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COMPARISON THEOREMS FOR CONJUGATE POINTS IN SUB-RIEMANNIAN
GEOMETRY

D. BARILARI' AND L. Rizzr?

Abstract. We prove sectional and Ricci-type comparison theorems for the existence of conjugate
points along sub-Riemannian geodesics. In order to do that, we regard sub-Riemannian structures
as a special kind of variational problems. In this setting, we identify a class of models, namely linear
quadratic optimal control systems, that play the role of the constant curvature spaces. As an application,
we prove a version of sub-Riemannian Bonnet—Myers theorem and we obtain some new results on
conjugate points for three dimensional left-invariant sub-Riemannian structures.
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1. INTRODUCTION

Among the most celebrated results in Riemannian geometry, comparison theorems play a prominent role.
These theorems allow to estimate properties of a manifold under investigation with the same property on the
model spaces which, in the classical setting, are the simply connected manifolds with constant sectional curvature
(the sphere, the Euclidean plane and the hyperbolic plane). The properties that may be investigated with these
techniques are countless and include, among the others, the number of conjugate points along a given geodesic,
the topology of loop spaces, the behaviour of volume of sets under homotheties, Laplacian comparison theorems,
estimates for solutions of PDEs on the manifold, etc.

In this paper we are concerned, in particular, with results of the following type. Until further notice, M is
a Riemannian manifold, endowed with the Levi—Civita connection, Sec(v,w) is the sectional curvature of the
plane generated by v, w € T, M.

Theorem 1.1. Let v(t) be a unit-speed geodesic on M. If for allt > 0 and for all v € Ty ;M orthogonal to (1)
with unit norm Sec(y(t),v) > k > 0, then there exists 0 < t, < 7/\k such that y(t.) is conjugate with v(0).

Notice that the quadratic form Sec(7(t),) : T',yM — R, which we call directional curvature (in the direction
of %), computes the sectional curvature of the planes containing 4. Theorem 1.1 compares the distance of the
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first conjugate point along v with the same property computed on the sphere with sectional curvature k > 0,
provided that the directional curvature along the geodesic on the reference manifold is bounded from below
by k. Theorem 1.1 also contains all the basic ingredients of a comparison-type result:

e A micro-local condition, i.e. “along the geodesic”, usually given in terms of curvature-type quantities, such
as the sectional or Ricci curvature.
e Models for comparison, that is spaces in which the property under investigation can be computed explicitly.

As it is well-known, Theorem 1.1 can be improved by replacing the bound on the directional curvature with
a bound on the average, or Ricci curvature. Moreover, Theorem 1.1 leads immediately to the celebrated
Bonnet—Myers theorem (see [25]).

Theorem 1.2. Let M be a connected, complete Riemannian manifold, such that, for any wunit-speed
geodesic ~(t), the Ricci curvature RicY ((t)) > nk. Then, if k > 0, M is compact, has diameter non greater
than w/\/E and its fundamental group is finite.

In Riemannian geometry, the importance of conjugate points rests on the fact that geodesics cease to be
minimizing after the first one. This remains true for strongly normal sub-Riemannian geodesics. Moreover,
conjugate points, both in Riemannian and sub-Riemannian geometry, are also intertwined with the analytic
properties of the underlying structure, for example they affect the behaviour of the heat kernel (see [13,14] and
references therein).

The main results of this paper are comparison theorems on the existence of conjugate points, valid for any
sub-Riemannian structure.

We briefly introduce the concept of sub-Riemannian structure. A sub-Riemannian structure on a manifold M
can be defined as a distribution 2 C T'M of constant rank, with a scalar product that, unlike the Riemannian
case, is defined only for vectors in Z. Under mild assumptions on & (the Héormander condition) any connected
sub-Riemannian manifold is horizontally path-connected, namely any two points are joined by a path whose
tangent vector belongs to 2. Thus, a rich theory paralleling the classical Riemannian one can be developed,
giving a meaning to the concept of geodesic, as an horizontal curve that locally minimises the length.

Still, since in general there is no canonical completion of the sub-Riemannian metric to a Riemannian one,
there is no way to define a connection a la Levi—Civita and thus the familiar Riemannian curvature tensor. The
classical theory of Jacobi fields and its connection with the curvature plays a central role in the proof of many
Riemannian comparison results, and the generalisation to the sub-Riemannian setting is not straightforward.
The Jacobi equation itself, being defined in terms of the covariant derivative, cannot be formalised in the classical
sense when a connection is not available.

In this paper we focus on results in the spirit of Theorem 1.1 even tough there are no evident obstructions
to the application of the same techniques, relying on the Riccati equations for sub-Riemannian geodesics, to
other comparison results. We anticipate that the comparisons models will be linear quadratic optimal control
problems (LQ problems in the following), i.e. minimization problems quite similar to the Riemannian one, where
the length is replaced by a functional defined by a quadratic Lagrangian. More precisely we are interested in
admissible trajectories of a linear control system in R™, namely curves x : [0,¢] — R™ for which there exists a
control u € L%([0,t],R¥) such that

& = Az + Bu, x(0) = xo, x(t) = x1, To,x1,t fixed, (1.1)
that minimize a quadratic functional ¢ : L2([0,¢],R*) — R of the form

1

de(u) = 5/0 (w*u — 2" Qx) dt. (1.2)

Here A, B, Q) are constant matrices of the appropriate dimension. The symmetric matrix @ is usually referred to
as the potential. Notice that it makes sense to speak about conjugate time of a LQ problem: it is the time ¢, > 0
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at which extremal trajectories lose local optimality, as in (sub)-Riemannian geometry. Moreover, t. does not
depend on the data xg, z1, but it is an intrinsic feature of the problem. These kind of structures are well-known
in the field of optimal control theory, but to our best knowledge this is the first time they are employed as model
spaces for comparison results.

With any ample, equiregular sub-Riemannian geodesic (t) (see Def. 2.5), we associate: its Young diagram D,
a scalar product (-[-) ) : Ty M x T4y M +— R extending the sub-Riemannian one and a quadratic form 2R, :
T,#yM ~ R (the sub-Riemannian directional curvature), all depending on the geodesic y(t). We stress that, for
a Riemannian manifold, any non-trivial geodesic has the same Young diagram, composed by a single column with
n = dim M boxes, the scalar product (-|-), ) coincides with the Riemannian one, and R (v) = Sec(v, ¥(t)).

In this introduction, when we associate with a geodesic () its Young diagram D, we implicitly assume that
~(t) is ample and equiregular. Notice that these assumptions are true for the generic geodesic, as we discuss
more precisely in Section 2.2.

In the spirit of Theorem 1.1, assume that the sub-Riemannian directional curvature is bounded from below
by a quadratic form ). Then, we associate a model LQ problem (i.e. matrices A and B, depending on ) which,
roughly speaking, represents the linearisation of the sub-Riemannian structure along -y itself, with potential Q.
We dub this model space LQ(D; @), where D is the Young diagram of «, and @ represents the bound on the
sub-Riemannian directional curvature. The first of our results can be stated as follows (see Thm. 4.7).

Theorem 1.3 (sub-Riemannian comparison). Let v(t) be a sub-Riemannian geodesic, with Young diagram D,
such that R,y > Q4 for allt > 0. Then the first conjugate point along y(t) occurs at a time t not greater than
the first conjugate time of the model LQ(D; Q). Similarly, if Ry < Q— for all t >0, the first conjugate point
along v(t) occurs at a time t not smaller than the first conjugate time of LQ(D;Q_).

In the Riemannian case, any non-trivial geodesic v has the same (trivial) Young diagram, and this leads to a
simple LQ model with A =0 and B = I the identity matrix. Moreover, (-|-), is the Riemannian scalar product
and M, = Sec(?, ). Then, if Theorem 1.3 holds with Q4 = kI, the first conjugate point along the Riemannian
geodesic, with directional curvature bounded by k occurs at a time ¢ not greater than the first conjugate time
of the LQ model

T =u, or(u) = —/0 (\u|2 — k\x\z) dt. (1.3)

It is well-known that, when k£ > 0, this problem represents a simple n-dimensional harmonic oscillator, whose
extremal trajectories lose optimality at time ¢ = 7/ V'k. Thus we recover Theorem 1.1. On the other hand, in the
sub-Riemannian setting, due to the intrinsic anisotropy of the structure different geodesics have different Young
diagrams, resulting in a rich class of LQ models, with non-trivial drift terms. The directional sub-Riemannian
curvature represents the potential “experienced” in a neighbourhood of the geodesic.

We stress that the generic LQ(D; @) model may have infinite conjugate time. However, there exist necessary
and sufficient conditions for its finiteness, that are the sub-Riemannian counterpart of the “Riemannian” con-
dition k£ > 0 of Theorem 1.1. Thus Theorem 1.3 can be employed to prove both existence or non-existence of
conjugate points along a given geodesic.

As Theorem 1.1 can be improved by considering a bound on the Ricci curvature in the direction of the
geodesic, instead of the whole sectional curvature, also Theorem 1.3 can be improved in the same spirit. In the
sub-Riemannian case, however, the process of “taking the trace” is more delicate. Due to the anisotropy of the
structure, it only makes sense to take partial traces, leading to a number of Ricci curvatures (each one obtained
as a partial trace on an invariant subspace of T’,4)M, determined by the Young diagram D). In particular, for
each level « of the Young diagram (namely the collection of all the rows with the same length equal to, say, ¢)
we have ¢ Ricci curvatures %icjzt), for i = 1,...,¢. The size of a level is the number r of boxes in each of its
columns ayq, ..., qy.
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size r level o of D

| | | | | |
a1 Q2 3 ... Oy

The partial tracing process leads to our main result (see Thm. 5.2).

Theorem 1.4 (sub-Riemannian average comparison). Let y(t) be a sub-Riemannian geodesic with Young dia-
gram D. Consider a fized level a of D, with length ¢ and size r. Then, if

1
SRSy ki, V=1l VE20, (1.4)

the first conjugate time t.(y) along the geodesic satisfies t.(y) < te(ki,..., ke).

In Theorem 1.4, t.(k1,...,ke) is the first conjugate time of the LQ model associated with a Young diagram
with a single row, of length ¢, and a diagonal potential @ = diag{k1,...,k¢}.

The hypotheses in Theorem 1.4 are no longer bounds on a quadratic form as in Theorem 1.3, but a finite
number of scalar bounds. Observe that we have one comparison theorem for each level of the Young diagram
of the given geodesic. In the Riemannian case, as we discussed earlier, D has only one level, of length ¢ = 1,
of size r = dim M. In this case there is single Ricci curvature, namely %ic:(lt) = Ricv(ﬁ(t)) and, if k&1 > 0 in
Theorem 1.4, t (k1) = m/\/k1 < +00. We stress that, in order to have t.(ki,...,k/) < +oo, the Riemannian
condition Ric" (%) > k1 > 0 must be replaced by more complicated inequalities on the bounds k1, ..., k, on the
sub-Riemannian Ricci curvatures. In particular, we allow also for some negative values of such constants.

As an application of Theorem 1.4, we prove a sub-Riemannian version of the classical Bonnet—Myers theorem
(see Thm. 6.1).

Theorem 1.5 (sub-Riemannian Bonnet—Myers). Let M be a connected, complete sub-Riemannian manifold,
such that the generic geodesic has the same Young diagram D. Assume that there exists a level « of length £

and size v and constants ki, ..., ke such that, for any length parametrized geodesic (t)
1. ., .
;9%1c3<t) >k, Vi=1,...,¢, vt > 0. (1.5)
Then, if the polynomial
-1
Piy oo (@) 1= 22 = (=) Tk gz® (1.6)
i=0

has at least one simple purely imaginary root, the manifold is compact, has diameter not greater than
te(k1,...,ke) < 400. Moreover, its fundamental group is finite.

In the Riemannian setting £ = 1, 7 = dim M and the condition on the roots of P, (x) = 2% + k; is equivalent
to k1 > 0. Then we recover the classical Bonnet—Myers theorem (see Thm. 1.2).

Finally we apply our techniques to obtain information about the conjugate time of geodesics on 3D unimodular
Lie groups. Left-invariant structures on 3D Lie groups are the basic examples of sub-Riemannian manifolds and
the study of such structures is the starting point to understand the general properties of sub-Riemannian
geometry.

A complete classification of such structures, up to local sub-Riemannian isometries, is given in ([4], Thm. 1),
in terms of the two basic geometric invariants x > 0 and &, that are constant for left-invariant structures.
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In particular, for each choice of the pair (x, k), there exists a unique unimodular group in this classification.
Even if left-invariant structures possess the symmetries inherited by the group structure, the sub-Riemannian
geodesics and their conjugate loci have been studied only in some particular cases where explicit computations
are possible.

