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Abstract. Let X be a complex manifold, V an involutive sub-
manifold of its cotangent bundle, and Σ a bicharacteristic leaf of
V . A ring of twisted differential operators A on X has a character-
istic class in H

1(X ; dO×

X
). To such a class we associate a class in

H
2(Σ; C×

Σ
) whose vanishing is necessary for the existence of an A-

module globally simple along V . As an application, we show that
there are no generalized massless field equations with non trivial
twist on Grassmann manifolds.

1. Statement of the problem

The grassmannian G of 2-dimensional planes in a 4-dimensional com-
plex vector space T is a homogeneous space G/H, where G = SL(4; C)
and H is the stabilizer of a point. Let M = (R4, || · ||) be the Minkowski
space, where ||(x0, x1, x2, x3)|| = x2

0−x2
1−x2

2−x2
3. According to Penrose,

consider the embedding

ι : M −→ G

(x0, x1, x2, x3) 7→ 〈(x0 + x3, x1 + ix2, 1, 0), (x1 − ix2, x0 − x3, 0, 1)〉C
where 〈v, w〉C denotes the vector space spanned by v and w. The closure
of ι(M) is an orbit of the totally real form SU(2, 2) ⊂ SL(4; C), whose
action corresponds to that of the Poincaré group on M . Thus G is
a conformal compactification of the complexified Minkowski space. In
particular, the usual wave equation, as well as the other massless field
equations, extend as differential operators acting between homogeneous
bundles on G. Let us denote byM(m) the quasi-equivariant DG-module
corresponding to the massless field equation of helicity m ∈ Z/2. As
we will recall, the modulesM(m) are “globally simple” along the char-
acteristic variety V of the wave equation.

Denote by g = sl(4; C) the Lie algebra of G = SL(4; C). By the
Beilinson-Bernstein-Kashiwara correspondence, quasi-equivariant DG-
module are associated with (g, H)-modules with trivial twist. In order
to deal with arbitrary twists, one has to consider quasi-equivariant
modules over rings of twisted differential operators on G.

It thus arises a natural question: given a ringA of twisted differential
operators on G, are there A-modules globally simple along V ?

This is a report on the talk given by the first named author at the meeting Recent

Trends in Microlocal Analysis, RIMS, August 25–29, 2003, announcing results from
a joint paper [4].
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2. Twisted sheaves and differential operators

Let us briefly review the notions of twisted sheaves and twisted dif-
ferential operators from [7, 1] (see also [2] for an exposition).

Let X be a complex manifold, CX the constant sheaf with stalk C

on X, OX the structure sheaf on X, and DX the ring of finite order
differential operators on X.

• A ring of twisted differential operators (a t.d.o. ring for short)
is an OX -ring locally isomorphic to the ring DX . They are
classified by H1(X; dOX), up to isomorphisms.

A basic example of t.d.o. ring is the ring

DL = L ⊗O DX ⊗O L−1

of differential operators acting on a line bundle L. For λ ∈ C one can
also consider the t.d.o ring DLλ defined as follows. If s is a nowhere
vanishing local section of L, sections of DLλ are written as sλ⊗P ⊗s−λ,
for P ∈ DX . If t is another nowhere vanishing local section of L, then
sλ⊗P ⊗s−λ = tλ⊗Q⊗t−λ in DLλ if and only if Q = (s/t)λ ·P · (s/t)−λ

in DX . This is independent from the choice of a branch for the ramified
function (s/t)λ. It is also possible to give a meaning to Lλ as a twisted
sheaf, as follows.

Denote by Mod(CX) the category of sheaves of C-vector spaces on
X, and by Mod(CX) the corresponding C-stack, U 7→ Mod(CU).

• A stack of twisted sheaves is a C-stack S on X locally C-
equivalent to the stack of sheaves Mod(CX). They are clas-
sified by H2(X; C×

X), up to C-equivalences. Twisted sheaves
are objects of S(X).

