work with the stan-
dard cusps, i.e. we fix U as the isotropic subspace of Q2g spanned by the
first i elements of the standard basis. The parabolic subgroup P (U) of
Sp(2g,Z) which fixes U is generated by elements of the following form:
The first set of generators is

g1 =









1i 0 S 0
0 1g−i 0 0
0 0 1i 0
0 0 0 1g−i









, where S = tS ∈ Sym2(Zi).

These matrices generate the center P ′(U) of the unipotent radical of
P (U) and dividing out by this (normal) subgroup gives Ti × Ci(g−i) ×
Hg−i where Ti = Sym2(Zi)⊗Z C∗.
The second set of generators consists of elements of the form

g2 =









1i 0 0 0
0 A 0 B
0 0 1i 0
0 C 0 D









, where

(

A B
C D

)

∈ Sp(2(g − i),Z),

and

(8) g3 =









1i M 0 N
0 1g−i

tN 0
0 0 1i 0
0 0 −tM 1g−i









, where M,N ∈ MatZ(i, g − i).

Note that the elements of type g2, g3 generate a Jacobi group the quo-
tient by which is Ti → X×i

g−i → Ag−i, where the i-fold universal family

X×i
g−i → Ag−i is the quotient of C

i(g−i)×Hg−i by the Jacobi group, and
the fiber of the first projection is isomorphic to Ti. The cone σ defines
a subtorus Tσ of Ti and correspondingly a subbundle Tσ of Ti, with
T (σ) = Ti/Tσ.
For later use, it is also useful to consider the torus bundle T ∨

i → X×i
g−i,

whose fiber is the torus T∨
i = Sym2(Zi)∨ ⊗ C∗ dual to Ti.
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Proposition 7.2. For 1 ≤ j ≤ k ≤ i, let us define line bundles Sjk on
X×i

g−i by setting Sjk = p∗jk(P
−1)⊗L−1/2 if j < k and Sjk = p∗j (Θ

−2)⊗L−1

if j = k, where L denotes the pull-back of the line bundle of modular
forms on Ag−i. Then the torus bundle T ∨

i → X×i
g−i is isomorphic to the

fiber product of the C∗-bundles S0
jk obtained by removing the 0-section

from the Sjk.

Proof. Let us denote by {τr,s}1≤r≤s≤i the basis of Sym2(Ri)∨ dual to
the basis {xrxs + xsxr}1≤r≤s≤i and by Mi the lattice generated by the
τr,s. (We will later use the notation M for this lattice, when there is no
longer a danger that this might be confused with the matricesM , which
appear later in this proof and whose notation has also become standard
in the literature). Then sjk := e2π

√
−1τjk define coordinates on the

fiber Mi ⊗ C∗ ∼= (C∗)
i(i+1)

2 of T ∨
i . Next, we look at the transformation

law for the sjk under the subgroup (Z2(g−i)i) ∼= MatZ(i, g − i)⊕2 of
the Jacobi group generated by transformations (8) of type g3. For all
1 ≤ j ≤ k ≤ i and M,N ∈ MatZ(i, g − i), one gets

(9) (M,N)sjk

= e
2π

√
−1
(g−i∑

l=1
(mjlτk,g−i+l+mklτj,g−i+l)+

g−i∑

α,β=1
mjαmkβτg−i+α,g−i+β

)

sjk.

In particular, the matrix N acts trivially on sjk.
To prove the claim, it suffices to show that sjk is a local section

of Sjk for all 1 ≤ j ≤ k ≤ i. If j = k holds, this transformation
behavior agrees with that of θ(Ω, Z)−2 for Ω = (τg−i+α,g−i+β) ∈ Hg−i

and Z = (τk,g−i+1, . . . , τk,g) ∈ Zi, hence sjj is a local section of the
bundle p∗j (Θ⊗ L1/2).
For j < k one sees from (9) that Sjk is the pull-back of the line

bundle S ′
12, which is defined analogously to Sj,k, in the special case

j = 1, k = 2 and i = 2, over Xg−i ×Ag−i
Xg−i. Again, comparing

with the transformation behavior of the theta function yields that the
restriction of S ′

12 to the fiber A×A of X×2
g−i is the inverse of the Poincaré

bundle twisted by L1/2. Indeed, for every [A] ∈ Ag−i, the restriction of
S ′
12 to {0} ×A and A× {0} is trivial, whereas the restriction of S ′

12 to
the diagonal Xg−i →֒ X×2

g−i gives (Θ⊗ L1/2)−2. �

Finally the parabolic subgroup P (U) contains elements of the form

g4 =









tQ−1 0 0 0
0 1g−i 0 0
0 0 Q 0
0 0 0 1g−i









, where Q ∈ GL(i,Z).
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In order to obtain β(σ) from T (σ) we consider all Q such that the
action on the space Sym2(Zi) given by

GL(i,Z) ∋ Q : X 7→ tQ−1XQ−1.

maps the cone σ to itself. This gives us a finite group G(σ) and
β(σ) = G(σ)\T (σ). At this point we would also like to point out
that the Jacobi group is a normal subgroup of P (U)/P ′(U) and that
elements of the form g2 and g4 commute. We will use these facts with-
out mentioning them explicitly when first dealing with the cohomology
of T (σ) and only then taking the part invariant under G(σ).
To compute the cohomology of one such stratum β(σ), one uses two

Leray spectral sequences, namely those for the torus bundle q(σ) and
for π(σ) : T (σ) → Ag−i. Indeed, in a first step, for [A] ∈ Ag−i the
cohomology of π(σ)−1([A]) can be computed from the Leray spectral
sequence of the torus bundle restricted to the fiber p−1

i ([A]) ∼= Ai of
the universal family X×i

g−i:

(10) Ep,q
2 (q(σ)) = Hq(Ti/Tσ)⊗Hp(Ai) =⇒ Hp+q

(

π(σ)−1([A])
)

.

Since the group G(σ) acts fiberwise, one can then compute the G(σ)-

invariant part Ẽp,q
2 (q(σ)) of the cohomology of the fibers of π(σ). Vary-

ing the fiber over Ag−i, one thus obtains a direct sum of local sys-
tems on Ag−i. In the second step of the argument we then use the
Leray spectral sequence for the map π(σ). To write Ep,q

2 (π(σ)) =
Hq(Ag−i, R

pπ(σ)∗Q), we consider Ep,q
2 (q(σ)) as giving rise to a spec-

tral sequence of local systems converging to Rpπ(σ)∗Q. Provided one
can control the differentials of the spectral sequence and one knows
the cohomology of the local systems, from the G(σ)-invariant terms

Ẽp,q
2 (q(σ)) one can thus compute the cohomology of the stratum β(σ).
Our aim is to compute stable cohomology. This simplifies the situa-

tion considerably since stable cohomology only comes from trivial local
systems. In other words we only have to take into consideration the
part Êp,q

2 (q(σ)) of Ẽp,q
2 (q(σ)) which gives rise to trivial local systems

V0 on Ag−i. This allows us to work with a smaller spectral sequence,
which still converges to the stable cohomology of β(σ). Moreover, we
will be able to argue that in the stable range not only the cohomology of
X×i

g but also that of every open torus bundle is zero in any odd degree.
This will drastically simplify dealing with the spectral sequences.

8. Stable cohomology of strata

The aim of this section is to prove a stabilization result for the co-
homology of the strata β(σ) of toroidal compactifications of Ag. This
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kind of stabilization occurs independently of the choice of the compact-
ification. To set up notation, let us assume that we have an admissible
collection Σ = {Σg}g∈N of admissible fans Σg in Sym2

rc(R
g) or in a

GL(g,Z)-invariant open subset of Sym2
rc(R

g). This means that for all
g < g′, the intersection of Σg′ with Σg coincides with Σg, where we
identify Rg with the subspace of Rg′ generated by the first g coordi-

nate vectors. Then for each g, we define A
Σ

g to be the (possibly partial)
toroidal compactification of Ag defined by this admissible collection of
fans.
Let σ be a rank i cone of dimension ℓ in Σ. Then i ≤ ℓ and σ defines

a stratum βg(σ) ⊂ A
Σ

g for any genus g ≥ i. This is the quotient of a

torus bundle Tg(σ) over X
×i
g−i by a finite group G(σ). The rank of the

torus fiber is i(i+ 1)/2− ℓ. The group G(σ) and the fiber of the torus
bundle do not depend on g, but βg(σ) itself does.
In what follows we must be very careful as to which space we are

working in, and will thus keep the subscript g everywhere.

Theorem 8.1. For a given cone σ the cohomology groups Hk(Tg(σ))
and Hk(βg(σ)) stabilize for k < g − i− 1.
Moreover, the cohomology in this range is algebraic, and explicitly

one has

H•
stable(Tg(σ)) ∼= Q[λ1, λ3, . . . ]⊗ Sym•(Span(σ) ∩ Sym2(Qi)),

where the generators of Span(σ) have degree 2. The stable cohomology
of β(σ) is the invariant part of the stable cohomology of Tg(σ) under
the natural action of the stabilizer G(σ) of the cone σ in GL(i,Z).

Remark 8.2. More precisely, there is an isomorphism

H•
stable(Tg(σ)) ∼= Q[τrs, λ2m+1|1 ≤ r ≤ s ≤ i,m ∈ Z]/(σ⊥ ∩M)

where {τrs} denotes the basis of M = Sym2(Zi)∨ dual to {xrxs +
xsxr} and σ⊥ = {φ ∈ Sym2(Ri)∨|φ(ξ) = 0 ∀ξ ∈ σ} is the orthogonal
complement of σ.
One should interpret this isomorphism as a description of the stable

cohomology of Tg(σ) as a quotient of the stable cohomology of X×i
g−i,

by identifying τrs with the class −2Tr ∈ H2
stable(X

×i
g−i) if r = s and with

the class −Prs ∈ H2
stable(X

×i
g−i) if r 6= s.

