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ABSTRACT. We consider the multi-dimensional generalisation of the problem
of a sphere, with axi-symmetric mass distribution, that rolls without slipping
or spinning over a plane. Using recent results from Garcia-Naranjo [21] and
Garcia-Naranjo and Marrero [22], we show that the reduced equations of mo-
tion possess an invariant measure and may be represented in Hamiltonian form
by Chaplygin’s reducing multiplier method. We also prove a general result on
the existence of first integrals for certain Hamiltonisable Chaplygin systems
with internal symmetries that is used to determine conserved quantities of
the problem.

1. Introduction

An important contribution of S. A. Chaplygin to the field of nonholonomic sys-
tems was the introduction of the so-called Chaplygin’s reducing multiplier method
[9]. Tt is concerned with a certain class of nonholonomic systems with symmetry,
commonly referred to today as nonholonomic Chaplygin systems, whose reduced
equations of motion have the form of a classical mechanical system subjected
to extra gyroscopic forces. Chaplygin’s method consists of searching for a time
reparametrisation, hoping that in the new time variable, and after a momentum
rescaling, the extra forces vanish and the resulting system is Hamiltonian. If suc-
cessful, this process is often referred to as Chaplygin Hamiltonisation. It is also
common to say that the Chaplygin system at hand, in the original time variable, is
conformally Hamiltonian. The subclass of Chaplygin systems allowing a Chaply-
gin Hamiltonisation is quite remarkable, and substantial effort has been devoted to
their study and characterisation (see e.g. [3,6,9,10,16,18,21,25,36] and references
therein). The purpose of this paper is to provide a new non-trivial example within
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this category, and to prove a considerably general Noether-type of result for these
systems, which links their internal symmetries with first integrals, and which we
apply to our example.

¢-simple Chaplygin systems: Hamiltonisation and first integrals. Our
approach to Chaplygin Hamiltonisation relies on the notion of ¢-simple Chaplygin
systems introduced recently in Garcia-Naranjo and Marrero [22] inspired by the
results of the author in [21]. These systems form an exceptional subclass of non-
holonomic Chaplygin systems that always possess an invariant measure and allow
a Chaplygin Hamiltonisation.

The definition of ¢-simple Chaplygin systems relies on a certain tensor field
T of type (1,2) defined on the shape space’ S of the system, which measures the
interplay between the kinetic energy and the non-integrability of the constraint
distribution. This tensor field already appears in the works of Koiller [30] and
Cantrijn et al [8], and, following the terminology of [21, 22], will be called the
gyroscopic tensor. A Chaplygin system is said to be ¢-simple if there exists a
function ¢ € C>(S) such that the gyroscopic tensor 7 satisfies?

(1.1) T, 2) = Z[9]Y - Y[9]Z,

for any two vector fields Y, Z on S. The above condition was obtained as the
coordinate-free formulation of the recent results on Chaplygin Hamiltonisation
given by the author [21]. It is shown in [22] that the condition to be ¢-simple is
equivalent to the verification of certain sufficient conditions for Chaplygin Hamil-
tonisation given previously by Stanchenko [36] and Cantrijn et al [8]. The advan-
tage of the formulation in [21] and [22] with respect to these references is that
condition (1.1) can be systematically examined in concrete examples.

The statement that a ¢-simple Chaplygin system allows a Chaplygin Hamil-
tonisation is independent of the number of degrees of freedom of the problem, and
may be interpreted as a generalisation of the celebrated Chaplygin’s Reducing Mul-
tiplier Theorem [9] whose applicability is restricted to systems whose shape space
has dimension 2 — see the discussion in [21] and [22].

The criterion of ¢-simplicity has already been used in [21] and [22] to es-
tablish the Hamiltonisation of non-trivial examples. Among them is the multi-
dimensional Veselova problem, whose Hamiltonisation was first proven by Fedorov
and Jovanovi¢ [16,17] by a direct application of Chaplygin’s method to the reduced
equations of motion. In Section 4 of this paper we prove that the multi-dimensional
rubber Routh sphere (introduced below) is also ¢-simple. This allows us to prove
that the system allows a Chaplygin Hamiltonisation, and to give a closed formula
for its invariant measure, without writing the equations of motion. Our results

L The shape space is the quotient manifold S = Q/G where Q is the configuration manifold
of the system and G is the underlying symmetry group of the Chaplygin system.

2Throughout the paper we denote by Y[f] the action of the vector field Y on the scalar
function f.
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seem to support the thesis that ¢-simplicity is the relevant mechanism behind the
Chaplygin Hamiltonisation of concrete examples.?

In Section 3 we prove a general result that shows how extra symmetries of
¢-simple Chaplygin systems lead to the existence of conserved quantities (The-
orem 3.1). This result is applied to find first integrals of the multi-dimensional
rubber Routh sphere in Section 4.3. This contributes to the recent efforts to under-
stand the mechanisms responsible for the existence of first integrals that are linear
in velocities in nonholonomic mechanics (see e.g. [1,11,12,24]).

The multi-dimensional rubber Routh sphere. Routh [35] considered the
problem of a sphere whose distribution of mass is axially symmetric, and which
rolls without slipping on the plane. Later, Borisov and Mamaev [5, 7] consid-
ered the problem under an additional rubber* constraint that forbids spinning. In
this paper we consider the multi-dimensional generalisation of this system. Our
term multi-dimensional rubber Routh sphere is supposed to indicate the presence
of a no-spin constraint in the word rubber, and the axi-symmetric assumption on
the mass distribution of the sphere with the mention of Routh’s name. A closely
related problem is the multi-dimensional rubber Chaplygin sphere considered by
Jovanovié [27].

The study of multi-dimensional systems in nonholonomic mechanics goes back

to Fedorov and Kozlov [15], and has received wide attention as a source of in-
teresting examples for integrability, Hamiltonisation and other types of dynamical
features [13,14,16,17,19,26,28,29,37]. Our analysis of the multi-dimensional

rubber Routh sphere contributes to enlarging this family of examples.