For an open covering X =
⋃

i Ui, let cijk ∈ C
×
X(Uijk) be a Cech

cocycle for the characteristic class of S in H2(X; C×
X). Twisted sheaves

in S(X) are described by a family of sheaves Fi on Ui, and a family of
isomorphisms θij : Fj|Uij

−→ Fi|Uij
, satisfying θij ◦ θjk = cijkθik on Uijk.

For B a sheaf of C-algebras, let Mod(B; S) be the category of B-
modules in S.

• Twisted line bundles are object of Mod(OX ; S) locally isomor-
phic to OX .

The twisted sheaf Lλ is an example of a twisted line bundle. Its
twist is described as follows. Let si be non vanishing sections of L
on Ui. Then Lλ belongs to a stack of twisted sheaves whose cocycle
cijk describes the difference of determinations between the ramified
functions (si/sj)

λ(sj/sk)
λ and (si/sk)

λ.
To any t.d.o. ring A one associates a stack of twisted sheaves SA

and a twisted line bundle OA ∈ Mod(OX ; SA), such that

A ' OA ⊗O DX ⊗O O−1
A .
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The Riemann-Hilbert correspondence associates flat connections of
rank 1 in Mod(A) with local systems of rank 1 in SA(X), by M 7→
HomA(M,OA). Recalling that SA is globally C-equivalent to the
stack of sheaves Mod(CX) if and only if there is a local systems of rank
1 in SA(X), it follows

Proposition 2.1. Let A be a t.d.o. ring on X, andM a flat connection

of rank 1 in Mod(A). Then SA is globally C-equivalent to Mod(CX).

We will make use of the exact sequence

(2.1) H1(X;O×
X) −→

γ
H1(X; dOX) −→

δ
H2(X; C×

X),

induced by the short exact sequence

1 −→ C
×
X −→ O×

X −−→
d log

dOX −→ 0.

If L is a line bundle, and A a t.d.o. ring, one has γ([L]) = [DL],
δ([A]) = [SA]−1.

3. Systems with simple characteristics

Let us now recall some definitions and results on microdifferential
operators, due to [11, 10]. See also [6, 8] for an exposition.

Let X be a complex manifold, and π : T ∗X −→ X its cotangent bun-
dle. Denote by EX the ring of microdifferential operators on T ∗X, and
by FmEX its subsheaf of microdifferential operators of order at most m.

Let (x) be a system of local coordinates in X, and denote by (x; ξ) the
associated system of symplectic coordinates in T ∗X. With this choice
of coordinates, a microdifferential operator P ∈ FmE is described by
its total symbol {pk(x; ξ)}k≤m, where pk ∈ OT ∗X(k) is a function ho-
mogeneous of degree k. The principal symbol of order m, independent
from the choice of coordinates, is given by

σm : FmE −→ OT ∗X(m)

P 7→ pm.

Denoting by a : T ∗X −→ T ∗X the antipodal map, the formal adjoint of
P is the operator P ∗ ∈ a−1

FmE whose principal symbol {p∗
k(x; ξ)}k≤m

is given by

p∗k(x; ξ) =
∑

k=l−|α|

(−1)|α|

α!
(∂α

ξ ∂α
x pl)(x;−ξ).

For P ∈ FmE , one has P−(−1)mP ∗ ∈ Fm−1E . The subprincipal symbol
of P in the coordinate system (x) is defined by

σ′
m−1(P ) =

1

2
σm−1(P − (−1)mP ∗)

= pm−1 −
1

2

∑

i

∂xi
∂ξi

pm.
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Identifying X with the zero-section of T ∗X, we set Ṫ ∗X = T ∗X \X.
In this paper, by submanifold of T ∗X we mean a smooth locally closed
submanifold. A submanifold V of T ∗X is conic if it is locally C×-
invariant. The canonical 1-form induces a homogeneous symplectic
structure on T ∗X. A submanifold V of T ∗X is involutive if for any
pair f , g, of holomorphic functions vanishing on V , the Poisson bracket
{f, g} vanishes on V .

Let V be a conic involutive submanifold of Ṫ ∗X. The ring EV on V
is the subring of EX generated by

JV = {P ∈ F1EX : σ1(P )|V = 0}.

The V -filtration is defined by F
V
k EX = FkEX · EV = EV · FkEX .