Proof. Let us recall that for g < g′ the stabilization map on the moduli
spaces of abelian varieties is induced by the map Ag → Ag′ given by
mapping [A] ∈ Ag to [A×B] ∈ Ag′, where B is a fixed abelian variety
of dimension g − g′. (Different choices of B lead to the same map in
cohomology). For the universal family, the stabilization map is given
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by mapping (A, x) ∈ Xg to (A×B, x× 0B), where 0B ∈ B denotes the
identity element of B. These stability maps can be lifted to βg(σ) to
obtain the following commutative diagram

(11) Tg(σ) //

q(σ)
��

π(σ)

��

Tg′(σ)

q(σ)
��

π(σ)

��

X×i
g−i

//

pi

��

X×i
g′−i

pi

��

Ag−i
// Ag′−i,

where the map Tg(σ) → Tg′(σ) is well-defined due to the fact that the
fibers of the maps q(σ) are independent of the genus g. The finite auto-
morphism group G(σ), being the stabilizer of σ in its Q-span, which is
isomorphic to Sym2

≥0(Q
i), does not depend on g and acts equivariantly

on the diagram, thus defining the stabilization map βg(σ) → βg′(σ).
Let us consider the Leray spectral sequence associated with π(σ),

with E2 term Ep,q
2 = Hp(Ag, R

qπ(σ)∗Q). By the stability Theorem 3.1,
in the stable range p < g−i over Ag−i the cohomology of the non-trivial
symplectic local systems Vµ vanishes, hence Ep,q

2 only depends on the

trivial summands of the local system Rqπ(σ)∗Q, or, equivalently, by the
part of the cohomology of the fiber of π(σ) that is invariant under the
action of the symplectic group. In Lemma 8.3 below we will show that
this cohomology stabilizes in degree p < g− i and that in this range it
is isomorphic to the truncation of the symmetric algebra of a Q-vector
space MQ/WQ which is isomorphic to the Q-span of the extremal rays
of the cone σ.
In particular, the stabilization map induces an isomorphism between

the E2 terms in the range p, q < g − i of the Leray spectral sequences
associated with π(σ) for g and for g′. Next, we observe that the gener-
ators of MQ/WQ represent algebraic classes in the cohomology, hence
the Ep,q

2 with p, q < g − i vanish if p+ q is odd and carry Tate Hodge-
structures of weight (p+q)/2 if p+q is even. The vanishing for odd p+q
implies that all differentials dr : Ep,q

r → Ep+r,q−r+1
r with p+ r < g − i

and q < g − i are zero, so that E2 = E∞ holds. In particular, this is
the case for p+ q < g − i− 1, and therefore for k < g − i− 1 we have

Hk(Tg′(σ),Q) = Hk(Tg(σ),Q) =
⊕

p+q=k

Hp(Ag−i, R
qπ(σ)∗Q),
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which in view of Lemma 8.3 is 0 for odd k and isomorphic to
⊕

p′+q′=k/2

H2p′(Ag−i,Q)⊗ Symq′(MQ/WQ)

for even k.
This proves the claim for the cohomology of Tg(σ).
The strata βg(σ) and βg′(σ) are the quotient of Tg(σ), respectively,

of Tg′(σ) by the finite group G(σ). Therefore, the cohomology of βg(σ)
(resp., βg′(σ)) is the G(σ) invariant part of the cohomology of Tg(σ)
(resp., of Tg′(σ)). Since the diagram (11) is G(σ)-equivariant, the co-
homology of βg(σ) stabilizes in the same range as that for Tg(σ). The
explicit description of the stable cohomology and its algebraicity come
from taking the G(σ)-invariant part in the description of the stable
cohomology of Tg(σ). The proof is thus completed by proving the fol-
lowing lemma. �

Lemma 8.3. In degree less than g − i, the Sp(2g − 2i)-invariant part
of the cohomology of the fiber Ψg,A = π(σ)−1([A]) ⊂ Tg(σ) is algebraic
and independent of g. In particular, the cohomology vanishes in odd
degree.
Furthermore, if we denote the basis of Sym2(Ri)∨ dual to the basis

{xrxs + xsxr}1≤r≤s≤i by {τr,s}1≤r≤s≤i, the lattice generated by the τr,s
by M and the intersection σ⊥ ∩M by W , in even degree k < g − i the
cohomology of ΨA is isomorphic to the degree k/2 part of the symmetric
algebra generated by the quotient MQ/WQ with MQ = M ⊗Z Q, WQ =
W ⊗Z Q.

Proof. To proceed, we want to describe more precisely the torus bun-
dle Tg(σ). We recall that its fiber is the torus Ti/Tσ, where Ti =
Sym2(Zi)⊗C∗ and Tσ ⊂ Ti is given by Tσ = (Span(σ)∩Sym2(Zi))⊗C∗.
Thus duality defines a canonical isomorphism between the quotient
Ti/Tσ and the torus Tσ⊥ = (σ⊥ ∩ M) ⊗ C∗. This enables us to view
Tg(σ) as a subbundle of the dual torus bundle T ∨

i of Proposition 7.2.
Let us choose a Z-basis φ1, . . . , φm (m = i(i+1)/2) of W := σ⊥∩M

and write φj =
∑

1≤k1≤k2≤i αj,k1,k2τk1,k2 . Then setting wj := e2π
√
−1φj =

∏

1≤k1≤k2≤i s
αj,k1,k2
k1,k2

for j = 1, . . . , m defines a set of parameters for the
fiber Tσ⊥ of the torus bundle Tg(σ). Note that by Proposition 7.2 each

wj defines a local section of the bundle Lj := ⊗S
αj,k1,k2
k1k2

over X×i
g−i.

Hence, if we denote the complement of the 0-section by L0
j , the torus

bundle Tg(σ) is contained in the direct sum of the Lj as

Tg(σ) = L0
1 ×X×i

g−i
· · · ×X×i

g−i
L0
m.
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Now, let us consider Ψg,A, which by definition is the restriction to
A×i ∼= p−1

i ([A]) of the torus bundle Tg(σ). The stabilization map com-
mutes with π(σ), hence its restriction to Ai induces a map Ψg,A →
Ψg′,A′, where A′ = A×B is given by the image of the point [A] ∈ Ag−i

under the stabilization map Ag−i → Ag′−i. To study the cohomology
of Ψg,A and Ψg′,A, we use the Leray spectral sequence of the torus bun-

dle Ψg,A → Ai and Ψg′,A′ → A′i, which we denote by Ep,q
• and E ′

•
p,q,

respectively. The E2-terms are of the form

Ep,q
2 = Hq(Tσ⊥ ,Q)⊗Hp(Ai,Q) =

q
∧

WQ ⊗

p
∧

H1(A,Q)i,

where we used the isomorphism WQ
∼= H1(Tσ⊥ ,Q). Let us denote

by Ep,q
r,inv the Sp(2g − 2i)-invariant part of Ep,q

r , and by E ′
r,inv

p,q the
Sp(2g′ − 2i)-invariant part of E ′

r
p,q. Then the description of E2 given

above, combined with Theorem 6.1, implies that the stabilization map
Ψg,A → Ψg′,A′ induces an isomorphism Ep,q

2,inv
∼= Ep,q

2,inv if p ≤ g − i.
Furthermore, for p ≤ g − i the term Ep,q

2,inv vanishes for p odd and is
given by

Ep,q
2,inv =

q
∧

WQ ⊗Q[Tk, Pk1k2 ]p/2
∼=

q
∧

WQ ⊗ Symp/2MQ

for p even. Here we identified the symmetric algebra Symr MQ with
Q[Tk, Pk1k2]r using the map τkk 7→ −2Tk, τkk′ 7→ −Pkk′ for k < k′.
Furthermore, in view of the structure of Tg(σ) as product of C∗-

bundles, the Leray spectral sequence of Tg(σ) degenerates at E3, and
the d2-differentials are determined by the Euler classes of the C∗-
bundles, i.e. by the Chern class of the line bundles L1, . . . , Lm. By
construction, and by the description of the bundles Sjk given in Propo-
sition 7.2, one has c1(Lj) = −

∑

1≤k1<k2≤i αj,k1,k2Pk1k2 − 2
∑

1≤k≤i Tk,
where the coefficients of this linear combination are independent of g.
In particular, in the stable range also the differentials in the spectral
sequences E•,inv and E ′

•,inv coincide.
We can rephrase the description of d2 in terms of multilinear algebra

by saying that

E2r,q
2,inv =

q
∧

WQ ⊗ Symr MQ
d2−→ E2r+2,q−1

2,inv =

q−1
∧

WQ ⊗ Symr+1MQ

is the differential of the degree r+ q strand of the dual Koszul complex
associated to the inclusion WQ →֒ MQ of Q-vector spaces (see [Eis95,
A2.6.1]), provided both E2r,q

2,inv and E2r+2,q−1
2,inv are in the stable range.

As this Koszul complex is exact, this immediately yields Ep,q
3,inv = 0 for
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q ≥ 1 in the range p+ q < g − i, as well as

Ek,0
3,inv = Symk/2MQ/(φ1, . . . , φm) = Symk/2(MQ/WQ)

for even k < g − i and the vanishing of Ek,0
3,inv for odd k < g − i. �

8.1. Standard cones. We close this section by illustrating Theorem
8.1 in the concrete case of the i-dimensional standard cone

σ = 〈x2
1, x

2
2, . . . , x

2
i 〉.

As the rank of σ is equal to i, we get a commutative diagram

T (σ)
(C∗)m-bundle

//

π(σ)

((◗
◗

◗

◗

◗

◗

◗

◗

◗

◗

◗

◗

◗

◗

◗

/G(σ)

��

X×i
g−i

��

βg(σ)
π(σ)G(σ)

// Ag−i

where the rank of the torus bundle is m =
(

i
2

)

. To proceed, we describe
more precisely the torus bundle T (σ) and the groupG(σ). As explained
in the previous section, the fiber of T (σ) is given by the torus W⊗ZC

∗,
where W denotes the integral points of the orthogonal complement of
σ. As σ⊥ is spanned by τjk for all 1 ≤ j < k ≤ i, one has

σ⊥ = Span(−τ12, . . . ,−τi−1,i).

