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Abstract
In many geomechanics applications, material boundaries are subjected to large displacements and deformation. Under

these circumstances, the application of boundary conditions using particle methods, such as the material point method

(MPM), becomes a challenging task since material boundaries do not coincide with the background mesh. This paper

presents a formulation of penalty augmentation to impose nonhomogeneous, nonconforming Dirichlet boundary conditions

in implicit MPM. The penalty augmentation is implemented utilizing boundary particles, which can move either according

to or independently from the material deformation. Furthermore, releasing contact boundary condition, as well as the

capability to accommodate slip boundaries, is introduced in the current work. The accuracy of the proposed method is

assessed in both 2D and 3D cases, by convergence analysis reaching the analytical solution and by comparing the results of

nonconforming and classical grid-conforming simulations.

Keywords Implicit time integration � Material point method � Nonconforming boundary conditions � Penalty method

1 Introduction

In recent years, continuum-based particle methods, including,

among others, the smoothed particle hydrodynamics (SPH)

[1], the particle finite element method (PFEM) [2], the

reproducing kernel particle method [3], the element-free

Galerkin method [4], and the moving particle semi-implicit

method (MPS) [5], are the natural choice when simulating

large deformation solid dynamics problems. While classical

mesh-based approaches, such as the finite element method

(FEM) [6], have been proven to be very powerful and accu-

rate to model materials under small deformation, they are

likely to suffer from mesh distortion and entanglement. When

the material deformation becomes too large, mesh-based

methods generally require remeshing and remapping of

variables, which do not only introduce an error but are also

computationally costly. Particle-based methods on the other

side overcome this drawback by switching to either meshless

or hybrid approach. SPH, MPS, and meshless methods in

general discretize the problem domain into moving particles

governed solely by the interaction between the neighboring

particles. Even though remeshing processes can be avoided in

this case, searching procedures and the usage of high-order

basis functions are necessary to obtain accurate results [7].

Moreover, the difficulty to enforce Dirichlet boundary con-

ditions (i.e., due to the absence of the Kronecker delta

property) should be addressed properly, on top of the presence

of tensile instability caused by an insufficient number of

neighbor particles. Even though many attempts have been

continuously proposed to overcome these issues [8], a valu-

able alternative could be represented by the hybrid approa-

ches, combining the strengths of mesh-based and meshless

techniques while simultaneously minimizing their drawbacks.

The material point method (MPM), belonging to the

hybrid techniques, was originally proposed by
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Sulsky et al. [9] as an extension of the particle-in-cell

(PIC) [10] and fluid-implicit-particle (FLIP) [11] method

for treating solid dynamics problems. The key difference

between MPM and its preceding methods is that MPM

performs the integration of constitutive stress at the

Lagrangian moving particles, while keeping the fixed

‘‘background’’ mesh in order to approximate continuous

fields and their spatial gradients. MPM can be interpreted

as a modified updated-Lagrangian finite element technique

with moving integration points and a final mesh reset at

each time step. MPM can simulate history-dependent

materials with considerably large deformation avoiding

mesh-distortion issue since the material properties are

stored within the particles, called material points. The

method since then has been successfully employed for the

simulation of a variety of problems that are not easily

addressed with mesh-based approaches. We can mention,

for instance, hyper-velocity impact [12, 13], explosions

[14], failure [15], and multi-phase geomechanical problems

[16–18]. Some applications of the MPM are listed as a

general review in the books published by Zhang et al. [19]

and Fern et al. [20].

The use of MPM and its extended variants, such as the

generalized interpolation material point (GIMP) method

[21] or the convected particle domain interpolation (CPDI)

[22, 23], to simulate large deformation solid dynamics

problems, indeed, provides tremendous advantages, as it

successfully tackles and solves the problem with mesh

entanglement. Nevertheless, the method still suffers from

some major difficulties. One open issue to be addressed is

related to the nonconforming boundary conditions. In

MPM, differently from other Lagrangian mesh-based

approaches, boundary conditions often need to be applied

on boundaries which does not match with the background

mesh. Similar problems appears in the unfitted methods for

computational fluid dynamics (CFD) problems [24–28].

This MPM problem has been addressed by few other

authors. One possibility is to move the background fixed

mesh according to the material displacements and defor-

mation [29–31]. By doing this, the material boundary

always coincides with the mesh edges in 2D or surface in

3D and boundary conditions can be applied in a FEM

fashion to the mesh nodes. However, the accuracy of this

method is strongly limited by the boundary shape and

motion, i.e., the material boundary has to maintain its

surface description and be subjected to small deformation

movements without severe rotations. Otherwise, remeshing

should be performed, losing the main motivation behind

the choice of MPM instead of the standard FEM. Fur-

thermore, the moving-mesh technique is also observed to

produce numerical noises [32] due to the cell-crossing

instabilities, which occur when material points cross the

computational mesh boundaries [21]. In alternative the

desired boundary conditions can be applied to the boundary

particles. This can be done either by identifying the outer

layer of material points [33] or by building a layer of mass-

less boundary particles which track the deformation of

material boundaries. In both cases the carried information

is mapped onto the connectivity’s nodes through the ele-

ment shape functions. The main disadvantage of this

approach is that the applied boundary condition is not

exactly lying on the material boundary, but across a

boundary band, which therefore, results in an increase of

the thickness of the actual boundary. This leads to signif-

icant errors and element size dependency as pointed out by

Beuth [33] and Kafaji [29].

Another potential method was proposed by Mast e-

t al. [34], assuming a dual-grid approach. Essentially, this

method introduces an additional grid which follows the

geometry of the material boundary, and the communication

between the additional grids and the original background

grids is performed to enforce the nonconforming essential

boundary conditions. However, as explained by Bing e-

t al. [35], the dual-grid configuration is problematic even

for simple 1D problems, since it is sensitive to different

boundary cell size and location. Mast’s colleague,

Yang [36], proposed a scheme for handling nonconforming

Dirichlet boundaries by giving a specific boundary force

field. This technique defines an influence region nearby the

boundary, divided into three zones: constrained, decay, and

free. Within the decay zone, the magnitude of boundary

forces is reduced by a prescribed decay function to reflect a

decreasing influence to the material. It should be noted here

that the choice of assumed decay function will influence

the quality of the numerical results.

An interesting alternative work to address moving

Neumann boundary conditions has been proposed by

Remmerswall et al. [37]. In their work, Remmerswall and

colleagues introduced a boundary detection algorithm

using the proximity field method (PFM), which is based on

the concept derived from free surface boundary detection

used in CFD. However, the PFM approach is reported to be

computationally costly, highly mesh dependent, and its

accuracy, at present, is still questionable [37].

