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Modern control schemes adopted in multibody systems take advantage of the knowledge of a large set of measurements of the
most important state variables to improve system performances. In the case of flexible-linkmultibody systems, however, the direct
measurement of these state variables is not usually possible or convenient. Hence, it is necessary to estimate them through accurate
models and a reduced set of measurements ensuring observability. In order to cope with the large dimension of models adopted
for flexible multibody systems, this paper exploits model reduction for synthesizing reduced-order nonlinear state observers.
Model reduction is done through a modified Craig-Bampton strategy that handles effectively nonlinearities due to large dis-
placements of the mechanism and through a wise selection of the most important coordinates to be retained in the model. Starting
from such a reduced nonlinear model, a nonlinear state observer is developed through the extended Kalman filter (EKF). %e
method is applied to the numerical test case of a six-bar planar mechanism. %e smaller size of the model, compared with the
original one, preserves accuracy of the estimates while reducing the computational effort.

1. Introduction

Flexible-link multibody (FLMB) systems are highly prom-
ising from an economical and sustainability point of view
because of the use of less material and the need for smaller
actuators and less power consumption. However, flexibility
often results in unwanted vibrations that limit motion ac-
curacy and imposes advanced control schemes accounting
for the flexible dynamics. High-performance control
schemes are typically model-based [1–5] and often require
the knowledge of a large set of state variables [3–5]. For
example, a common application requiring the whole state
vector (i.e., position and speed of all the state variables) is
active control through state feedback to assign the desired
modal characteristics [6, 7]. %e knowledge of the tip po-
sition of open-chain robots is also needed for precise control
of the end-effector trajectory [8]. In contrast, the direct
measurement of all the state variables is rarely feasible or
convenient [9], so the unmeasured state variables should be
estimated by means of state observers that exploit a smaller

set of measurements, ensuring the system observability and
an accurate system model. Most of the contributions in the
literature have been focused on the state estimation in rigid-
body multibody systems [10–12], in flexible structures [13]
or in single-link flexible mechanisms [2, 14–17]. Complexity
is significantly exacerbated in the case of multilink flexible
systems where state estimation is, to date, still a challenging
task, mainly because of the complex and large dimensional
models used to represent these systems that make cum-
bersome the synthesis of observers.

In the past, due to limitations of the computational
power of computers, the use of linearized [18] or linearized
reduced-order models has been proved to be a good trade-
off between accuracy and computational complexity [18–
20]. Indeed, computational effort should be reduced by
keeping model size as small as possible to perform real-time
estimations. Hence, model reduction is a powerful tool to
boost the use of state observers, by representing through the
model just the state variables that are of interest for esti-
mation and control purposes (i.e., those having higher
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observability and controllability [20]). Several approaches to
model reduction have been presented in the literature to date
for linear mechanical systems [21]. For example, in the field
of structural dynamics, one of the most widespread re-
duction techniques is the Craig-Bampton (CB) method [22]
because of its effectiveness and ease of implementation.

In the very recent years, the use of nonlinear state ob-
servers has been proved to be effective for improving ac-
curacy of state estimation in multibody systems, compared
to linearized observers [2]. Indeed, the use of nonlinear
models and variable gains of the observer handles more
effectively the nonlinear behavior of these systems. %is
increase of the computational complexity of these observers
still calls for the use of reduced-order models.

%e typical implementation of the aforementioned CB
method for reducing FLMB systems exploits the component
mode synthesis strategy [21]. Basically, the linear FE models
of all the links are generated and reduced and, then, they are
embedded in a moving frame [23] or in a corotational frame
[24], to represent large displacements of the mechanism.
Such a component-level reduction strategy might negatively
affect the reduced model correctness since it does not fully
account for modal characteristic changes due to the motion
of the multibody system. To overcome this issue, some
studies have recently suggested the use of model reduction at
the system-level, i.e., of the model of the whole system. On
the one hand, this choice represents more effectively the
change of the modal characteristics of the system [25]. On
the other hand, system-level reduction ensures a more ef-
fective selection of the state variables to be retained in the
reduced-order model, thus providing a better trade-off
between model size and accuracy [26].