From Proposition 7.2 it follows that exponentiating the coordinate −τjk
gives rise to a local section of the Poincaré bundle Pjk. Therefore, we
have that T (σ) is the fiber product of the Poincaré bundles Pjk over
X×i

g−i with the 0-section removed.
The stabilizer G(σ) of the standard cone in GL(i,Z) is generated

by sign changes and permutations of the coordinates x1, . . . , xi. In
particular, its action on Span(σ)∩Sym2(Qi) factors through the action
of the symmetric group Si permuting x2

1, . . . , x
2
i . If we identify Span(σ)

with the quotient of the dual space Sym2(Ri)∨ = Span(τ11, τ12, . . . , τii)
by σ⊥ = Span(τjk| j < k), we get the standard representation of Si on
Span(τ11, . . . , τii).
From this it follows that we can identify the stable cohomology of the

torus bundle T (σ) with the quotient of the stable cohomology of X×i
g−i

by the Euler classes P12, . . . , Pi−1,i of the factors of T (σ), or, equiva-
lently, with the subalgebra of the stable cohomology of X×i

g−i generated
by T1, . . . , Ti. As the stable cohomology of β(σ) is the Si-invariant part
of the stable cohomology of T (σ), we get the following result:
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Lemma 8.4. For the standard cone σ = 〈x2
1, . . . , x

2
i 〉 the cohomology

groups Hk(βg(σ)) stabilize for k < g − i − 1. The stable cohomology
of βg(σ), as an algebra over the stable cohomology of Ag−i, is freely
generated by classes ǫj ∈ H2j(βg(σ)) for 1 ≤ j ≤ i, where ǫj can be
viewed as the degree j symmetric polynomials in the classes T1, . . . , Ti ∈
H2(X×i

g−i).

9. Stabilization of cohomology of APerf
g

We can turn our attention to the (open) strata β0
i in the perfect cone

compactification APerf
g , which are disjoint unions of the strata described

in the previous section. To compute their cohomology, we will use the
Gysin exact sequence. We note that each individual stratum β(σ) is
a finite quotient of a smooth variety, namely the quotient of Tg(σ)
by G(σ), and hence Poincaré duality holds between cohomology and
cohomology with compact support of complementary degree. We would
like to point out that this is no longer true for the strata β0

i themselves
as they will, in general, be singular, and thus we will now want to work
with cohomology with compact support, in close to top degree.
In the proof of Theorem 8.1, we observed that the cohomology of β(σ)

stabilizes with respect to a well-defined map βg(σ) → βg′(σ). Clearly,
these maps extend to a morphism APerf

g → APerf
g′ . This follows from the

fact that in the toroidal construction, also the gluing of the strata β(σ)
commutes with the stabilization morphisms induced by Ag → Ag′.
Hence, by restriction we also get maps APerf

g ⊃ β0
i,g → β0

i,g′ ⊂ APerf
g′

which induce the pullback maps Hk(β0
i,g′) → Hk(β0

i,g). However, if

β0
i,g is singular, there is no natural associated map Htop−k

c (β0
i,g′) →

Htop−k
c (β0

i,g), due to the fact that Poincaré duality may not hold for

β0
i,g.

Remark 9.1. As explained in the introduction, this is the first section
the results of which do not apply to an arbitrary toroidal compactifi-
cation. To simplify notation and statements, we will formulate every-
thing for the perfect cone toroidal compactification, and make use of
Proposition 7.1, which is specific to the perfect cone compactification.
However, we would like to point out that in fact the results below hold
in greater generality: indeed, property (ii) of Proposition 7.1 follows
from combining admissibility with property (i). Hence every admissible
collection Σ satisfying the property (i) from the statement of Proposi-

tion 7.1 defines a sequence of toroidal compactifications {A
Σ

g } to which
our stability results (Proposition 9.3 and Lemma 9.5) extend. Thus
our main result, the stabilization and algebraicity given by Theorems
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1.1 and 1.2 apply for any such Σ, possibly after replacing cohomology

with cohomology with compact support in the case that A
Σ

g is a partial
compactification.
As we will see at the end of this section, some natural examples of

such sequences of partial compactifications are the matroidal partial
compactification AMatr

g (and applying the machinery below gives the

stabilization results in this case), as well as the smooth locus APerf
g,smooth

or the simplicial locus APerf
g,simp within APerf

g .

Remark 9.2. Throughout this section, we prove all our results in the
case of cohomology. However, it is straightforward to adapt the proofs
to work also for homology. For this we need only to replace cohomology
with compact support with Borel–Moore homology, and the Gysin long
exact sequences with their duals, the long exact sequences in Borel–
Moore homology associated with closed inclusions.

Proposition 9.3. The strata β0
i,g have stable cohomology with compact

support in degree close to the top degree as g goes to infinity.
More precisely, the cohomology groups H•

c (β
0
i,g,Q) satisfy

(12) Hk
c (β

0
i,g,Q) =

⊕

rankσ=i

Hk
c (βg(σ),Q)

if k > top−g+ i+1. Furthermore, in this range the cohomology groups
with compact support are independent of g and are all algebraic, so that
in particular all odd cohomology vanishes.

Proof. We first recall from Theorem 8.1 that the cohomology of the
strata βg(σ) stabilizes in degree k < g − i − 1 and is algebraic in
this range. As each βg(σ) is the global quotient of the smooth space
Tg(σ) by a finite group, Poincaré duality holds and the cohomology
with compact support of βg(σ) stabilizes and is algebraic in degree
k > 2 dimC βg(σ) − g + i + 1 ≤ top−g + i + 1. Hence, equality (12)
implies the rest of the claim.
By definition of the toroidal compactification, the locus β0

i,g ⊂ APerf
g

is stratified by the locally closed subvarieties βg(σ) defined by the rank
i cones σ in the perfect cone decomposition. The dimension of these
cones ranges from i to i(i+ 1)/2. Therefore, we have

β0
i,g =

⊔

0≤j≤i(i+1)/2−i

Wj,g

where we denoted by Wj,g the (disjoint) union of all βg(σ) with σ of

rank i and dimension i(i+1)/2− j. Note that the closures W j,g define
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a filtration on β0
i,g and that the Gysin spectral sequence associated with

this filtration has E1 term

Ep,q
1 = Hp+q

c (Wp,g,Q)

where we set Wp,g to be empty if no cone of rank i and dimension
i(i + 1)/2 − p exists. As the cohomology with compact support of
Wp,g is the direct sum of the cohomology with compact support of its
locally closed strata βg(σ), to show the claim (12) it suffices to show
that the spectral sequence associated with {W j,g} degenerates at E1 in
the range p+ q > top−g + i+ 1.
To this end, let us note that Theorem 8.1 implies that Ep,q

1 vanishes if
p+q is odd and p+q > 2 dimC Wp,g−g+i+1, i.e. for q > g2−i2−2i+p+1.
In particular, in the non-trivial columns, where i(i + 1)/2 − i ≤ p ≤
i(i+ 1)/2 holds, all differentials of the form

Ep,q
r → Ep+r,q−r+1

r or Ep−r,q+r−1
r → Ep,q

r

with p+q > 2 dimC β
0
i,g−g+ i+1 = g2− i+1 are in this range. Hence,

either the source or the target space of the differential vanishes. From
this it follows that Ep,q

1 = Ep,q
∞ holds for p + q > top−g + i+ 1. �

Remark 9.4. The proposition above holds for any admissible collec-
tion Σ. The proof can be easily extended to this more general case.
This only requires us to keep track of the fact that the top degree may
be larger than g(g + 1)− 2i.

Lemma 9.5. The cohomology of the open subset APerf
g \βi+1,g stabilizes

in close to the top degree, i.e. the cohomology group H
g(g+1)−k
c (APerf

g \
βi+1,g,Q) is independent of g for k < g. Furthermore, in this range
the cohomology groups with compact support are all algebraic, so that
in particular all odd cohomology vanishes.

Proof. The main idea of the proof is the same as in the previous propo-
sition: we consider an appropriate stratification of βi+1,g into locally
closed subsets, we prove that the Ep,q

1 -terms of the associated Gysin
spectral sequence stabilize for p + q < 2 dimCA

Perf
g − g = g2 and that

moreover all differentials with either source or target in this stable
range vanish, so that they stabilize as well. In this case, the natural
approach is to stratify APerf

g \βi+1,g as the union of the strata β0
i−j,g for

j = 0, . . . , i. Then the associated Gysin spectral sequence in cohomol-
ogy with compact support has E1 term

Ep,q
1 = Hp+q

c (β0
i−p,g,Q),

which in view of Proposition 9.3 stabilizes and is algebraic for p+ q >
2 dimC β

0
i−p,g − g + i − p + 1 = g2 − i + p + 1. In the case of the
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strata β0 = Ag and β1 = Xg, however, the bound given in Theorem
3.1 and Proposition 4.3 is slightly better, so that we have p + q >
2 dimC β

0
i−p,g− g+ i−p = g2− i+ p as stability range for p ∈ {i−1, i}.

At this point, we observe that all Ep,q
1 -terms with either p + q > g2

or p + q > g2 − 1 and p < i lie in the stable range, and that they
vanish if p + q is odd. This implies that Ep,q

1 = Ep,q
∞ stabilizes for

p+ q > g2, so that we have Hk
c (A

Perf
g \ βi+1,g,Q) =

⊕

0≤j≤iH
k
c (β

0
j,g,Q)

for k > g2. This is enough to prove the stability of cohomology with
compact support for k > g2. The fact that the classes are algebraic
follows from the corresponding results for the β0

j,g. �

We can now finally prove that the cohomology of APerf
g with compact

support, in degree close to top, stabilizes. The method is similar to the
one developed in the previous sections: to compute Htop−k

c (APerf
g ,Q),

we need to analyze all the strata of complex codimension up to ⌊k/2⌋
in APerf

g . As we have pointed out before, the mere fact that for g ≫ k
there is a finite fixed collection of such cones, which was shown in
Proposition 7.1, is special to the perfect cone decomposition. We are
now ready to prove our main result, the stabilization of cohomology
Hg(g+1)−k(APerf

g ,Q) for k < g.