The conjugate locus of left-invariant structures has been completely determined for the cases corresponding
to x = 0, that are the Heisenberg group [20] and the semisimple Lie groups SU(2), SL(2) where the metric is
defined by the Killing form [19]. On the other hand, when x > 0, only few cases have been considered up to
now. In particular, to our best knowledge, only the sub-Riemannian structure on the group of motions of the
Euclidean (resp. pseudo-Euclidean) plane SE(2) (resp. SH(2)), where x = x > 0 (resp. x = —& > 0), has been
considered [12,24, 30].

As an application of our results, we give an explicit sufficient condition for a geodesic v on a unimodular Lie
group to have a finite conjugate time, together with an estimate of it. The condition is expressed in terms of a
lower bound on a constant of the motion E(v) associated with the given geodesic (see Thm. 7.4).

Theorem 1.6 (Conjugate points for 3D structures). Let M be a 3D unimodular Lie group endowed with a
contact left-invariant sub-Riemannian structure with invariants x > 0 and k € R. Then there exists E2 = E(x, k)
such that every length parametrized geodesic v with E(y) > E has a finite conjugate time.

The cases corresponding to x = 0 are H, SU(2) and SL(2), where k = 0,1, —1, respectively. For these
structures we recover the exact estimates for the first conjugate time of a length parametrized geodesic (see
Sect. 7.2.1).

1.1. Related literature

The curvature employed in this paper has been introduced for the first time by Agrachev and Gamkrelidze
in [7], Agrachev and Zelenko in [11] and successively extended by Zelenko and Li in [33], where also the Young
diagram is introduced for the first time in relation with the extremals of a variational problem. This paper is
not the first one to investigate comparison-type results on sub-Riemannian manifolds, but has been inspired by
many recent works in this direction that we briefly review.

In [8] Agrachev and Lee investigate a generalisation of the measure contraction property (MCP) to 3D
sub-Riemannian manifolds. The generalised MCP of Agrachev and Lee is expressed in terms of solutions of a
particular 2D matrix Riccati equation for sub-Riemannian extremals, and this is one of the technical points
that mostly inspired the present paper.

In [22] Lee, Li and Zelenko pursue further progresses for sub-Riemannian Sasakian contact structures, which
posses transversal symmetries. In this case, it is possible to exploit the Riemannian structure induced on the
quotient space to write the curvature operator, and the authors recover sufficient condition for the contact
manifold to satisfy the generalised MCP defined in [8]. Moreover, the authors perform the first step in the
decoupling of the matrix Riccati equation for different levels of the Young diagram (see the splitting part of the
proof of Theorem 5.2 for more details).

The MCP for higher dimensional sub-Riemannian structures has also been investigated in [29] for Carnot
groups.

We also mention that, in [23], Li and Zelenko prove comparison results for the number of conjugate points of
curves in a Lagrange Grassmanian associated with sub-Riemannian structures with symmetries. In particular,
([23], Cor. 4) is equivalent to Theorem 1.3, but obtained with differential topology techniques and with a different
language. However, to our best knowledge, it is not clear how to obtain an averaged version of such comparison
results with these techniques, and this is yet another motivation that led to Theorem 1.4.

In [17], Baudoin and Garofalo prove, with heat-semigroup techniques, a sub-Riemannian version of the
Bonnet—Myers theorem for sub-Riemannian manifolds with transverse symmetries that satisfy an appropri-
ate generalisation of the Curvature Dimension (CD) inequalities introduced in the same paper. In [18], Baudoin
and Wang generalise the previous results to contact sub-Riemannian manifolds, removing the symmetries as-
sumption. See also [15,16] for other comparison results following from the generalised CD condition.
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Even though in this paper we discuss only sub-Riemannian structures, these techniques can be applied to
the extremals of any affine optimal control problem, a general framework including (sub)-Riemannian, (sub)-
Finsler manifolds, as discussed in [6]. For example, in [7], the authors prove a comparison theorem for conjugate
points along extremals associated with regular Hamiltonian systems, such as those corresponding to Riemannian
and Finsler geodesics. Finally, concerning comparison theorems for Finsler structures one can see, for exam-

ple, [26,27,32].

1.2. Structure of the paper

The plan of the paper is as follows. In Section 2 we provide the basic definitions of sub-Riemannian geometry,
and in particular the growth vector and the Young diagram of a sub-Riemannian geodesic. In Section 3 we
revisit the theory of Jacobi fields. In Section 4 we introduce the main technical tool, that is the generalised
matrix Riccati equation, and the appropriate comparison models. Then, in Section 5 we provide the “average”
version of our comparison theorems, transitioning from sectional-curvature type results to Ricci-curvature type
ones. In Section 6, as an application, we prove a sub-Riemannian Bonnet—Myers theorem. Finally, in Section 7,
we apply our theorems to obtain some new results on conjugate points for 3D left-invariant sub-Riemannian
structures.

2. PRELIMINARIES

Let us recall some basic facts in sub-Riemannian geometry. We refer to [5] for further details.

Let M be a smooth, connected manifold of dimension n > 3. A sub-Riemannian structure on M is a pair
(Z,(-|")) where Z is a smooth vector distribution of constant rank k& < n satisfying the Hormander condition
(i.e. LiegZ = T, M, VYo € M) and (|-) is a smooth Riemannian metric on Z. A Lipschitz continuous curve
v : [0,T] — M is horizontal (or admissible) if ¥(t) € Z,4) for a.e. t € [0,T]. Given a horizontal curve
~v:10,T] — M, the length of v is

T
)= [ 1ol (21)
where || - || denotes the norm induced by (:|-). The sub-Riemannian distance is the function
d(z,y) = inf{l(y) | v(0) = z,v(T) = y,y horizontal}. (2.2)

The connectedness of M and the Hormander condition guarantee the finiteness and the continuity of d :
M x M — R with respect to the topology of M (Rashevsky—Chow theorem). The space of vector fields on M
(smooth sections of T M) is denoted by Vec(M ). Analogously, the space of horizontal vector fields on M (smooth
sections of Z) is denoted by Vecg(M).

Example 1. A sub-Riemannian manifold of odd dimension is contact if 2 = kerw, where w is a one-form and
dw|g is non degenerate. The Reeb vector field Xo € Vec(M) is the unique vector field such that dw(Xy,-) =0
and w(Xp) = 1.

Example 2. Let M be a Lie group, and L, : M — M be the left translation by x € M. A sub-Riemannian
structure (2, (-|-)) is left-invariant if dyL, : 9y, — 1, and is an isometry w.r.t. (-|-) for all x,y € M. Any Lie
group admits left invariant structures obtained by choosing a scalar product on its Lie algebra and transporting
it on the whole M by left translation.

Locally, the pair (2, (-|-)) can be given by assigning a set of k& smooth vector fields that span 2, orthonormal
for (-|-). In this case, the set {X1,..., Xy} is called a local orthonormal frame for the sub-Riemannian structure.
Finally, we can write the system in “control form”, namely for any horizontal curve ~ : [0,7] — M there is a
control u € L*([0,T], R¥) such that

k
() =D wit)Xilywy,  ae te0,T]. (2.3)
=1
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2.1. Minimizers and geodesics

A sub-Riemannian geodesic is an admissible curve «y : [0,T] — M such that ||¥(¢)|| is constant and for every
sufficiently small interval [t;, 2] C [0, 77, the restriction 7|, ;,) minimizes the length between its endpoints. The
length of a geodesic is invariant by reparametrization of the latter. Geodesics for which ||¥(¢)|| = 1 are called
length parametrized (or of unit speed). A sub-Riemannian manifold is said to be complete if (M, d) is complete
as a metric space.

With any sub-Riemannian structure we associate the Hamiltonian function H € C*°(T* M)

k
1 2 *
HQ\) = 3 Z;@,X» . YAET'M, (2.4)
in terms of any local frame X;,..., Xj, where (}\,-) denotes the action of the covector A on vectors. Let o be

the canonical symplectic form on T*M. With the symbol @ we denote the Hamiltonian vector field on T* M
associated with a function a € C*°(T*M). Indeed d is defined by the formula da = o(-,d). For i = 1,...,k let
hi € C*°(T*M) be the linear-on-fibers functions defined by h;(\) := (A, X;). Notice that

k k
H= %th, ﬁ:Zhiﬁi. (2.5)
=1 i=1

Trajectories minimizing the distance between two points are solutions of first-order necessary conditions
for optimality, which in the case of sub-Riemannian geometry are given by a weak version of the Pontryagin
Maximum Principle ([28], see also [5] for an elementary proof). We denote by 7 : T*M — M the standard
bundle projection.

Theorem 2.1. Let v : [0,T] — M be a sub-Riemannian geodesic associated with a non-zero control u €
L>([0,T],R¥). Then there exists a Lipschitz curve X : [0,T] — T*M, such that m o A =~ and only one of the
following conditions holds for a.e. t € [0,T]:

(1) At) = Hlxy and hi(A(1)) = uq(?),
k

(i) A) = 3 wil)iilay, A) # 0 and hi(A(t)) = 0.
=1

If A:[0,T] — M is a solution of (i) (resp. (ii)) it is called a normal (resp. abnormal) extremal). It is well-known
that if A(¢) is a normal extremal, then its projection v(t) := 7(A(t)) is a smooth geodesic. This does not hold in
general for abnormal extremals. On the other hand, a geodesic can be at the same time normal and abnormal,
namely it admits distinct extremals, satisfying (i) and (ii). In the Riemannian setting there are no abnormal
extremals.

Definition 2.2. A geodesic vy : [0,T] — M is strictly normal if it is not abnormal. It is called strongly normal
if for every ¢ € (0, T], the segment [[ 4 is not abnormal.

Notice that extremals satisfying (i) are simply integral lines of the Hamiltonian field H. Thus, let A(t) =

ot (MAo) denote the integral line of H, with initial condition A(0) = Ag. The sub-Riemannian ezponential map
starting from xg is

Evo 1 TEM — M, E4y(No) = m(e (o). (2.6)

Unit speed normal geodesics correspond to initial covectors Ag € T*M such that H(\) = 1/2.
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2.2. Geodesic flag and Young diagram

In this section we introduce a set of invariants of a sub-Riemannian geodesic, namely the geodesic flag, and a
useful graphical representation of the latter: the Young diagram. The concept of Young diagram in this setting
appeared for the first time in [33], as a fundamental invariant for curves in the Lagrange Grassmanian. The
proof that the original definition in [33] is equivalent to the forthcoming one can be found in ([6], Sect. 6), in
the general setting of affine control systems.

Let v(t) be a normal sub-Riemannian geodesic. By definition §(t) € 2, for all times. Consider a smooth
horizontal extension of the tangent vector, namely an horizontal vector field T € Vecy (M) such that T|, ) =
().

Definition 2.3. The flag of the geodesic v(t) is the sequence of subspaces
F(t) = span{L5(X)|, ) | X € Veeo(M), j <i—1} CTyiyM,  i>1, (2.7)
where L1 denotes the Lie derivative in the direction of T.

By definition, this is a filtration of T, M, i.e. Fi(t) C FiT(t), for all i > 1. Moreover, 7 (t) = Py ).
Definition 2.3 is well posed, namely does not depend on the choice of the horizontal extension T (see [6],
Sect. 3.4).

For each time ¢, the flag of the geodesic contains information about how new directions can be obtained by
taking the Lie derivative in the direction of the geodesic itself. In this sense it carries information about the
germ of the distribution along the given trajectory, and is the microlocal analogue of the flag of the distribution.

Definition 2.4. The growth vector of the geodesic v(t) is the sequence of integer numbers

G (t) := {dim .7} (t), dim .F2(t), .. .}. (2.8)

v
Notice that, by definition, dim ﬁ{} (t) = dim 2,4y = k.

Definition 2.5. Let (¢) be a normal sub-Riemannian geodesic, with growth vector G, (t). We say that the
geodesic is:

— equiregular if dim 9; (t) does not depend on ¢ for all i > 1,

— ample if for all ¢ there exists m > 1 such that dim Z"*(¢) = dim T’y ;) M.

We stress that equiregular (resp. ample) geodesics are the microlocal counterpart of equiregular (resp. bracket-
generating) distributions. Let d; := dim ﬁfy — dim 34771, for i > 1 be the increment of dimension of the flag of
the geodesic at each step (with the convention kg := 0).