By taking advantage of the idea of using reduced-order
nonlinear models in the design of nonlinear observers, this
work proposes a novel and comprehensive approach for
efficient and accurate state estimation in FLMB systems. %e
method exploits the modified nonlinear CB reduction
suitable for flexible-link mechanisms based on the equiva-
lent rigid-link system (ERLS) and formulated through or-
dinary differential equations (and hence independent
coordinates) outlined in [25] and a wise selection of the most
important coordinates, as proposed in [26]. Such a model,
that ensures that the dynamics with the highest observability
and controllability are modeled in the system, is used for the
synthesis of an extended Kalman filter (EKF) [27] to deliver
accurate estimates of both the large motion and of the elastic
vibrations of a FLMB system by means of a small set of
sensed signals and with a reduced computational effort.

%e method is validated numerically, by investigating
sensitivity to model uncertainty and measurement noise, by
means of a planar 6-link FLMB system.

2. Modeling

2.1. Full-Order Dynamic Model: ERLS Approach. In this
work, the equations of motion for a FLMB system undergoing
large rigid-body motion are modeled through the equivalent
rigid-link system (ERLS) formulation. FLMB systems with
scleronomous and holonomic constraints are assumed. %e

motion of the system is notionally separated into the large
motion of a rigid-link moving reference configuration (ERLS)
and the small elastic deformation of the flexible links with
respect to the ERLS itself. %erefore, the configuration of
a FLMB system is defined through a set of generalized rigid-
body coordinates q and elastic coordinates u that are the full-
order model independent coordinates:

x �
q

u
􏼨 􏼩, (1)

where the dimension of x, denoted as n, is the number of
degrees of freedom (dofs) of the full-order model.

%e system model is given by the following set of
nonlinear ODEs [23]:

ST(q)M(q)S(q) ST(q)M(q)

M(q)S(q) M(q)
⎡⎣ ⎤⎦
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(2)

Finite elements are used in Equation (2) to get the mass,
stiffness, damping, and centrifugal and Coriolis matrices
(denoted M, K, C, and MG, respectively) by assembling the
consistent matrices of each finite element. In Equation (2), g
and f denote the gravity acceleration and the external force
vector, respectively. S is the ERLS sensitivity coefficient
matrix for all the nodes of the finite elements and _S is its time
derivative. %e mass, damping, and stiffness matrices of the
full-order model have been introduced in Equation (2) and
denoted as M, C, and K, respectively. F is the full-order
vector of the external forces.

2.2. Reduced-Order Dynamic Model: Modified Craig-
Bampton Method. A dynamic model reduced through the
CB method is represented through a hybrid set of co-
ordinates, including some physical coordinates xm (named
the master dofs) and some nonphysical coordinates η
(named interior modal coordinates).

%e full-order set of physical coordinates x of the original
model is approximated through a reduced set of hybrid
coordinates p by means of the CB transformation matrix H:

x ≈ H · p,

x ∈ Rn
,

p ∈ Rr
, r≪ n.

(3)

In the standard formulation of the CB method, usually
adopted for structures and linear systems, the transformation
matrix in Equation (3) is constant. Conversely, in the case of

2 Shock and Vibration



mechanisms performing large displacements, it should be
reformulated as a configuration-dependent matrix to cope
with the nonlinearities of the FLMB models [25]:

x ≈ H q, q∗( 􏼁p,

x �
xm

xs

􏼨 􏼩 ∈ Rn�m+s
,

p �
xm

η
􏼨 􏼩 ∈ Rr�m+p

, p≪ s.