Structure of the paper. In Section 2 we present a quick review of the re-
cent constructions in [21,22]. This summary includes the definition of the gyro-
scopic tensor and its expression in local coordinates. We also recall the notion of
¢-simplicity (described above) and, in Theorem 2.1, we indicate its precise rela-
tionship with measure preservation and Hamiltonisation. Section 3 is completely
devoted to Theorem 3.1, which relates internal symmetries of ¢-simple Chaplygin
systems to first integrals. Section 4 is concerned with the multidimensional rubber
Routh sphere. To simplify the reading, we first treat the 3D system in subsection 4.1
and then proceed to the nD generalisation in subsection 4.2. The ¢-simplicity of
the system is presented in Theorem 4.2 and the consequential measure preservation
and Hamiltonisation properties in Corollary 4.1. The results of Section 3 are then
applied to determine first integrals of the problem in subsection 4.3. The paper
finishes with Appendix A that contains the proof of a technical lemma needed in
the proof of Theorem 4.2.

3 This statement is meant within the framework of Hamiltonisation of Chaplygin systems.
Other examples, like the remarkable Hamiltonisation of the Chaplygin sphere obtained by Borisov
and Mamaev [4], involve a further symmetry reduction [6] and other geometric mechanisms
come into play to ensure that invariant first integrals descend to the quotient space as Casimir
functions [20].

4 The rubber terminology for constraints that prohibit spinning goes back to Ehlers et al [10]
and Koiller and Ehlers [31] and is now quite standard in the field.
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2. Preliminaries: a review of ¢-simple Chaplygin systems and their
measure preservation and Hamiltonisation properties

In this section we briefly recall the notion of nonholonomic Chaplygin systems
and, more specifically, ¢-simple Chaplygin systems introduced in Garcia-Naranjo
and Marrero [22], together with their measure preservation and Hamiltonisation
properties.

2.1. Nonholonomic Chaplygin systems and the gyroscopic tensor.
For our purposes, a nonholonomic system is a triple (Q, D, L). Here @ is an n-
dimensional smooth manifold modelling the configuration space of the system. D C
TQ is a vector sub-bundle whose fibres define a non-integrable distribution on @ of
constant rank r > 2, which models n—r linear nonholonomic constraints as follows:
a curve ¢(t) on @ is said to satisfy the constraints if and only if §(t) € Dy for all
t. Finally, L: TQ — R is the Lagrangian of the system that is assumed to be of
mechanical type, namely

L=K-U,
where the kinetic energy K defines a Riemannian metric {-,-) on Q,and U: Q@ — R
is the potential energy.

The triple (@, D, L) contains all the information for the evolution of the system
in accordance with the Lagrange—D’Alembert principle of ideal constraints. The
(velocity) phase space of the system is D and the dynamics is described by the flow
of a uniquely defined vector field X, € X(D). An intrinsic definition of this vector
field may be found, for instance, in [32].

DEFINITION 2.1. The nonholonomic system (Q, D, L) is said to be a Chaplygin
system if there exists an (n—r)-dimensional Lie group G acting freely and properly
on @) and satisfying the following properties:

(1) G acts by isometries with respect to the kinetic energy metric (-, -}, and
the potential energy U is invariant,

(2) D is invariant in the sense that Dg., = T'g(D,) for all g € G and ¢ € Q,

(3) for all ¢ € @ the following direct sum splitting holds

TqQ:g'q@an

where g denotes the Lie algebra of ¢, and g - ¢ is the tangent space to the
orbit through ¢ at q.

REMARK 2.1. Chaplygin systems as defined above are also referred to in the
literature as non-abelian Chaplygin systems [30], generalised Chaplgyin systems [8,
| or the principal kinematic case of a nonholonomic system with symmetries [2].

The smooth r-dimensional manifold S := Q/G associated to a Chaplygin sys-
tem is called the shape space. As a consequence of the first and second conditions
in Definition 2.1, the vector field X, describing the dynamics is equivariant (with
respect to the G-action on D defined by the restriction of the tangent lifted action
of G to TQ) and the system admits a G-reduction. The reduced dynamics is de-
scribed by the flow of the reduced vector field X, on the orbit space D/G. For
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a Chaplygin system, the reduced phase space D/G is naturally identified with the
tangent bundle T'S, or cotangent bundle TS, using the (reduced) Legendre trans-
form. The reduced equations of motion have the form of a mechanical system on
the shape space S subject to gyroscopic forces. Geometrically, they may be written
in almost symplectic form, i.e. in Hamiltonian-like form, ig , 2,5, = dH, where H
is the reduced Hamiltonian (energy), but where the non-degenerate 2-form 5, on
T*S fails, in general, to be closed. See section 2.3 below or references [10,16,22,23]
for more details.

We now recall the definition of the gyroscopic tensor from Garcia-Naranjo and
Marrero [22]. To do this, we first note that the kinetic energy metric defines the
orthogonal decomposition T7Q = D @ D+. We shall denote by

P:TQ — D,

the bundle projection associated to such decomposition. Next, we note that, as was
first pointed out by Koiller [30], the second and third conditions in Definition 2.1
imply that the fibres of D are the horizontal spaces of a principal connection on
the principal bundle 7: Q@ — Q/G = S. As is well known, corresponding to such
a principal connection, there is a well defined horizontal lift that associates to any
vector field Y € X(5) an equivariant vector field hor(Y') € X(Q) taking values on
D, and that is m-related to Y. We are now ready to present:

DEFINITION 2.2. The gyroscopic tensor T is the (1,2) skew-symmetric tensor
field on S determined by assigning to the vector fields Y, Z € X(5), the vector field
T(Y,Z) € X(S), given by

(2.1) T(Y, Z)(s) = (Tym)(Plhor(Y), hor(2)](q)) — [¥, Z](s),

for s € S, and where ¢ € Q is any point such that w(q) = s, and where [-, -] denotes
the Jacobi—Lie bracket of vector fields.

That 7 is a well-defined (1,2) tensor field on S is shown in [22]. It is also
shown in this reference that the gyroscopic tensor 7 coincides with other tensor
fields that have been considered before by Koiller [30] and Cantrijn et al [8].

2.2. Local expressions for the gyroscopic tensor. Let s = (s!,...,s") be
local coordinates on the shape space S. Then we may write

for certain s-dependent coefficients C¥;, which, in view of the skew-symmetry of 7T,

170

are skew-symmetric with respect to the lower indices, i.e. C’fj = —CJ’%. Following
the terminology introduced in Garcia-Naranjo [21], we refer to ij as the gyroscopic
coefficients.