Lemma 2.6. For an equireqular, ample geodesic, di > do > ... > dp,.
Proof. By the equiregularity assumption, the Lie derivative L1 defines surjective linear maps
; i—1 i+1 ; .
Lr: T ()7 (t) — ﬁfy* (t)/ 75(t), vt, i>1, (2.9)

where we set .Z0(t) = {0} (see also [6], Sect. 3.4). The quotients .Z!/.Z!~" have constant dimension d; :=
dim 97’ — dim fvi_l. Therefore the sequence di > dy > ... > d,, is non-increasing. O

Notice that any ample geodesic is strongly normal, and for real-analytic sub-Riemannian structures also the
converse is true (see [6], Prop. 3.12). The generic geodesic is ample and equiregular. More precisely, the set of
points z € M such that there a exists non-empty Zariski open set A, C T7 M of initial covectors for which the
associated geodesic is ample and equiregular with the same (maximal) growth vector, is open and dense in M.
For more details, see ([33], Sect. 5 and [6], Sect. 5.2).
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D) LT

(a) (b) Dy (c)

FIGURE 1. Young diagrams for (a) Riemannian, (b) contact, (c) a more general structure.

Young diagram

For an ample, equiregular geodesic, the sequence of dimension stabilises, namely dim f;" = dim ﬁzfr”"’j =n
for j > 0, and we write G, = {dim 9&, ..., dim Z7"}. Thus, we associate with any ample, equiregular geodesic
its Young diagram as follows. Recall that d; = dim 97’ —dim 9};_1 defines a decreasing sequence by Lemma 2.6.
Then we can build a tableau D with m columns of length d;, for i = 1,...,m, as follows:

# boxes = d;

Indeed 1", d; =n = dim M is the total number of boxes in D. Let us discuss some examples.

Example 3. For a Riemannian structure, the flag of any non-trivial geodesic consists in a single space 971 (t) =
T,#yM. Therefore G,(t) = {n} and all the geodesics are ample and equiregular. Roughly speaking, all the

directions have the same (trivial) behaviour w.r.t. the Lie derivative.

Example 4. Consider a contact, sub-Riemannian manifold with dim M = 2n + 1, and a non-trivial geodesic
~ with tangent field T € Vecy(M). Let Xi,..., Xs, be a local frame in a neighbourhood of the geodesic and
Xy the Reeb vector field. Let w be the contact form. We define the invertible bundle map J : 4 — Z by
(X|JY) = dw(X,Y), for X,Y € Vecy(M). Finally, we split 2 = JT @ JT+ along the geodesic y(t). We obtain

Lr(Y)=(JT|Y)Xy mod Vecy (M), VY € Vecy(M). (2.10)

Therefore, the Lie derivative of fields in JT+ does not generate “new directions”. On the other hand, £1(JT) =
Xo up to elements in Vecy (M ). In this sense, the subspaces JT and JT+ are different w.r.t. Lie derivative: the
former generates new directions, the latter does not. In the Young diagram, the subspace JT+ corresponds to
the rectangular sub-diagram D, while the subspace JT @& X corresponds to the rectangular sub-diagram D1
in Figure 1b.

See Figure 1 for some examples of Young diagrams. The number of boxes in the ith row (i.e. d;) is the number
of new independent directions in 7%, ;)M obtained by taking (i — 1)th Lie derivatives in the direction of T.

3. JACOBI FIELDS REVISITED: CONJUGATE POINTS AND RICCATI EQUATION

Let A € T*M be the covector associated with a strongly normal geodesic, projection of the extremal A(t) =
e (\). For any & € T\(T*M) we define the field along the extremal A(t) as

X(t) =g € Ty (T M). (3.1)
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The set of vector fields obtained in this way is a 2n-dimensional vector space, that we call the space of Jacobi
fields along the extremal. In the Riemannian case, the projection 7, is an isomorphisms between the space of
Jacobi fields along the extremal and the classical space of Jacobi fields along the geodesic . Thus, this definition
is equivalent to the standard one in Riemannian geometry, does not need curvature or connection, and works
for any strongly normal sub-Riemannian geodesic.

In Riemannian geometry, the study of one half of such a vector space, namely the subspace of classical
Jacobi fields vanishing at zero, carries information about conjugate points along the given geodesic. By the
aforementioned isomorphism, this corresponds to the subspace of Jacobi fields along the extremal such that
7« X (0) = 0. This motivates the following construction.

For any A € T* M, let V) := kerm.|x C Tx(T*M) be the vertical subspace. We define the family of Lagrangian
subspaces along the extremal .

ﬁ(t) = eiHV,\ - T)\(t) (T*M) (32)

Definition 3.1. A time ¢t > 0 is a conjugate time for v if L(t) N Vyy) # {0}. Equivalently, we say that
~v(t) = w(A(t)) is a conjugate point w.r.t. v(0) along ~(t). The first conjugate time is the smallest conjugate
time, namely t.(v) = inf{t > 0 | £(t) N Vxq) # {0}}.

Since the geodesic is strongly normal, the first conjugate time is separated from zero, namely there exists € > 0
such that £(t) N Vyu) = {0} for all ¢ € (0,¢). Notice that conjugate points correspond to the critical values of
the sub-Riemannian exponential map with base in v(0). In other words, if v(¢) is conjugate with (0) along =,
there exists a one-parameter family of geodesics starting at v(0) and ending at ~(t) at first order. Indeed, let
& € V) such that m, o eiﬁg = 0, then the vector field 7 +— 7, o ezﬁf is a classical Jacobi field along ~ which
vanishes at the endpoints, and this is precisely the vector field of the aforementioned variation.

In Riemannian geometry geodesics stop to be minimizing after the first conjugate time. This remains true
for strongly normal sub-Riemannian geodesics (see, for instance, [5]).

3.1. Riemannian interlude

In this section, we recall the concept of parallely transported frame along a geodesic in Riemannian geometry,
and we give an equivalent characterisation in terms of a Darboux moving frame along the corresponding extremal
lift. Let (M, (-|-)) be a Riemannian manifold, endowed with the Levi—Civita connection V : Vec(M) — Vec(M).
In terms of a local orthonormal frame

n
1 , ,
Vi, Xi= Y ThXe,  Il=5 (d+di+dy). (3.3)
k=1

where I Z’; € C°(M) are the Christoffel symbols written in terms of the orthonormal frame. Notice that
rk=-rj.

Let ~(t) be a geodesic and A(t) be the associated (normal) extremal, such that A(t) = ﬁ\,\(t) and y(t) = moA(t).
Let {X1,...,X,} a parallely transported frame along the geodesic ¥(t), i.e. V4X; = 0. Let h; : T*M — R
be the linear-on-fibers functions associated with X, defined by h;(\) := (A, X;). We define the (vertical) fields
On, € Vec(T*M) such that Oy, (7*g) = 0, and Oy, (h;) = d;; for any g € C*°(M) and i,5 = 1,...,n. We define a
moving frame along the extremal A(t) as follows

Ei:=0,, F:=—[H, E], (3.4)

where the frame is understood to be evaluated at A(t). Notice that we can recover the parallely transported
frame by projection, namely 7. F;|x) = Xi| () for all i. In the following, for any vector field Z along an extremal
A(t) we employ the shorthand

. d - .
Zzw) = = e HZ|\t+e) = [H, Z)|xw) (3.5)

=
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to denote the vector field along A(t) obtained by taking the Lie derivative in the direction of H of any smooth
extension of Z. Notice that this is well defined, namely its value at A(¢) does not depend on the choice of the
extension. We state the properties of the moving frame in the following proposition.

Proposition 3.2. The smooth moving frame {E;, F;}T_ has the following properties:

(i) span{Eixs)} = Va)-
(ii) It is a Darbouz basis, namely

O'(Ei,Ej):O'(FZ‘,F]‘):O'(EZ‘,F]‘)_(SU:0, i,j:l,...,n. (36)

(iii) The frame satisfies structural equations

for some smooth family of n x n symmetric matrices R(t).

Properties (1)—(iiil) uniquely define the moving frame up to orthogonal transformations. More precisely if
{E;, Fj}1, is another smooth moving frame along \(t) satisfying (1)—(iil), with some matriz R(t) then there
exist a constant, orthogonal matriz O such that

Bl = ZOijEjb\(t)v Filaey = ZOiij|>\(t)a R(t) = OR(t)O". (3.8)

Jj=1 Jj=1

A few remarks are in order. Property (ii) implies that span{FEy, ..., E,}, span{Fi,..., F,}, evaluated at A(t),
are Lagrangian subspaces of T (1" M). Equation (3.8) reflects the fact that a parallely transported frame is
defined up to constant orthogonal transformations. In particular, one could use properties (i)—(iii) to define the
parallel transport along y(t) by Xi|, () := 7« Fi|x). Finally, the symmetric matrix R(t) induces a well defined
quadratic form R, ) : Ty(yM — R

n

n
Ry (v) = Z Rij(t)vivy, v= ZUiXi|'y(t) € TyM. (3.9)

ij=1 i=1

Indeed Proposition 3.2 implies that the definition of R, ;) does not depend on the choice of the parallely
transported frame.

Lemma 3.3. Let RV : Vec(M) x Vec(M) x Vec(M) — Vec(M) the Riemannian curvature tensor w.r.t. the
Levi— Civita connection. Then
R, (v) = (RY (v,%)3|v), v € T,M, (3.10)

where we suppressed the explicit dependence on time.

In other words, for any unit vector v € T, M, orthogonal to 4 P, (v) = Sec(v,*) is the sectional curvature
of the plane generated by v and 4, i.e. the directional curvature in the direction of the geodesic. The proof of
Proposition 3.2 and Lemma 3.3 can be found in Appendix A.1.

3.2. Canonical frame

The concept of Levi—Civita connection and covariant derivative is not available for general sub-Riemannian
structures, and it is not clear how to parallely transport a frame along a sub-Riemannian geodesic. Nevertheless,
n [33], the authors introduce a parallely transported frame along the corresponding extremal A(t) which, in
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level 1 _ level 1

(a) level 1 (b) (c) level 2
level 2

level 3

FIGURE 2. Levels (shaded regions) and superboxes (delimited by bold lines) for the Young
diagram of (a) Riemannian, (b) contact, (¢) a more general structure. The Young diagram
for any Riemannian geodesic has a single level and a single superbox. The Young diagram
of any contact sub-Riemannian geodesic has levels two levels containing 2 and 1 superboxes,
respectively. The Young diagram (c) has three levels with 4, 2, 1 superboxes, respectively.

the spirit of Proposition 3.2, generalises the concept of parallel transport also to (sufficiently regular) sub-
Riemannian extremals.

Consider an ample, equiregular geodesic, with Young diagram D, with k rows, of length ny,...,ng. Indeed
ni+...+ng = n. The moving frame we are going to introduce is indexed by the boxes of the Young diagram, so
we fix some terminology first. Each box is labelled “ai”, where a = 1,...,k is the row index, and i = 1,...,n,
is the progressive box number, starting from the left, in the specified row. Briefly, the notation ai € D denotes
the generic box of the diagram. We employ letters from the beginning of the alphabet a,b,c, ... for rows, and
letters from the middle of the alphabet i, j, h, ... for the position of the box in the row.

We collect the rows with the same length in D, and we call them levels of the Young diagram. In particular,
a level is the union of r rows D1,..., D,, and r is called the size of the level. The set of all the boxes ai € D
that belong to the same column and the same level of D is called superbox. We use greek letters o, 3,... to
denote superboxes. Notice that that two boxes ai, bj are in the same superbox if and only if ai and bj are in
the same column of D and in possibly distinct rows but with same length, i.e. if and only if i = 7 and n, = ny.
See Figure 2 for examples of levels and superboxes for Riemannian, contact and more general structures.

Theorem 3.4 (See [33]). There exists a smooth moving frame {Eq;, Fuitaicp along the extremal A(t) such that

(i) span{Euilxct)} = Vap)-
(ii) 1t is a Darbouz basis, namely

J(Em‘,Ebj) = U(Fai,Fbj) = U(Eai,Fbj) — 5ab5ij = 0, ai,bj e D. (311)

(iii) The frame satisfies structural equations

Eoi = Eqi_1y a=1,....k i=2,...,ng,

Eg=— a=1,...,k,

! “ _ (3.12)
Fai :ijED Rai,bj(t)Ebj _Fa(i+1) a = 1,...,]{3, 1= 1,...,na—1,

Fana = Zb]ED ijaana (t)Eb.] a = 17 R} k?

for some smooth family of n x n symmetric matrices R(t), with components Ra;pj(t) = Rpjai(t), indexed
by the bozes of the Young diagram D. The matriz R(t) is normal in the sense of [33].

