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ON THE ORTHOGONALITY OF GENERALIZED EIGENSPACES

FOR THE ORNSTEIN–UHLENBECK OPERATOR

VALENTINA CASARINO, PAOLO CIATTI, AND PETER SJÖGREN

Abstract. We study the orthogonality of the generalized eigenspaces of an Ornstein–
Uhlenbeck operator L in RN , with drift given by a real matrix B whose eigenvalues
have negative real parts. If B has only one eigenvalue, we prove that any two distinct
generalized eigenspaces of L are orthogonal with respect to the invariant Gauss-
ian measure. Then we show by means of two examples that if B admits distinct
eigenvalues, the generalized eigenspaces of L may or may not be orthogonal.

1. Introduction

In this note we discuss the orthogonality of the generalized eigenspaces associated
to a general Ornstein–Uhlenbeck operator L in RN .

Recently, the authors started studying some harmonic analysis issues in a nonsym-
mmetric Gaussian context [1, 2, 3]. In particular, the Ornstein–Uhlenbeck semigroup(
Ht

)
t>0

generated by L is not assumed self-adjoint in L2(γ∞); here γ∞ denotes the
unique invariant probability measure under the action of the semigroup, and will be
specified later.

In this general framework, the Ornstein–Uhlenbeck operator L admits a complete
system of generalized eigenfunctions; see [8]. But without self-adjointness, the orthog-
onality of distinct eigenspaces of L is not guaranteed. In fact, while the kernel of L

is always orthogonal to the other generalized eigenspaces of L in L2(γ∞), the question
of orthogonality between generalized eigenspaces associated to nonzero eigenvalues is
more delicate. As expected, the spectral properties of B play a prominent role here.
Indeed, we prove in Section 3 that if B has a unique eigenvalue, then any two gen-
eralized eigenfunctions of L corresponding to different eigenvalues are orthogonal in
L2(γ∞).

Then in Sections 4 and 5 we exhibit two examples showing, respectively, that if B
admits two distinct eigenvalues, the generalized eigenspaces associated to L may or
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may not be orthogonal. The last section also contains a result which relates orthog-
onality of the eigenspaces of L to that of the eigenspaces of the drift matrix, under
some restrictions.

In the following, the symbol Ik will denote the identity matrix of size k, and we omit
the subscript when the size is obvious. We will write 〈., .〉 for scalar products both in
RN and in L2(γ∞). By N we mean {0, 1, . . . }.

2. The Ornstein–Uhlenbeck operator

In this section, we specify the definition of the Ornstein–Uhlenbeck operator L and
recall some known facts concerning its spectrum.

We consider the Ornstein–Uhlenbeck semigroup
(
H

Q,B
t

)
t>0

, given for all bounded

continuous functions f in RN , N ≥ 1, and all t > 0 by the Kolmogorov formula

H
Q,B
t f(x) =

∫
f(etBx− y) dγt(y) , x ∈ R

N ,

(see [6]). Here B is a real N × N matrix whose eigenvalues have negative real parts,
and Q is a real, symmetric and positive-definite N ×N matrix. Then we introduce the
covariance matrices

Qt =

∫ t

0

esB QesB
∗

ds , t ∈ (0,+∞],

all symmetric and positive definite. Finally, the normalized Gaussian measures γt are
defined for t ∈ (0,+∞] by

dγt(x) = (2π)−
N

2 (detQt)
− 1

2 e−
1
2
〈Q−1

t
x,x〉 dx.

As mentioned above, γ∞ is the unique invariant probability measure of the Ornstein–
Uhlenbeck semigroup.

The Ornstein–Uhlenbeck operator is the infinitesimal generator of the semigroup(
H

Q,B
t

)
t>0

, and it is explicitly given by

L
Q,Bf(x) =

1

2
tr
(
Q∇2f

)
(x) + 〈Bx,∇f(x)〉 , f ∈ S (RN ),

where ∇ is the gradient and ∇2 the Hessian.
By convention, we abbreviate H

Q,B
t and L Q,B to Ht and L , respectively. We can

thus write Ht = etL .
In [8, Theorem 3.1] it is verified that the spectrum of L is the set

{
r∑

j=1

njλj : nj ∈ N

}
,

where λ1, . . . , λr are the eigenvalues of the drift matrix B. In particular, 0 is an eigen-
value of L , and the corresponding eigenspace kerL is one-dimensional and consists
of all constant functions, as proved in [8, Section 3].