Fix i, € {1,...r}. The gyroscopic coefficients C’fj, k = 1,...,7, may be

computed in practice by solving the following linear system of equations:

22) S KuCl = ([hi gl hi), 1= 1.,
k=1
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where we recall that (-, -)) is the kinetic energy metric on @, and we have denoted

)
(2.3) hi —hor(a k) K= (i b)), kl=1,...r

Note that the matrix Kj; is invertible by linear independence of {hi,...,Rh;}.
That (2.2) holds is a direct consequence of the definition (2.1) of the gyroscopic

tensor since [%, %] =0.

2.3. The reduced equations of motion. We now present the reduced equa-
tions of motion of a Chaplygin system. Our exposition mainly follows Garcia-
Naranjo [21].

The distribution D interpreted as a principal connection on the principal bundle
7: Q — S, induces a Riemannian metric on S that will be denoted by (-, -)*. For
v1, 9 € TS it is defined by

{(v1,02)7 == (horg(v1), horg(va) g, g€ (s),

and is locally given by 7/ .| Kijds' ®ds’ with Ky defined by (2.3). Similarly, the
invariance of the potential energy U induces a reduced potential Us € C'*°(SS) such
that U = Ugonw. Therefore, there is a well defined reduced Lagrangian L: TS — R,
of mechanical type, defined by

(2.4) L(s,3) = 5(3,5)7 — Us(s).

Locally we have L£(s,s) = %22,1:1 K188 — Us(s). As was announced above,
the reduced equations of motion take the form of a mechanical system on S which
is subject to gyroscopic forces. These may be written in terms of the gyroscopic
coefficients C}; as (see e.g. [21]):

oL
(2.5) %(@) 352_ chsjaz, i=1,...,m7

Now use the standard Legendre transformation:

oL
(2-6) bi = 95’

and define the reduced Hamiltonian H: T*S — R

1=1,...,m,

s 8£ T
(2.7) H(s,p):=) pjm——L= KMpepr + Us(s),
087
=1

k=1

where K*! are the entries of the inverse matrix of K. It is a standard exercise to
show that Egs. (2.5) are equivalent to the following first order system on 7*S:

. OH oH - oH
2.8 5t = h = — Ckpp—, j=1,...,7
( ) S 8])17 p 8SZ ];I z]pk: apj 1 T
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Egs. (2.8) give the local expression of the reduced vector field X,; on T*S. As
mentioned above, this vector field satisfies ig , ., = dH, where the almost-
symplectic 2-form

T T
Qnn = stj Ndp; + Z Z C’fjpk ds® A ds.
j=1 i<j k=1
We refer the reader to [22] for an intrinsic construction of Q,,, using the gyroscopic
tensor. A different, yet equivalent, approach to the construction of €, is taken
in [10].

2.4. ¢-simple Chaplygin systems, measure preservation and Hamil-
tonisation. In this subsection we recall the recent results on Chaplygin Hamilton-
isation from Garcia-Naranjo [21] and Garcfa-Naranjo and Marrero [22]°. We begin
with the following:

DEFINITION 2.3. [22]A non-holonomic Chaplygin system is said to be ¢-simple
if there exists a function ¢ € C*°(.S) such that the gyroscopic tensor T satisfies

(2.9) T(Y,2) = Z[g]Y = Y[¢]Z,
for all Y, Z € X(5).

The class of ¢-simple Chaplygin systems is quite special. As it turns out,
their reduced equations on T*S always possess an invariant measure and allow a
Hamiltonisation by Chaplygin’s reducing multiplier method. More precisely:

THEOREM 2.1. [22]

(1) The reduced equations of motion (2.8) of a ¢-simple Chaplygin system pos-
sess the invariant measure p = exp(o)v, where v is the Liouville measure
on T*S and o = (r — 1)¢.

(2) The reduced equations of motion (2.8) of a ¢-simple Chaplygin system
become Hamiltonian after the time reparametrisation dt = exp(—a(s))dr.

The implication of item (i) of the theorem is clear. If the Chaplygin system
under consideration is ¢-simple, then Eqs. (2.8) preserve the volume form on 7*S
whose local expression is

p=-exp((1 —7r)pds' A---Ads" Adpy A--- Adp,.

One interpretation of item (ii)-followed in [22]-is that ¢-simplicity implies that
the 2-form Q,,;, is conformally symplectic with conformal factor exp(¢(s)). In other
words, the 2-form Q := exp(¢(s))s is closed and hence symplectic. Hence, the
rescaled vector field Z := exp(—¢(s))X,, satisfies izQ) = dH and is therefore
Hamiltonian (with respect to the symplectic structure Q).

Another, equivalent, interpretation of item (ii) of Theorem 2.1-followed in [21]-
is obtained by defining the momentum rescaling:

ﬁi = eXp(d)(S))pi, 1= 17 A

5As shown in [22], these results are equivalent to certain sufficient conditions for Hamiltoni-
sation given first by Stanchenko [36] and Cantrijn et al. [8].
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and writing the reduced Hamiltonian in the new variables

H(s,p) = H(s,exp(—(s))p)-
Item (ii) of Theorem 2.1 states that, for a ¢-simple Chaplygin system, Egs. (2.8)
are written in the (s, p) variables in conformally Hamiltonian form
ds’ OH  dp; oH
o o0 5o B~ —exp(6(5) G
The conformal factor exp(¢(s)) may be absorbed in the time reparametrisation
dt = exp(—¢(s)) dr leading to the Hamiltonian system:

ds OH dp,  OH

— = — - ‘:1...
dr  9p;’ dr Ost’ T

(2.10) i=1,...,m

)

3. Noether’s Theorem for ¢-simple Chaplygin systems

We now show how additional-sometimes called internal-symmetries of ¢-simple
Chaplygin systems lead to first integrals. This is a consequence of the conformally
Hamiltonian structure of their reduced equations. As we show below, the conserved
quantities are simply a rescaling by the conformal factor of the standard momentum
map for Hamiltonian systems.

We begin by recalling some standard notation. Suppose that the Lie group A4,
with Lie algebra a, acts on S. For £ € a we denote by £g € X(S) the infinitesimal
generator of £&. Namely, £g is the vector field on S defined by

&s(s) = % - exp(tf) - s € TsS.

THEOREM 3.1. Consider a ¢-simple Chaplygin system and suppose that the Lie
group A acts on the shape space S and leaves ¢ invariant.