Properties (1)—(iii) uniquely define the frame up to orthogonal transformation that preserve the Young diagram.
More precisely, if {Eai,ﬁai}aiep is another smooth moving frame along A(t) satisfying (ii)—(iii), with some
normal matrix E(t), then for any superbox « of size r there exists an orthogonal (constant) r X r matriz O
such that B _

Eai =Y O%pBy,  Fa=» 0%, Fy;,  dca (3.13)

bjea bjea
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Theorem 3.4 implies that the following objects are well defined:

e The scalar product (-|-), (), depending on 7(t), such that the fields Xgil () := 7 Failr) along y(t) are an
orthonormal frame.
o A splitting of T, ;) M, orthogonal w.r.t. {-|-)~ )

M = @Sﬁ;‘(t), SSy = span{Xail () | ai € a}, (3.14)

where the sum is over the superboxes « of D. Notice that the dimension of S;’( n is equal to the size 7 of the
level in which the superbox « is contained.

e The sub-Riemannian directional curvature, defined as the quadratic form R, : T ;)M — R whose repre-
sentative matrix, in terms of an orthonormal frame {Xg;}aicp i Raip; (1)

e For each superbox «, the sub-Riemannian Ricci curvatures

iRicf;(t) =1tr (9‘{"/(75)|Sa ) = Z %"/(t) (Xai), (3.15)

t
7o at€a

which is precisely the partial trace of R, (;), identified through the scalar product with an operator on T’ ;) M,
on the subspace S;’(t) CT,HM.

In this sense, each superbox « in the Young diagram corresponds to a well defined subspace Ss‘( £ of Ty M.
Notice that, for Riemannian structures, the Young diagram is trivial with n rows of length 1, there is a single
superbox, Theorem 3.4 reduces to Proposition 3.2, the scalar product (-|-), ) reduces to the Riemannian product
computed along the geodesic (t), the orthogonal splitting is trivial, the directional curvature R ;) = Sec(, -) is
the sectional curvature of the planes containing §(¢) and there is only one Ricci curvature Ricy ) = Ric¥ (%(t)),
where Ric¥ : Vec(M) — R is the classical Ricci curvature.

A compact form for the structural equations

We rewrite system (3.12) in a compact form. In the sequel it will be convenient to split a frame { Ey;, Fy; }aicD
in subframes, relative to the rows of the Young diagram. For a = 1,...,k, the symbol E, denotes the n,-
dimensional row vector

Ea = (EalaEan"'anna)a (316)

with analogous notation for F,. Similarly, £ denotes the n-dimensional row vector

E = (FE1,...,Ey), (3.17)
and similarly for F'. Let I1 = I1(D), I'» = I'3(D) be n x n matrices, depending on the Young diagram D, defined
as follows: for a,b=1,... k,i=1,...,n4, 5 =1,...,np, we set

(I1)aibj = Gabli,j—1, (3.18)
(12)ai,bj = Gabdi1d;1- (3.19)

It is convenient to see Iy and I% as block diagonal matrices, the ath block on the diagonal being a n, X n,
matrix with components d; ;1 and 6;19;1, respectively (see also Eq. (5.4)). Notice that I is nilpotent and I
is idempotent. Then, we rewrite the system (3.12) as follows

(BEF)=(EF) (_1}2 1_*5?) . (3.20)

By exploiting the structural equations, we write a linear differential equation in R?” that rules the evolution of
the Jacobi fields along the extremal.
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3.3. Linearized Hamiltonian

Let £ € T\(T*M) and X (t) := eiﬁf be the associated Jacobi field along the extremal. In terms of any moving
frame {Eu;, Fuitaicp along A(t), it has components (p(t), z(t)) € R?", namely

X(t) =" Pai(t) Eail e + Tai(t) Failrg)- (3.21)
ai€D
If we choose the canonical frame, using the structural equations, we obtain that the coordinates of the Jacobi
field satisfy the following system of linear ODEs:

@) - (_Fl;l _I]E{{Et)> (i) ' (3.22)

In this sense, the canonical frame is a tool to write the linearisation of the Hamiltonian flow along the geodesic
in a canonical form. The r.h.s. of equation (3.22) is the “linearised Hamiltonian vector field”, written in its
normal form (see also Eq. (4.7)). The linearised Hamiltonian field is, in general, non-autonomous. Notice also
that the canonical form of the linearisation depends on the Young diagram D (through the matrices Iy and 1)
and the curvature matrix R(t).

In the Riemannian case, for any geodesic, I1 = 0, I'; = I and we recover the classical Jacobi equation, written
in terms of an orthonormal frame along the geodesic

i+ R(t)x =0. (3.23)
3.4. Riccati equation: blow-up time and conjugate time
Now we study, with a single matrix equation, the space of Jacobi fields along the extremal associated with an

ample, equiregular geodesic. We write the generic element of £(t) in terms of the frame along the extremal. Let

Ex@), Fi@) be row vectors, whose entries are the elements of the frame. The action of eiﬁ is meant entry-wise.
Then B
ﬁ(t) > GZHEA(O) = E)\(t)M(t) + F)\(t)N(t), (324)

for some smooth families M (t), N(t) of n x n matrices. Notice that
M(0) =1, N(0) =0, det N(t) # 0 for ¢t € (0,¢). (3.25)

The first ¢ > 0 such that det N(¢) = 0 is indeed the first conjugate time. By using once again the structural
equations, we obtain the following system of linear ODEs:

d (M\ (—-In—R(t)\ (M

4 (1) (R (). -
The solution of the Cauchy problem with the initial datum M (0) = I, N(0) = 0 is defined on the whole interval
on which R(t) is defined. The columns of the 2n x n matrix (4!) are the components of Jacobi fields along the
extremal w.r.t. the given frame, and they generate the n-dimensional subspace of Jacobi fields X (¢) along the

extremal A(¢) such that 7, X (0) = 0.
Since, for small ¢ > 0, £(t) N £(0) = {0}, we have that

L(t) = span{F\) + Ex)V (1)}, t>0, (3.27)

where V (t) :== M(t)N(t)~! is well defined and smooth for ¢ > 0 until the first conjugate time. Since L(t) is a
Lagrangian subspace and the canonical frame is Darboux, V() is a symmetric matrix. Moreover it satisfies the
following Riccati equation:

V=-DIW-VI}—-R(t) - VI,V (3.28)

We characterize V (¢) as the solution of a Cauchy problem with limit initial condition.
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Lemma 3.5. The matriz V (t) is the unique solution of the Cauchy problem

V=-NW-VI}—-R(t) - VIV, lim V-1 =0, (3.29)

t—0+
in the sense that V (t) is the unique solution such that V (t) is invertible for small t > 0 and lim,_o+ V(t)~* = 0.

Proof. As we already observed, V (t) satisfies equation (3.28). Moreover V (¢) is invertible for ¢ > 0 small enough,
V(t)~t = N(t)M(t)~! and lim,_,o+ V! = 0. The uniqueness follows from the well-posedness of the limit Cauchy
problem. See Lemma A.4 in Appendix A.1. O

It is well-known that the solutions of Riccati equations are not, in general, defined for all ¢, but they may
blow up at finite time. The next proposition relates the occurrence of such blow-up time with the first conjugate
point along the geodesic.

Proposition 3.6. Let V(t) the unique solution of (3.29), defined on its mazimal interval I C (0,400). Let
te :=inf{t > 0] L(t) N Vxw) # {0}} be the first conjugate point along the geodesic. Then I = (0,t.).

Proof. First, we prove that I D (0,t.). For any ¢t € (0,%.), £(t) is transversal to V). Then the matrix N(t) is
non-degenerate for all ¢t € (0,t.). Then V (¢) := M (¢)N(¢)~! is the solution of (3.29), and I 2 (0,%,.).

On the other hand, let V(¢) be the maximal solution of (3.29), and let ¢ € I. Then the family of symplectic
subspaces E(t) := span{ F)\)+Ex)V (1)} is a family transversal to the vertical bundle, namely Z(t)ﬁVA(t) = {0}
for all ¢ € I. It is possible to show, following the argument of ([21], Chap. 8) that the evolution of £(t) is ruled
by the Hamiltonian flow, namely £(t + s) = eiﬁZ(t). Then, since L(g) = L(e), we have that £(t) = £(t) and
1C(0,t,). 0

Proposition 3.6 states that the problem of finding the first conjugate time is equivalent to the study of the
blow-up time of the Cauchy problem (3.29) for the Riccati equation.

4. MICROLOCAL COMPARISON THEOREM

In Section 3, we reduced the problem of finding the conjugate points along an ample, equiregular sub-
Riemannian geodesic to the study of the blow-up time of the solution of the Cauchy problem

V4 DWW A4 VY +R(t)+ VIV =0, lim V= =0. (4.1)

t—0
It is well-known that the same equation controls the conjugate times of a LQ optimal control problems, defined
by appropriate matrices A, B, Q, where A = I'}', BB* = I, and the potential @ replaces R(t). In this sense,
for what concerns the study of conjugate points, L(Q) problems represent the natural constant curvature models.

4.1. LQ optimal control problems

Linear quadratic optimal control problems (LQ in the following) are a classical topic in control theory. They
consist in a linear control system with a cost given by a quadratic Lagrangian. We briefly recall the general
features of a LQ problem, and we refer to ([10], Chap. 16) and ([21], Chap. 7) for further details. We are interested
in admissible trajectories, namely curves z : [0,t] — R™ for which there exists a control u € L2([0,¢], R¥) such
that

& = Az + Bu, x(0) = xo, x(t) = x1, To,x1,t fixed, (4.2)

that minimize a quadratic functional ¢, : L2([0,¢],R*) — R of the form

¢r(u) = 5/0 (u*u — 2" Qx) dt. (4.3)
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Here A, B, Q are constant matrices of the appropriate dimension. The vector Ax represents the drift, while the
columns of B are the controllable directions. The meaning of the potential term @ will be clear later, when we
will introduce the Hamiltonian of the LQ problem.

We only deal with controllable systems, i.e. we assume that there exists m > 0 such that

rank(B, AB,..., A" 'B) = n. (4.4)
This hypothesis implies that, for any choice of ¢, zg, z1, the set of controls u such that the associated trajectory
Zy : [0,t] — R™ connects xp with 21 in time ¢ is not empty.

It is well-known that the optimal trajectories of the LQ system are projections (p,x) — x of the solutions of
the Hamiltonian system

p=—0.H(p,x), i=08H(px), (px)eTR"=R>", (4.5)
where the Hamiltonian function H : R?" — R is defined by
Lo« « (BB A\ (p
H(p,z) = 5 (p" «7) < e Q> (x> (4.6)

We denote by P; : R?" — R2?" the flow of the Hamiltonian system, which is defined for all ¢ € R. We employ
canonical coordinates (p,z) on T*R"™ = R?*" such that the symplectic form is written o = Z?:l dp; N\ dx;. The
flow lines of P, are the integral lines of the Hamiltonian vector field H € Vec(R?"), defined by dH(-) = o( -, H).

More explicitly
T A" =Q\ (p
Hepo) = (BB* A ) (x) : (4.7)

We stress that not all the integral lines of the Hamiltonian flow lead to minimizing solutions of the LQ
problem, since they only satisfy first order conditions for optimality. Sufficiently short segments, however, are
optimal, but they lose optimality at some time ¢ > 0, called the first conjugate time.

Definition 4.1. We say that ¢ is a conjugate time if there exists a solution of the Hamiltonian equations such
that (0) = z(t) = 0.
The first conjugate time determines existence and uniqueness of minimizing solutions of the L(Q problem, as
specified by the following proposition (see [10], Sect. 16.4).
Proposition 4.2. Let t. be the first conjugate time of the LQ problem (4.2)—(4.3)
o Fort <t., for any xg,x1 there exists a unique minimizer connecting o with x1 in time t.

e Fort >t., for any xo,x1 there exists no minimizer connecting xo with x1 in time t.

The first conjugate time can be also characterised in terms of blow-up time of a matrix Riccati equation.
Consider the vector subspace of solutions of Hamilton equations such that x(0) = 0. A basis of such a space is
given by the solutions (p;(t), z;(t)) with initial condition p;(0) := e;, x;(0) = 0, where e;, for i = 1,...,n is the
standard basis of R™. Consider the matrices M, N, whose columns are the vectors p;(t) and z;(t), respectively.