Proof of the main theorem, Theorem 1.1. As each βi has codimension
i in APerf

g and APerf
g is compact, the cohomology of APerf

g′ in degree
g′(g′ + 1) − k coincides with the cohomology with compact support
of APerf

g′ \ β⌈g/2⌉+1,g′ for k < g ≤ g′. Then the claim follows from the
isomorphism

Hg(g+1)−k
c (APerf

g \ β⌈g/2⌉+1,g,Q) ∼= Hg′(g′+1)−k
c (APerf

g \ β⌈g/2⌉+1,g′ ,Q)

described in Lemma 9.5 for k < g < g′. �

The singularities of the spaceAPerf
g and the ensuing failure of Poincaré

duality have forced us to switch to cohomology with compact support.
We will now discuss open subsets of APerf

g where this problem does

not arise. The first question is to understand the singularities of APerf
g

better. To be precise, we are interested in those singularities which
come from the perfect cone compactification itself, rather than those
that arise from the non-neatness of the group Sp(2g,Z), which do not
give singular points of the stack APerf

g but only of its coarse moduli
space. As the latter singularities do not occur on suitable level covers
they are no obstruction to Poincaré duality as long as one works with
rational coefficients. We shall denote the locus of these singularities
that are not resolved by going to a level cover by APerf

g,sing. Indeed this
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is the singular locus of the stack APerf
g . We have the following recent

result of Dutour Sikirić, Schürmann, and the second author:

Proposition 9.6 (see [DSHS13]). The stack APerf
g is smooth for g ≤ 3

and the (complex) codimension of its singular locus APerf
g,sing is equal to

10 for any g ≥ 4.

We denote the underlying variety of the smooth locus of the stack
APerf

g by

APerf
g,smooth := APerf

g \ APerf
g,sing.

From the toroidal point of view, we can view APerf
g,smooth as the partial

toroidal compactification of Ag defined by the cone decomposition one
obtains by considering only those perfect cones that are basic. We
recall that a cone is called basic if its generators form a Z-basis of
Sym2(Zg). In fact recall more generally that a cone is called simplicial
if its generators form a R-basis of Sym2(Rg), and in this case the toric
variety is locally the quotient of a smooth space by a finite abelian
group.
The union of all simplicial cones defines an open subset APerf

g,simp of

APerf
g . Since the singularities of APerf

g in codimension 10 arise from
the non-simplicial cone D4 (see [DSHS13, Theorem 1 (ii) ]), it follows
that the codimension of the complement of APerf

g,simp in APerf
g is also 10.

The main advantage of working with the simplicial locus (and suitable
open subsets) is that all its points are rationally smooth. This follows
from rational smoothness of simplicial toric varieties, see eg. [CLS11,
Theorem 11.4.8]. Note that rational smoothness ensures that rational
cohomology coincides with the middle perversity intersection cohomol-
ogy. In our case, this implies that the cohomology of the simplicial
locus satisfies Poincaré duality and that we have a cycle map to coho-
mology which is a ring homomorphism, i.e. we can interpret algebraic
cycles of (complex) codimension k as cohomology classes in degree 2k.

Proposition 9.7. (i) The cohomology stabilizes for the smooth
and for the simplicial locus within APerf

g , i.e. the cohomology

groups Hk(APerf
g,smooth) and Hk(APerf

g,simp) are both independent of
g for k < g.

(ii) For k < 19 there are isomorphisms

Htop−k(APerf
g ,Q) ∼= Hk(APerf

g,smooth,Q) ∼= Hk(APerf
g,simp,Q)

induced by the Poincaré duality on APerf
g,smooth and APerf

g,simp, re-
spectively.
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Proof. (i) As explained in Remark 9.1, the proof of the main result

above also serves to show that H
g(g+1)−k
c (APerf

g,simp \βi+1,g,Q) is indepen-
dent of g for k < g. In particular, this holds for i = ⌈g/2⌉+ 1. As the
codimension of βi is i, one gets

Hg(g+1)−k
c (APerf

g,simp \ βi+1,g,Q) ∼= Hg(g+1)−k
c (APerf

g,simp,Q) ∼= Hk
c (A

Perf
g,simp,Q)

where the last isomorphism is Poincaré duality for the rationally smooth
APerf

g,simp. This shows the stabilization of the cohomology of APerf
g,simp. The

proof for APerf
g,smooth is completely analogous.

(ii) We first note that Htop−k(APerf
g ,Q) ∼= Htop−k

c (APerf
g ,Q) holds

since APerf
g is compact. By the Gysin sequence applied to the inclu-

sion of APerf
g,sing into APerf

g we obtain an isomorphism Htop−k
c (APerf

g ,Q) ∼=
Htop−k

c (APerf
g,smooth,Q) for k < 2 · codimCA

Perf
g,sing − 1 = 19. Finally, we

have by Poincaré duality Htop−k
c (APerf

g,smooth,Q) ∼= Hk(APerf
g,smooth,Q). The

same proof applies to the simplicial locus since Poincaré duality also
holds there. �

The third open locus ofAPerf
g which is of interest to us is thematroidal

locus AMatr
g . The importance of this locus was pointed out by Melo and

Viviani [MV12], who identified it as the biggest partial compactifica-
tion of Ag contained in both the second Voronoi and the perfect cone
compactification. This means that we can think of AMatr

g as the “inter-

section” of AVor
g and APerf

g . The matroidal locus is defined as the partial
compactification obtained by taking all matroidal cones. Recall that
a matrix A ∈ MatZ(g, n) is called totally unimodular if every square
submatrix has determinant −1, 0 or 1. A matrix A ∈ MatZ(g, n) is
called unimodular if there exists a matrix B ∈ GL(g,Z) such that BA
is totally unimodular. A cone in Sym2

rc(R
g) is called matroidal if it is

spanned by the rank 1 forms defined by the columns of a unimodu-
lar matrix. It is known that all matroidal cones are simplicial [ER94,
Theorem 4.1] and thus AMatr

g ⊂ APerf
g,simp. We also know that the codi-

mension of the complement of AMatr
g in APerf

g is 5, due to the existence
of a non-matroidal dimension 5 cone in genus 5 (namely the cone σNS

discussed below among the codimension 5 strata).
As matroidal cones are simplicial, we have that AMatr

g is again ratio-
nally smooth. In particularly it satisfies Poincaré duality (with rational
coefficients), so that the same argument as in the proof of part (i) of
Proposition 9.7 applies to AMatr

g , thus providing a proof of the stabi-

lization of the rational cohomology of AMatr
g in degree k < g (Theorem

1.8).
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Finally, the considerations above also apply to even smaller open loci
of APerf

g,simp. For instance, one can take the partial compactification of
Ag given by taking the union of all strata associated with standard
cones, i.e. of all βg(σ) with σ a cone of the form σ = 〈x2

1, x
2
2, . . . , x

2
i 〉

for 0 ≤ i ≤ g (see §8.1). We will denote this union of the standard
strata by AStd

g . As there is just one standard cone in each dimension,
and standard cones are always basic, it is easy to adapt the proof of
part (i) of Proposition 9.7 to prove that the rational cohomology of
AStd

g stabilizes in degree k < g and is generated by algebraic classes.
However, as the stable cohomology of strata associated with standard
cones is known by Lemma 8.4, in this case we can compute this stable
cohomology explicitly.

Theorem 9.8. The cohomology of the partial toroidal compactifica-
tion defined by the standard cones stabilizes, i.e. Hk(AStd

g ,Q) does
not depend on g for k < g. The stable cohomology is the polyno-
mial algebra generated by the odd λ-classes and the fundamental classes
[βi] ∈ H2i(AStd

g ,Q) of the boundary strata.

Proof. As remarked in the introduction, the stable cohomology of AStd
g

coincides with the cohomology of the inductive limit AStd
∞ of the se-

quence AStd
g → AStd

g+1 defined by taking products with a fixed element

ofA1. Let us observe that there is a well-defined product AStd
g1 ×AStd

g2 →

AStd
g1+g2

for all g1, g2 ≥ 0. These products define a structure of H-space

on AStd
∞ , so in particular its cohomology is a commutative and associa-

tive graded Hopf algebra over Q. Hence, by Hopf’s theorem, the stable
cohomology of AStd

g is a free graded-commutative algebra. However, in

the case of AStd
g we know that the stable cohomology is concentrated

in even degree, so that the stable cohomology is a polynomial algebra.
At this point, it only remains to identify the generators.
Let us recall from Lemma 8.4 that the stable cohomology of the stra-

tum β0
i ∩AStd

g is isomorphic to the polynomial algebra Q[ηj , λ2k+1| 1 ≤
j ≤ i, k ≥ 0] generated by the odd λ-classes and by i other classes
ηj ∈ H2j(β0

i ∩ AStd
g ,Q). By the Gysin exact sequence associated with

the stratification {β0
i ∩AStd

g } of AStd
g we have

(13) Hk(AStd
g ,Q) ∼=

⊕

i≥0

Hk−2i(β0
i ∩AStd

g ,Q)(−i)

in the stable range k < g.
Combining this with Lemma 8.4 we obtain that the rank of the

stable cohomology in degree k concides with the rank of the polynomial
algebra Q[ηj , λ2k+1| j, k ≥ 0] with deg ηj = 2j, deg λ2k+1 = 4k + 2.
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Therefore, to prove the claim it suffices to notice that for all i ≥ 1,
the fundamental class of [βi] is not a product of classes [βj ] with j < i
and λ-classes. This is indeed the case, as [βj ] ∈ H2j(AStd

g ,Q) vanishes

under the pull-back of the open inclusion AStd
g \ βi →֒ AStd

g . Note that
[βi] 6= 0 follows from (13) and the degeneration at E1 of the Gysin
exact sequence associated with the stratification of AStd

g by boundary
strata. �

10. Automorphisms and the stable cohomology of the

next stratum

To further demonstrate that our method can give explicit results,
in this section we will compute the stable cohomology of the “second
partial” compactification of Ag obtained by adding to A′

g the locus of
semiabelic varieties of torus rank 2 (which now come in two flavors,
depending on whether the toric part is P1 × P1 or two copies of P2, so
that we have two strata to deal with). Note that this part is still the
same for the perfect cone, matroidal, second Voronoi, and central cone
toroidal compactifications.
More precisely, the perfect cone decomposition of Sym2

≥0R
g contains

exactly two GL(g,Z) orbits of cones whose general element is a form
of rank 2, namely the orbits of the cones

σ1+1 := 〈x2
1, x

2
2〉 and σK3 := 〈x2

1, x
2
2, (x1 − x2)

2〉.