(1) If the reduced Lagrangian L: T'S — R defined by (2.4) is invariant under
the tangent lifted action of A to T'S, then the rescaled tangent bundle
momentum map

(31) J:TS—a", defined by J(s,5)(€) =exp(¢(s))(5.85(s))S, €€,
is constant along the flow of the reduced equations (2.5).
(2) If the reduced Hamiltonian H : T*S — R defined by (2.7) is invariant

under the cotangent lifted action of A to T*S, then the rescaled cotangent
bundle momentum map

J:T*S = a*, defined by T (s,p) = exp(d(s)){p,Es(s)), fea,

where (-,-) denotes the duality pairing between T*S and T'S, is constant
along the flow of the reduced equations (2.8).
(3) Items (i) and (ii) are equivalent via the Legendre transformation (2.6).

PROOF. Let ¢ € a and suppose that in local coordinates &5 = S07_; €7(s) 52

0sI
The rescaled tangent bundle momentum map is locally given by:

T(4,5)(O) = exp(6(:) 2. € (5) g
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which, in view of the Legendre transformation (2.6), coincides with

(3:2) J(s",p:) (&) = exp(¢ ij s)pj,

which is the local expression for the rescaled cotangent bundle momentum map. So
the definitions of J in items (ii) and (iii) are indeed matched by the Legendre trans-
formation. The equivalence between the invariance assumptions on L and H-with
respect to the appropriate lifted action of A-is quite standard (see e.g. [33]). We
complete the proof by showing that, under the cotangent lift invariance assumption
on H, J given by (3.2) is indeed a first integral of Egs. (2.8). We begin by using
the assumption of ¢-simplicity to rewrite Eqs. (2.8) as

dst  OH d |
= (o) = ewo)( - 5 aszzapj) i=1,r

Indeed, a calculation based on the chain rule shows that the above system is equiv-
alent to Egs. (2.10). Therefore, using the above equations, we compute

~( OH, ~0¢0H
(3.3) (eXp prz)—exp )[Z<_asi§ *ij_lasjam>

"\ OH " 0o ;
() (S

Jj=1

On the other hand, the A-invariance of ¢ implies

(3.4) Zfl o =

Moreover, recall (see e.g. [33]) that the cotangent lift of &5 =7, &(s) 5%
vector field ET*S on T*S expressed in bundle coordinates as fT* =30 g2

1s the

Os?
S =1 gi Dis— ap Therefore, the assumption that H is invariant under the cotangent
lift of A to TS implies

) g agi 0H _
(35) Zg 881 55 831 6p
Substitution of (3.4) and (3.5) into (3.3) proves the result. O

4. The rubber Routh sphere

Routh considered the motion of a sphere whose distribution of mass is axially
symmetric, and which rolls without slipping on the plane. Here we enforce an ad-
ditional rubber constraint that forbids spinning and consider the multi-dimensional
generalisation of the system. The 3D version of the problem has already been
considered by Borisov and coauthors in the works [5, 7] which treat more general
problems of 3D bodies that roll without slipping or spinning over a surface.
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4.1. The 3D case. Consider a sphere that rolls without slipping or spinning
on the plane. The orientation of the sphere is determined by an orthogonal matrix
R € SO(3) that relates a body fixed frame {E1, Es, E3} to an inertial or space
frame {e1,e0,e3}. We assume that the space frame is chosen in such a way that
the plane where the rolling takes place is spanned by e; and e3, and will denote the
space coordinates of the geometric centre O by & = (1, 22, b)?, where the constant
b > 0 is the sphere’s radius. The position and orientation of the sphere is hence
completely determined by the pair (R, (x1,72)) € SO(3) x R? so the configuration
space of the system is @Q = SO(3) x R2. To simplify the exposition, we will denote
an element ¢ € Q as a pair ¢ = (R, r) € SO(3) x R? with 23 = b. This amounts to
the identification of @ with the embedded submanifold of SO(3) x R? defined by
the holonomic constraint xz = b.

_mgl

FIGURE 1. Rubber Routh sphere rolling on the plane.
Denote by w = (w1, ws,w3)! € R? the angular velocity vector of the sphere
written in the space frame, and by @ = R 1w = (21,02,03)" € R? the same
vector written in the body frame. As is well known, these vectors correspond to the
right and left trivialisations of the tangent velocity vector R € TrSO(3) as follows

. 0 —w3 wo _ 0 -3 Qs
RR™ ! = w3 0 —wy | €50(3), R'R= Q3 0 —Qy | €50(3),
—Wwy Wi 0 - 0

where 50(3), the space of skew-symmetric real 3 x 3 matrices, is the Lie algebra of
SO(3).
The no-slip rolling constraint is written as

(4.1) & =bw X e3, or, equivalently, @ =0bR(Q X ),

where & = (i1, 42,0)?, x denotes the vector product in R and v := R~ !e3 denotes
the so-called Poisson vector that gives body coordinates of the vector ez that is
normal to the plane where the rolling takes place. The sphere is also subject to the
no-spin or rubber constraint

(4.2) ws =0, or, equivalently, (Q,7) =0,

where (-, ) denotes the scalar euclidean product in R3. The first two components
of Eq. (4.1) together with Eq. (4.2) define 3 independent nonholonomic constraints
that determine a rank 2 distribution D on Q.
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Inspired by Routh [35], we assume that the mass distribution of the sphere
is axially symmetric. The body frame {E, Es, F3} is chosen with origin at the
centre of mass C' and with Fs aligned with the axis of symmetry. This choice of
body frame implies that the inertia tensor of the body is represented by a 3 x 3
matrix of the form I = diag(l1, I1, I3), with principal moments of inertia I7, I3 > 0.
We denote by £ the distance between C' and the geometric centre O and assume
that the coordinates of O in the body frame are (0,0, —¢)!, see Figure 1. The
space coordinates of C are hence given by the vector u = =z + {RFE3. Considering
that ||4)|?> = |R~14|?, where || - || is the Euclidean norm in R3, the Lagrangian of
the system L: T'QQ — R, given by the kinetic minus the potential energy, may be
written as
(4.3) L(R,Q,x, %) = %(m, Q) + %HR*% +4Q x E3]|? — mGlys,
where m is the mass of the sphere, G is the gravitational constant, and 73 denotes
the third component of v, i.e. v3 = (v, E3).

In Eq. (4.3), and in what follows, we write a generic element of T'Q) as the
quadruple (R, Q, z, ) € SO(3) x R? x R® x R3, which is possible by the identification
of TSO(3) with SO(3) x R? via the left trivialisation, and the embedding TR? —
R3 x R3, ((z1,22), (i1,42)) = ((x1,72,b), (21, %2,0)), induced from the holonomic
constraint zz = b.