They solve the following equation:
d (M (A" -Q\ (M
it () = (55 ) (%) 4

where M(0) =T and N(0) = 0. Under the controllability condition, N (¢) is non-singular for ¢ > 0 sufficiently
small. By definition, the first conjugate time of the LQ problem is the first ¢ > 0 such that N(¢) is singular.
Thus, consider V/(t) := M (¢t)N(¢)~!. The matrix V(¢) is symmetric and is the unique solution of the following
Cauchy problem with limit initial condition:

V+AV+VA+Q+ VBBV =0, lim V1 =0. (4.9)

t—0+

Thus we have the following characterization of the first conjugate time of the LQ problem.
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Lemma 4.3. The mazimal interval of definition of the unique solution of the Cauchy problem

V+AV+VA+Q+ VBBV =0, lim V-1 =0, (4.10)

t—0+t
is I = (0,t.), where t. is the first conjugate time of the associated L) optimal control problem.

The same characterisation holds also for conjugate points along sub-Riemannian geodesics (see Prop. 3.6), and
in this sense L.Q problems provide models for computing conjugate times along sub-Riemannian geodesics.

4.2. Constant curvature models

Let D be a Young diagram associated with some ample, equiregular geodesic, and let It = I'1 (D), Iy = I»(D)
the matrices defined in Section 2. Let @ be a symmetric n X n matrix.

Definition 4.4. We denote by LQ(D; Q) the constant curvature model, associated with a Young diagram D
and constant curvature equal to @, defined by the L(Q problem with Hamiltonian

1
H(p,xz) = E(p*BB*p—I—Qp*AJ;—&—x*Qx), A=1TIy, BB"=1I5. (4.11)

We denote by t.(D; Q) < 400 the first conjugate time of LQ(D; Q).

Remark 4.5. Indeed there are many matrices B such that BB* = I3, namely LQ problems with the same
Hamiltonian, but their first conjugate time is the same. In particular, without loss of generality, one may choose
B =BB* =15.

In general, it is not trivial to deduce whether ¢.(D; Q) < +oc or not, and this will be crucial in our comparison
theorems. Nevertheless we have the following result in terms of the representative matrix of the Hamiltonian
vector field H given by equation (4.7) (see [9]).

Theorem 4.6. The following dichotomy holds true for a controllable LQ optimal control system:

° Ifﬁ has at least one odd-dimensional Jordan block corresponding to a pure imaginary eigenvalue, the number
of conjugate times in [0,T] grows to infinity for T — +oo.

o If H has no odd-dimensional Jordan blocks corresponding to a pure imaginary eigenvalue, there are no
conjugate times.

Thus, it is sufficient to put the Hamiltonian vector field H of LQ(D; @), given by

7 -In -Q
i=(1579) .
in its Jordan normal form, to obtain necessary and sufficient condition for the finiteness of the first conjugate
time.
Example 5. If D is the Young diagram associated with a Riemannian geodesic, with a single column with
n = dim M boxes (or, equivalently, one single level with 1 superbox), I'1 = 0, I'» = I, and LQ(D; kI) is given by
1
H(p,z) = 5 (Ip* + klz[*) (4.13)

which is the Hamiltonian of an harmonic oscillator (for & > 0), a free particle (for k¥ = 0) or an harmonic
repulsor (for k < 0). Extremal trajectories satisfy & + kz = 0. Moreover

T k>0
to(D; kI) = {f <0 (4.14)
o0 < 0.
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Indeed, for k > 0, all extremal trajectories starting from the origin are periodic, and they return to the origin
at t = W/\/E On the other hand, for £ < 0, all trajectories escape at least linearly from the origin, and we
cannot have conjugate times (small variations of any extremal spread at least linearly for growing time). In this
case, the Hamiltonian vector field H of LQ(D; kI) has characteristic polynomial P(\) = (A2 + k)™. Therefore
Theorem 4.6 correctly gives that the first conjugate time is finite if and only if k£ > 0.

Example 6. For any Young diagram D, consider the model LQ(D;0). Indeed in this case all the eigenvalues
of H vanish. Thus, by Theorem 4.6, one has t.(D; Q) = +oo.

In the following, when considering average comparison theorems, we will consider a particular class of models,
that we discuss in the following example.

Example 7. Let D =0O...0 be a Young diagram with a single row of length ¢, and Q = diag{k1,...,ke}. We
denote these special LQ models simply LQ(k1, ..., k¢).
In the case ¢ = 2, Theorem 4.6 says that t.(ki, k2) < 400 if and only if

k‘l > 07 ]{il < 0,
4.15
{4k2 > k2, o {k2 > 0. (4.15)

In particular, by explicit integration of the Hamiltonian flow, one can compute that, if k; > 0 and ko = 0, the
first conjugate time of LQ(k1,0) is t.(k1,0) = 27/vk1.

4.3. General microlocal comparison theorem

We are now ready to prove the main result on estimates for conjugate times in terms of the constant curvature
models LQ(D; Q).

Theorem 4.7. Let y(t) be an ample, equiregular geodesic, with Young diagram D. Let Ry : ToyiyM — R be
directional curvature in the direction of the geodesic and t.(7y) the first conjugate time along ~v. Then

(i) if Ry = Qy forallt >0, then t.(y) < t(D;Q4),
(i) if Ryy < Q- for allt >0, then to(y) > t.(D;Q-),

where Q+ : R™ — R are some constant quadratic forms and we understand the identification of T\, M ~ R"
through any orthonormal basis for the scalar product (-|-)~ ).

In particular, since t.(D;0) = 400 (see Ex. 6), we have the following corollary.

Corollary 4.8. Let (t) be an ample, equiregular geodesic, with Young diagram D. Let R : TyyyM — R be
directional curvature in the direction of the geodesic. Then, if Ry < 0 for all t > 0, there are no conjugate
points along the geodesic.

In other words, the first conjugate times of LQ(D; Q) gives an estimate for the first conjugate time along
geodesics with directional curvature R, ;) controlled by Q.

Remark 4.9. Notice that there is no curvature along the direction of motion, that is R, )(¥(t)) = 0. As it
is well-known in Riemannian geometry, it is possible to “take out the direction of the motion”, considering
the restriction of R, () to the orthogonal complement of (t), with respect to (-[-), ), effectively reducing the
dimension by one. To simplify the discussion, we do not go into such details since there is no variation with
respect to the classical Riemannian case.

Remark 4.10. These microlocal theorems apply very nicely to geodesics in the Heisenberg group. In this
example we have both geodesics with R, ) = 0 (the straight lines) and geodesics with 3, > 0 (all the
others). The former do not have conjugate times (by Thm. 4.8), while the latter do all have a finite conjugate
time (by Thm. 4.7). For more details see Section 7.
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Proof of Theorem 4.7. By Proposition 3.6, the study of the first conjugate time is reduced to the study of the
blow-up time of the solutions of the Riccati equation.

We precise the meaning of blow-up time of a quadratic form. Let ¢ — V() : R — R a continuous family of
quadratic forms. For any w € R™ let ¢t — w*V (t)w. We say that ¢ € RU {oo} is a blow-up time for V' (¢) if there
exists w € R™ such that

1irr%w*V(t)w — 00. (4.16)
This is equivalent to ask that one of the entries of the representative matrix of V' () grows unbounded for ¢ — ¢. If
¢ is a blow-up time for V' (¢) and, in addition, for any w such that lim w*V ({)w = oo we have Pm_w*V(t)w = 400

t—t —t

(resp. —o0), we write

lm V (t) = 400 (resp — 00). (4.17)
t—t
We compare the solution of the Cauchy problem (3.29) for the matrix V(¢) for our extremal:
- Rt)In\ (1 . 1
V=-—(V) ( rn)lv) [lim V=0, (4.18)
and the analogous solution Vp.q for any normal extremal of the model LQ(D; Q+):
y — Q:I: I I . -1 -
Vboy = — (]I VD;Qi) (Fl* I Voo ) tlir(r)l+ VD;Qi =0. (4.19)

By Lemma A .4 in Appendix A.1, both solutions are well defined and positive definite for ¢ > 0 sufficiently small.
By hypothesis, R(t) > Q4+ (resp. R(t) < Q_). Therefore

— (?ﬂ}' ?;) > — <}}(§) g) resp. - <}§-(,1£) g) > — (?-,1; g) . (4.20)

Moreover, by definition, lim,_, o+ VD__}Qi (t) = lim,_o+ V71(¢t) = 0. Therefore, by Riccati comparison (Theo-
rem A.3 in Appendix 7.2.2), we obtain

V(t) < Vpig, (1), resp. V(t) > Vp.g_ (1), (4.21)
for all ¢ > 0 such that both solutions are defined. We need the following two lemmas.

Lemma 4.11. For any D and Q, the solution Vp.q is monotone non-increasing.

Proof of Lemma 4.11. It is a general fact that any solution of the symmetric Riccati differential equation with
constant coefficients is monotone (see [1], Thm. 4.1.8). In other words, for any solution X (¢) of a Cauchy problem
with a Riccati equation with constant coefficients

X+AX+XA+B+XQX =0, X(to) = Xo, (4.22)

we have that X > 0 (for t > ty, where defined) if and only if X(y) > 0 (true also with reversed and/or
strict inequalities). Thus, in order to complete the proof of the lemma, it only suffices to compute the sign of
Vb.o(e). This is easily done by exploiting the relationship with the inverse matrix Wp.q = VB;IQ. Observe that

Wp.q(0) = I, > 0. Then Wp.(t) is monotone non-decreasing. In particular WD;Q(&?) > 0. This, together with

the fact that Wp.q(g) > 0 for € sufficiently small (see Appendix A.1), implies that Vp.g(e) < 0, and the lemma
is proved. O

Lemma 4.12. If a solution V (t) of the Riccati Cauchy problem (4.18) blows up at time t, then it blows up at
—00, namely
lim V (t) = —oc. (4.23)

t—t
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FIGURE 3. Detail of a single level of D of length ¢ and size r. It consists of the rows Dy, ..., Dy,
each one of length /. The sets of boxes in each column are the superboxes aq, ..., ay.

Proof of Lemma 4.12. If R(t) is constant, the statement is an immediate consequence of Lemma 4.11. Remember
that R(t) is defined for all times. Then, let ¢ be the smallest eigenvalue of R(¢) on the interval [0,?]. Indeed
R(t) > g¢I. Then, by Riccati comparison, V(t) < Vp.q(t). Since the latter is monotone non-increasing by
Lemma 4.11, the statement follows. O

Now we conclude. Case (i). In this case R(t) > Q. By Riccati comparison, V(t) < Vp,q, (t) on the interval
(0, min{t.(7), tc(D; Q+)}). Assume that t.(y) > te(D; Q). Then

li Vit) < li Vn. t) = —o0, 124
t*tc%gQH )= t—»tC%gQ” D,Q+( ) oo ( )

which is a contradiction, then ¢.(y) < t.(D;Q+).
Case (ii). In this case R(t) < @_. By Riccati comparison, V(t) > Vp,o_ on the interval
(0, min{t.(7y),tc(D; Q-)}). Assume that t.(y) < t.(D;Q—). Then

lim Vp.o (t) < lim V(i) = —oo, (4.25)
t—te(y) t—te(7)
and we get a contradiction. Thus t.(v) > t.(D;Q_). O

5. AVERAGE MICROLOCAL COMPARISON THEOREM

In this section we prove the average version of Theorem 4.7. Recall that, with any ample, equiregular geodesic
~(t) we associate its Young diagram D. The latter is partitioned in levels, namely the sets of rows with the same
length. Let aq,...,ay be the superboxes in some given level, of length £. The size r of the level is the number
of rows contained in the level (see Fig. 3). To the superboxes a; we associated the Ricci curvatures i)’iicijzt) for
1 =1,...,¢. Finally, we recall the definition anticipated in Example 7.

Definition 5.1. With the symbol LQ(kq, ..., k¢) we denote the LQ model associated with the Young diagram
D with a single row of length ¢, and with diagonal potential Q = diag(k1, ..., k¢). With the symbol t.(k1,. .., k¢)
we denote the first conjugate time of LQ(k1, ..., k¢).

Theorem 5.2. Let y(t) be an ample, equiregular geodesic, with Young diagram D. Let ay, ..., oy be the super-
bozes in some fized level, of length ¢ and size r. Then, if

1
SR >k, Vi=1loo 0 V20, (5.1)

the first conjugate time t.(y) along the geodesic satisfies to(y) < te(ki,..., ke).
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The hypotheses in Theorem 5.2 are no longer bounds on a quadratic form, but a finite number of scalar bounds.
Observe that we have one comparison theorem for each level of the Young diagram of the given geodesic.

Consider the Young diagram of any geodesic of a Riemannian structure. It consists of a single level of
length ¢ = 1, with one superbox «, of size r = n = dim M and iﬁicf‘/(t) = Ricv("y(t)). This, together with the
computation of ¢.(k) of Example 5, recovers the following well-known result.