We also recall that, given a linear operator T on some L2 space, a number λ ∈ C is
a generalized eigenvalue of T if there exists a nonzero u ∈ L2 such that (T −λI)k u = 0
for some positive integer k. Then u is called a generalized eigenfunction, and those u
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span the generalized eigenspace corresponding to λ. As already recalled, it is known
from [8, Section 3] that the Ornstein–Uhlenbeck operator L admits a complete system
of generalized eigenfunctions, that is, the linear span of the generalized eigenfunctions
is dense in L2(γ∞).

Subsection 2.1. Use of Hermite polynomials. As proved in [9], a suitable linear change
of coordinates in R

N makes Q = I and Q∞ diagonal. When applying this, we adhere to
the notation introduced in Lemma 1 in [4], where also the following facts can be found.
Let Hn denote the space of Hermite polynomials of degree n in these coordinates,
adapted by means of a dilation to γ∞ in the sense that the Hn are mutually orthogonal
in L2(γ∞) (they are written Hλ,k in [4]). The classical Hermite expansion (called the
Itô-Wiener decomposition in [4]) says that L2(γ∞) is the closure of the direct sum of the
Hn; we refer to [10, p. 64] for a proof in dimension one and note that the extension to
higher dimension is trivial. In other words, we can decompose any function u ∈ L2(γ∞)
as

u =
∑

j

uj (2.1)

with uj ∈ Hj and convergence in L2(γ∞). Further, each Hn is invariant under L ; see
[4, Proposition 1].

The Hermite decomposition implies, in particular, that each generalized eigenfunc-
tion of L with a nonzero eigenvalue is orthogonal to the space of constant functions,
that is, to the kernel of L . Anyway, we provide here a proof of this fact which is
independent of Hermite polynomials.

Lemma 2.1. Let λ 6= 0. If u ∈ L2(γ∞) and (L − λ)k u = 0 for some k ∈ {1, 2, . . . },
then

∫
u dγ∞ = 0.

Proof. The implication is trivial if we set k = 0, so assume it holds for some k ≥ 0 and
that (L − λ)k+1 u = 0.

Then
L (L − λ)k u = λ(L − λ)k u,

and thus for any t > 0

etL (L − λ)k u = etλ(L − λ)k u.

These operators commute, so

(L − λ)k etL u = (L − λ)k etλu,

that is,
(L − λ)k (etL u− etλu) = 0.

The induction assumption now implies that
∫

(etL u− etλu) dγ∞ = 0.

Since γ∞ is invariant under the semigroup, this means that
∫

u dγ∞ = etλ
∫

u dγ∞
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for all t > 0. Thus the integral vanishes. �

3. The case when B has only one eigenvalue

Proposition 3.1. If the drift matrix B has only one eigenvalue, then any two gen-

eralized eigenfunctions of L with different eigenvalues are orthogonal with respect to

γ∞.

We let λ be the unique eigenvalue of B, which is necessarily real and negative. It is
known that all generalized eigenfunctions of L are polynomials, see [7, Thm. 9.3.20].

We first state a lemma and use it to prove the proposition.

Lemma 3.2. Let u be a generalized eigenfunction of L which is a polynomial of degree

n ≥ 0. Then the corresponding eigenvalue is nλ.

Proof of Proposition 3.1. Let u be a generalized eigenfunction of L , thus satisfying
(L − µ)k u = 0 for some µ ∈ C and k ∈ N. Applying the coordinates from Subsection
2.1, we can decompose u as in (2.1), where the sum is now finite. Since then

∑

j

(L − µ)kuj = 0

and each term here is in the corresponding Hj, all the terms are 0. But this is com-
patible with Lemma 3.2 only if there is only one nonzero term in the decomposition of
u. Thus u ∈ Hn, where n is the polynomial degree of u.

Lemma 3.2 then implies that two generalized eigenfunctions with different eigenval-
ues are of different degrees and thus belong to different Hn. The desired orthogonality
now follows from that of the Hn. �

Proof of Lemma 3.2. Let u be a generalized eigenfunction of L of polynomial degree
n. We denote the corresponding eigenvalue by µ. Decomposing u as in (2.1), we
see that this sum is for j ≤ n and that the term un is nonzero and a generalized
eigenfunction of L with eigenvalue µ. For some m, the function (L − µ)mun will
then be an eigenfunction with the same eigenvalue. This function is in Hn and thus a
polynomial of degree n. As a result, we can assume that u is actually an eigenfunction
of L , when proving the lemma.