The evolution of the system is clearly independent of horizontal translations
and rotations of the space frame about e3. This corresponds to a symmetry action
of the euclidean group G = SE(2) on the configuration space @ = SO(3) x R? as
we now show. We represent the group G = SE(2) as the Lie subgroup of GL(4,R)
consisting of matrices of the form

U1
g= h y , where y=[ys| € R3,
00 01 0
oY .
and h= 0 € S0(3), with h e SO(2).
0 0 1

The action of g € SE(2) given above on an element (R, x) € SO(3) x R? is
This action restricts to @ since it preserves the holonomic constraint x3 = b.

PROPOSITION 4.1. The problem of the rubber Routh sphere that rolls without
slipping or spinning on the plane is a Chaplgyin system with G = SE(2) acting on
Q via Eq. (4.4).

REMARK 4.1. Proposition 4.1 is valid even if the sphere fails to be axially
symmetric. In fact, it continues to hold for the problem of an arbitrary rubber
smooth convex body that rolls without slipping or spinning on the plane.
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PROOF. The tangent lifted action is
g (R,Q,x,%) = (hR,Q, ha + y, h).

Moreover, given that h~'es = es, it follows that the Poisson vector + is invariant.
Using this, and the above expression for the tangent lift, it is immediate to see that
both the rolling (4.1) and rubber (4.2) constraints are invariant. Similarly, one
checks that the kinetic and potential energies of the Lagrangian (4.3) are invariant
so the conditions (i) and (ii) in Definition 2.1 hold. In order to check that the
condition (iii) in Definition 2.1 also holds, note that the Lie algebra se(2) in our
representation is spanned by the 4 x 4 matrices

1
0 0

51: 0 752:
0

0

The infinitesimal generators of £; and & are vector fields on ) that correspond to
pure translations along the x; and x5 axes respectively, which violate the rolling
constraint (4.1). On the other hand, the infinitesimal generator of ¢3 is a vector field
on @ having constant ws = 1, which violates the rubber constraint (4.1). Hence,
the group orbit is transversal to the constraint distribution and, by a dimension
count, the condition (iii) in Definition 2.1 is also verified. O

The shape space S = (SO(3) x R?)/SE(2) is diffeomorphic to the two dimen-
sional sphere S? and the orbit projection is

(45) m:S0(3) x R* = 82, (R,z) — 7,
where we recall that 7y = R~les € R? is the Poisson vector. Note that we realise
822{7:(717’72a73)t€R3 : 712—’—722"")’?%:1}

It follows from our discussion in section 2 that the reduced equations of motion are
defined on the cotangent bundle T*S2.

THEOREM 4.1. The problem of the rubber Routh sphere that rolls without slip-
ping or spinning on the plane is ¢-simple with ¢: S2 — R given by

$(7) = =3 (173 + Is(1 = 23) + m(b+ £1)°).
It follows from item (i) in Theorem 2.1 that the reduced equations on 7*S?
possess the invariant measure:
B 1
CVLhE LA 3) +mb+ 573)2%
where v is the Liouville volume form on 7*S?. Additionally, item (ii) in Theorem 2.1

implies that the reduced system on T*S? is conformally Hamiltonian with time
reparametrisation:

I

dt = \/Iw§ + I3(1 — ~3) + m(b + Ly3)2dr.
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REMARK 4.2. The invariant measure for the problem was first given by Borisov
and Mamaev in [5] (see also [7]). The Hamiltonisation of the system may be de-
duced as a consequence of the celebrated Chaplygin’s Reducing Multiplier Theo-
rem [9] since the shape space S? has dimension 2. For the multi-dimensional version
of the problem considered below, these properties can no longer be deduced from
known results and we will rely on Theorem 2.1.

We do not present a proof of Theorem 4.1 since it is a particular instance of
Theorem 4.2 below.

4.2. The nD case. We consider a multi-dimensional generalisation of the
problem considered in the previous section. Namely, an n-dimensional rigid body
of spherical shape, with axially symmetric distribution of mass, that rolls without
slipping or spinning on a horizontal (with respect to gravity) hyperplane on R™.

The orientation of the sphere is determined by a rotation matrix R € SO(n)
that specifies the attitude of the sphere by relating a body fixed frame {E1, ..., E,}

and a space frame {ej,...,e,}. In analogy with the 3D case, we assume that
the rolling takes place on the hyperplane spanned by {e1,...,e,—1} and that the
geometric centre O of the sphere has space coordinates x = (x1,...,Z,—1,b), where

the constant b > 0 is the sphere’s radius. We will also assume, as in the 3D case,
that the body frame has its origin at the centre of mass C and FE, is aligned
with the symmetry axis of the sphere. The orientation of E, is such that the
body coordinates of O are (0,...,0,—¢). The configuration space of the problem is
Q = SO(n) x R*~!. In analogy to the 3D case, we will work with the embedding
of @ in SO(n) x R™ defined by the holonomic constraint x,, = b.

As is well known, for n > 3 the angular velocity can no longer be represented
as a vector, but rather as an element in the Lie algebra so(n) of SO(n). We denote
by w € so(n) the representation of the angular velocity in the space frame and by
) € s0(n) its representation in the body frame. These are related to the right and
left trivialisation of the tangent vector R € TrSO(n) by

w=RR™! € so0(n),
Q=R'Reso(n),

and satisfy w = Adr{), where Adg : so(n) — so(n) is the adjoint operator.

The constraint of rolling without slipping is that the contact point of the sphere
with the hyperplane x,, = 0 has zero velocity at every time, and is expressed as the
following natural generalisation of (4.1):

T = bwe,,
(4.6) . .
or, equivalently, & = bRy,
where @ = (i1,...,4,_1,0)% and the Poisson vector v = (v1,...,7,)" € R™ is now

given by v := R~ 'e,. On the other hand, the generalisation of the no-spin rubber
constraint (4.2) is that the space representation of the angular velocity satisfies

(4.7) wi; =0, forall 4,j=1,...,n—1
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In other words, w has the form

Win

Wn—1
—Win ... —Wp-1 ‘ 0

where 0 above denotes the (n — 1) x (n — 1) zero matrix. The constraints (4.7)
were considered by Jovanovié [27] in the treatment of the multi-dimensional rubber
Chaplygin sphere. They generalise the 3D rubber constraint (4.2) in the following
sense: rotations of the sphere that occur on 2-dimensional planes that do not
contain the normal vector e, to the hyperplane where the rolling takes place are
forbidden.