Corollary 5.3. Let y(t) be a Riemannian geodesic, such that Ric¥ ((t)) > nk > 0 for all t > 0. Then the first
conjugate time t.(7y) along the geodesic satisfies t.(vy) < 7/Vk.

Corollary 5.3 can be refined by taking out the direction of the motion, effectively reducing the dimension by 1.
A similar reduction can be performed in Theorem 5.2, in the case of a “Riemannian” level of length 1 and size r,
effectively reducing the size of by one. We do not go into details, since such a reduction can be obtained exactly
as in the Riemannian case (see [31], Chap. 14 and also Rem. 4.9).

We recall how the averaging procedure is carried out in Riemannian geometry. In this setting, one considers
the average of the diagonal elements of V' (¢), namely the trace, and employs the Cauchy—Schwarz inequality
to obtain a scalar Riccati equation for trV(¢), where the curvature matrix is replaced by its trace, namely
the Ricci curvature along the geodesic. On the other hand, in the sub-Riemannian setting, non-trivial terms
containing matrices Iy (D) and I5(D) appear in the Riccati equation. These terms, upon tracing, cannot be
controlled in terms of tr V(t) alone. The failure of such a procedure in genuine sub-Riemannian manifolds is
somehow expected: different directions have a different “behaviour”, according to the structure of the Young
diagram, and it makes no sense to average over all of them. The best we can do is to average among the
directions corresponding to the rows of D that have the same length, namely rows in the same level. The proof
of Theorem 5.2 is based on the following two steps.

(i) Splitting: The idea is to split the Cauchy problem
VOV +VIY+R(t)+ VIV =0, lim V= =0, (5.2)

t—0+
in several, lower-dimensional Cauchy problems for particular blocks of V'(¢). In these equations, only some blocks
of R(t) appear. In particular, we obtain one Riccati equation for each row of the Young diagram D, of dimension
equal to the length of the row. The blow-up of a block of V' (¢) imples a blow-up time for V(¢). Therefore, the
presence of finite blow-up time in any one of these lower dimensional blocks implies a conjugate time for the
original problem.

(ii) Tracing: After the splitting step, we sum the Riccati equations corresponding to the rows with the same
length, since all these equations are, in some sense, compatible (they have the same I, I'> matrices). In the
Riemannian case, this procedure leads to a single, scalar Riccati equation. In the sub-Riemannian case, we obtain
one Riccati equation for each level of the Young diagram, of dimension equal to the length ¢ of the level. In this
case the curvature matrix is replaced by a diagonal matrix, whose diagonal elements are the Ricci curvatures
of the superboxes o, ..., ay in the given level. This leads to a finite number of scalar conditions.

Proof of Theorem 5.2. We split the blocks of the Riccati equation corresponding to the rows of the Young
diagram D, with k rows Dq,..., Dy, of length nq,...,nk. Recall that the matrices I'1 (D), I2(D), defined in
equations (3.18) and (3.19), are n x n block diagonal matrices
I;(Dy)
I;(D) = , 1=1,2, (5.3)

the ath block being the n, X n, matrices

nw= (o). mw)= (5, ) 64



460 D. BARILARI AND L. RIZZI

where I,,, is the m x m identity matrix and 0,, is the m X m zero matrix. Consider the maximal solution of the
Cauchy problem )
V+NW+VIT+R(t)+ VIV =0, lim V! =0. (5.5)

t—0+

The blow-up of a block of V(¢) implies a finite blow-up time for the whole matrix, hence a conjugate time.
Thus, consider V(¢) as a block matrix. In particular, in the notation of Section 3, the block ab, denoted V()
for a,b=1,...,k, is a n, X np matrix with components V;4;(t), i = 1,...,nq, j = 1,...,n. Let us focus on
the diagonal blocks
Vi1 (%) *
V(t) = . (5.6)
* Vik (t)

Consider the equation for the ath block on the diagonal, which we call V,,(t), and is a n, X n, matrices with
components Vg q;(t), 4,5 =1,...,n,. We obtain

Vaa +F1Vaa "‘V(J,(J,Ff< +Eaa(t) +VaaF2Vaa :0, (57)

where I; = I;(D,), for i = 1,2 are the matrix in equation (5.4), i.e. the ath diagonal blocks of the matrices
I';(D). Moreover

Raa(t) = Raa(t) + > Vap(t) [2(Dy) Via (2). (5.8)
b#a

The ampleness assumption implies the following limit condition for the block V.

Lemma 5.4. lim (V,,)"! =0.
t—0t
Proof. Without loss of generality, consider the first block V;;. We partition the matrix V and W = V=1 in

blocks as follows
(Vi1 Vi

where the index “0” collects all indices different from 1. By block-wise inversion, Wiy = (V=1)1; = (Vi1 —
V10V061Vf5)_1. By Lemma A.4 in Appendix A.1, for small ¢ > 0, V(¢) > 0, hence Vo > 0 as well. Therefore
Vir — (Wy)~t = V10V0_01Vf5 > 0. Thus Vi1 > (Wi1)~! > 0 and, by positivity, 0 < (V41)~t < Wiy for small
t > 0. By taking the limit for ¢t — 07, since W11 — 0, we obtain the statement. O

We proved that the block V,,(¢) is solution of the Cauchy problem

Vaa + T1Vaa + Vaa ¥ + Raa(t) + VaaIsVaa = 0, lim (Vae) ™! = 0. (5.10)

t—0+

The crucial observation is the following (see [22] for the original argument in the contact case with symmetries).
Since I5(Dp) > 0 and Vi, = Vi for all a,b=1,...,k, we obtain

Raa(®) = Raalt) + 3 Vao () T2(Dy) Vs () = Rua(?). (5.11)
b#a

We now proceed with the second step of the proof, namely tracing over the level. Consider equation (5.10)
for the diagonal blocks of V/(£), with Raq(t) > Raa(t). Now, we average over all the rows in the same level a.
Let ¢ be the length of the level, namely ¢ = n,, for any row Dy, ..., D, in the given level (see Fig. 3). Then
define the ¢ x ¢ symmetric matrix:

1
a T aas 12
Vo= V. (5.12)

aca
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where the sum is taken on the indices a € {a1,...,a,} of the rows D, in the given level a. Once again, the
blow-up of V,,(¢) implies also a blow-up for V(). A computation shows that V,, is the solution of the following
Cauchy problem

Vo 4+ IWVa + Vo I} + Ro(t) + VooV, =0, lim V, =0, (5.13)

t—0+

where I'y = I'5(D,,) for any a € «, and the ¢ x £ matrix R, (t) is defined by

1 ~ 1
Ra(t) = ; Z Raa(t) + ; Z Vaal2Vaa — Vol Ve

aco aco
1 = 1 .1 '
:;;Raa(t) + ; ;(Vaala)(vaalk) - ; <(; VaaF2> <; VaaF2> (514)

The key observation is that the term in square brackets is non-negative, as a consequence of the following
lemma, whose proof is in Appendix B.

Lemma 5.5. Let {X,}"_,, {Yo}._q be two sets of £ x £ matrices. Then

(ix;n) (ixm) < ET:YG*YG
a=1 b=1 a=1

Here ||-|| denotes the operator norm.

> Xp X (5.15)
b=1

Remark 5.6. Lemma 5.5 is a generalisation of the Cauchy—Schwarz inequality, in which the scalar product
in R" is replaced by a non-commutative product ® : Mat(¢)" x Mat(¢)" — Mat(¢), such that, if X = {X,},_4,
Y = {Y,}._,, the product X ©Y := 3" _| XY,. Equation (5.15) becomes

XoY)(XoY) <[y oY|XoX. (5.16)

Then the Lh.s. of equation 5.15 is just the “square of the scalar product”. For £ = 1, we recover the classical
Cauchy—Schwarz inequality.

We apply Lemma 5.5 to X, = I5V,, and Y, = I, for a € a = {aq,...,a,}. We obtain

Z(Vaap2)(vaap2)* - % (Z VaaF2> (Z VaaF2> >0, (5.17)

acx aca aca

which implies, together with equation (5.11)

Ra(t) > % > Rua(t) > % > Raalt). (5.18)

acx aco

Notice that, the ijth component of the sum in the r.h.s. of equation (5.18) is precisely % > aca Raiaj(t), where
i,7 =1,...,£. Thus, for any two fixed indices 7, j we are considering, in coordinates, the trace of the restriction

Ry Ss‘("t) — Sj(jt), written in terms of any orthonormal basis for (77,4 M, (-|-)(+)). The matrix R(t) is normal
(see Thm. 3.4). Thus, according to [33], such a trace is always zero, unless ¢ = j. Thus only the diagonal elements

are non-vanishing and

X ' Ric},, 0
. > Raa(t) = = . . (5.19)

aco " ’ NRi Qo
0 1% ()
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Thus, for any level «, the average over the level V,, satisfies the £ x ¢ matrix Riccati equation

Vo + TV + Vo I'f + Ra(t) + Vo 1oV, = 0, lim Vol =o, (5.20)

t—
and, under our hypotheses, R, (t) > diag{ki,...,ke}. Therefore, we proceed as in the proof of Theorem 4.7,
with diag{ki, ..., ke} in place of @4, and we obtain the statement. O

6. A SUB-RIEMANNIAN BONNET—MYERS THEOREM

As an application of Theorem 5.2, we prove a sub-Riemannian analogue of the Bonnet—Myers theorem (see
Thm. 1.2 for the classical statement).

In order to globalize the previous results, we need to consider that different geodesics, even starting at the
same point, may have different growth vectors. It turns out that the components of the growth vector are
computed as ranks of matrices whose entries are polynomial functions of the covector A(t) associated with
the given geodesic v(t). This is a direct consequence of Definition 2.3 and the fact that the sub-Riemannian
Hamiltonian is fiber-wise polynomial (actually, quadratic). It follows that, for any « € M, the growth vector
G,(0), seen as a function of the initial covector, is constant on an open Zariski subset A, C T M, where it
attains its (member-wise) maximal value, given by the mazimal growth vector

Gy = {k1(x),..., km(2)}, Ei(x) == )\2%)5\4 dim .77 (0). (6.1)
Any sub-Riemannian structure has ample geodesics starting from any given point, thus A, is not-empty for
every x € M (see [6], Sect. 5.2) for a proof. Moreover, all the functions x +— k;(z) are bounded, lower semi-
continuous with integer values. Thus, the set 2 C M of points such that G, is locally constant is open and
dense.

As a consequence, the generic normal geodesic starting at « € {2 (“generic” means with initial covector in
A,) is ample and equiregular, at least when restricted to a sufficient short segment. We call D, the Young
diagram of the generic normal geodesic starting at . The Young diagram D, is “locally constant”, in the sense
that for any x € {2 there exists an open set U C {2 such that for all y € U we have D, = D,.

The structure of {2 may be complicated, and a geodesics starting from = € {2 may cross regions where D,
has different shapes. To avoid such pathological situations, we make the following assumption:

(x) 2= M and the Young diagram D, is constant.

This is equivalent to the existence of a fixed Young diagram D such that, for all z € M, the generic normal
geodesic (i.e. with initial covector in A, C T;*M) is ample, equiregular, with the same Young diagram D. This
assumption is satisfied, for instance, by any slow-growth distribution, a large class of sub-Riemannian structures
including any contact, quasi-contact, fat, Engel, Goursat—Darboux distributions (see [6], Sect. 5.5). Moreover,
this assumption is satisfied by all left-invariant structures on Lie groups and, more generally, sub-Riemannian
homogeneous spaces.

Under the assumption (x), with a generic geodesic (t) we can associate the directional curvature R, :
T, M — R and the corresponding Ricci curvatures iﬁicf'y‘(t), one for each superbox « in D.

Theorem 6.1. Let M be a complete, connected sub-Riemannian manifold satisfying (x). Assume that there
exists a level a of length £ and size r of the Young diagram D and constants ky, ..., kg such that, for any length
parametrized geodesic ~y(t)

1 o ,
;%w;’(t) > ki, Vi=1,...,¢, vt > 0. (6.2)
Then, if the polynomial
-1
Piy (@) 1= 22 = (=) kg2 (6.3)

=0
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has at least one simple purely imaginary root, the manifold is compact, has diameter not greater than
te(ki,...,ke) < +o0o. Moreover, its fundamental group is finite.

Proof. First, we show that diam(M) := sup{d(x,y)|z,y € M} < t.(k1,...,ke). Let g € M, and let X,, C M
be the set of points x such that there exists a unique minimizing geodesic connecting xy with x, strictly normal
and with no conjugate points. We have the following fundamental result (see [3] or also [6], Thm. 5.8).