This implies that the locus within APerf
g of semiabelic varieties of torus

rank 2 is the union of an open stratum β(σ1+1), where the normalization
of the corresponding semiabelic variety is an irreducible P1×P1 bundle,
and a closed stratum ∆ := β(σK3). In the following, we will determine
the stable cohomology of these strata and of their union using Theorem
8.1 and the Gysin exact sequence. Both these strata are fibrations over
Xg−2×Ag−2 Xg−2. By Theorem 6.1 the stable cohomology Hk(X×2

g−2) for
k < g − 2 is generated by the classes T1, T2 of the two pullbacks of the
theta divisor, and the class P := P12 of the universal Poincaré divisor,
all trivialized along the zero section.
For the open stratum β(σ1+1) we know from [Mum83, p. 356], see

also [HT12, Section 5], that it is the quotient by automorphisms of the
total space of the universal Poincaré line bundle P → X×2

g−2, with its
zero section removed (where the Poincaré bundle is trivialized along
the zero section Ag−2 → X×2

g−2). This description indeed agrees with
that given in Section 8.1 for the i-dimensional standard cone, in the
case i = 2. Lemma 8.4 gives us the following result:



STABLE COHOMOLOGY OF Ag 37

Lemma 10.1. The cohomology of β(σ1+1) stabilizes in degree k <
g−3. More precisely, in this range Hk(β(σ1+1),Q), as an algebra over
the stable cohomology of Ag−2, is isomorphic to the polynomial algebra
Q[T1 + T2, T1T2] on two generators, of degrees 2 and 4, respectively.

Our approach to the locally closed stratum ∆ = β(σK3) is analogous.
In this case, the toroidal description yields that ∆ is the quotient of
X×2

g−2 by the group G(σK3) generated by the following three involutions:

(x1, x2) ↔ (−x1,−x2)(14)

(x1, x2) ↔ (x2, x1)(15)

(x1, x2) ↔ (x1, x1 − x2).(16)

Note that the involution (14) acts trivially on Sym2(R2), whereas
(15) can be viewed as the involution x2

1 ↔ x2
2 and (16) as x2

2 ↔ (x1 −
x2)

2. From this it follows that the action of G(σK3) on Span(σK3)
factors through the standard representation of the symmetric group S3

on the generators of σK3 . Let us recall from Theorem 8.1 that the stable
cohomology of β(σK3) is the G(σK3)-invariant part of the symmetric
algebra on the generators of σK3 , tensored with H•

stable(Ag−2). If we
denote by (α1, α2, α3) = (x2

1, x
2
2, (x1 − x2)

2) the Z-basis given by the
generators of σK3 and by

(γ1, γ2, γ3) = (τ11 + τ12, τ12 + τ22,−τ12)

the dual basis, we have

H•
stable(β(σK3))

∼= H•
stable(Ag−2)⊗ (Sym•(Qγ1 +Qγ2 +Qγ3))

S3 ,

so that by the theory of symmetric functions the stable cohomology
of β(σK3) is freely generated by the elementary symmetric functions
in the γj. The geometric meaning of these generators can be made
more explicit by using the correspondence between the exponentials of
the coordinates τjk and the classes Tj, Pjk ∈ H2

stable(X
×2
g−2) coming from

Remark 8.2 and Proposition 7.2. This yields the following description
of the three generators ξ, η, ζ :

−γ1 − γ2 − γ3 = −τ11 − τ12 − τ22 7→ ξ = 2(T1 + T2) + P,

γ1γ2 + γ2γ3 + γ3γ1 = τ11τ22 − τ 212 7→ η = 4T1T2 − P 2,

−γ1γ2γ3 = (τ11 + τ12)(τ12 + τ22)τ12 7→ ζ = P (2T1 + P )(2T2 + P ).

This proves the following result:

Lemma 10.2. The cohomology of ∆ = β(σK3) stabilizes in degree
< g − 3, and in this range is generated over the stable cohomology of
Ag by the classes ξ, η and ζ that have degrees 2, 4 and 6, respectively.
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Since each of the two substrata of β0
2 are smooth, we can translate

our results into cohomology with compact support, and using the Gysin
spectral sequence we can thus compute the cohomology Htop−k

c (β0
2 ,Q)

with compact support in the stable range k < g − 3 (where top :=
g(g+1)−4 is the (real) dimension of β0

2 . Recall that the stratum β0
2 is

smooth, as all rank 2 cones are basic. In particular, Poincaré duality
gives an isomorphism Hk(β0

2 ,Q) ∼= Htop−k
c (β0

2 ,Q), so that we can state
stability results for β0

2 directly in terms of cohomology.
For later use we notice in particular that

Corollary 10.3. For g > 11, the Betti numbers of β0
2 in even degree

are as follows:

k 0 2 4 6 8

dimHk(β0
2 ,Q) 1 3 6 11 19

Moreover, the stable cohomology vanishes in odd degree k ≤ 8.

11. Further computations: stable cohomology of APerf
g in

degree up to 12

In this section we outline the technical difficulties encountered in
extending the explicit computations of stable cohomology to higher
degree, and list the results of this computation for the next couple of
cases. As a result, we compute Htop−k(APerf

g ,Q) for k ≤ 12, prov-
ing Theorem 1.6 (and then from the computations also easily deduce
Htop−k

c (AMatr
g ,Q), proving Theorem 1.9). To do this, for each of the

(many) cones, we will list the rank 1 forms generating it (as in [Val03,
Chapter 4]) and the automorphism group preserving the cone (for most
cases these have been computed by the second and third authors in
[HT10] and [HT12], we provide the couple extra computations neces-
sary). We then describe the action of the automorphism groups on the
cohomology of the torus fiber.
We also recall that from Lemma 8.3 and Proposition 9.3 and their

proofs we know that the cohomology of each stratum is purely alge-
braic, all odd cohomology vanishes, that Ep,q vanishes for p odd, and
that the Leray spectral sequence for the map to Ag−k degenerates at
E2. Thus our job amounts to computing the invariant part of the co-
homology of each toric fiber, and then following the method of Lemma
8.3 and Proposition 9.3.

11.1. Strata of codimension 3. There is only one stratum of APerf
g

of (complex) codimension 3 that we have not considered yet; it is the
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standard degeneration of torus rank 3, given by the cone

σ1+1+1 = 〈x2
1, x

2
2, x

2
3〉.

In this case, we can apply Lemma 8.4 for rank i = 3, which gives
us that the stable cohomology of β(σ1+1+1) is freely generated by the
elementary symmetric polynomials in the T -classes

T1 + T2 + T3, T1T2 + T2T3 + T3T1, T1T2T3

and the odd λ-classes. Recall that to compute H≥g(g+1)−12(APerf
g ) =

H≤12(APerf
g ) (see Proposition 9.7), we will only need H≤6 of this stra-

tum. The dimensions of the stable cohomology are thus given by

k 0 2 4 6
dimHk

stable(β(σ1+1+1),Q) 1 2 4 8

11.2. Strata of codimension 4. We have three strata of codimension
4, of which one (the standard cone) has torus rank 4, and two others
correspond to torus rank 3 degenerations, i.e. define strata in β0

3 (we
refer to [GH11] for the detailed description of all strata of codimension
up to 5, and of course to [HT12] for more details). The standard torus
rank 4 cone is

σ1+1+1+1 =
〈

x2
1, x

2
2, x

2
3, x

2
4

〉

.

As above, we can apply Lemma 8.4 to β(σ1+1+1+1), which yields the
following values for the dimension of the stable cohomology in degree
k ≤ 4 :

k 0 2 4
dimHk

stable(β(σ1+1+1+1),Q) 1 2 4

The other two cones of codimension 4 have torus rank 3. One is

σK3+1 =
〈

x2
1, x

2
2, (x1 − x2)

2, x2
3

〉

.

In this case T (σK3+1) is a torus bundle of rank 2, with parame-
ters s−1

1,3, s
−1
2,3. Therefore T (σK3+1) is isomorphic to a product of the

Poincaré bundles (P1,3 ⊗ L1/2)0 and (P2,3 ⊗ L1/2)0 with the 0-section
removed. The reduced automorphism group of σK3+1, i.e. the auto-
morphism group divided by ±1, was computed in [HT10, Lemma 6],
and is equal to S3 × (Z/2Z). Its action on Span(σ) factors through
the action of S3 permuting the first three generators of σ and fixing
the last one. Then Theorem 8.1 implies that the stable cohomology
of β(σK3+1) is isomorphic to an algebra H•

stable(Ag) ⊗ Q[f2, g2, g4, g6]
where the subscript identifies the degree of the free generators. The
generator f2 can be identified with x2

3, whereas g2i corresponds to the
degree i elementary polynomial in x2

1, x
2
2, (x1 − x2)

2.
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Using the same approach and notation as in Lemma 10.2, this yields
the isomorphism

H•
stable(β(σK3+1)) = Q[T3, ξ, η, ζ, λ2m+1| m ∈ Z] ⊂ H•

stable(X
×3
g )

for the classes ξ = 2(T1 + T2) + P , η = 4T1T2 − P 2, ζ = P (2T1 +
P )(2T2 + P ). This yields the following formula:

k 0 2 4
dimHk

stable(β(σK3+1),Q) 1 3 7

Finally, we have the last codimension 4 cone given by

σC4 =
〈

x2
1, x

2
2, (x1 − x3)

2, (x2 − x3)
2
〉

.