Our next step is to give a multi-dimensional generalisation of the Lagrangian
(4.3). For this matter we recall that for an n-dimensional rigid body the inertia
tensor I of the body is an operator

(4.8) I: so(n) — so(n), I(Q) = IQ + QJ,

where J is the so-called mass tensor of the body, which is a symmetric and positive
definite n x n matrix (see e.g. [34]). Our assumption that the mass distribution
is axially symmetric, and that the E, axis of the body frame is aligned with the
symmetry axis, implies that, with respect to our choice of body frame, the mass
tensor has the form

(49) J:diag(Jl,...,Jl,Jn), Ji,J, > 0.

Similarly to our treatment of the 3D case, we shall represent elements of T'Q) =
T(SO(n) x R"~1) as quadruples (R, ), z,%) € SO(n) x s0(n) x R™ x R™ with z,, = b
and &, = 0. This is done by identifying TSO(n) = SO(n) x so(n) via the left
trivialisation, and by embedding TR"~! — R™ x R", putting z,, = b and i, = 0.
The Lagrangian of the multi-dimensional system L: T'Q — R is

1
(4.10) LULaniy:iﬂﬂAﬂK+JgHR4r+%QE;WA—mg%%,
where || - || is the euclidean norm in R", & = (&1,...,4,-1,0)" and (-,-), is the
Killing metric in so(n):

(amnz—éu@m.

In (4.10) we continue to denote by ¢ the distance of the centre of mass C' to the
geometric centre O.

In analogy to the 3D case, there is a symmetry action of the group G = SE(n—1)
which we represent as the Lie subgroup of GL(n + 1,R) consisting of matrices of
the form

Y1
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= 0
and  h= h 0 | eSO(n), with heSO(2).
0 0 1
The action of g € SE(n — 1) given above on an element (R,z) € SO(n) x R™ looks
identical to Eq. (4.4), namely

(4.11) g-(R,z) = (hR,hx +y).

As in the 3D case, the action restricts to @) since the holonomic constraint z,, = b
is invariant. In analogy with Proposition 4.1 we have:

PROPOSITION 4.2. The n-dimensional generalisation of the problem of the
rubber Routh sphere that rolls without slipping or spinning on a hyperplane is a
Chaplgyin system with G = SE(n — 1) acting on Q via Eq. (4.11).

The proof is analogous to that of Proposition 4.1 and we omit the details. Also,
in analogy with Remark 4.1, we mention that the conclusion of Proposition 4.2 is
independent of our symmetry assumptions on the mass distribution of the sphere
and also applies to general rubber multi-dimensional convex rigid bodies that roll
without slipping or spinning on a horizontal hyperplane in R™.

The shape space of the system S = (SO(n) x R"~1)/SE(n — 1) is diffeomorphic
to the n — 1 dimensional sphere S"~!, and the orbit projection (4.5), valid in 3D,
generalises automatically to

7:90(n) x R"™ ' = 8" 1 (R, x) 7,

where we recall that in the Poisson vector v = R7le,, € R™, and we realise S*~!
by its embedding in R™:

(4.12) St ={y=,..s M) ER" t 4i 4+ =1}.

As a consequence of our discussion in section 2, the G = SE(n—1)-reduced equations
of motion live on the cotangent bundle T*S"~!. We now state our main result

which, in view of Theorem 2.1, implies that the multi-dimensional rubber Routh
sphere has an invariant measure and allows a Hamiltonisation.

THEOREM 4.2. The n-dimensional rubber Routh sphere that rolls without slip-
ping or spinning on a horizontal hyperplane is ¢-simple with ¢: S*~! — R given by

(4.13) d(7) = =22y + (Jo — T2 + mb+ yn)?).

REMARK 4.3. The conclusion of the above theorem is consistent with Theo-
rem 4.1 by noting that, in the 3D case, the principal moments of inertia I, I3 are
related to the entries Ji, J3 of the mass tensor J by the relations Iy = J; + J3 and
I3 =2J;.

As a direct consequence of Theorem 2.1 and Theorem 4.2 we obtain:

COROLLARY 4.1. The SE(n — 1)-reduced equations on T*S"~1 of the n-dimen-
stonal rubber Routh sphere that rolls without slipping or spinning on a horizontal
hyperplane possess the invariant measure:

p= 251+ (Jo — )2 +mb+ b)) T v,
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where v is the Liouville volume form on T*S™ 1. Moreover, such reduced system
is conformally Hamiltonian with time reparametrisation:

dt = \/2Jy + (J — J1)72 + m(b + by,)2dr.

PROOF. The conclusion about the invariant measure follows from Eq. (4.13)
and item (i) of Theorem 2.1 (putting » = n — 1). The conformally Hamiltonian
structure of the equations of motion follows from item (ii) of Theorem 2.1. O

The rest of the paper is devoted to proving Theorem 4.2 via a coordinate
calculation. The strategy is to follow the steps outlined in section 2.2 to compute the
gyroscopic coefficients C'fj We will work with the local coordinates® (sy,. .., 5,_1)

valid on the northern Siﬁl, or southern S” ™!, hemispheres of S~ by the relations:

_ _ _ 2 2
Y1 = S1, ey Yn—1 = Sn—1, Wn*i\/lisli"'isnfl‘

Associated to the embedding of S”~! in R", there is an embedding of T'S"~! in
R™ x R™ given by
(4.14) TS ! = {(v,v) eER*xR" : |4] =1, (v,v)r~ =0},

where (-, -)grn is the Euclidean scalar product in R™. Under the above identification,

and regardless of the hemisphere under consideration, the coordinate vector fields

8%1- are given in terms of the canonical vectors Ey, ..., E,, by

0 :El_lEna i1=1,....,n—1.

Osi T

For the rest of the section, given (R, x) € SO(n) x R™, we identify
T(RJ«)(SO(TL) X Rn) = 50(%) X Rn’

using the left trivialisation of TrSO(n) and the usual identification T,R™ = R™.
Therefore, a vector field on @) is represented as an assignment that to a pair (R, z) €
SO(n) x R™ with z,, = b, associates a pair ({(R,z),V(R,z)) € so(n) x R™ that
satisfies V,,(R, ) = 0. We will also find it useful to denote

(4.15)

yAz:=yz' — zy' €s0(n), for column vectors y,z € R".