IfM is an EX-module andM0 is an F0EX-submodule, we set

Mk = (FkEX)M0.

Definition 3.1. One says that a coherent EX-module M is globally
simple along V if it admits a coherent sub-F0EX-moduleM0 such that
M = EXM0, EVM0 ⊂ M0, and M0/M−1 is a locally isomorphic to
OV (0). Such anM0 is called a V -lattice.

To P ∈ JV one associates the operator LV (P ) ∈ F1DΩ
1/2
V/X

defined as

follows. For ω ∈ ΩV one sets

LV (P )(ω1/2/
√

dx) =
(
LHσ1(P )

(ω1/2) + σ′
0(P ) · ω1/2

)
/
√

dx,

where dx is the volume form associated with a chosen local coordinate
system. The Hamiltonian vector field Hσ1(P ) is tangent to V since

σ1(P )|V = 0. Recall that for v ∈ ΘV , one sets Lv(ω
1/2) = 1

2
Lv(ω)

ω
ω1/2.

The operator LV (·) does not depend on the choice of coordinates, and
extends as a ring morphism

(3.1) LV : EV −→ DΩ
1/2
V/X

.

Denote by DV (0) the subring of DV consisting of differential oper-
ators which commute with the Euler vector field on V , by Dbic

V the
subring of DV consisting of differential operators which commute with
the functions a ∈ OV constant along the bicharacteristic leaves of V ,
and set Dbic

V (0) = Dbic
V ∩ DV (0).

The following result is essentially due to [10, 9].

Theorem 3.2. The ring morphism (3.1) induces a ring isomorphism

(3.2) LV : EV /F−1EV
∼−→ Dbic

Ω
1/2
V/X

(0).
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4. Statement of the main result

Let A be a t.d.o. ring on X, and V a conic involutive submanifold
of Ṫ ∗X. All definitions and constructions of §3 extend to the twisted
case. In particular, setting

EA = π−1OA ⊗π−1O EX ⊗π−1O π−1O−1
A ,

EV,A = π−1OA ⊗π−1O EV ⊗π−1O π−1O−1
A ,

Theorem 3.2 gives an isomorphism

(4.1) LV : EV,A/F
V
−1EA

∼−→ Dbic

Ω
1/2
V/X

⊗
O

π∗
V OA

(0),

where πV is the restriction to V of π : T ∗X −→ X.
Let jΣ : Σ � V be the embedding of a smooth bicharacteristic leaf

of V . For G a twisted line bundle on V , we consider the restriction
functor

j∗Σ : Mod(Dbic
G (0)) −→ Mod(Dj∗ΣG(0)),

and the pull-back

(4.2) π]
Σ : H2(X; C×

X) −→ H2(Σ; C×
Σ).

Recall the maps γ and δ in (2.1).

Theorem 4.1. Let V be a conic involutive submanifold of Ṫ ∗X, and

let Σ be a smooth bicharacteristic leaf of V . Let A be a t.d.o. ring on

V , and let M be a globally simple EA-module along V . Then

δ(π]
Σ[A]) = δ(−1

2
· γ([ΩΣ/X ])) in H2(Σ; C×

Σ).

Sketch of proof. The proof follows the same lines as in [9, §I.5.2]. Let
M0 be a V -lattice in M. By (4.1), M0/M−1 is locally isomorphic
to OV (0) as Dbic

Ω
1/2
V/X

⊗
O

π∗
V OA

(0)-modules. Note that j∗ΣΩV ' ΩΣ. Then

j∗Σ(M0/M−1) is a D
Ω

1/2
Σ/X

⊗
O

π∗
ΣOA

(0)-module which is locally isomorphic

to OΣ(0). The statement follows by Proposition 2.1. �

5. Non existence of twisted wave equations

Let T ' C4 be a complex vector space, P the projective space of lines
in T, and G the Grassmannian of 2-dimensional subspaces in T. The
Penrose correspondence (see [5]) is associated with the double fibration

(5.1) P←−
f

F −→
g

G

where F = {(y, x) ∈ P × G; y ⊂ x} is the incidence relation, and f ,
g are the natural projections. The double fibration (5.1) induces the
maps

Ṫ ∗
P←−

p
Ṫ ∗

F
(P×G) −→

q
Ṫ ∗

G,
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where T ∗
F
(P×G) ⊂ T ∗(P×G) denotes the conormal bundle to F, and

p and q are the natural projections. Note that p is smooth surjective,
and q is a closed embedding. Set

V = q(Ṫ ∗
F (P×G)).