(4)

In Equation (4), xT
m � qT uT

m􏼈 􏼉 ∈ Rm is the m-di-
mensional set of the master dofs, which comprises all the
ERLS coordinates q and some meaningful elastic co-
ordinates um (e.g., those where external loads are applied).
%e s-dimensional vector xT

s � uT
s􏼈 􏼉 ∈ Rs (m + s � n) in-

cludes the remaining elastic coordinates that are trans-
formed into interior modal coordinates through the
transformation matrix H. %e configuration-dependent CB
reduction matrix in Equation (4) is defined as follows:

H q, q∗( 􏼁 �
I 0

B(q) 􏽥Ψ q, q∗( 􏼁
􏼢 􏼣. (5)

In Equation (5), I and 0 are the identity and null ma-
trices, respectively, B is the position-dependent Guyan’s
matrix and 􏽥Ψ is the configuration-dependent interior mode
matrix. %e definition of matrix 􏽥Ψ � 􏽥Ψ(q, q∗) is a key point
of the method and is obtained by the following three steps:

(1) Computation of the Interior Mode Matrix Φ at an
Equilibrium Configuration q∗. %e so-called interior
mode matrix Φ of the subsystem made by the slave
dofs is computed through local modal analysis. Since
the model is nonlinear, modal analysis is done by
placing the ERLS at a given equilibrium configuration
q∗ (obtained by setting _q � €q � 0) and linearizing the
system with the master dofs constrained. %e equi-
librium point can be conveniently chosen as any
arbitrary point belonging to the desired trajectory.

(2) Selection of the Interior Modes. A suitable number of
columns ofΦ is removed to get the truncated interior
mode matrix 􏽥Φ. Such a rectangular matrix approxi-
mates the full-order set of slave dofs with a smaller set
of meaningful interior coordinates (Equation (4)). A
key point for getting accurate reduced models is the
proper selection of the interior modes to be retained
[26, 28, 29]. In Section 4.1, the strategy followed in this
paper will be briefly explained, even if any arbitrary
selection method can be adopted.

(3) Definition of the Configuration-Dependent Interior
Mode Matrix 􏽥Ψ. %e truncated interior mode matrix
􏽥Φ, computed for q � q∗, should be transformed to
follow the motion of the ERLS. Under the reasonable
hypothesis of small elastic deformations with respect
to the ERLS, on which the ERLS theory is based,
eigenmodes change slowly if expressed with respect to
the reference system of the finite elements. Such an
idea is schematically represented in Figure 1, where
for sake of clarity a planar single flexible link has been

represented. In the ERLS model, the components of
each eigenvector φ are expressed with respect to the
ERLS configurations (Figures 1(a) and 1(b)), and it is
evident that these components are different. However,
if a local reference frame {x,y} is adopted to express
the eigenvectors, the coordinates are almost the same
also for different ERLS configurations (Figures 1(c) and
1(d)). %is hypothesis has been assessed in [25].
%erefore, it is possible to extend the validity of the
interior mode matrix 􏽥Φ, computed at q∗, in a wide
subset of the workspace, by projecting it onto the local
reference frame of each finite elements and then
projecting it again onto the actual instantaneous ERSL
q through a suitable transformation matrix R �

R(q, q∗) (see [25] for a detailed description):
􏽥Ψ q, q∗( 􏼁 � R q, q∗( 􏼁 􏽥Φ q∗( 􏼁. (6)

Once H is defined, the reduced model is obtained by
premultiplying Equation (2) by HT:

HT q, q∗( 􏼁M(q)H q, q∗( 􏼁
􏽼√√√√√√√√√√􏽻􏽺√√√√√√√√√√􏽽

􏽥M
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€η
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􏽼√√√√√√√√√√√􏽻􏽺√√√√√√√√√√√􏽽
􏽥C
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_η
􏼨 􏼩

+ HT q, q∗( 􏼁K(q)H q, q∗( 􏼁
􏽼√√√√√√√√√√􏽻􏽺√√√√√√√√√√􏽽

􏽥K

xm

η
􏼨 􏼩 � HT q, q∗( 􏼁F(q)

􏽼√√√√√√􏽻􏽺√√√√√√􏽽
􏽥F

.

(7)

%emass, damping, and stiffness matrices of the reduced
model have been introduced in Equation (7) and denoted as
􏽥M, 􏽥C, and 􏽥K respectively. 􏽥F is the reduced-order vector of the
external forces.