Theorem 6.2. Let xg € M. The set X, is open, dense and the sub-Riemannian squared distance x +— d*(zg, x)
is smooth on Xy, .

Indeed, the sub-Riemannian exponential map &;, : T, M — M is a smooth diffeomorphism between
Yy = ExH(Xa,) € Ty M and X,,. Now consider all the normal geodesics connecting o with points in
Yay, associated with initial covectors in ¥,,. The generic normal geodesic, with covector in A, C T M is
ample and equiregular, with the same growth vector, and thus the same Young diagram D,, = D. Thus, for an
open dense set X7 = &, (Ag,) N Yy, © M, there exists a unique geodesic connecting zo with 2 € X7 _, and it
has Young diagram D.

Now we apply Theorem 5.2 to all the geodesics connecting z¢ with points x € X7, ,» and we obtain that the
first conjugate time t. along these geodesics satisfies t. < t.(k1,...,k¢). These geodesics lose optimality after
the first conjugate point and, since the geodesics are parametrised by length, we have that, for any xo € M,
sup{d(zo,z)|x € X7 } <tc(k1,..., ke). By density of X/ in M, we obtain that diam(M) < t.(ki,..., k). The
condition on the roots of Py, ., implies that t.(ki,...,k¢) < +oo, by Theorem 4.6.

By completeness of M, closed sub-Riemannian balls are compact, hence M is compact. For the result about
the fundamental group, the argument is the classical one. First, we consider the universal cover M of M. We
define a sub-Riemannian structure on M uniquely by lifting the sub-Riemannian metric on the evenly covered
neighbourhoods. All the local assumptions of our theorem remain true also on M. The completeness remains
true as well. The bounds on Ricci curvature still holds since it is only a local concept and the covering map is
a local isometry. Hence we apply Theorem 5.2 to the covering, and also M is compact. Then any point ¢ € M
has a finite number of preimages in M, and so 71 (M) is finite since 71 (M) is trivial. O

Remark 6.3. In the Riemannian case, P, (z) = 2+ k1. Then we recover the classical Bonnet—Myers theorem
since, by Example 5, t.(k1) = 7/Vk;.

7. APPLICATIONS TO LEFT-INVARIANT STRUCTURES ON 3D UNIMODULAR LIE GROUPS

Consider a contact left-invariant sub-Riemannian structure on a 3D manifold. Any non-trivial geodesic is
ample, equiregular and has the same Young diagram, with two boxes on the first row, and one in the second
row (see Example 4). The subspace associated with the box in the second row corresponds to the direction of
the motion, i.e., the tangent vector to the geodesic. Since the curvature always vanishes in this direction (see
Rem. 4.9), we can restrict to a single-level Young diagram « of length ¢ = 2 and size r = 1. We denote by a1, as
the two boxes of this level. The comparison LQ model is the one discussed in Example 7. Then, Theorem 5.2
rewrites as follows.

Theorem 7.1. Let v(t) be a length parametrized geodesic of a contact left-invariant sub-Riemannian structure
on a 3D manifold. Assume that

i)’iic,o;’("t) > ki, 1=1,2, Vi >0, (7.1)
for some ki, ko such that
ki > 0, ki < 0,
7.2
{4k2 > k2, or {k2 > 0. (7.2)

Then to(y) < te.(k1,ke) < +oo. If the hypotheses are satisfied for every length parametrised geodesic, then the
manifold is compact, with diameter not greater than t.(ki, k). Moreover, its fundamental group is finite.
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In the statement of Theorem 7.1 we allow also for negative Ricci curvatures. Indeed, in general, %ic:ft) is not
sign-definite along the geodesic.

7.1. Invariants of a 3D contact structure

For invariant of a sub-Riemannian structure we mean any scalar function that is preserved by isometries.
In this section we introduce the invariants x, x of 3D contact sub-Riemannian structures, not necessarily left-
invariant. For left-invariant structures, x and k are constant and we write the expression for D‘iicf:(lt) and i)‘iicf:ft)
in terms of these quantities. The presentation follows closely the one contained in [4], where the interested reader
can find more details.

Recall that a three-dimensional sub-Riemannian structure is contact if ¥ = kerw, where dw|g, is non
degenerate, for every x € M. In what follows we normalize the contact structure by requiring that dw|g, agrees
with the volume induced by the inner product on . The Reeb vector field associated with the contact structure
is the unique vector field Xy such that w(Xy) = 1 and dw(Xy,-) = 0. Notice that X, depends only on the
sub-Riemannian structure. For every orthonormal frame X7, X5 on the distribution, we have

(X1, Xo] = ¢t1 X1 + 31 X2,
(X2, Xo] = cbo X1 + 2 X2, (7.3)
[XQ,Xﬂ = 612X1 + C%QXQ + X(),

where cfj € C°°(M). The sub-Riemannian Hamiltonian is

H = (hi+h3), (7.4)

DN | =

where h;(A) = (A, X;(q)) are the linear-on-fibers functions on T*M associated with the vector fields X;, for
1 = 0,1,2. Length parametrized geodesics are projections of solutions of the Hamiltonian system associated
with H on T*M that are contained in the level set H = 1/2.

The Poisson bracket {H, ho} is an invariant of the sub-Riemannian structure and, by definition, it vanishes
everywhere if and only if the flow of the Reeb vector field e is a one-parameter family of sub-Riemannian
isometries. A standard computation gives

{H,ho} = c1h3 + (c§y + cha)hiha + cioh3. (7.5)

For every « € M, the restriction of {H, ho} to T;)M, that we denote by {H, ho}., is a quadratic form on the
dual of the distribution &}, hence it can be interpreted as a symmetric operator on the distribution &, itself. In
particular its determinant and its trace are well defined. Moreover one can show that tr{H, ho}, = ¢}, +c35 = 0,
for every € M. The first invariant y is defined as the positive eigenvalue of this operator, namely

x(x) :=+/—det{H, ho}, > 0. (7.6)

The second invariant x can be defined via the structure constants (7.3) as follows:

C2 _Cl
K(2) = Xa(clp) — Xi(cty) — (c12)? = (cf2)* + % (7.7)

One can prove that the expression (7.7) is invariant by rotation of the orthonormal frame.

Remark 7.2. The quantities x, x were first introduced in [2] as differential invariants appearing in the asymp-
totic expansion of the cut and conjugate locus of the sub-Riemannian exponential map near to the base point.
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7.2. Left-invariant structures

For left-invariant structures, the functions c¥.

. and the invariants x, s, are constant on M can be used to
classify the left-invariant structures on three-dimensional Lie groups. In particular, when xy = 0, the unique
left-invariant structures (up to local isometries) are the Heisenberg group H and the Lie groups SU(2) and
SL(2), with metric given by the Killing form, corresponding to the choice of kx = 0,1, —1, respectively. When

x > 0, for each choice of (x, k) there exists exactly one unimodular Lie group with these values (see [4], Thm. 1).

7.2.1. Case x =0

When x = 0, the flow of the Reeb vector field is a one-parameter family of sub-Riemannian isometries. In
particular from the computations contained in ([8], Thm. 6.2) one gets that the directional curvature R, ) is
diagonal with entries iﬁicf';(lt) and i)‘iicf:ft), where
RicSl,) = hg(t) + r(h1(t) + h3(1)), Ricj, = 0. (7.8)

We stress that A(t) = (ho(t), h1(t), ha(t)) is the solution of the Hamiltonian system associated with H and
A = (h1(0), h2(0), ho(0)) is the initial covector associated with the geodesic ~(¢).
For any length-parametrized geodesic H(A(t)) = 1/2, namely h3(t) + h3(t) = 1. Moreover ho(t) = hg is a
constant of the motion. Thus
R, =hg+r, R =0. (7.9)

Notice that i)%ici’/'(lt) and %ic(jft are constant in ¢t and R, is diagonal, so for all these cases we can apply

Theorem 4.7, computing the exact value of the first conjugate time. In particular, this recovers the following
well-known results obtained in [19, 20].

e H. In this case k = 0. If hy = 0 we have %ic:(lt) = i)%ic:ft) = 0 and the geodesic has no conjugate point. If
ho # 0 then t. = 27/|ho|.

e SU(2). In this case k = 1. We have iﬁicf';(lt) =h3+1, D‘iicf:?t) = 0 and every geodesic has conjugate time
te =2m/\/h3 + 1.

e SL(2). In this case K = —1. We have i)%ici’/'(lt) =hi -1, i)%ic:ft) = 0 and we have two cases. If hy < 1 then

te = +o00. If hg > 1 every geodesic has conjugate time ¢, = 27/1/h2 — 1.

Let us mention that, for SU(2), the first condition of (7.2) holds for any geodesic. Hence, thanks to Theorem 7.1,
we recover its compactness and the exact estimate on its diameter, equal to 2.
7.2.2. Case x >0

In this section we prove our result on 3D unimodular Lie groups with y > 0. Let us recall that under these
assumptions, there exists a special orthonormal frame for the sub-Riemannian structure. In terms of the latter
we provide the explicit expression of a constant of the motion.

Proposition 7.3. Let M be a 3D unimodular Lie group, endowed with a contact left-invariant structure, with
x > 0. Then there exists a left-invariant orthonormal frame X1, Xo on the distribution such that

{H, ho} = 2xhihs. (7.10)
Moreover the Lie algebra defined by the frame Xo, X1, Xo satisfies

[X1, Xo] = (x + k) X2,
[X2, Xo] = (x — k) X1, (7.11)
(X5, X1] = Xo.
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The function E : T*M — R, defined by
h2
E=-2+1h3 12
2X + 29 (7 )

is a constant of the motion, i.e., {H, E} = 0. Finally the curvatures %icﬁ’,’l and %ic(;"’ satisfy:

Ric]? = hg + 3x(h] — h3) + K(hT + h3), (7.13)
RicS? = 6x(hi — h3)hg — 2x(x + K)hT — 12x°hTh3 — 2x(x — K)hj. (7.14)

In equations (7.13) and (7.14) we suppressed the explicit dependence on t.

Proof. From ([4], Prop. 13) it follows that there exists a unique (up to a sign) canonical frame Xy, X7, X2 such
that

(X1, Xo] = cd1 X2,
(X2, Xo] = by X1, (7.15)
[Xg,Xﬂ = C%2X1 —|- C%2X2 —|— Xo.

In particular, if the Lie group is unimodular, then the left and the right Haar measures coincide. This implies
cty = 2y = 0 (cf. proof of [4], Thm. 1). Then, from (7.6) and (7.7), it follows that y = (3, + ¢}»)/2, and
k = (&, — ¢b2)/2, which imply (7.11).

Let us show that, if (7.11) holds, then {H, E'} = 0. Using that {H, ho} = 2xhihe and {H, ho} = {h1, ho}h; =
—hgh1 one gets

1
{H,E} = ;{H, ho}ho + Q{H, hg}hg = 2h1hohg — 2h1hohg = 0. (716)

Finally, equations (7.13) and (7.14) are simply formulae from ([8], Thm. 6.2) specified for left-invariant structures
and rewritten in terms of x, k in the frame introduced above (notice that the constants cfj appearing here are
the opposite of those used in [8]). O

Since E is a constant of the motion, for any length parametrized geodesic v(t) we denote by FE(~v) the
(constant) value of E(A(t)), where A(t) is the solution of the Hamiltonian system associated with H such that

A(t) = 7(A(H))-

Theorem 7.4. Let M be a 3D unimodular Lie group, endowed with a contact left-invariant structure, with
X > 0 and k € R. Then there exists E = E(x, k) such that every length parametrized geodesic v with E(vy) > E
has a finite conjugate time.

Proof. We prove that the assumptions of Theorem 7.1 are satisfied for every geodesic when E is large enough.
Since F is a constant of the motion and H = 1/2 we have

h%:E—h—%, h§:1—E+h—‘2). (7.17)
2x 2x
Plugging equation (7.17) into equations (7.13) and (7.14), D‘iicf:(lt) and i)‘iicf’y‘ft) are rewritten as follows
RicTt,) = 4hi — 3x(2E — 1)+, (7.18)
Ric?, = 8hy — [26 + 10X(2E — 1)]hg + 2x#(2E — 1) + x*(8E” — 8E — 2)]. (7.19)

Since h? + h3 = 1 one has |ho| < 1, from (7.17) one has the following bound for hg along the curve

2x(E — 1) < hi(t) < 2xE. (7.20)
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Then we have easily a lower bound for %ic;l(lt)

Ric™!