Then V is a closed conic regular involutive submanifold of Ṫ ∗G, and q
identifies the fibers of p with the bicharacteristic leaves of V .

For m ∈ Z consider the line bundles OP(m), and set

M(1+m/2) = H0(Dg∗Df ∗(DP ⊗O OP(−m))),

where Dg∗ and Df ∗ denote the direct and inverse image in the derived
categories of D-module. As we recalled in the Introduction, accord-
ing to Penrose G is a conformal compactification of the complexified
Minkowski space, and the DG-module M(1+m/2) corresponds to the
massless field equation of helicity 1 + m/2.

By [3],M(1+m/2) is globally simple along V .

Theorem 5.1. Let A be a t.d.o. ring on G, and M an A-module

globally simple along V . Then δ[A] = 1 in H2(G; C×
G
). In particular,

Mod(A) and Mod(DG) are C-equivalent.

Proof. By Theorem 4.1 it is enough to show that for a bicharacteristic
leaf Σ ⊂ V , one has an isomorphism π]

Σ : H1(G; dOG)
∼−→ H1(Σ; dOΣ),

and moreover δ(−γ([ΩΣ/G])/2) = 1 ∈ H2(Σ; C×
Σ).

With the identification

T ∗
G = {(x; ξ); x ⊂ T, ξ ∈ Hom(T/x, x)},

one has
V = {(x; ξ); rk(ξ) = 1},

where rk(ξ) denotes the rank of the linear map ξ. There is an isomor-
phism

Ṫ ∗
P = {(y, z; θ); y ⊂ z ⊂ T, θ : T/z

∼−→ y},
where y is a line and z is a hyperplane. The projection q : V −→ Ṫ ∗P

is given by q(x; ξ) = (im ξ, x + ker ξ; ξ̃), where ξ̃ satisfies ξ̃ ◦ ` = ξ for
` : T/x � T/x + ker ξ the natural map.

Recall that the bicharacteristic leaves of V are the fibers of q. For
(y, z, θ) ∈ Ṫ ∗P, the bicharacteristic leaf q−1(y, z, θ) of V is given by

Σ = {(x; ξ); y ⊂ x ⊂ z, ξ = θ ◦ `},
where ` : T/x � T/z is the natural map. Thus, Σ is the projective
space of lines in z/y. Hence the sequence

H1(Σ;O×
Σ) −→

γ
H1(Σ; dOΣ) −→

δ
H2(Σ; C×

Σ)

is isomorphic to the sequence of additive abelian groups

Z −→
γ

C −→
δ

C/Z,
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with 1 ∈ Z corresponding to [OΣ(−1)].
Denote by OG(−1) the determinant of the tautological bundle on G.

Then H1(G; dOG) ' C with generator DOG(−1). Since π∗
ΣOG(−1) '

OΣ(−1), it follows that

π]
Σ : H1(G; dOG)

∼−→ H1(Σ; dOΣ).

There are isomorphisms ΩG ' OG(−4), and ΩΣ ' OΣ(−2), so that
π∗

ΣΩG ' π∗
ΣOG(−4) ' OΣ(−4), and ΩΣ/G ' OΣ(2). It follows that

[ΩΣ/G] = 2 in Z ' H1(Σ;O×
Σ),

and therefore

δ(−γ([ΩΣ/G])/2) = 0 in C/Z ' H2(Σ; C×
Σ).

By Theorem 4.1, it follows that δ(π]
Σ[A]) = 1. Hence δ([A]) = 1, so

that SA is globally C-equivalent to Mod(CG). In particular, OA in an
untwisted sheaf. The equivalence

Mod(DG)
∼−→ Mod(A)

is given byM 7→ OA ⊗OM. �
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