3. State Estimation

3.1. Model Formulation. %e synthesis of a state observer
requires the dynamicmodel in Equation (7) to be formulated
in a state-space (first-order) form, as follows:

_z � f(z, 􏽥F),

y � g(z, 􏽥F),

⎧⎨

⎩ (8)

where z � pT _pT􏽮 􏽯
T
is the reduced-order state vector, _z is its

derivative, and y is the vector of the measured outputs (often
denoted as the observations). Both the system equation f and
the measurement equation g in Equation (8) are usually
nonlinear functions of the state and of the input 􏽥F. %e direct
use of ODEs for the formulation of the multibody model in
Equation (2) makes straightforward the achievement of the
state-space form required for state estimation.

By taking advantage of Equation (7), the nonlinear
continuous-time system equations in Equation (8) take the
following form:

_z �
_p
€p

􏼨 􏼩 �
0 I

− 􏽥M−1(q)􏽥K(q) − 􏽥M−1(q)􏽥C(q, _q)
􏼢 􏼣

p
_p

􏼨 􏼩

+
0

􏽥M−1(q)
􏼢 􏼣􏽥F.

(9)
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3.2. �e Extended Kalman Filter (EKF). �e estimation al-
gorithm employed in this work is the EKF [25] that is the
simplest and most widespread extension of the well-known
Kalman �lter to nonlinear state estimation. Such a �lter
requires a discrete-time representation of the system model
in Equation (8):

zk � fd zk−1, F̃k−1, vk−1( ),
yk � g zk,wk( ),


 (10)

fd is the discrete-time state equation, obtained by dis-
cretizing f through any arbitrary scheme and k refers to the
kth time sample. In Equation (10), vk−1 and wk are the
process noise and measurement noise that are assumed in
the Kalman theory to be zero-mean uncorrelated Gaussian
noise with covariance matrices Q and R, respectively.

�e EKF is a discrete-time recursive algorithm that
operates in two stages: the prediction and the correction.
Only a brief explanation is provided here. �e readers could
refer to the quoted literature for a more detailed description.

In the �rst stage, at each time step k, the �lter predicts the
state and the observation by means of the nonlinear model
and measurement equations, respectively:

ẑk|k−1 � fd ẑk−1|, F̃k−1|, vk−1|( ),

ŷk|k−1 � g ẑk|k−1,wk( ).
(11)

Additionally, it propagates the state and observation
error covariance matrices (denoted as P̂zz

k|k− 1, P̂
yy
k|k− 1, and

P̂zy
k|k− 1) by means of the Jacobians of the system and mea-

surement equations (Âk−1 and D̂k|k−1 respectively), com-
puted about the estimated state trajectory:

Âk−1 �
zf
zz

∣∣∣∣∣∣∣̂zk−1 ,̃Fk−1
,

P̂zz
k|k−1 � Âk−1P̂

zz
k−1Â

T
k−1 +Q,

(12)

D̂k|k−1 �
zg
zz

∣∣∣∣∣∣∣̂zk|k−1
,

P̂yy
k|k−1 � D̂k|k−1P̂

zz
k|k−1D̂

T
k|k−1 + R,

P̂zy
k|k−1 � P̂zz

k|k−1D̂
T
k|k−1.

(13)

Once the next measurements yk are available, the pre-
dicted state is corrected through the error of output esti-
mation (yk − ŷk|k−1) weighed through the �lter gain Kk:

ẑk � ẑk|k−1 + Kk yk − ŷk|k−1( ),

Kk � P̂zy
k|k−1 P̂yy

k|k−1[ ]
−1
.