Last but not least, most recently, Bing and colleagues

[35, 38, 39] have proposed a more general way to track the

evolution of physical boundary by utilizing a cubic

B-spline interpolation method. By using this technique, the

integration of surface traction for Neumann boundary can

be done directly along the B-spline surface by incorporat-

ing Gauss quadrature. The B-spline surface can also be

combined with a Dirichlet boundary imposition using the

implicit boundary method (IBM) adopted from FEM

[40–43]. The key idea of the IBM is to enforce essential

boundary conditions by introducing extra stiffness terms in

the system of equations, which can be calculated through a
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‘‘Dirichlet function’’ that depends on the signed-distance

function measured from the material boundaries. Bing e-

t al. [35, 38] extended it to MPM to include the roller

boundary conditions on inclined boundaries and the treat-

ment of nonhomogeneous boundaries. However, since the

definition of the B-spline surface has to be established from

the beginning of the simulation, this approach is still

doubted to work for large deformation cases involving

crack, fragmentation, and new surface reconstruction.

IBM has been proven to be suitable for imposing

homogeneous and nonhomogeneous Dirichlet boundary

conditions for 2D quasi-static linear-elastic problems in

MPM with structured quadrilateral elements [35, 38, 39].

Yet, so far, implementation for 3D cases, with unstructured

background mesh, and for nonlinear dynamic problems

involving elastoplastic materials is not yet presented.

Within their method, there are some limitations observed

rooted from the undertaken assumptions. First, the IBM

enforces the Dirichlet imposition by modification of the

trial and test function spaces. Here, the approximated dis-

placement field is modified by including the influence of

diagonal Dirichlet matrix as well as the boundary condition

to be imposed. This may lead to the violation of continuity

requirements between elements, i.e., between cut and reg-

ular elements, which, by further, may potentially cause

numerical instability. Secondly, the method also utilizes

the material constitutive matrix D within its boundary

enforcement formulation; this particularly may be difficult

to represent when complex mixture of elastoplastic mate-

rials are involved.

While the application of Neumann boundary conditions

has its paramount importance in many solid dynamics

simulations, which have been discussed thoroughly in many

prior works [35, 37, 44, 45], the current paper solely focuses

in developing methods to handle the application of Dirichlet

boundary conditions, which are needed in many problems of

transient dynamics. The discussion on Neumann boundary

conditions will be kept as a future work. This paper offers an

alternative approach of implicit boundary imposition.

Instead of modifying the interpolation shape functions or

field parameterization as in the IBM [35, 38, 39], a modi-

fication of the weak form is adopted by appending an extra

term derived from the penalty formulation.

The penalty formulation in general has been well

established in FEM to impose constraint conditions of

nonconforming elements [46], as well as in isogeometric

B-Rep analysis (IBRA) [47, 48] to couple boundary con-

ditions between patches. Compared to methods such as the

Lagrange multiplier [49], where additional degrees of

freedom (DOF) are required, the penalty method is sig-

nificantly less expensive in computational cost. Further-

more, for similar imposition purposes, this approach has

also been extended to meshfree methods [50–52] and other

continuum-based methods, such as in the CutFEM [53] and

the finite cell methods (FCM) [54]. In the present paper, the

adaption of the penalty method to MPM is presented. The

penalty augmentation is adopted using boundary particles,

which can be fixed or can move not only according to the

material deformation, but also following prescribed field

values, independently from the deformation.

The objective of this work is to introduce a penalty aug-

mentation to impose nonhomogeneous, nonconforming

boundary conditions in MPM. The proposed approach can

work independent of background meshes (e.g., triangular,

quadrilateral, tetrahedral, hexahedral), all type of materials, in

both small and large strain regimes, and in both 2D and 3D

problems. An extension to accommodate inclined roller sup-

port and frictionless contact (detaching) condition is also

added to the formulation. The developed MPM code

employed in the current work utilizes implicit integration

scheme [55–57] and has been developed by the authors within

the Kratos Multiphysics open-source platform [58]. The code

proposed is available in GitHub1 under a BSD license.

The paper is structured as follows. First, Sect. 2 intro-

duces the governing equations needed, including a sum-

mary of procedure to perform an implicit MPM simulation.

Section 3 provides some numerical details on how the

boundary conditions are treated in implicit MPM, for both

the grid-conforming and the proposed nonconforming

boundary imposition. In Sect. 4, some numerical tests are

simulated and discussed to assess the capabilities of the

proposed approach. Finally, Sect. 5 presents the conclu-

sions and suggestions for future works.

2 Displacement-based implicit MPM
formulation

This section presents an overview of the displacement-

based implicit MPM formulation used in the current work.

The reader is strongly recommended to refer to [55, 56, 59]

for more detailed information on the algorithm.

2.1 Balance equations and weak formulation

Consider a body B, which occupies an initial domain X of

the three-dimensional Euclidean space E, with a regular

boundary oX in its reference configuration. A deformation

of B at a given time t is defined by a one-to-one mapping u,

u : X ! E: ð1Þ

The deformation gradient F is defined as

1 https://github.com/KratosMultiphysics/Kratos.
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F X; tð Þ ¼ rXu X; tð Þ ¼ ox

oX
; ð2Þ

where x and X denote the current and the reference con-

figurations, respectively.

Continuity equation reads

dq
dt

þ qr � v ¼ 0 in uðXÞ; ð3Þ

where q and v are the density and velocity vector and q=dt

indicates the total derivative of q. The conservation of

linear momentum of B is given by:

q€u ¼ r � rþ qb in uðXÞ; ð4Þ

where €u represents the acceleration vector, r is the sym-

metric Cauchy stress tensor and b denotes the volume

acceleration.

The governing Eqs. (3) and (4) have to be solved

numerically in a three-dimensional field X � R3, within

the time range t 2 ½0; T �, considering the following

boundary conditions:

u ¼�u on u oXDð Þ; ð5Þ

r � n ¼�t on u oXNð Þ; ð6Þ

where n is the outward unit normal vector, while �u and �t
are the Dirichlet prescribed displacement and the Neumann

traction on oXD and oXN , respectively.

Assuming the following constitutive stress–strain

relation:

r ¼ rðeÞ ¼ rðeðuÞÞ; ð7Þ

where e is the strain tensor, and calling V � R3 the space of

the solution u, we can derive the corresponding weak

formulation. The problem is, hence, reduced to find a

kinematically admissible displacement field u 2 V at each

time t which satisfies:

Rðu;wÞ ¼
Z
uðXÞ

rðeðuÞÞ : rswdv

�
Z
uðXÞ

q b� €uð Þ � wdv

�
Z
uðoXN Þ

�t � wda ¼ 0 8w 2 V;

ð8Þ

where w 2 V is an arbitrary test function.

2.2 Linearization of the weak formulation

Equation (8) is valid for any kind of strain definitions,

including the large strain definitions. Since, in the current

work, we attempt to solve problems involving strong

material and geometric nonlinearities, a linearization of the

weak form is necessary to solve the associated nonlinear

boundary value problems (BVP). By utilizing the Newton–

Raphson’s method, the approximation of the solution can

be obtained iteratively by means of directional derivatives.