This cone was studied in [HT10, Section 5.4]: a natural choice of
parameters for T (σC4) is given by s−1

12 , s13s23s33; the automorphism
group of σC4 is S4, and it is generated by the three involutions sending
the point (x1, x2, x3) ∈ R3 to

(x2, x1, x1 + x2 − x3); (x1 − x3,−x2,−x3); (x3 − x2,−x2, x1 − x2)

respectively. As S4 permutes the generators of σC4 , the stable coho-
mology of β(σC4) is freely generated over the stable cohomology of Ag

by four classes of degree 2, 4, 6, 8 respectively, corresponding to the el-
ementary symmetric functions in the generators of σC4 . To identify
them as elements of the stable cohomology of X×3

g , we need to extend

the generators of σC4 to a basis of Sym2(R3) in such a way that the
span of the two additional generators f, g is a subrepresentation of S4,
e.g. by setting

f = −x2
1 + 6x1x2 − x2

2 − 2x1x3 − 2x2x3 + 2x2
3,

g = 2x2
1 + 2x2

2 − 2x1x3 − 2x2x3 − x2
3.

Then dualizing gives the following description of the dual elements
γ1, . . . , γ4 (multiplied by 3 by convenience) of the generators α1, . . . , α4

of σC4 :

γ1 = 3τ11 + τ33 + 2τ12 + 4τ13 + τ23 7→ − 6T1 − 2T3 − 2P12 − 4P13 − P23

γ2 = 3τ22 + τ33 + 2τ12 + τ13 + 4τ23 7→ − 6T2 − 2T3 − 2P12 − P13 − 4P23

γ3 = τ33 − τ12 − 2τ13 + τ23 7→ − T3 + P12 + 2P13 − P23

γ4 = τ33 − τ12 + τ13 − 2τ23 7→ − T3 + P12 − P13 + 2P23

From this it follows that the stable cohomology of β(σC4) is generated
by the elementary symmetric functions in the γi. In particular, the



STABLE COHOMOLOGY OF Ag 41

degree 2 generator is

ξ′ = 3T1 + 3T2 + 4T3 + 2P23 + 2P13 + P12, (degree 2)

and the degree 4 generator is

η′ = −P 2
12 − P12P13 − P 2

13 − P12P23 − P 2
23

+ 12T1T2 + 12T1T3 + 12T2T3 + 6P13T2 + 6T1P23

+ 4P13P23 + 4P12T3 + 8P13T3 + 8P23T3 + 8T 2
3 .

11.3. Strata of codimension 5. For the codimension 5 strata the full
computation of automorphism groups and of invariant classes becomes
more elaborate. Note, however, that for our purposes we are only inter-
ested in the cohomology in degrees up to 2. Since each of these strata
β(σ) is connected, the H0 is always one-dimensional, and generated by
the Poincaré dual of the fundamental class. By Theorem 8.1, the H1

vanishes and the H2 is generated by λ1 and by classes coming from the
G(σ)-invariant subspace of Span(σ).
The first stratum of codimension 5 corresponds to semiabelic vari-

eties of torus rank 3, and was also treated in [HT10] and in [HT12],
where it is denoted simply by σ(5). It is given by

σK4−1 =
〈

x2
1, x

2
2, x

2
3, (x1 − x3)

2, (x2 − x3)
2
〉

,

and the full automorphism group was computed in [HT12, §6.5], and it
coincides with the subgroup of the automorphism group of C4 fixing x

2
3.

From this it follows that the G(σK4−1)-invariant part of Span(σK4−1) is
two-dimensional, generated by x2

3 and by the sum of the other genera-
tors. Dually, this can be viewed inside the stable cohomology of X×3

g

as the span of the two invariants i1 = T1 + T2 and i2 = 4T3 + P12 +
2P13 + 2P23 computed in [HT12].
Next, there are three strata in torus rank 4, namely those corre-

sponding to the cones

σK3+1+1 =
〈

x2
1, x

2
2, (x1 − x2)

2, x2
3, x

2
4

〉

,

σC4+1 =
〈

x2
1, x

2
2, (x1 − x3)

2, (x2 − x3)
2, x2

4

〉

and
σC5 =

〈

x2
1, x

2
2, (x1 − x4)

2, (x2 − x3)
2, (x3 − x4)

2
〉

.

In the case of σK3+1+1 the automorphism acts on Span(σK3+1+1) as
the product S3 × S2, where the first factor permutes the first three
generators of σK3+1+1 (as in the case of σK3) and the second factor
interchanges the last two generators. Therefore, the invariant subspace
of Span(σK3+1+1) is two-dimensional, generated by x2

1+x2
2+(x1−x2)

2

and x2
3 + x2

4.
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For σC4+1 the automorphism group coincides with that of σC4 and
acts trivially on x2

4. Therefore, the invariant subspace of Span(σC4+1)
is again two-dimensional, generated by x2

1+x2
2+(x1−x3)

2+(x2−x3)
2

and x2
4.

Finally, the automorphism group G(σC5) acts on Span(σC5) by per-
muting the 5 generators. Therefore the invariant part of Span(σC5) is
one-dimensional.

We now encounter a new feature: indeed, as explained in [GH13],
correcting [GH11], there exist two cones in the perfect cone decompo-
sition of codimension 5 and torus rank 5. The first one is the standard
cone given by

σ1+1+1+1+1 =
〈

x2
1, x

2
2, x

2
3, x

2
4, x

2
5

〉

,

for which Lemma 8.4 implies that the invariant part of Span(σ1+1+1+1+1)
is one-dimensional.
The other case corresponds to the non-standard 5-dimensional cone

given by

σNS :=
〈

x2
1, . . . x

2
4, (2x5 − x1 − x2 − x3 − x4)

2
〉

.

Its reduced automorphism group is generated by the group S5 per-
mutating the five generators of σNS . Therefore, the invariant part of
Span(σNS) is generated by the sum x2

1+· · ·+x2
4+(2x5−x1−x2−x3−x4)

2.

11.4. Strata of codimension 6. For the strata of (complex) codimen-
sion 6, note that by the Gysin spectral sequence their only cohomology
that matters for the computation of H≤12(APerf

g ) is the H0. Since each
such stratum is connected, its H0 is one-dimensional, and we simply
note that there are in total 13 strata. These correspond to the non-
degenerate 6-dimensional cones of which there are 1, 4, 5 and 3 in genus
3, 4, 5 and 6 respectively, see [EVGS13]. Note that the 6-dimensional
cones in genus 3 and 4 are all matroidal. In genus 5, four of them —
the cones associated with the graphical lattices C6, C5 + 1, C4 + 1 + 1
and C3 + 1 + 1 + 1 — are matroidal; the remaining cone contains σNS

and is therefore non-matroidal.
From the definition of matroidal cones, it follows that the standard

cone (up to the GL(g,Z)-action) is the only g-dimensional matroidal
cone of rank g. Hence, of the three 6-dimensional perfect cones of genus
6 one is matroidal and the other two are not.
Finally, we are ready to compute the cohomology of APerf

g in degree
up to 12.

Proof of Theorem 1.6. From the proof of Theorem 1.1 it follows that
for k < g, the cohomology of APerf

g in degree ≥ top−k is the direct
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Table 1. Betti numbers of stable cohomology

degree 0 2 4 6 8 10 12
Ag 1 1 1 2 2 3 4
β0
1 1 2 3 5 7 10

β0
2 1 3 6 11 18

β(σ1+1+1) 1 2 4 8
codim. 4 strata 3 7 15
codim. 5 strata 6 15
codim. 6 strata 13

Tot. 1 2 4 9 18 38 83

sum of the stable cohomology with compact support of the strata β(σ)
of codimension ≤ ⌈g/2⌉. This means that for g ≥ 13 we can calculate
the cohomology of APerf

g in degree larger than or equal to top−12 by
collecting the stable Betti numbers calculated in the previous sections
and adding them as shown in Table 1. From this the claim follows. �

The cohomology of AMatr
g in low degree is computed analogously:

Proof of Theorem 1.9. To compute the stable cohomology of AMatr
g we

simply need to subtract from Table 1 the contribution of the non-
matroidal cones and then use Poincaré duality to pass from cohomology
with compact support in degree top−k to cohomology in degree k.
The only changes occur in dimensions 10 and 12. In dimension 10 we
lose one generator, corresponding to the fundamental class of the non-
standard torus rank 5 codimension 5 cone. In dimension 12, we lose
one generator for each of the three non-matroidal cones of dimension
6, and two generators for the H2 of the non-matroidal dimension 5
cone. �

12. Algebraic generators for cohomology

Above we have computed the dimensions of the stable cohomol-
ogy groups Htop−k(APerf

g ,Q) ∼= Hk(APerf
g,smooth,Q) ∼= Hk(APerf

g,simp,Q) for
k ≤ 12. We will now identify geometrically generators for the coho-
mology groups for k ≤ 8 and for most of H10, and then discuss the
phenomena present for H12. To be more precise, we shall construct
certain geometric cycles on the open part APerf

g,simp of APerf
g where the

cycle map cl : A•
Q(A

Perf
g,simp) → H•(APerf

g,simp,Q) is well defined and a ring
homomorphism, see [Ful98, Corollary 19.2]. Naturally this approach
also works for the open sets APerf

g,smooth and AMatr
g which are (proper)

subsets of APerf
g,simp.
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We will use two methods for constructing cohomology classes, the
strata algebra — generated by the fundamental classes of the strata in
APerf

g corresponding to various perfect cone cones — and the boundary
algebra — generated by suitable polynomials in irreducible divisorial
components of the boundary of the level cover APerf

g (2) — both taken
together with the algebra generated by the Hodge classes λ2i+1.
More precisely, for the first construction, we consider the algebra

generated by the fundamental classes of the closures of the strata β(σ),
where σ is a simplicial cone — we call this the strata algebra by analogy
with the subalgebra of the cohomology of the moduli space of curves
generated by the fundamental classes of the strata of stable curves of
fixed topological type. From now on when we speak about the class
of the stratum, we mean the cohomology class of its closure. In order
to keep the notation manageable, in this section we will denote the
corresponding cohomology class also by σ.
The second construction is by going to a level cover APerf

g (2), where
the boundary becomes a reducible divisor, with its irreducible com-
ponents Dm labeled by vectors m ∈ (Z/2Z)2g \ {0}. The boundary
components in APerf

g (2) corresponding to a basic cone intersect gener-
ically transversally. By writing polynomials in the classes of Dm in-
variant under the action of the deck group Sp(2g,Z/2Z) of the cover
APerf

g (2) → APerf
g we obtain classes in suitable open subsets of APerf

g (2)