In accordance with the notation of section 2.2 we denote by h; the horizontal
lift of the coordinate vector field %. Namely,

0
hi(R, ) :=h (—)
(R, x) OI(R,x) s,
The following proposition gives an explicit expression for h;(R, z).
PROPOSITION 4.3. Let v € %% and (R,x) € n~'(v), (i.e. v = R 'e,). For
i=1,...,n—1, the horizontal lift

(4.16)  hi(R.z) = (7 A (Ei - %En),bR( — B+ %En)) € so(n) x R™.

n

6Throughout this section, and in contrast with our notation in section 2, we use sub-indices
instead of super-indices on the coordinates on S.
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PROOF. The rubber constraints (4.7) imply w = e, Ay for a vector y € R”
that may be assumed to be perpendicular to e,. Hence,

0= Adg-1(en Ay) = (R Mea) A (R7y) =7 Av

where v = R~ 1y is perpendicular to 7. On the other hand, differentiating v =
R~ le, gives ¥ = —Qy. Whence, ¥ = —(y A v)y = v and we conclude that

(4.17) Q=yA7.

The rolling constraint (4.6) then implies & = bR(y A %)y = —bR%. Therefore, we
get the following expression for the horizontal lift

(418) hor(R,m) (’Y) = ('Y A7, _bR’Y) € 50(71) X Rn?
where 4 € T,S"~! and (R, z) € 7~ !(v). The result then follows by using (4.15). O

The following lemma gives expressions that involve the horizontal lifts h; and
the kinetic energy metric (-, -) that will be used below to compute the gyroscopic
coefficients C’fj Tts proof is postponed to Appendix A.

LEmMA 4.1. Fori,j,k,l €{1,...,n— 1} we have
(419) K = (h, ) = (2J1 + (Jn — J1)V2 + m(b+ ,)) 0k

+—(J1;éJﬁ-%Jn—-J1+4n((;;-+€>2%-j;)>7k7h

b
(120)  (lhis Rl ) = (o = Dy me (€4 ) )0 = ),
where §;; is the Kronecker delta.

We are now ready to prove the following lemma that gives explicit expressions
for the gyroscopic coefficients C’fj in our coordinates.

LEMMA 4.2. Fori,j,k € {1,...,n— 1} we have
(Jn -1+ m€(£ + %))(vjéik — viéjk)
2Jl + (Jn - Jl)’yr% + m(b+ g’}/n)2

(4.21) ck =

Proor. Using
n—1 n—1

> (vi0ik — Yidjr)om = Y0 — vibn  and Y (ik — vidie)mn =0,
k=1 k=1

it follows, in view of (4.19) and (4.20), that ij as given by (4.21) satisfy

n—1
ZKMOZ]?]:«[h’Mh]Lh’l»a Z7jak7l€{17an_1}
k=1

In other words, the expressions (4.21) for ij are the unique solution to the sys-
tem (2.2) that determines the gyroscopic coefficients. O

We are now ready to present:
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PROOF OF THEOREM 4.2. Lemma 4.2 implies
o 0 (Jn = J1 +me(C+ L)) B B
7 (55 5;) ( )

4.22 — ) = . — g
(4.22) ds;” 0s; 2J1 + (Jp — J1)72 + m(b + lyy,)? % Ds; s 0s;
1<2,5<n—1.

On the other hand, considering that v, = i\/l —s2—---—s2_ |, we have

OVn/0sk = —sk/¥m for 1 < k < m—1, and hence, from the expression (4.13) for
¢: S""! — R we compute
96 Jn = Ji+ml(l+ )
dsi <2J1 + (Jn = J1)V2 +m(b+ lyn)?
Therefore, Eq. (4.22) may be rewritten as

g 0 dp 0 ¢ 0
<3si’8isj) - Bisjasi ~ Os; Bi(sj’
The above expression, together with the tensorial properties of 7, shows that the

¢-simplicity condition (2.9) holds on the open dense subset of S"~1 where 7, # 0.
By continuity, it holds on all of S®~!. O

)Sk, 1<k<n—-1

N

1,7 <n—1.

REMARK 4.4. We note that the notion of ¢-simplicity, and hence also our
conclusions about measure preservation and Hamiltonisation, only depend on the
kinetic energy and the constraints and do not involve the gravitational potential.
This is a consequence of the weak Noetherianity of these concepts (see [22]).

4.3. First integrals. In this section we use Theorem 3.1 to prove that
(4.23) Fij = V2Ji 4+ (Jo = T2 +mlb+ )2 Qg 1<, j <n—1,

are first integrals of the system. In 3D, there is only one such integral whose
existence has been proven by Borisov and Mamaev [5] and, considering that T*S?
has 2 degrees of freedom, it is sufficient to conclude integrability of the problem.
The question of integrability in nD will be addressed in a forthcoming publication.

We begin by noting that, in view of expression (4.18) for the horizontal lift of
4 € T,,S"! and the expression for the Lagrangian (4.10), the reduced Lagrangian
L: TS ! = Ris given by

LA = 3T AN AN + F N0+ 0y)F = Gy = mlGrn,

which, using the specific form of the inertia tensor I given by Eqs. (4.8) and (4.9),
simplifies to

. 1 .
(4.24)  L(1.) = 5@+ (Jn = J) v+ mb + L)) |3
n %(Jn — T+ m2)AE — mlGry,

where we have repeatedly used the condition (7,%)g» = 0, which holds in view of
our realisation (4.14) of the tangent bundle 7S™~!.

Apart from the G = SE(n — 1) action that allows us to reduce the dynamics to
T*S™ 1, the system possesses additional symmetries due to our assumptions on the
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mass distribution of the sphere. These correspond to rotations of the body frame
that preserve the symmetry axis E,,. The symmetry group is hence A = SO(n — 1)
and the action of @ € SO(n — 1) on (R, z) € (SO(n),x) is given by

(4.25) a-(R,z)=(Ra™',2), where a:= ( g (1) ) € SO(n).

The tangent lift of this action on (R, Q,z, &) € SO(n) x so(n) x R™ x R™ is
a-(R,Q x,2)=(Rat Ad,Q,z, @),

Using that a~'Ja = J in view of Eq. (4.9), one may check that the Lagrangian (4.10)
is invariant. The same is true about the constraints (4.6) and (4.7) so the dynamics
is A-equivariant.