The linearization of the residual weak form following a

Taylor’s expansion yields to the following linear system

matrix to be solved at every time step t:

Ktandu ¼ �R: ð9Þ

where R is the residual vector expressed by Eq. (8),

whereas Ktan is the corresponding tangent matrix associ-

ated to the directional derivative of R. The displacement u

is continuously updated during the Newton–Raphson’s

iterations by adding the previously unknown increment du
to its previous converged values.

The tangent stiffness matrix can be split into several

sub-matrices given by:

Ktan ¼ Kgeo þKmat þKdyn: ð10Þ

The first two sub-matrices represent the static part of K and

are known as the geometric and material stiffness matrices,

respectively:

Kgeo :¼
Z
uðXÞ

rxdu � r � rxwdv; ð11Þ

Kmat :¼
Z
uðXÞ

rs
xw � D � rs

xdudv: ð12Þ

Here, D is the tangent stiffness matrix defined for the used

constitutive equation and rx denotes the spatial gradient at

the current configuration, rx ¼ o=ox.

Moreover, the dynamic component of the stiffness

matrix can be computed as:

Kdyn ¼
Z
uðXÞ

q aw � duð Þdv; ð13Þ

where the value of a depends on the time integration

scheme used. For instance, a ¼ 1=bNDt
2 in Newmark

integration scheme, where bN is typically equal to 0.25.

2.3 Spatial discretization

The integrals written in Eqs. (9)–(13) need to be approxi-

mated spatially by discretization techniques. In MPM, as

the continuous geometry and domain are approximated by

finite number of material points and background grids, the

field quantities presented in the weak forms, e.g., stresses,

displacements, etc., can be approximated through extrap-

olation and interpolation methods. In the following for-

mulations, the variables at the mesh nodes will be

identified with subscript I and J, while the properties

associated with material points will be identified with

subscript p. Moreover, the superscript n and nþ 1 indicate

the current (known) and next (unknown) time step,
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respectively. All the variables with subscript h are nothing

but the approximation of the variables themselves in the

discretized geometry.

Following the standard nonlinear finite element dis-

cretization [60], Eq. (9) is discretized as:

KtanDu ¼ �R; ð14Þ

where Du is the increment of the discrete solution of the

problem (i.e., the discrete counterpart of the incremental

displacement du used in Eq. 9). The elemental tangent

stiffness matrix Ktan and residual vector R are expressed

as,

RI ¼
[np
p¼1

BIr� qbNI þ
Xnn
J¼1

NIqNJaJ

 !
vp

�
[na
a¼1

NI
�tAa;

ð15Þ

Ktan
IJ ¼

[np
p¼1

ðrxNIÞTrðrxNJÞ þ BT
I DBJ

�

þNIqaNJIÞvp:
ð16Þ

where vp and Aa are the current volume of a single material

point and the area weight of surface boundary, respec-

tively. D is the constitutive matrix and BI is the deforma-

tion matrix related to each node I in the element. NI is

corresponding shape function value associated with grid

node I, whereas nn is the total number of computational

node. Operator
S

is used in Eqs. (15) and (16), instead ofP
over all np, as the assembly procedure is not only adding

up each of the material point contributions but also

addressing the kinematic compatibility between the points.

2.4 Implicit MPM

The material point method (MPM) was originally proposed

by [9] as an extension of the particle-in-cell (PIC) and

fluid-implicit-particle (FLIP) method for treating solid

dynamics problems. The method has been developed over

the last two decades especially for solids undergoing large

deformation [61], including many other multiphase, multi-

physics, and multi-scale problems. MPM uses a fixed

background mesh and a set of moving material points.

While the mesh is used for calculation purpose in a FEM

fashion and is reset at the end of each time step, all his-

torical information is stored inside the material points

which are moving in a Lagrangian way and employed as

moving integration nodes (Fig. 1).

While MPM algorithms are generally written using an

explicit time integration [62, 63], recently, implicit for-

mulations [64–66] are often preferred as they are more

accurate and robust to simulate cases with small rate of

deformation, or static and quasi-static problems. On top of

that, the stability of the method (for properly chosen dis-

sipative approaches) does not depend on the wave propa-

gation speed within the media and, thus, allows the usage

of a relatively larger time steps. Finally, implicit formu-

lations are advantageous to solve multi-physics coupling

problems, especially if MPM should be coupled with other

implicit-based methods such as FEM [67]. A more recent

extension of the implicit MPM to GIMP has been proposed

and showed to work well for large deformation elasto-

plastic materials by [68, 69]. The three main phases of the

classical implicit MPM are graphically summarized in

Fig. 1.

(a) Initialization phase

• The material point-mesh connectivity is first

defined by searching the element where each

material point is located;

• The kinematic information obtained at the previ-

ous time step n is mapped by means of mass

projection from each material point p to the

connectivity nodes as initial conditions.

mn
I ¼

Xnp
p¼1

mpNIðnnpÞ; ð17Þ

qnI ¼
Xnp
p¼1

mpv
n
pNIðnnpÞ; ð18Þ

fnI ¼
Xnp
p¼1

mpa
n
pNIðnnpÞ; ð19Þ

where np and np are the total number of material

points inside one element and local coordinate of

the material point p inside the connectivity. Here,

f; q; v, and a denote the force, momentum,

velocity, and acceleration vectors, respectively.

• The corresponding initial nodal velocity and

acceleration can be computed as:

~vnI ¼
qnI
mn

I

; ð20Þ

~anI ¼
fnI
mn

I

: ð21Þ

(b) Lagrangian phase

• The discretized form of the governing equations

(Eq. (14)) is solved on the active background

mesh—those which contain material points—

according to the scheme used.

(c) Convective phase
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• The obtained solutions are interpolated back to

the material points following:

unþ1
p ¼

Xnn
I¼1

NIðnnpÞunþ1
I ; ð22Þ

anþ1
p ¼

Xnn
I¼1

NIðnnpÞanþ1
I ; ð23Þ

vnþ1
p ¼vnp þ

1

2
Dt anp þ anþ1

p

� �
; ð24Þ

where nn is the total number of nodes per geo-

metrical element.

• The position of the material points can be updated

as:

xnþ1
p ¼ xnp þ unþ1

p : ð25Þ

• The background mesh is recovered to their initial

undeformed configuration, and all the nodal

variables are cleared.

The implicit approach implemented in this paper is an

extension of the displacement-based formulation, which

was originally proposed by Guilkey and Weiss [64]. Fur-

ther details of the used algorithm, such as the prediction–

correction scheme derived from Newmark integration

scheme and its extension to incorporate mixed formulation,

can be found in [55, 56, 59].