We now choose coordinates in RN that give a Jordan decomposition of B. This
means that B = λI + R, where R = (Ri,j) is a matrix with nonzero entries only in
the first subdiagonal. More precisely, Ri,i−1 = 1 for i ∈ P , where P is a subset of
{2, . . . , N}, and all other entries of R vanish.

We write L = S + B, where

Bf(x) = 〈Bx,∇f(x)〉,
and S is the remaining, second-degree part of L . Notice that, when applied to
polynomials, B preserves the degree whereas S decreases it by 2. So if v is the
nth-degree part of u, we must have Bv = µv.
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We let B act on a monomial xα, where α ∈ NN is a multiindex, getting

Bxα =
∑

j

λxj

∂xα

∂xj

+
∑

i∈P

xi−1
∂xα

∂xi

= λ
∑

j

αj x
α +

∑

i∈P

αi

xi−1

xi

xα = λnxα +
∑

i∈P

αi x
α(i)

,

where α(i) = α + ei−1 − ei for i ∈ P . Here {ej}nj=1 denotes the standard basis in RN .
Thus the restriction of B to the space of homogeneous polynomials of degree n is given

as λnI + R, where R is the linear operator that maps xα to
∑

i∈P αi x
α(i)

.
We claim that the only eigenvalue of R is 0. If so, the only eigenvalue of the

restriction of B mentioned above is λn, which would prove the lemma since Bv = µv.
In order to prove this claim, we define for any α ∈ NN with |α| = n

V (α) =

N∑

1

jαj.

Clearly V (α(i)) = V (α)− 1. We select a basis in the linear space of all homogeneous
polynomials of degree n consisting of all monomials xα with |α| = n, enumerated in
such a way that V is nondecreasing. The definition of R now shows that its matrix
with respect to this basis is upper triangular with zeros on the diagonal. The claim
follows, and so does the lemma. �

4. B has two distinct eigenvalues: a first example

The following example shows that the generalized eigenspaces of the Ornstein–
Uhlenbeck operator may be orthogonal even in the case when B has more than one
eigenvalue.

In two dimensions, we let

Q = I2 and B =

(
−1 1
−1 −1

)
. (4.1)

whose eigenvalues are −1 ± i.

Proposition 4.1. With N = 2, let Q and B be as in (4.1). Then each generalized

eigenfunction of L is an eigenfunction. Moreover, any two eigenfunctions of L with

different eigenvalues are orthogonal with respect to γ∞.

Proof. One finds that

esB = e−s

(
cos s sin s
− sin s cos s

)

and

esB esB
∗

= e−2s I2,

so that

Q∞ =
1

2
I2, Q−1

∞ = 2 I2.
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The invariant measure is therefore

dγ∞(x) = π−1 exp
(
−x2

1 − x2
2

)
dx. (4.2)

Since Q = I2 and Q∞ is diagonal, we are in the situation treated in [4]; see also
Subsection 2.1. But [4] defines the analog of our L (denoted A) without the coefficient
1/2 in front of the second-order term ∆. We will adapt to the definitions and notation
of [4]. Therefore, we replace L by

A = 2L = ∆+ 〈B̃x,∇〉,
where B̃ = 2B. Obviously, A and L have the same (generalized) eigenfunctions.

From [4] we will also need the diagonal matrix denoted Dλ, which in the case con-
sidered is

Dλ =

(
λ1 0
0 λ2

)

with λ1 = λ2 = 1/2.
The invariant measure is the same for the semigroups

(
etA
)
and

(
etL
)
by uniqueness,

and given by (4.2).
For k = (k1, k2) ∈ N2 we introduce two-dimensional Hermite polynomials

Hk(x1, x2) = Hk1(x1)Hk2(x2),

where Hki is the classical Hermite polynomial. Here we should point out that [4] uses
dilated Hermite polynomials denoted Hλ,k. But in our case there are no dilations, since
the dilation factors are

√
2λi = 1, i = 1, 2.