(such as the simplicial locus) which descend to APerf
g . To avoid unnec-

essary multiplicities in our notation we normalize the pushforward by
dividing by the order of the deck group, as was also done in [GH12,
Section 4]. This construction provides us with well defined cohomology
classes on the simplicial locus APerf

g,simp. It was used in [GH12], where es-
pecially in Sections 8 and 9 similar constructions were performed, and
we freely use the notation and results from there. We recall that the
intersection of two different boundary divisors Dm1 ∩Dm2 ⊂ APerf

g (2) is
non-empty if and only if m1 and m2 span an isotropic subspace, i.e. if
and only if the scalar product m1 · m2 = 0 ∈ Z/2Z. We note that
the orbit under Sp(2g,Z/2Z) of a k-tuple m1, . . . , mk ∈ (Z/2Z)2g \ {0}
such that each pair mi, mj is isotropic consists of all k-tuples of vectors
satisfying the same set of linear relations over Z/2Z (in particular, if
some mi are the same, then in the orbit some of the elements must also
be the same). Thus the generators for the vector space of polynomials
in Dm invariant under the action of Sp(2g,Z/2Z) are given by sums of
products of the boundary divisors of the form

∑

Dm1 . . .Dmk
subject

to a fixed set of linear relations of the form mi1 + . . .+miℓ = 0. We will
thus proceed by enumerating all such polynomials in Dm of degree up
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to 6 (calling such polynomial a pure boundary class), and multiplying
them by suitable polynomials in the Chern classes λ2i+1 of the Hodge
bundle. To prove that one obtains the entire stable cohomology in a
given degree one then has to compare these classes to the ones which
we used to prove stability in Sections 9 and 10 and to compute the
explicit numbers in Theorem 1.6.
We will see that in degree up to 8 the strata algebra and the boundary

algebra are equal, and both are equal to the stable cohomology. On
the other hand in degree 10 neither of them generates the entire stable
cohomology H10(APerf

g,smooth,Q), and it appears that they give different
codimension 1 subspaces of it. In degree 12 it appears likely that the
strata algebra, boundary algebra, H12(APerf

g,smooth,Q), and H12(AMatr
g ,Q)

are all different.
Case k = 0. Here we of course have one class, which is simply 1.
Case k = 2. We have already treated this in Corollary 5.3. Here we

have one class λ1, which already exists on Ag, and one class β1, which
on the one hand is the closure of the stratum given by the unique
rank 1 cone σ1 and on the other hand is nothing but the boundary
D and can in the spirit of the above discussion be identified with the
sum

∑

Dm. Thus we have identified both generators of the stable
cohomology H2(APerf

g ).
Case k = 4. In our previous discussion we saw that the stable

cohomology in degree 4 has rank 4. The only degree 4 class which
already lives on Ag is λ2

1. The boundary is the closure of the stratum
σ1+1, which contributes the classes λ1β1 and β2

1 . Here we note that β2
1

equals the class given by T on σ1 (and the latter is nothing but the
universal abelian variety in genus g−1). Finally the class of the closure
of the stratum σK3 also lies in H4. In terms of boundary components
of APerf

g (2) the first of these classes is λ1(
∑

Dm), whereas the last

is given by
∑

m6=m′ DmDm′ . Finally, β2
1 corresponds to (

∑

Dm)
2 =

∑

D2
m +

∑

m6=m′ DmDm′ .
Case k = 6. Here we need to be a bit more methodical. By Theorem

1.6 the stable H6(APerf
g,smooth) has dimension 9. There are five classes

which are products of classes of degree at most 4 (which we have already
identified) with λ-classes. These are the two classes fromAg, namely λ3

1

and λ3, then the degree 2 classes supported on the boundary multiplied
with λ2

1, i.e. λ
2
1β1, and finally from the degree 4 classes supported on the

boundary we obtain λ1β
2
1 and λ1β2. So far we have thus constructed

five classes that are not obtained as cubic expressions in Dm.
We will now enumerate cubic expressions inD; this has actually been

studied in detail in [GH12]. However, to set up the more methodical
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search below, we review how this can be done. Indeed, first of all in
a cubic expression some indices mi may coincide (equivalently, this is
a linear relation mi +mj = 0). The expressions where there are some
coincidences are thus

∑

D3
m and

∑

D2
m1

Dm2 , where from now on we
use the convention that each such sum is over all possible m1, . . .mk

satisfying no additional relations in addition to the ones stated — so
in particular in the second sum m1 and m2 are assumed to be distinct.
If we have a cubic expression with nomi coinciding, there are actually

two cases, corresponding to whether the sum of the three indices is
zero or not (these are the so-called local and global, corresponding to
whether the three divisors intersect within β0

2 or β0
3). We thus have

the two expressions
∑

m1+m2+m3=0Dm1Dm2Dm3 and
∑

Dm1Dm2Dm3

(where recall in the second sum we enforce m1 +m2 +m3 6= 0). Also,
from now on, when writing such sums, we will implicitly divide by
the suitable product of factorials so that each summand appears only
once, that is both of these cubics should be divided by 6, while say
∑

D2
m1

D2
m2

would be divided by 4.
Thus we have a total of 4 classes that are cubics in Dm. Indeed these

four classes, together with the five classes described above generate the
stable cohomology in degree 6. To see this we note that the condition
m1+m2+m3 = 0 means that the three boundary divisors Dmi

intersect
locally, i.e. the generic point of this intersection is contained in β0

2 and
this intersection is the closure of the stratum β(σK3). On the other
hand the condition m1 + m2 + m3 6= 0 means that the three divisors
intersect “globally”, i.e. their intersection is contained in β3. In fact
this intersection is irreducible and equals β3, which in turn is the closure
of the stratum σ1+1+1 .
For what follows it is useful to use a better formalism for describing

homogeneous polynomials in the Dm. To make the formulas readable,
we write {mi1

1 . . .mil
l } for

∑

Dil
m1

. . . Dil
ml
, where we order the powers

so that i1 ≥ i2 ≥ . . . ≥ il, and furthermore we order the indices so that
if ia−1 > ia = . . . = ib > ib+1, then ma > . . . > mb. We further note the
linear relations in parenthesis, so that eg. (123) means m1+m2+m3 =
0. Thus for example we have {1} =

∑

Dm; {12} =
∑

i<j DiDj = β2,

and {122} =
∑

i 6=j D
2
iDj .

In degree 3 we thus have the four possibilities {13}, {122}, {123},
{123(123)}. They relate to the fundamental classes of strata of APerf

g

as follows: β3
1 = {13}+3{122}+6{123}+6{123(123)}, β1β2 = {122}+

3{123}+ 3{123(123)}, σK3 = {123(123)} and σ1+1+1 = {123}. Hence
the space of classes spanned by the four possible cubic polynomials in
the Dm equals the span of β3

1 ,β1β2,σK3 , σ1+1+1. We note that β3
1 is
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the class T 2 on β(σ1) and β1β2 is the class of T1 + T2 on σ1+1, see the
proof of Lemma 10.1. Thus it follows from Section 11 that the classes
obtained as polynomials in the Dm together with the λ-classes generate
the stable cohomology in degree 6.
Case k = 8. From Theorem 1.6 we know that the rank of the sta-

ble cohomology in degree 8 is 18. Above we have described 9 classes
in degree 6. Multiplying these with λ1 and also taking λ3β1 we ob-
tain 10 independent classes. The remaining stable cohomology can be
generated by classes which do not contain a factor which is a λ-class
and, according to Sections 10 and 11, is generated by the image of the
classes T 3σ1, (T1 + T2)

2σ1+1, (T1T2)σ1+1, (T1 + T2 + T3)σ1+1+1, (2(T1 +
T2)− P )σK3, σ1+1+1+1, σK3+1, σC4 in Htop−8(APerf

g ,Q).
We will now show how to obtain (the span of) these classes by the

quartic polynomials in D. For this we first have to enumerate these.
This situation was studied in detail in [GH12, Proposition 8.4]. The
possibilities are

{14}, {132}, {1222}, {1223(123)}, {1223},

{1234(123)}, {1234(1234)}, {1234},

so that altogether we get 8 classes. As discussed in [GH12], their
span is equal to the span of the classes β4

1 , β
2
1β2, β

2
2 , β1β3, β1(σK3 +

σ1+1+1), β4, {1234} + {1234(123)} + {1234(1234)}, and {1234(1234)}.
The stratum β4 is irreducible, and we have β4 = σ1+1+1+1, which cor-
responds to the polynomial {1234}. From the definition of the cones
σK3+1 and σC4 we find that these strata correspond to {1234(123)}
and {1234(1234)}. Next β1β3 gives the class coming from (T1 + T2 +
T3)σ1+1+1. Since σ1+1+1 = β3 we obtain, modulo β1β3, that β1(σK3 +
σ1+1+1) gives the unique degree 2 class on σK3 which, by the proof of
Lemma 10.2 is (2(T1+T2)−P )σK3. Modulo the classes already enumer-
ated we then see that β2

2 , which corresponds to {12}2, gives (T1T2)σ1+1.
Similarly β2

1β2, which corresponds to {1}2{12}, gives, again modulo
classes already enumerated, the class (T1 + T2)

2σ1+1. Finally β4
1 gives

T 3σ1 plus classes from above. This shows that we obtain the entire
stable cohomology in degree 8 by using either the strata algebra or the
polynomials in Dm.
Case k = 10. Here we will see that neither the boundary algebra

nor the strata algebra span all of H10(APerf
g,smooth,Q), while it could be

that together they span it.
Indeed, we know from Theorem (1.6) that stable H10(APerf

g,smooth,Q) =

Q38. Above we have seen that all 19 stable classes of degree 8 lie in the
strata algebra and in the boundary algebra. Multiplying each of these
18 classes by λ1 gives a degree 10 class in the stable cohomology of
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APerf
g . We also have the class λ5 in the stable cohomology of Ag (which

also extends to APerf
g ). Furthermore, we can construct more classes as a

product of λ3 and a suitable boundary class. For this, we would need a
polynomial in boundary strata of codimension 4, and there are of course
two such classes, β2

1 and β2 (the same space is the linear span of β(σ1)
2

and β(σ1+1)). Thus altogether we have constructed 21 = 18 + 1 + 2
degree 10 classes involving a λ-class. We thus need to account for the
remaining 17 classes in H10(APerf

g,smooth).