3 Treatment of Dirichlet boundary
conditions

The treatment of boundary conditions in MPM, for both the

Neumann and Dirichlet boundaries, is not always

straightforward, since the material surface boundary

C ¼ oX, most of the time, does not coincide with the mesh

boundary. As discussed in Sect. 1, a number of different

strategies have been adopted to overcome this problem in

the past. From hereon, the boundary coinciding with the

background mesh will be called grid-conforming boundary,

while the nonconforming boundary will describe the

boundary which does not coincide with the background

element boundary (i.e., its nodes), see Fig. 2 for illustrative

description. The current section will present the general

formulation to apply grid-conforming boundary conditions

in implicit MPM, followed by the proposed nonconforming

boundary enforcement by means of the penalty method.

3.1 Grid-conforming boundary conditions

As commonly done in FEM, degrees of freedom (dofs) can

be ordered such that the unknown dofs come first and the

Dirichlet nodes afterward. The algebraic solution system

now reads:

Ktan
uu Ktan

uuCD

Ktan
uCDu

Ktan
uCDuCD

" #
Du

DuCD

� �
¼ �

Ru

RuCD

" #
; ð26Þ

where Du is the increment of displacement evaluated at

each time step such that, unþ1 ¼ un þ Du. The sub-matri-

ces Ktan
uu and Ktan

uCDuCD
are the stiffness matrix components

which solely correspond to the regular displacement to

solve u and the known displacement uCD
, whereas Ktan

uuCD

and Ktan
uCDu

are the off-diagonal components connecting the

solved and prescribed displacements. In general, the tan-

gent stiffness matrix is symmetric, and thus,

Ktan
uuCD

¼ Ktan
uCDu

� �T
. In addition to that, the residual right-

hand-side vector R can also be split into two components

related to u and uCD
, i.e., Ru and RuCD

, respectively.

Hence, the goal is to obtain DuCD
¼ 0, as if the fol-

lowing predictor–corrector scheme was used:

ðpredictor on oXDÞ : unþ1;0
CD

¼�u; ð27Þ

ðcorrector on oXDÞ : unþ1;k
CD

¼unþ1;k�1
I þ DukCD

¼�u;
ð28Þ

Initialization phase Lagrangian phase Convective phase

I

K

J

K

I J I J

K

Fig. 1 The three phases of MPM: a initialization phase, b Lagrangian phase, and c convective phase. Square markers and capital letters identify

the mesh nodes, while round markers and small letters indicate the material points
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the Dirichlet boundary Eq. (5) is enforced automatically.

The superscript k is used to denote iteration of the Newton–

Raphson’s method. This can be accomplished by setting

the off-diagonal elements of the tangent stiffness matrix,

Ktan
uuCD

and Ktan
uCDu

, to zero, and assigning the diagonal

components as identity, Ktan
uCDuCD

¼ I. Meanwhile, the right-

hand-side components corresponding to the Dirichlet con-

ditions are also modified as RuCD
¼ 0. Equation (26) can,

therefore, be rewritten as:

Ktan
uu 0

0 I

� �
Du

DuCD

� �
¼ �

Ru

0

� �
: ð29Þ

Solving the modified system yields the solution set

½unþ1; �u�, and the Dirichlet boundary conditions are auto-

matically enforced.

Equation (29) works for both homogeneous and non-

homogeneous boundaries, as well as for roller supports if

the boundary conditions are described in the direction of

Cartesian coordinate bases, i.e., ei. However, this will not

work for roller boundaries with an arbitrary inclination

(Fig. 3). To accommodate the roller boundary conditions in

an inclined configuration, a rotation matrix Q is

introduced:

Q ¼
n̂x n̂y n̂z

t̂x t̂y t̂z

q̂x q̂y q̂z

2
64

3
75; ð30Þ

where n̂, t̂, and q̂ are the unit normal vector perpendicular

to the inclined surface and the two unit tangent vectors

parallel to the surface, respectively. Note that, Q is

orthogonal, and therefore, QT ¼ Q�1. The mapping

between (n, t, q) and (x, y, z) can be performed as:

uh ¼ Qu ¼ ½un ut uq�T ; ð31Þ

where uh is the displacement described in the axis-aligned

configuration.

We then use a similar approach to compute a partially

axis-aligned system by multiplying Eq. (26) with a modi-

fied rotation matrix bQ as:

bQKtan bQT bQ� �
Du ¼� bQR

bQKtan bQT
� �bQDu ¼� bQR

KhDuh ¼� Rh:

ð32Þ

bQ is a block matrix with the following structure:

bQ ¼
I½ � 0½ �
0½ � Q½ �

� �
; ð33Þ

where the unsupported system is kept as it is, while the

grid-conforming 
Dirichlet boundaries

grid-conforming 
Neumann boundaries

nonconforming 
Dirichlet boundaries

nonconforming 
Neumann boundaries

Fig. 2 Types of boundary conditions in MPM: grid-conforming (left) and nonconforming (right) boundary conditions

Fig. 3 Grid-conforming slip or roller support with arbitrary

inclination
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Dirichlet boundary is rotated by multiplying it with the

rotation matrix Q. Equation (32) can be expanded as:

ð34Þ

As the partially rotated system has been obtained, we can

then enforce support only in the normal direction, similar

to the one in Eq. (29). This yields the following system:

ð35Þ

Solving Eq. (35) will give:

DuhCD
¼ ½0 DuCD;t DuCD;q�

T ; ð36Þ

which has to be rotated back to the original configuration

before being added to the solution step. This modifies the

predictor–corrector scheme specified by Eqs. (27) and (28)

to:

ðpredictor on oXDÞ : unþ1;0
CD

¼ �unn̂; ð37Þ

ðcorrector on oXDÞ : unþ1;k
CD

¼ unþ1;k�1
I þQTDuhCD

;

ð38Þ

which results in a slip boundary condition that supports the

normal direction but allows the tangential directions to

move freely for arbitrary inclination.

3.2 Nonconforming boundary enforcement

The imposition of nonconforming Dirichlet boundary

conditions in MPM should be as general and simple as

possible, so that it can be used in practice, without the

necessity of modifying the underlying parameterization.

This is the main motivation behind the choice of implicit

boundary imposition by means of penalty method proposed

in the current work. The penalty method has been previ-

ously used just for contact algorithm in explicit [70, 71]

and implicit [72] MPM. The method works seamlessly

within the nonlinear implicit MPM framework established

earlier for Dirichlet boundary enforcement. Furthermore,

this work proposes and extends the usage of the method to

include slip and releasing contact boundaries, which for-

mulation will be elaborated in the current section and

summarized in Algorithm 1 provided in Appendix A.