The Hk are mutually orthogonal in L2(γ∞), and

H̃k1,k2 =
1√

2k1+k2 k1! k2!
Hk1,k2

are orthonormal. The space Hn is generated by the Hermite polynomials Hk of degree
k1 + k2 = n, for n ∈ N, and Hn is invariant under A.

As in [4, Section 4], we split the partial differential operator A as A = A1 + L with
A1 = ∆ − 〈D−1

λ x, ∇〉 and L = 〈Cx, ∇〉, where x = (x1, x2) and C = (ci,j) is the
skew-symmetric matrix

C = B̃ +D−1
λ =

(
0 2
−2 0

)
.

Then each polynomial in Hn is an eigenfunction of A1 with eigenvalue −2n. This
follows from the differential equation satisfied by the Hermite polynomials; see [4,
formula (3.5)].

The effect of L on Hermite polynomials can be read off from a formula on page 711
of [4], best described as that following the words ”we find that”. We adapt this formula

to the normalized polynomials H̃k1,k2 with k1 + k2 = n, and choose ℓi = ki ± 1. Here
the scalar product written 〈., .〉 is taken in L2(γ∞). We also use the trivial observation
that c1,2 λ2 = 1 and c2,1 λ1 = −1.

The result is

〈L H̃k1,k2, H̃k1−1,k2+1〉
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=
1√

2k1+k2 k1! k2!

1√
2k1+k2 (k1 − 1)! (k2 + 1)!

2k1+k2+1 k1! (k2 + 1)!

= 2
√
k1
√

k2 + 1

for 1 ≤ k1 ≤ n and 0 ≤ k2 ≤ n− 1; similarly

〈LH̃k1,k2 , H̃k1+1,k2−1〉

= − 1√
2k1+k2 k1! k2!

1√
2k1+k2 (k1 + 1)! (k2 − 1)!

2k1+k2+1 (k1 + 1)! k2!

= −2
√
k1 + 1

√
k2

for 0 ≤ k1 ≤ n−1 and 1 ≤ k2 ≤ n. This describes the restriction of L to Hn completely,
since

〈L H̃k1,k2, H̃ℓ1,ℓ2〉 6= 0 only when (k1 − ℓ1)(k2 − ℓ2) = −1.

In Hn we use the orthonormal basis H̃n−κ,κ , κ = 0, 1, . . . , n. A consequence of the

preceding formulas is that the matrix L(n) = (L
(n)
i,j ) of the restriction of L with respect

to this basis is given by

L
(n)
κ+1,κ = 2

√
κ + 1

√
n− κ = −L

(n)
κ,κ+1, 0 ≤ κ ≤ n− 1,

all other entries of the matrix being 0. Thus L(n) is skew-symmetric. The restriction
to Hn of the operator A = A1 + L has matrix −2nIn+1 + L(n), and it follows that A
is a normal operator in Hn. The spectral theorem for normal operators implies that A
can be diagonalized in Hn by means of an orthogonal change of coordinates. Since the
spaces Hn, n ∈ N, are mutually orthogonal, this proves the proposition. �

5. B has two distinct eigenvalues: a second example

In this section we exhibit a class of drift matrices B with two different eigenvalues
(which, in contrast with those in the example in Section 4, are real), but such that the
generalized eigenspaces associated to the corresponding Ornstein–Uhlenbeck operator
L are not orthogonal.

In R2 we consider Q = I2 and

B =

(
−a+ d 0

c −a− d

)
, (5.1)

with a > d > 0 and c 6= 0. To compute the exponential of sB, we write B = −aI +M ,
where

M =

(
d 0
c −d

)
.

Since MM = d2I, we get for s > 0

exp(sB) = e−as
(
cosh(sd) I + d−1 sinh(sd)M

)
.
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This leads to

exp(sB) exp(sB∗) = e−2as

(
e2sd c

d
esd sinh(sd)

c
d
esd sinh(sd) c2

d2
sinh2(sd) + e−2sd

)
.

Integrating this matrix over 0 < s < ∞, we obtain

Q∞ =

(
1

2(a−d)
c

4a(a−d)
c

4a(a−d)
c2

4a(a−d)(a+d)
+ 1

2(a+d)

)
,

and so

1

2
Q−1

∞ =
1

c2 + 4a2



2a[c2 + 2a(a− d)] −2ac(a+ d)

−2ac(a + d) 4a2(a+ d)


 .