(14)

Finally, the state error covariance matrix is updated:
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Figure 1: Example of eigenvector components in a planar �exible single link for two ERLS con�gurations: q∗ (a–c) and q (b–d), with respect
to the global reference frame (a-b) and the local reference frame (c-d).
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􏽢Pzz
k � 􏽢Pzz

k|k− 1 −Kk
􏽢Pyy

k|k− 1K
T
k . (15)

Equations (12) and (13) reveal that gain Kk of the filter
correction depends on the covariance matrices Q and R. A
successful estimation relies both on an accurate model and on
a good tuning of these matrices: while R can be measured, Q
should be usually tuned to give the proper weights to model
predictions and noisy measurements in state estimates.

4. Numerical Validation

Numerical simulations have been performed through
Matlab to validate the nonlinear reduced-order observer.
Such a validation allows for an effective assessment of the
observer outcomes since it is possible to evaluate and
compare any state variable, including the elastic ones which
are difficult to measure in an experimental setup. Addi-
tionally, it is possible to evaluate the impact of the model
reduction on the model accuracy and its effect on the ob-
server stability. Indeed, a wrong model reduction causes
relevant estimation errors and might lead to instability
because of observation spillover phenomena [20].

4.1. System Description. %e planar mechanism shown in
Figure 1 is used as the test case for the validation. %e
mechanism lies on the horizontal plane and is supposed
to be driven by three motors: two motors drive the
absolute rotation of links 1 and 2, while the third one drives
the relative rotation between links 4 and 5. All the links
have circular cross section and dimensions as shown in
Figure 2(a) and are supposed to be made of aluminium with
elastic modulus 69GPa and mass density 2700 kg/m3. Two-
node, six-dof beam elements have been employed to model
the links, leading to the finite element model shown in
Figure 2(a). %e joints, the brakes, and the rotors of the
motors have been modeled as lumped masses and nodal
inertias, whose values are stated in Table 1.

%e resulting full-order model has 30 dofs, including
three ERLS coordinates (defined as the absolute rotations of
links 1, 2, and 5) and 27 elastic displacements. %e full-order
model has been reduced by applying the reduction strategy
discussed in Section 2.2 and by selecting the interior modes
to be retained by means of the interior mode ranking (IMR)
method [25]. Such a method ranks the interior modes
based on their contributions to the dynamics of the full-
order system at the frequencies of interest, i.e., to represent
the vibrational modes of the full system that have higher
controllability and observability and hence mainly affect
the system dynamics. By means of a correct representation
of these vibrational modes, it is possible to synthesize
a reduced-order model, and hence an observer, that ac-
curately represents the system dynamics that are excited
and observed. In the test case under investigation, a re-
duced model accurately matching the full system dy-
namics in the frequency range 0–180Hz has been obtained
that is a reasonable value if compared with the typical
bandwidths of motion controllers. Indeed, vibrational
modes outside the controller bandwidth cannot be neither

excited nor controlled by the control loop. To reach such
a goal, the interior modes have been ranked trough the
IMR method, and then the number of interior modes to be
retained has been evaluated through accuracy indices,
comparing all the eigenstructure of the full-order model in
the frequency range 0–180Hz with the ones of the
reduced-order model synthesized at the equilibrium
configuration q∗ � 1.0821 2.6354 4.7123􏼈 􏼉

T. Two indices
are used. %e first one is normalized cross orthogonality
(NCO), which provides a measure of the mass-matrix-
orthogonality between the vibrational mode of interest
represented through the full-order model φ and the
reduced-order one 􏽥φ:

NCO �
φTMH􏽥φ

φTMφ( 􏼁 􏽥φTHTMH􏽥φ( 􏼁
. (16)

%e second index is the relative percentage error on the
natural frequencies:

εf �
|f− 􏽥f|

f
· 100. (17)

In Equation (17), f and 􏽥f are the frequency of the mode
of interest in the full and in the reduced-order model, re-
spectively. %e target value for the NCO is one, while it is
zero for εf. By assuming reasonable thresholds on these
indices, the number of interior modes to be retained is
determined and hence the truncated interior mode matrix 􏽥Φ
is determined.