While the following section will present an applicability of

penalty method to implicit MPM, the technique has never

been used in explicit MPM. However, it was used to couple

trimmed B-Rep patches through weak enforcement in

explicit IBRA by [73]. The formulation of penalty method

in explicit MPM should not differ substantially from the

current work, but the usage of smaller time step might be

necessary to provide stability of the boundary imposition.

The extension of the proposed implementation towards

implicit GIMP [68, 69] or other variants of implicit MPM

can be done with minimum modifications, although more

comprehensive assessment of the accuracy and the feasi-

bility of the penalty augmentation should be investigated

further and is left for future works.

3.2.1 Penalty approach

The basic concept of the penalty method is introduced in

this section, which can be used to impose Dirichlet

boundary condition in two nonconforming discretizations.

First, let’s assume two coupling boundary edges C1 and C2,

which can be discretized by using any methods, e.g., as

surface meshes, B-spline surfaces, or even as particles.

Each of the boundary edge contains a corresponding dis-

placement field u1 ¼ u1ðx1Þ and u2 ¼ u2ðx2Þ, respectively.
The penalty approach formulation to couple the displace-

ment between the two surfaces starts with the following

virtual work formulation:

dWpenalty ¼b
Z
C1

u1 � u2ð Þ � du1 � du2ð ÞdC1;

¼b
Z
C2

u2 � u1ð Þ � du2 � du1ð ÞdC2;

ð39Þ

where b is the user-defined penalty factor. Here, dWpenalty

corresponds to the coupling between the displacement (i.e.,

the position) of two coupling surfaces, written in a weak

sense. Notice that the subscripts 1 and 2 are interchange-

able, which should result in the same virtual work formu-

lation independently whether the integral is computed

along C1 or along C2. If the discretization of the surface C1

is matching and consistent with the discretization of C2,

which means that the displacement is conforming u1 ¼ u2,

Eq. (39) vanishes and the coupling is inherently satisfied.

Dirichlet boundary imposition actually can be seen as a

special type of surface coupling, with a prescribed dis-

placement �u, instead of the displacement fields u2 in C2.

We can then rewrite Eq. (39), assuming u ¼ u1, as:

dWpenalty ¼ b
Z
CD

u� �uð Þ � duD dCD; ð40Þ

where CD ¼ C1 indicates the boundaries to be enforced.

Appending Eqs. (40) to (8), the modified system of

equations can be written as:
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Ktan þKpenalty
� �

Du ¼ � Rþ Rpenalty
� �

; ð41Þ

where Ktan and R are the regular local tangent stiffness

matrix and residual vector without the imposition

(Eq. (10)). The additional penalty terms in the system

matrix are given as:

Kpenalty ¼ b
Z
CD

HT �H dCD; ð42Þ

while the additional residual term is:

Rpenalty ¼ b
Z
CD

HT � u� �uð Þ dCD

¼ b
Z
CD

HT �H dCD

� �
uI � �uIð Þ

¼ Kpenalty uI � �uIð Þ

ð43Þ

with matrix H being defined as follows:

H ¼
N1 0 0 � � � Nn 0 0

0 N1 0 � � � 0 Nn 0

0 0 N1 � � � 0 0 Nn

2
64

3
75: ð44Þ

Here, the subscript n denotes the number of nodes for each

element.

3.2.2 Extension to inclined roller boundary

An extension to the regular penalty imposition is to include

the inclined roller (or slip) boundary condition, similar to

what explained in Sect. 3.1 for grid-conforming boundary

conditions (Eqs. (32)–(38)). However, instead of modify-

ing the matrix and vector elements in the normal direction,

the modification will interest only the tangential

components.

Initially, the new linear system of equation including the

penalty term should be rotated to the partially axis-aligned

configuration as in Eq. (32).

Therefore, applying the modified block matrix to

Eq. (41) yields:

bQ Ktan þKpenalty
� 	 bQT

� �bQDu ¼ � bQ Rþ Rpenalty
� �

ð45Þ

which can be rewritten as:

bQKtan bQT þ bQKpenalty bQT
� �bQDu ¼ � bQRþ bQRpenalty

� �
:

ð46Þ

Calling

Kh :¼bQKtan bQT ;

Kpenalty;h :¼bQKpenalty bQT ;

Rh :¼bQR;

Rpenalty;h :¼bQRpenalty;

Equation (46) becomes:

Kh þKpenalty; h
� �

Duh ¼ � Rh þ Rpenalty; h
� �

ð47Þ

Since Dirichlet constraint only interests Rpenalty; h and

Kpenalty; h, the other terms should remain untouched. The

main idea of the following steps is to enforce the normal

displacement by penalty terms, whereas the tangential

directions are kept as it is (free to deform and not restricted

by the additional penalty terms). The modified penalty

stiffness and residual vector can be expanded as:

ð48Þ

ð49Þ

Finally, we can obtain the imposed rotated system with slip

support as:

Kh þKpenalty; h
modified

� �
Duh ¼ � Rh þ Rpenalty; h

modified

� �
: ð50Þ

Solving this modified system of equation will yield the

Dirichlet imposition that is working for nonconforming

boundaries with arbitrary inclination.

3.2.3 Imposing penalty conditions in MPM through
boundary particles

Notice that the surface integrals in Eqs. (42) and (43) can

be approximated through various approaches, which

depend on how the surface topology is represented. In this

work, a particle discretization technique is used to repre-

sent the continuous surface CD with a discrete number of

boundary particles b. Hence, if this is the case, the con-

tinuous surface integral can be approximated as:
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Z
CD

ð� � �ÞdCD �
Z
CDh

ð� � �ÞdCDh

¼
[nb
b¼1

Z
Cb

ð� � �ÞdCb ¼
[nb
b¼1

ð� � �ÞAb;

ð51Þ

where the last term can be written assuming that all the

quantities inside the surface integral are independent of the

surface.

The surface particle discretization is performed at the

beginning of the simulation to generate boundary particles

from an initial surface mesh, where the penalty conditions

are imposed to the MPM. Here, the surface unit normal

vector is also initially defined at each particle, which is

needed when a contact boundary is considered (please refer

to Sect. 3.2.4 for further discussion on the topic). The

boundary particles are mass-less and only carry some

necessary kinematic variables, as well as the boundary

variables for imposition. Each of the generated boundary

particle is assigned with a corresponding area which is

needed to approximate surface integrals as in (51). The

surface area of the particles can be initiated by a simple

division operation in 2D and 3D cases as:

Ab ¼
A3D
mesh

�nb
¼ L2Dmesh

�nb
� tmesh; ð52Þ

where Ab indicates the area of particle condition (or bound-

ary) b. Meanwhile, Amesh, Lmesh, tmesh, and �nb are the area,

length, thickness, and the number of boundary particle per

initial mesh, which is an input parameter. An illustrative

example of the associated boundary area in 3D assigned in

the particle boundary is shown in Fig. 4. Boundary particles

can be initiated similarly in 2D from line segments with

length Lmesh and unit thickness tmesh ¼ 1. It is worth to note

that, according to our experience, the number of boundary

particles per line segment in 2D or a surface element in 3D

should be more than, or at least equal to, the considered

number of material point per cell.