To understand pure boundary strata in H10, we need to study the
possible quintics in Dm: these are enumerated in the proof of [GH12,
Proposition 9.1], and in our notation are as follows:

{15}, {142}, {1322}, {1323}, {1323(123)}, {12223}, {12223(123)},

{12234}, {12234(1234)}, {12234(123)}, {12234(234)}, {12345},

{12345(12345)}, {12345(1234)}, {12345(123)}, {12345(123, 145)},

which gives a total of 16 quintic polynomials in Dm. Thus the di-
mension of pure boundary algebra is 16, and together with the 21
classes enumerated above these are insufficient to generate the sta-
ble H10(APerf

g,smooth,Q). Thus the boundary algebra is smaller than

H10(APerf
g,smooth,Q).

Similarly, for the strata algebra in degree 10, as per the discussion
in Section (11), we note that there are 6 boundary strata of complex
codimension 5. These can be related to polynomials in the Dm as
follows:

σ1+1+1+1+1 = {12345}, σK3+1+1 = {12345(123)}

σC4+1 = {12345(1234)}, σK4−1 = {12345(123, 145)}

while we have
σC5 + σNS = {12345(12345)},

where we recall that σNS denotes the non-standard non-matroidal cone.
The last identity follows since the 5-tuples given by the generators of
the cones σC5 and σNS coincide mod 2. Thus all 5 quintics in Dm

that involve 5 different indices can be expressed in terms of boundary
strata, but not vice versa. We now investigate further degree 10 classes
in the strata algebra. For polynomials that involve a boundary class of
complex codimension 4, we have

σ1σ1+1+1+1 = ∗{12234}+ ∗{12345}+ ∗{12345(12345)}

σ1σK3+1 = ∗{12234(123)}+ ∗{12234(234)}+ ∗{12345(123)}

+ ∗{12345(123, 145)}

σ1σC4+1 = ∗{1234(1234)}+ ∗{12345(1234)}
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where ∗ denotes the various combinatorial non-zero coefficients appear-
ing. Using these expressions, together with the expressions for the quin-
tics involving five different Dm, obtained above, we can express {12234}
and {1234(1234)} as linear combinations of polynomials in boundary
strata. Note, however, that so far we are only able to express a suitable
linear combination ∗{12234(123)}+ ∗{12234(234)} as a polynomial in
boundary strata — but not the two summands individually.
For the elements of the (pure, not involving the λ’s) strata algebra

involving a cone of complex codimension 3, we similarly have

σ2
1σ1+1+1 = ∗{1323}+ ∗{12223}+X

σ2
1σK3 = ∗{1323(123)}+ ∗{12223(123)}+X

σ1+1σ1+1+1 = ∗{12223}+X

σ1+1σK3 = ∗{12223(123)}+X

where X in each case denotes various explicit linear combinations of
quintics involving at least 4 different Dm. Thus from the above ex-
pressions, we can express each of the four quintic polynomials {1323},
{1323(123)}, {12223}, {12223(123)}, as a linear combination of mono-
mials in boundary strata and quintics involving at least 4 different Dm,
while we get no further information or relations that could allow us to
distinguish ∗{12234(123)} and ∗{12234(234)} (or σNS and σC5).
It remains to enumerate elements of the strata algebra that only

involve classes of codimension at most 2; that is to say, we now need
to write monomials in σ1 and β(σ1+1) only. Again, now denoting X
any linear combinations of quintics involving at least 3 different Dm,
we get

σ5
1 = ∗{15}+ ∗{142}+ ∗{1322}+X

σ3
1σ1+1 = ∗{142}+ ∗{1322}+X

σ1σ
2
1+1 = ∗{1322}+X

so that again these monomials can be expressed in terms of the poly-
nomials in the strata algebra and the monomials we have studied pre-
viously. We thus obtain

Summary 12.1. There exist 16 pure boundary classes (quintics in
Dm) and 16 pure strata classes (monomials in the classes of the strata),
such that:

(i) each pure boundary class except {12234(123)} and {12234(234)}
lies in the pure strata algebra; moreover, a suitable linear com-
bination ∗{12234(123)}+ ∗{12234(234)} lies in the pure strata
algebra
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(ii) each pure strata class, except σC5 and σNS lies in the pure
boundary algebra; moreover, σC5 + σNS also lies in the pure
boundary algebra (in fact, is equal simply to {12345(12345)})

We thus obtain

Proposition 12.2. Neither the strata algebra nor the boundary algebra
generate the cohomology rings of either the smooth or the simplicial
locus of APerf

g .

We furthermore conjecture that in fact both the boundary algebra
and the strata algebra in degree 10 have dimension 37, that together
they span H10(APerf

g,smooth,Q), and moreover that the boundary algebra

actually is equal to H10(AMatr
g ). As the stratum σNS does not belong

to AMatr
g , the dimension of the restriction of the strata algebra to AMatr

g

is only 36 in degree 10, so it is clear that the strata algebra cannot give
all stable cohomology of AMatr

g .

Case k = 12. Here we will see thatH12(APerf
g,smooth,Q), H12(AMatr

g ,Q),
the boundary and the strata algebra all seem to have different di-
mensions. We recall that by Theorem 1.6 and Theorem 1.9 we have
H12(APerf

g,smooth,Q) = Q83 and H12(AMatr
g ,Q) = Q78.

For both the boundary and the strata algebra, we shall first enumer-
ate those classes which involve λ-factors. Here we have 4 classes in the
interior: λ6

1, λ
3
1λ3, λ1λ5, 3 · 1 classes by multiplying the k = 10 interior

classes by the unique pure boundary class {1} (which is the same as
the pure stratum class σ1, of course), 2 · 2 classes by multiplying the
k = 8 interior classes by the two pure boundary/strata classes in degree
4, 2 · 4 classes by multiplying the k = 6 interior classes by the two pure
boundary/strata classes in degree 6, 1 · 8 classes by multiplying the
k = 4 interior class λ2

1 by the pure boundary/strata classes in degree
8, and 1 · 16 classes by multiplying λ1 by the quintics in Dm (which
are different from the 16 pure strata classes, but the dimension is the
same), for a total of 4 + 3 + 4 + 8 + 8 + 16 = 43 classes.
Next we discuss the pure boundary classes, i.e. sextic polynomials in

Dm. We have

{16}, {152}, {1422}, {1323}, {1423}, {1423(123)}, {13223}, {13223(123)},

{122232}, {122232(123)}, {13234}, {13234(1234)}, {13234(123)},

{13234(234)}, {122234}, {122234(1234)}, {122234(123)}, {122234(134)},

{122345}, {122345(12345)}, {122345(1234)}, {122345(2345)},

{122345(123)}, {122345(234)}, {122345(123, 145)}, {122345(123, 245)},

{123456}, {123456(123456)}, {123456(12345)}, {123456(1234)},
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{123456(1234, 1256)}, {123456(1234, 156)}, {123456(123)},

{123456(123, 145)}, {123456(123, 145, 246)}, {123456(123, 456)}

for a total of 36 sextics, so that the total dimension of the boundary
algebra in degree 12 is at most 43 + 36 = 79 (it could be less as we
have not ruled linear relations among the above, which, however, seem
unlikely to exist).
We will now discuss the pure strata classes, and will take this op-

portunity to set up this approach more systematically. We first list the
cones of the perfect classes of boundary strata, in each codimension:

Codim Cones # of Cones
2 σ1 1
4 σ1+1 1
6 σK3 , σ1+1+1 2
8 σK3+1, σC4 , σ1+1+1+1 3
10 σK4−1, σK3+1+1, σC4+1, σC5 , σ1+1+1+1+1, σNS 6
12 . . . 13

To compute the number of pure strata classes in degree k is to com-
pute the number of monomials in the classes of these cones, of appropri-
ate degree. Thus we need to sum over all partitions k = 2n1+ . . .+2ni

with the products of the numbers of cones in codimension 2ni, from
the table above. We have of course implicitly used this throughout
the computations above, but there we also were able to identify the
individual monomials with the stable cohomology generators or with
the boundary algebra. Here we only do the combinatorics; the result is
given by the following table, where the results for degree up to 10 sim-
ply summarize the previous discussion, and the number of pure strata
classes in degree 12 is what we wanted.

k partitions of k # of pure strata classes in deg k

2 1 1
4 2,11 1 + 1 · 1 = 2
6 3,21,111 2 + 1 · 1 + 1 · 1 · 1 = 4
8 4,31,22,211,1111 3 + 2 · 1 + 1 + 1 + 1 = 8
10 5,41,32,311,221,2111,11111 6 + 3 + 2 + 2 + 1 + 1 + 1 = 16
12 6,51,42,411,33,321,3111, 13 + 6 + 3 + 3 + 2 · 2 + 2 + 2

222,2211,21111,111111 +1 + 1 + 1 + 1 = 37

Summary 12.3. We thus have

(i) The dimension of the strata algebra in degree 12 is equal to at
most 80, of which at most 37 are the pure strata classes.
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(ii) The dimension of the boundary algebra in degree 12 is equal to
at most 79, of which at most 36 are the pure boundary classes.

It thus follows that neither the strata nor the boundary algebra in
degree 12 generate all of H12(APerf

g,smooth,Q) — which of course is not
surprising given that this fails already in degree 10. We would like to
close with the following:

Conjecture 12.4. There are no stable relations in the strata or bound-
ary algebra. More precisely, the strata and boundary algebra are freely
generated by the odd lambda classes and the strata, respectively bound-
ary classes for k << g.

Question 12.5. Is it true that the strata and the boundary algebras
together generate the stable cohomology of APerf

g,smooth?

Question 12.6. What is (stably) the intersection of the strata and the
boundary algebra?

Question 12.7. Is it true that the boundary algebra generates the stable
cohomology of AMatr

g ?

We hope that we, or others, would be able to address some of these
questions in the future.
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