%e set of the reduced coordinates obtained in this
example has just 13 dofs and contains 8 physical coordinates
xm (i.e., the master dofs, shown in red in Figure 2(b)) and 5
interior modal coordinates η:

xm � q1 q2 q3 x14 y15 θ24 x25 y26􏼈 􏼉
T
,

η ∈ R5x1
.

(18)

Table 2 shows the values of the NCO and the εf for all the
vibrational modes of the system in the frequency range of
interest at the equilibrium configuration q∗. It is evident that
the system dynamic is correctly represented. Similar results
have been obtained by evaluating the accuracy of such
a reduced model in a neighborhood of the equilibrium
configuration (see [25] for a detailed description).

Having reduced to 13 the dimensions of the model, the
first-order formulation of the reduced model has a 26-di-
mensional state vector versus the 60 state variables of the
full-order model. %us, a great reduction has been obtained.

%e measured inputs of the state observer are the three
torques exerted by the three actuators (T1, T2, and T3 in
Figure 2(b)):

􏽥F � T1 T2 T3 0 0 −T3 0 0 0 0 0 0 0􏼈 􏼉
T
.

(19)

Six sensed outputs are available to compute the observer
innovation: the angular positions of the three-actuated links
(q1, q2, and q3) and the curvatures (strains) at the midpoints
of links 1, 2, and 4 (Figure 2(b)), denoted as c1, c2, and c4:
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y � q1 q2 q3 c1 c2 c4{ }T. (20)

It should be noted that c1, c2, and c4 are nonlinear
combination of the state variables. �is choice of sensed
outputs ensures that system is observable, as corroborated by
the rank analysis of the observability matrix obtained by
linearizing the model around a set of equilibrium con�g-
urations in the whole manipulator workspace.

4.2. Estimation Results. �e measurements have been gen-
erated through the full-ordermodel, which can be thought of
as the “real mechanism.” In contrast, the observer is based

on the nonlinear reduced-order model and uses noisy
measurements since all the simulated measured signals that
are fed to observer are supposed to be corrupted by Gaussian
white noise with realistic values for the sensors. Such a noise
has been generated as normally distributed random num-
bers (by the “randn” function in MATLAB) having zero
mean and the standard deviation (denoted as σ) stated in
Table 3 for all the sensed measurements. �en, all the
measured signals have been digitized trough a 24-bit analog-
to-digital converter, with input range ±10V.

A multirate EKF has been implemented: the continuous-
time equations of motion of the real mechanism in Equation
(9) have been discretized through the fourth-order
Runge–Kutta method with an integration step of 0.1ms,
while the measured signals have been updated at 500Hz.

A motion lasting 3 seconds has been tested. �e manip-
ulator end-e�ector is required to track a path describing
a semicircumference of radius 0.15m (shown in Figure 3).
�e motion of the mechanism is open-loop controlled by the
computed torques shown in Figure 4 (computed through the
rigid-body model). No closed-loop control of the trajectory is
performed, since it is out of the scope of the paper. Addi-
tionally, no vibration control is performed in order to excite the
vibrational modes and hence to clearly evaluate if the reduced-
order model and the observer are able to represent such dy-
namics.�e noisy sensed outputs (Equation (18)) employed for
computing the observer innovation are shown in Figure 5.

�e estimates of the angular positions and velocities of
the three-actuated links are plotted in Figures 6 and 7, re-
spectively, and are compared with those delivered by the real
mechanism (i.e., those without noise). �e same �gures also
show the estimation error, i.e., the di�erence between the
two signals. �ese �gures clearly show that the observer is
stable, and it delivers accurate estimates of the manipulator
gross motion, despite the presence of noise a�ecting mea-
surements. Indeed, the amplitude of the estimation error is
smaller than the measurement noise, as corroborated by the
comparison of Figures 4 and 5.
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Figure 2: Studied mechanism: �nite element model (a) variables involved in the estimation process (b).

Table 1: Lumped masses and nodal inertia.