Numerical instability could appear when the noncon-

forming boundary intersects the background mesh very

close to one of its edges. This instability is commonly

known as the ‘‘small-cut’’ instability, very common also in

FEM-based unfitted approaches [28, 74]. To overcome this

issue a simple modification to the shape function values is

performed while constructing matrix H in Eq. (44). The

modified shape function value �NIb for background node I at

boundary particle b can be obtained as:

�NIb ¼
N�
IbPnn

I N�
Ib

where; N�
Ib ¼

�; if NIb 	 �

NIb; otherwise



;

ð53Þ

where � is the stabilization tolerance, which is often set to

be � ¼ 0:01, and NIb ¼ NIðnbÞ is the original shape

function value. Notice that, to ensure the partition of unity,

the weighting procedure is necessary.

Another aspect which is worth to be noticed, especially

in the presence of inclined roller support, is the definition

of the unit normal vector, i.e., of the outward normal

direction of the imposed boundary. First, the normal vector

needs to be defined on each boundary particle b, n̂b when

creating the boundary particles. Hence, the value of the n̂b
is mapped (Fig. 5) at the beginning of each time step n to

the background grid nodes I as:

n̂nI ¼
Pnb

b¼1 n̂
n
bA

n
bNIðnnbÞPnb

b¼1 n̂
n
bA

n
bNIðnnbÞ

�� �� : ð54Þ

The L2 normalized unit normal vector of the background

nodes, n̂I , is required here to compute the tangential

directions and to construct the rotation matrix QI

(Eq. (30)). With this matrix in hand, the transformation of

the global system is straightforward as described in (47).

Please note that n̂b should be updated according to the

boundary particle deformation.

3.2.4 Contact consideration

One further extension feature of the nonconforming

boundary conditions is to consider a releasing contact,

which is exceptionally useful in many large deformation

transient problems. Here, if nonsticking contact condition

is assumed, a gap function g can be evaluated to describe

the relative normal displacement between the kinematic

fields and the imposed values. The gap function is normally

evaluated at a certain boundary particle b, which is also

assumed as the contact point, and expressed as:

gb ¼ n̂b � uðxbÞ � �ub½ � ¼ n̂b �
Xnn
j¼1

NjðnbÞuj � �ub

" #
; ð55Þ

where n̂b indicates the unit normal vector pointing out-

wards and up the prescribed displacement. The gap func-

tion g indicates whether the boundary condition should be

imposed or not, i.e., if g\0, the continuum field nearby the

boundary is penetrating the interface, and hence, the pen-

alty imposition (Eq. (40)) should be appended to the sys-

tem of equations. However, if g
 0, no further treatment is

needed, and the particles at the vicinity of the contact area

are allowed to separate.

By including the contact consideration using the afore-

mentioned gap function, we can model a nonsticking

contact condition for both nonslip and slip conditions.

Moreover, this allows more accurate imposition of

Dirichlet boundary conditions as it reduces the element

band where the boundary condition is enforced. However,

it requires smaller time increment for problems with high

relative velocity towards the boundary, as otherwise, the
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boundary enforcement will be too late and the incoming

material points may penetrate the nonconforming boundary

surfaces.

4 Numerical examples

This section aims at assessing the quality of the numerical

solutions achieved with the proposed MPM formulation

with nonconforming penalty boundary condition. Four

validation tests have been studied and will be presented in

the following subsections. Here, the original MPM linear

basis function with a Dirac delta characteristic function of

MP volume is assumed for all cases.

1. A static hyperelastic cantilever beam under self-weight

is used to investigate quantitatively the convergence of

Dirichlet boundary imposition by changing the penalty

factor b, the size of the background mesh, and material

parameters.

2. The collapse of a granular column with nonconforming

side walls is simulated to demonstrate the capability of

the proposed boundary imposition in elastoplastic

dynamic problems.

3. A rolling cylinder on an inclined slope is simulated in

2D and 3D to analyze the accuracy of the penalty-

based contact and slip condition in comparison to

analytical results.

4. A granular mixing problem in a rotating drum is

addressed to demonstrate the applicability of a non-

conforming (round) wall with prescribed displacement

and detaching condition.

4.1 Static hyperelastic cantilever beam
under self-weight

A two-dimensional static analysis of a hyperelastic cantilever

beam is simulated to investigate quantitatively the conver-

gence of the penalty boundary imposition by modifying

numerical, geometrical, and material properties. The

Fig. 4 Surface discretization and boundary particle generation: (left) initial triangle surface mesh and (right) generated boundary particle with its

integration weight contour

Fig. 5 Illustrative figure describing unit normal vector of the imposed boundary particles and the background nodes
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cantilever beam considered in this case has a length of l ¼
8m and a square cross section with unit area of A ¼ 1� 1m2

as sketched in Fig. 6. The material model is assumed to be

neo-Hookean hyperelastic. Initially, the material parameters

are set as follows: density q ¼ 1000 kg=m3, Young’s mod-

ulus E ¼ 90MPa, and Poisson’s ratio m ¼ 0:0.

Three convergence studies were conducted to quantify

the performance of the proposed method with respect to

different numerical conditions. In this study, four material

points per cell were considered for all simulations, whereas

seven boundary particles per initial boundary segment were

assumed. First, the influence of the penalty factor is mea-

sured by comparing the displacement obtained in the

observation point A (Fig. 6) with the reference results

conducted with direct enforcement of the boundary con-

ditions on the nodes, as done in [55]. Both the absolute and

the relative errors are evaluated according to

ea ¼jdA � drefA j; ð56Þ

er ¼
dA � drefA

drefA

�����
�����; ð57Þ

where the reference vertical displacement is denoted by

drefA , which is equal to the following expression according

to [75]:

drefA ¼ � qgðbhlÞl3
8EI

þ qgl2

2GAs


 �
: ð58Þ

where g is the gravity acceleration, I ¼ bh3=12 is the

inertia of the beam section, and As ¼ 5=6A is the reduced

cross section area due to the shear effect. G is the beam

shear modulus, which is equal to G ¼ E
2ð1þmÞ.

Figure 7 (left) shows that both errors are converging

linearly as the penalty factor b increases. It is observed that

this linearly decreasing tendency is only valid up to a

certain threshold. After passing a certain magnitude of

penalty factor, the obtained results show a nonchanging

behavior; this can be observed by the change of conver-

gence slope around b ¼ 1015. Moreover, Fig. 7 (right)

demonstrates the converging tendency with respect to

background mesh size, which is linear for very coarse

meshes and quadratic at smaller element size. At larger

element size, the error is observed to be governed by the

choice of penalty factor, in this case b ¼ 1015 is kept

constant during the convergence study, whereas, at smaller

element size, the error returns back to quadratic as the

accuracy gained by reducing the element size is more

dominant. However, this means that nonconforming

imposition of boundary conditions in very coarse meshes

exhibits lower accuracy than the standard grid-conforming

approach which has a quadratic convergence rate as shown

by [55].