Sty Z8X(E—1) =3x(2E -1)+ &

>2xE —-bx+r=k (7.21)

Since we want to prove the result for E large enough, we assume that

E > % (5 - g) ; (7.22)

so that k1 > 0, and the coefficient of h3 in (7.19) is negative. Then using (7.20) one estimates

RicT?,) > 2x*(15 — 26E) — 2xk =: k2 (7.23)

In order to show that the first condition of equation (7.2) of Theorem 7.1 is satisfied we also compute
4k + k7 = 4*E? + a(x, k) E + b(x, k), (7.24)
where a and b are the following quadratic functions
a(x, k) = 4xk — 228x2, b(x, k) = 145x2 — 18k + K°. (7.25)

Since the coefficient of E? in equation (7.24) is positive, there exists E = E(x, k), the largest positive root of
equation (7.24), such that 4k + k? > 0 for all E > E, which ends the proof. O

Remark 7.5. The roots of equation (7.24), and in particular E(y, k), depend only on the ratio x/x. This
means that this number is invariant by rescaling of the sub-Riemannian structure. This could seem strange at a
first glance but is a consequence of the fact that we consider only length parametrized geodesics. We also stress
that, in general, the value E(y, k) given by this computation is not sharp.

APPENDIX A. COMPARISON THEOREMS FOR THE MATRIX RICCATI EQUATION

The general, non-autonomous, symmetric matrix Riccati equation can be written as follows:

X =R(X;t) :== M(t)11 + XM (t)12 + M(t)[oX + XM(t)2 X = (I X) M(t) <)H(> , (A.1)

where M(t) is a smooth family of 2n x 2n symmetric matrices. We always assume a symmetric initial datum,
then the solution must be symmetric as well on the maximal interval of definition. All the comparison results
are based upon the following theorems.

Theorem A.1 (Riccati comparison Theorem 1). Let My(t), Ma(t) be two smooth families of 2n X 2n symmetric
matrices. Let X;(t) be smooth solution of the Riccati equation

on a common interval I C R. Let to € I and (1) Mi(t) > Ma(t) for all t € I, (ii) X1(to) > Xa(to). Then for
any t € [to, +00) NI, we have X;(t) > Xa(t).

Proof. The proof is a simplified version of ([1], Thm. 4.1.4). Let U := X; — X5. Notice that U is symmetric on
the interval I where both solutions are defined. A computation shows that
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where
1) = Malt)ia + 5 X2 (D0Mat)22 + 5 X () Ma (1) (A1)
Taking in account that M (t) — Ma(t) > 0, the matrix U satisfies
U >60(t)U + UB(t)*. (A.5)
Indeed U(tg) > 0. Then, the statement follows from the next lemma (see [1], Thm. 4.1.2).
Lemma A.2. Let U be a symmetric solution of the Lyapunov differential inequality
U>0(U+UbB(t)*, telCR, (A.6)

where 6(t) is smooth. Then U(ty) > 0 implies U(t) > 0 for all t € I N [tg,+00). O

The assumptions of Theorem A.1 involve comparison on coefficients of Riccati equations and on initial data.
It can be generalised also for limit initial data as follows.

Theorem A.3 (Riccati comparison Theorem 2). Let My(t), Ma(t) be two smooth families of 2n X 2n symmetric
matrices. Let X;(t) be smooth solutions of the Riccati equation

Xi=Ry(Xi5t),  i=1,2, (A7)
on a common interval I C R. Let to € I. Assume that (i) My(t) > Ma(t) for all t € I, (ii) X;(t) > 0 for
t > to sufficiently small, (i) there ewist Y;(to) = limy_y,1 X; '(t) and (iv) Yi(to) < Ya(to). Then, for any
t € (to, +00) NI, we have X;(t) > Xa(t).

Proof. Let Y;(t) := X;(t)~!, defined on some interval (¢9,e) C I. They satisfy

Vi = (1Y;) Ni(t) (3) , N;(t) == — GI) g) M;(t) (g g) . i=1,2. (A.8)

Indeed Y;(t) can be prolonged on [tg,¢] for ¢ sufficiently small by (iii). Moreover Na(t) > Ni(t) by (i) and
Ya(to) > Yi(to) by (iv). The point ¢y belongs to the interval of definition of Y; then, by Theorem A.1, Y5(¢) >
Yi(g). By (ii), this implies that X;(¢) > X;(g). Then we can apply again Theorem A.1 to X; and X3, with
to = €, and we obtain that X () > Xs(t) for all ¢ € [e,+00) N I. Since € can be chosen arbitrarily close to to,
we obtain the statement. O

A.1. Well posedness of limit Cauchy problem

The following lemma justifies the savage use of the Cauchy problem with limit initial condition. Let A, B, be
n X n and n X k matrices, respectively, satisfying the controllability condition

span{B, AB,...,A"B} = R", (A.9)

for some m > 0. Thus, since the column space of B is equal to the column space of BB*, we have that, if we
put I} := A* and I := BB* >0,

Span{FQ,FQFh...,FQF{n}:Rn. (AlO)

This condition is indeed satisfied for the matrices I, I's introduced in Section 3.
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Lemma A.4. For any smooth R(t), the Cauchy problem with limit initial condition
V=-DIW-VI}y—-R(t) - VIV, lim V=1 =0, (A.11)

t—0+
is well posed, in the sense that there exists a solution of the Riccati equation, invertible for small t > 0 such
that lim,_,o+ V~1 = 0. The solution is unique on some mazimal interval of definition I C (0,400). In addition,
V(t) > 0 for small t > 0.

Proof. We first prove uniqueness. If two solutions Vi, Vs exist, their inverses Wi and Ws (defined for ¢ > 0
sufficiently small) can be extended to smooth matrices on [0, ¢), by setting W7 (0) = W5 (0) = 0. Moreover, they
both satisfy the following Cauchy problem:

W=IyW+WI 4+ Iy + WRHOW,  W(0) = 0. (A.12)

By uniqueness of the standard Cauchy problem, W (¢) = Wy(e). Therefore also V; ' (e) = V5 (), and unique-
ness follows. The choice of € > 0 for setting the Cauchy datum is irrelevant, since different choices bring to the
same solution. Finally, any solution can be extended uniquely to a maximal solution, defined on some interval
I C(0,+00).

Now, we prove the existence. Consider the Cauchy problem

W=IW4+WI + I+ WREW,  W(0)=0. (A.13)

Tts solution is well defined for ¢ € [0,e). We will soon prove that, for ¢ € (0,¢), such a solution is positive. Thus
V(t) := W (t)~1, defined for ¢ € (0,¢), is a solution of the original Cauchy problem with limit initial datum, by
construction.

We are left to prove that, for ¢ > 0 small enough, W (t) > 0. Since R(t) is smooth, for ¢ € [0, ) we can find k
such that R(t) > kl. By comparison Theorem A.1, we have that our solution is bounded below by the solution
with R(t) = kI. We write W (t) > Wy (¢) > 0 for t € [0,¢) (the last inequality follows again from Theorem A.1,
by considering the trivial solution of the Cauchy problem obtained by setting I's = 0).

Assume that, for some small ¢ > 0 and x # 0, we have W (¢)z = 0. This imples Wy(¢)x = 0. Being a solution
of a Riccati equation with constant coefficients, Wy (t) is monotone non-decreasing (indeed W (0) = I, > 0, and
the same holds true for ¢ € [0,¢) by Lem. 4.11). Therefore Wy, (¢)x = 0 identically. Therefore all the derivatives,
computed at ¢t = 0, vanish identically. This imples, after careful examination of the higher derivatives, that

FQ.T:FQFLT:...FQF{W{L':.‘.:0, (A14)
that leads to x = 0. This contradicts the assumption, hence W (¢t) > 0 for ¢ sufficiently small. O
APPENDIX B. PROOF OF LEMMA 5.5

Lemma B.1. Let {X,}h_q, {Ya}h_q be sets of £ x £ matrices. Then

(ngya> (ngyb) < IDoYVIYL| D XX (B.1)
a=1 b=1 a=1 b=1
Proof. Let v € RY. Then
s T * s 2
v* (ZK;%) (ZX;‘Y;) v=|D Y X (B.2)
a=1 b=1 a=1

Notice the change in position of the transpose. Now, let u € R, such that [u| = 1, and

u* (Zr: Ya*Xav> = zr:Ya*Xav
a=1 a=1

. (B.3)
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Then, by the Cauchy—Schwarz inequality, we obtain

r 2
> VX
a=1

T

Z(Yau)*(XaU)

a=1

2 r r
<D Yol Y[ Xevl*. (B.4)
a=1 a=1

Now, observe that

. (B.5)

T T
X:HYQuH2 =u" ZYQ*Yau <
a=1 a=1

Then, plugging equation (B.5) in equation (B.4), we obtain

i Y Xqv Z Y'Y,
a=1 a=1

which implies the statement. O

Z VY,
a=1

2
<

ZHva”Qa (BG)
b=1

APPENDIX C. PROOF OF PROPOSITION 3.2 AND LEMMA 3.3

In order to prove Proposition 3.2 and Lemma 3.3 we define a local frame on 7" M associated with the choice
of a local frame X;,...,X,, on M. Fori=1,...,nlet h; : T*M — R be the linear-on-fibres function defined by
hi(A) := (A, X;). The action of derivations on T*M is completely determined by the action on affine functions,
namely functions a € C*°(T*M) such that a(\) = (\,Y) + 7*¢g for some Y € Vec(M), g € C°°(M). Then, we
define the coordinate lift of a field X € Vec(M) as the field X € Vec(T* M) such that X(h))=0fori=1,...,n
and X (7*g) = X (g). This, together with Leibniz rule, characterize the action of X on affine functions, and then
completely define X. Indeed, by definition, 7.X = X. On the other hand, we define the (vertical) fields Op,
such that Oy, (7*g) = 0, and Oy, (h;j) = d;;. It is easy to check that {8,11,)@};;0 is a local frame on T*M. We
call such a frame the coordinate lifted frame.

Proof of Proposition 3.2 and Lemma 3.3. Point (i) is trivial and follows from the definition of the coordinate
lifted frame Jj,,. In order to prove point (ii), we compute explicitly

n n n n
H=Y"hiXi+ > hickhion, | = | hXi+ Y hilfhion, | (C.7)
i=1 k=1 i=1 jok=1
where we used the identities cfj =1 Z’; - I fi and [ Z’; =1 fk Then, a direct computation gives
Fo=—[H,00)=Xi+ Y ha(TE+T5) 00, = Xi + > milfim,, (C8)
k=1 k=1

where we used the fact that, for a parallely transported frame, > ;'_; hil] ,ij = 0 and we suppressed the explicit
evaluation at A(¢). Now we are ready to prove point (ii). Indeed ox()(Oh,,On;) = 0, since Vy is Lagrangian for
all \. Then

oxt) (Ons, —[H, On,]) = —(Xi|m. [H, On,]) = 645, (C.9)
where we used that m,[H,0,] = —Xj, and that for any vertical vector { € V) and n € T\(T*M), o(&,n) =

(&|m«n), where we identified f' with an element of T ()M through the scalar product. Finally, by using the r.h.s.
of equation (C.8), we obtain

o(F Fy) =Y (ThEhg — Tlhi — hicly) = > (i X4 |Vx, X; — Vx, Xi — [X;,X;]) =0, (C.10)
k=1 k=1



COMPARISON THEOREMS FOR CONJUGATE POINTS IN SUB-RIEMANNIAN GEOMETRY 471

where we suppressed the explicit dependence on ¢ and the last equality is implied by the vanishing of the torsion
of Levi—Civita connection. For what concerns point (iii), the first structural equation is the definition of F;. By
taking the derivative of F;, we obtain

—

n
F,=[H,F] = Z hehi(Vx,;Vx, X —Vx,Vx, X — V[Xi,Xe]Xk‘Xj>Ej- (C.11)
L =1

In particular, this implies Lemma 3.3, since

R;;(t) = Z hehi(Vx,Vx, X — Vx, V. Xk — Vix, x) X6 X;) = (RY (X4, 9)3X;), (C.12)
(=1

by definition of Riemann tensor, and the fact that 4 (t) = Y27 | hi(A(£))X; |- Finally, let E;, ﬁj be any smooth

7
moving frame along \(t) satisfying (i)—(iii). We can write, in full generality

E; =Y Ay(t)E; + By (t)F; Fy =Y Cij(t)E; + Dij(t)F}, (C.13)

j=1 j=1

for some smooth families of n x n matrices A(t), B(t), C(t), D(t), where the frame is understood to be evaluated
at A(t). By imposing conditions (i)—(iii), we obtain that the latter are actually constant, orthogonal matrices,
and B = C' = 0, thus proving the uniqueness property. O
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