Node Mass (kg) Inertia (10−2 kgm2)
1 7.644 1.30
2 0.392 0.00
3 9.517 2.29
4 0.400 0.00
5 0.648 0.00
6 0.671 0.00
8 0.383 0.00
9 0.658 0.00
10 0.308 0.00
12 1.537 0.00
13 0.095 0.15
14 0.046 0.00

Table 2: Evaluation of the accuracy of the reduced model.

Mode frequency (Hz) NCO (–) εf (%)
13.28 1.0000 0.0110
43.29 1.0000 0.0012
64.63 1.0000 0.0699
124.25 0.9937 1.7157
143.21 0.9983 0.5725
159.36 1.0000 0.0112
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Similar considerations can be obtained from Figures 8
and 9, which show the linear elastic displacements and
velocities of the manipulator tip that might be of interest for
implementing trajectory control schemes. Again, there is
a good agreement between the estimated variables and the
actual ones, both in terms of amplitude and frequency
content of the time-histories.

As a consequence of these precise estimates, the absolute
displacement of the manipulator tip is very accurately es-
timated, and its trajectory in the Cartesian space is almost
overlapped to the actual one, as shown in Figure 2.

Further evidences of the observer e�ectiveness come
from the fast Fourier transforms (FFT) of the tip elastic
displacements, as shown in Figure 10: the spectra of the
estimated ones are almost perfectly overlapped to those of
the real mechanism. Such a result further con�rms the
capability of the reduced-order model to represent correctly
the dynamics of the manipulator in the frequency range
0–180Hz, where the reduced model has been tuned.

4.3. Sensitivity Analysis. A sensitivity analysis has been
carried out to assess observer robustness to model

uncertainties. In particular, the payload mass carried at the
tip of the real mechanism has been modi�ed by increasing it
of the 25%, 50%, 75%, and 100% of its original value. In
contrast, the payload mass of the reduced-order model
adopted in the observer has been kept constant and equal to the
nominal value. Randommeasurement noise, as in the previous
test, has been adopted to corrupt the measured signals.

Simulation outcomes have been summarized through
the mean μ and the standard deviation σ of the estimation
errors averaged over 100 simulations for each value of the
a payload mass:

μτ �
1
100

∑
100

j�1
1/ns∑

ns

k�1
τk,j − τ̂k,j
∣∣∣∣∣

∣∣∣∣∣
︸�������︷︷�������︸

μj

,

στ �
1
100

∑
100

j�1

�����������������������
1

ns − 1
∑
ns

k�1
τk,j − τ̂k,j
∣∣∣∣∣

∣∣∣∣∣− μj( )
2

√√

.

(21)

In Equation (21), τ denotes a generic estimated variable;
τk,j and τ̂k,j are the estimated and the actual values of τ,
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Table 3: Standard deviations assumed for each measurement noise.
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respectively, at the kth simulation step of the jth run; and ns
is the number of sample of each run.

�e means (markers) and the standard deviations
(lines) of the estimation errors of the linear displacements
and velocities of the tip coordinates are shown in Figure 11.
Clearly, the case of no added mass corresponds to the
results shown in Figures 5–9 for random noise. Although
mismodeling a�ects negatively the estimation by in-
creasing both the mean value and the standard deviation

of the errors, the estimation errors are small even in the
presence of a payload mass twice the expected one. �is
result corroborates the correctness of both the model
reduction approach and the estimation scheme proposed.

5. Conclusions

A nonlinear state observer based on the extended Kalman
�lter and on a reduced dynamic model of a �exible-link
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manipulator has been successfully synthesized. Model re-
duction has been performed through a modi�ed Craig-
Bampton strategy that handles nonlinearities by properly
modifying the transformation matrix and that trades-o�
between model size and accuracy through a wise selection
of the most important interior modes to be retained.

�e numerical results prove that such an observer delivers
accurate estimates of both the rigid-body motion and the
elastic displacements. Observer robustness to measurement

noise and model uncertainties has been also proved by in-
cluding noise and parameter variation.

�e great reduction of the computational e�ort due to
the reduction of the model size makes the proposed observer
promising for getting e§cient state estimates in the control
of �exible-link multibody systems.
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