Last but not least, Fig. 8 shows the convergence analysis

for different values of the Young’s modulus. As the

Young’s modulus influences the condition number of the

tangent stiffness matrix, the effective value of penalty

factor is inherently influenced by the value of the material

Young’s modulus. In Fig. 8 (left), the convergence lines,

varying the penalty factor b for four different values the of

Young’s modulus, are plotted. There linear convergence is

reached; this is expected and is previously shown in Fig. 7

(left). This is the motivation behind the convergence study

shown in Fig. 8 (right). This convergence study gives an

insight on how to choose the suitable value of penalty

factor b given a material’s Young’s modulus and the

intended relative error. From the author’s experience, a

Fig. 6 Static hyperelastic beam: geometry, boundary conditions, and initial material parameters. The constrained left boundary is nonconforming

with the background mesh
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ratio of b
E ¼ 103 � 104 is normally suitable to achieve a

considerable accuracy for engineering analysis.

4.2 Granular column collapse
with nonconforming side walls

A 2D granular column collapse simulation of noncohesive

soil was simulated according to the two-dimensional

experiment conducted by Bui [76]. In this validation case,

the soil is modeled using a nonassociated elastoplastic

model, assuming Mohr–Coulomb yield criterion as speci-

fied by Clausen [77]. However, the implementation of the

model has been adapted to the finite strain assumption to

handle relatively larger deformation at every time step.

Here, the elastic material parameters of the granular soil

are set to be: E ¼ 840 kPa, m ¼ 0:3, and q ¼ 2650 kg=m3,

for the material Young’s modulus, Poisson’s ratio, and

density, respectively, whereas the plastic variables, such as

the angle of internal friction, cohesion, and the angle of

dilation are /0 ¼ 19:8�, c0 ¼ 0:0 kPa, and w ¼ 0:0�,
respectively, which describe a noncohesive, nondilative

granular material.

In this example, the left and bottom side walls are

assumed to be nonslip and implemented either as grid-

conforming boundaries [57] or as nonconforming bound-

aries. The detailed simulation model can be seen in Fig. 9

with a zoomed region indicating the nonconforming

boundary. Linear structured triangular elements with mesh

size h ¼ 0:002m are used as background mesh. Here, three

material points per cell and six boundary particles per line

segment are considered. The simulations are run until

reaching the final runout (tend ¼ 2:0 s).

Fig. 7 Static hyperelastic beam: convergence analysis: (left) varying the penalty factor b and (right) varying the background element size
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Fig. 8 Static hyperelastic beam: convergence analysis varying the Young’s modulus E for (left) regular and (right) weighted result
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In Fig. 10, the obtained granular soil configurations, for

both grid-conforming and nonconforming boundary con-

ditions, are compared with the experimental data and the

simulation results conducted by [76] using the smoothed

particle hydrodynamics (SPH) method. One can observe, as

indicated in Fig. 10c, that the obtained surface configura-

tion and the failure line show a good agreement with the

experimental measurement as well as the simulations

conducted by other methods. As discussed before, the

quality of penalty boundary imposition strongly depends on

the input value of the penalty factor b. For this validation
test, the penalty factor is chosen to be b ¼ 1011. All in all,

the nonconforming Dirichlet boundary imposition by pen-

alty method can also be confirmed to work well with

elastoplastic granular material model.

4.3 Cylinder on an inclined slope

A cylinder rolling down an inclined slope of 60� is simu-

lated in both 2D and 3D. As the cylinder is solely driven by

gravitational force, the achieved calculation results can be

compared to the analytical solution as proposed by [78] for

both rolling without slip and friction-less sliding condi-

tions, which are enforced by the proposed Penalty Method.

Figure 11 shows the geometry of the cylinder and the plane

in 3D, where the diameter and height of the cylinder are

both 100 cm. The 2D geometry is nothing but the cross

section cut of the 3D model presented in Fig. 11.

The material model is considered to be linear elastic

with a very large stiffness and a density of

q ¼ 3000 kg=m3. For the numerical model, an unstructured

tetrahedral mesh is utilized having a mesh size of 8 cm.

The cylinder itself is discretized initially by three material

points located within each element. The condition is

imposed by introducing nine boundary particles for each

surface element, each of them having a penalty factor of

1018. The time step for the implicit calculation is chosen to

be 10�3. The evolution of the position of the center axis of

the cylinder in time is plotted in Fig. 12 and compared with

the analytical solution for 2D and 3D case. One can

observe that the obtained results match very well to the

analytical solution for both the rolling and sliding condi-

tions. This confirms the proposed method to being appli-

cable for arbitrarily inclined slip conditions independently

of the considered background mesh.

It is worth noticing that in this numerical example the

implemented contact algorithm, essential for rolling con-

dition without slip, generally requires higher mesh reso-

lution in comparison to the slip condition only. For

instance, in 2D rolling condition, the solution plotted in

Fig. 12 can be achieved by assuming mesh size of

h ¼ 1:25 cm, whereas, for the slip condition, the mesh size

can be h ¼ 8 cm, which is more than 6 times larger. This

leads to the need of a significantly larger number of par-

ticles, especially for 3D case, increasing sensibly the

computational cost and calling for distributed memory

calculation capability.

Fig. 9 Granular flow: simulation model with nonconforming Dirichlet boundaries
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4.4 Granular mixing in a rotating drum

To show the performance of the moving boundaries

including the releasing contact algorithm, the example of

the rotating drum proposed by Zuo et al. [79] is chosen.

They compared the experimental data to the simulations

obtained using the discrete element method as well as

MPM and GIMP. It is worth noticing that, while this is a

classical example to study the mixing of granular materials,

in this paper it was chosen for the challenging imposition

of boundary conditions: there is a circular, moving

boundary, which requires releasing contact treatment. The

mixing procedure itself is out of scope for the current work

and will not be analyzed in detail.

The considered rotating drum, partially filled with dry

granular material, has a diameter of 0.1 m and a height of

0.05 m. The three-dimensional geometry is reduced to a

2D plane strain model, represented in Fig. 13.