The invariant measure γ∞ is thus proportional to

exp

(
−2a[c2 + 2a(a− d)]

c2 + 4a2
x2
1 +

4ac(a+ d)

c2 + 4a2
x1x2 −

4a2(a+ d)

c2 + 4a2
x2
2

)
dx

= exp
(
− (a− d)x2

1

)
exp

(
− a+ d

c2 + 4a2
(cx1 − 2ax2)

2

)
dx.

Writing z1 =
√
a− d x1 and z2 =

√
a+d

c2+4a2

(
2ax2 − cx1

)
and recalling that γ∞ is a

probability measure, we see that

dγ∞ = π−1 exp
(
− z21 − z22

)
dz.

To find some eigenfunctions of L , we consider polynomials in x1, x2 of degree 2.
One finds that

v1 = x2
1 −

1

2(a− d)
,

v2 = x2
1 −

2d

c
x1x2 −

1

2a
,

v3 = x2
1 −

4d

c
x1x2 +

4d2

c2
x2
2 −

c2 + 4d2

2c2(a + d)

are eigenfunctions, with eigenvalues −2(a− d), −2a and −2(a + d), respectively.
Any two of these polynomials turn out not to be orthogonal with respect to the

invariant measure, as follows by straightforward computations. We sketch one example.
One simply multiplies v1 and v3 and rewrites the product in terms of z1 and z2.

Doing so, one can neglect all terms of odd order in z1 or z3, when integrating with
respect to γ∞. Writing ”odd” for such terms, we find that the product is

1

a2
z41 +

d2(c2 + 4a2)

a2c2(a2 − d2)
z21z

2
2 −

[ c2 + 4d2

2c2(a2 − d2)
+

1

2a2

]
z21

− d2(c2 + 4a2)

2a2c2(a2 − d2)
z22 +

c2 + 4d2

4c2(a2 − d2)
+ odd.
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Integrating and simplifying, we get
∫

v1v3 dγ∞ =
1

2a2
> 0,

so v1 and v3 are not orthogonal.

Remark 5.1. Let now d = a/2 in this example. Then the fourth-degree polynomial

v4 = x4
1 −

6

a
x2
1 +

3

a2

is an eigenfunction of L with eigenvalue −2a, like v2. Thus eigenfunctions of different
polynomial degrees can have the same eigenvalue. This shows that for an eigenfunction
u, the sum in (2.1) may consist of more than one term, and a (generalized) eigenspace
need not be contained in one Hn.

The eigenvalues of the matrix B defined in (5.1) are −a±d, and it is easily seen that
the corresponding eigenspaces are not orthogonal in R2. This turns out to be related
to the non-orthogonality of the eigenspaces of L , at least in two dimensions, in the
following way.

Proposition 5.2. Let N = 2 and Q = I, and assume that B has two different, real

eigenvalues. Then the generalized eigenspaces of L are orthogonal in L2(γ∞) if and

only if the two eigenspaces of B are orthogonal in R2.

Proof. To begin with, we consider a coordinate change x̃ = Hx, where H is an or-
thogonal matrix. Simple computations show that the operator L Q,B is transformed

to L Q̃,B̃ in the new coordinates, with Q̃ = HQH∗ and B̃ = HBH∗; cf. [9, p. 474]. In

our case, Q̃ = Q = I. The eigenvalues of B and the angle between its eigenvectors will
not change.

To prove the proposition, assume first that the (real) eigenvectors of B are orthogo-
nal in R2. Then B is symmetric, since it can be diagonalized by means of an orthogonal
change of coordinates as just described. This implies that L is symmetric ([7, Propo-
sition 9.3.10]), so that the orthogonality of its eigenspaces is trivial.

Next, we assume that the eigenvectors of B are not orthogonal in R2. By Schur’s
decomposition theorem (see [5, Theorem 2.3.1]) there exists an orthogonal change of
coordinates which makes B lower triangular, though not diagonal. We are thus in the
situation described in (5.1). As we have seen, some eigenspaces of L are then not
orthogonal with respect to the invariant measure. �

We finally remark that the “if” part of this proposition easily extends to arbitrary
dimension N . Then it is assumed that B has N different, real eigenvalues with mutually
orthogonal eigenspaces.
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