The rotating speed of the drum is x ¼ 10 rpm, while the

gravitational acceleration is set as 9:81m=s2. The material

model chosen for this example is the Mohr–Coulomb

model, whereas Zuo et al. [79] used a Drucker–Prager

yield surface with an equivalent set of parameters. The

material parameters are set to be: E ¼ 2700 Pa, m ¼ 0:2,

and q ¼ 920 kg=m3, for the Young’s modulus, Poisson’s

ratio, and density of the material, respectively. The plastic

variables, such as the angle of internal friction, cohesion,

and the angle of dilation, are /0 ¼ 27�, c0 ¼ 0:0 kPa, and

(a)

(b)

(c)

Fig. 10 Granular flow: simulation results obtained with a grid-conforming (default) and b nonconforming left and bottom walls; and

c comparison of final surface configuration and failure with results obtained by [76]
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w ¼ 0:0�, respectively, which describe a noncohesive,

nondilative granular material.

While a quadrilateral background mesh with element

size of 3 mm is used for the simulation, an unstructured

triangular mesh is employed for the discretization of the

material points. The latter mesh size is set as 2 mm, and

three material points per element are generated. Three

mass-less boundary particles are located within each

boundary segment, getting the corresponding information

of the normal direction and the prescribed angular velocity

which are updated during the calculation process by means

of unit quaternions. For the implicit calculation scheme a

time step of 5� 10�4 is used.

Figure 14 presents the results of the simulation at time

step t ¼ 0 s and t ¼ 3:5 s in comparison to [79]. It can be

observed that the obtained results show less mixing of the

two materials. This is due to the fact that in the present

simulation a contact model between the material points

which allows relative sliding and separation between ele-

ments is not considered, while [79] considers friction

contact condition between the granular material and drum

particles. Nevertheless, the simulation results are in good

agreement with the results by [79]. Furthermore, focusing

on the boundary imposition two main achievements can be

observed. First, the imposition of the nonconforming

curved moving boundary can be imposed accurately

without modeling the rotating drum as done by [79]. This

may significantly reduce the computational cost. Secondly,

even more important, by imposing the Dirichlet boundary

condition using the proposed Penalty method, the problem

of material points penetrating through the boundary layer,

as observed in [79], can be resolved. Future works to

include frictional contact boundary are necessary to

improve the quality of the mixing.

5 Conclusions

The proposed penalty method, specially designed for an

implicit MPM formulation, allows the imposition of

Dirichlet boundary conditions on nonconforming, arbi-

trarily inclined and moving boundaries both in two and

three dimensions. This is obtained by introducing moving

boundary particles carrying an appended stiffness term

determined by the penalty factor b. Hence, the imple-

mentation of the proposed method is straightforward as it

solely requires an extra stiffness term as well as the cor-

responding residual force term to be appended to the global

systems of equations, without modifying the discretization

assumptions of the MPM algorithm. Furthermore, using the

proposed approach, nonhomogeneous boundary conditions

on top of the slip condition for arbitrary inclined boundary

and releasing contact feature can be imposed without

solving any additional equation.

However, the accuracy of the method has the classical

limitations of the penalty approaches: it strongly depends

on the value of the penalty factor b. While b is required to

be large enough to enforce the prescribed boundary con-

dition, too large value of b may result in an ill-conditioned

tangent stiffness matrix. The penalty factor is influenced by

various simulation parameters, such as, among others, the

60◦

Ø100cm

100cm
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nonconforming

slip boundary

g = −9.81m/s2

Fig. 11 Cylinder on an inclined slope: geometry and boundary

conditions
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Fig. 12 Cylinder on an inclined slope: simulation results for

frictionless slip condition in comparison to the analytical solution
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Young’s Modulus of the material and the element size of

the background mesh, as well as by the prescribed Neu-

mann boundary condition and other external loading.

Hence, b needs to be calibrated by the user. Nevertheless,

this is inherent for the penalty method and not related to its

adaption to MPM.

It is worth noting that the current implementation

requires a predefined set of boundary particles to enforce

the nonconforming boundary condition. The extension of

the method to track and handle dynamic evolution of

boundary particles will be left for future works since it may

provide a tremendous benefits in simulating many hydro-

geomechanical problems such as erosion and fracture

problems. Nevertheless, as long as the boundary particles

can be identified and reconstructed, the proposed technique

can be applied straightforwardly to the newly constructed

surface.

Several numerical examples have been simulated to

assess the quality of the proposed work. The comparison of

the results with the analytical solution proves the accuracy

R = 50mm R

ω = 10rpm

R

37
m
m

nonconforming boundary

contact condition

n̂

Material 1 Material 2

Fig. 13 Rotating drum: geometry and boundary conditions (left) and discretized simulations model (right)

Currentwork

(a) (b) (c) (d) (e)

DEM EXPERIMENT GIMP MPM

t = 0s

t = 3.5s

Fig. 14 Rotating drum: comparison of the flow patterns from [79] (a–d) and results using penalty method (e)
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and expected convergence rate of the proposed method in

two- as well as three-dimensional models. The method

shows good agreement with experimental data available in

the literature also in elastoplastic regimes. On top of that,

the example of the granular mixing in a rotating drum

shows the robustness and broad applicability of this

method, as curved, moving nonconforming Dirichlet

boundary conditions including a releasing contact formu-

lation can be imposed in MPM using the proposed penalty

method.

To conclude, the proposed enhancements make MPM

more complete for the simulation of large deformation

problems of granular and geomaterials and are of para-

mount importance for the predictive simulation and

assessment of the effects caused by environmental phe-

nomena like mud flow and avalanches.

Acknowledgements The research was supported by the EU project

ExaQUte (H2020-FETHPC-2016-2017-800898) and by the Spanish

project PRECISE (BIA2017-83805-R). Dr. Larese gratefully

acknowledge the support of the Italian ministry MIUR by the Rita

Levi Montalcini fellowship (Programma per Giovani Ricercatori

‘‘Rita Levi Montalcini’’ - bando 2016). A grateful acknowledgment is

also given to the DAAD and the Bavarian Graduate School of

Engineering (BGCE) for the valuable financial support during the

research work conducted by B. Chandra. Finally, the authors would

like to thank Prof. R. Rossi from CIMNE-UPC for the fruitful dis-

cussions on the topics of the paper.

Open Access This article is licensed under a Creative Commons

Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in any medium or format, as

long as you give appropriate credit to the original author(s) and the

source, provide a link to the Creative Commons licence, and indicate

if changes were made. The images or other third party material in this

article are included in the article’s Creative Commons licence, unless

indicated otherwise in a credit line to the material. If material is not

included in the article’s Creative Commons licence and your intended

use is not permitted by statutory regulation or exceeds the permitted

use, you will need to obtain permission directly from the copyright

holder. To view a copy of this licence, visit http://creativecommons.

org/licenses/by/4.0/.

Acta Geotechnica

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


Appendix A: Implicit MPM algorithm

The proposed formulation described in Sects. 2 and 3 is

summarized in this appendix within Algorithm 1, which

implementation is accessible in GitHub2 under the Kratos-

Multiphysics Particle Mechanics Application.
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