A crucial observation is that the A-action defined by Eq. (4.25) commutes
with the G-action defined by Eq. (4.4), so there is a well defined A-action on the
shape space S"~1. As may be easily shown from Eq. (4.25) and the definition of
v = R 'e,, such an action is by rotations of the sphere S”~! that fix the vertical
axis. Namely, with the same notation for a and @ as above: @-v = ay, v € S~ 1,
where we recall that S"~1 is realised by its embedding in R™ (4.12). In particular,
this action fixes the north and south pole of S»~! and therefore is non-free.

The tangent lift of this action to T'S"~!is a-(7y, ) = (a7, a¥) and it is immediate
to check that it leaves the reduced Lagrangian (4.24) invariant. It is also clear that
the function ¢ given by (4.13) is A-invariant so the hypothesis to apply Theorem 3.1
holds.

The Lie algebra a = so(n — 1) is naturally identified with the set of n x n
skew-symmetric matrices £ € so(n) such that £E,, = 0. The infinitesimal generator
of B; ANEj € a,1<1i,j<n—1,is the vector field on S"~! given by

(Ei A Ej)Snfl(’}/) = (El N Ej)’y € TVS"_l.

Using the expression (4.24) for the reduced Lagrangian, we compute the action
of the rescaled tangent bundle momentum map 7 : TS" ! — so(n — 1)* defined by
(3.1) on E; A E; € so(n — 1) to be given by

T (VA (Ei A Ej) = exp(9) [(2T1 + (Jn = Ji)vi + m(b + o)) (B A Ej)7, 5 )en
+ m(Jn —Ji+ m€2)7n<(El A Ej)'% En)]R”]

= V2J1+ (Jo = T2 +m(b+ 0va)2 (a7 — 57%)s
where (-, -)rn denotes the euclidean inner product in R™ and in the second equality
we have used the specific form (4.13) of the function ¢. The quantity 4;v; — Y7
is the i-j entry of the matrix —y A 4, which by Eq. (4.17) coincides with —€.
Therefore, by Theorem 3.1, the functions F;; given by (4.23) are first integrals of
the system as claimed.

Appendix A. Proof of Lemma 4.1

A.1. Proof of (4.19). The proof is a calculation for which we outline the
details. Taking into account the form of the kinetic energy metric of the La-
grangian (4.10), and the expressions (4.16) for the horizontal lifts h;, it follows
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that for k,1 € {1,...,n — 1} we may write

(A1) (A, i) = Agr + B,
where
Ay = H(M (Ek _ %En))w\ (El _ %En))ﬁ

By : = m<b( — B+ %’“En) Oy A <Ek - %’“E,JEn

n

b( B+ %En) F oA (El _ JJE”)E”)

n R™

We first simplify the expression of Ay;. Using the expressions (4.8) and (4.9)
for the inertia tensor, one verifies that

(A.2) ]I(’Y/\ (Ek—EEn)> =2J; (’Y+MEH> A (Ek—FmEn),
Tn 2Jl 2J1’7n

7 =1,...,n— 1. The above expression, together with the general identity

(A.3) (u1 Awr,ug Ava) e = (U1, ug)rn (V1,v2)Re — (U1, V)R (U2, V1)RA,

that holds for wi, vy, us,ve € R”, leads to

J1+ Iy
(A.4) A = (201 + (Jo — J)V2)0m + ( 1 S J1>'yk*yl.
n
On the other hand, we have
D —~E — 0
(A.5) v A (EJ . En>En % En ~ mBs = 2,
SO we may write
_ b Vi
(A6) By, = m((ﬁ + %)VkEn (b + f’yn)Ek Eq/fn’)/,
a
(ﬁ + f)%En —(a+byw)E — 517)
Tn Yn /R
b 2 2
_ 2 9 £
=m(b+ lyn) 0 + m(<% + E) + %%)%%.

Substitution of (A.4) and (A.6) into (A.1) proves (4.19).

A.2. Proof of (4.20). The crucial part of the proof is to obtain the following
expression for the Jacobi-Lie bracket of the vector fields h; and h;:

(A7) [hihy)(R,2) = ((E - lEn) A (Ej - ﬁEn),o) € so(n) x R™,
Tn Tn
i,7 =1,...,n— 1. Accept that this is the case for the moment. Then, similar to
the calculation performed in section A.1, we have
(A.8) (s hy), ) = Asji + Biju,
where

b= (o (5 23)) (5 ) (5~ 25),

n
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Biji = m(é(Ei _ ﬁEn) A (Ej _ ﬁEn)En,
T n
b( B+ lEn) FOyA (El _ lEn)En) .
Tn Tn R™

On the one hand, using again (A.2) and (A.3), one may simplify
(A.9) Aiji = (Jn = J1) (7500 — 7i651)-
On the other hand, using
. . 1
(B - %En) A (B - j—JEn)En = —(WE; — wE),

together with (A.5), allows one to write

Biji = :ij ('ViEj - B, (f + %)’YIEn - (b + f%)El - E%W)Rn

= m((f + %) (’yjéil — %-(SIJ-).

Substitution of the above expression, together with (A.9), onto (A.8) proves (4.20).

Hence, to complete the proof, it only remains to establish the validity of (A.7).
The formula clearly holds for i = j, so below we assume that ¢ # j. As a conse-
quence of the independence of h; on x, we have

_ Vi i
[hl,h]](R,.’E) - ({'7/\ (Ez 'YnEn>’,Y/\ ( 7 ’ynEn>:|SO(n)’W”>7

where [-,Jso(n) is the Lie bracket of vector fields on SO(n) (written in the left
trivialisation as usual) and W;; € R"™ has components

(a10) WP =by A (B - %En) (= Ri + %Rkn)
by A (Ej - %EH) ( ~ R+ %Rkn)7

k=1,...,n—1, Wi(j") = 0, where Ry; denotes the k- entry of the matrix R € SO(n).
On the one hand, Garcfa-Naranjo and Marrero [22, Lemma 4.4] compute:
o (- 28) 0 (5, 25, = (5 - 28) (- 25)
o Tn S0(n) In Tn

which establishes the correctness of the first entry of (A.7).

On the other hand, we shall prove that
(A11) A (EZ - lEn> [— Ry; + 7—]R;m} = —]; vy, k=1,...,n—1
Tn Tn Tn

Considering that a similar formula holds when the roles of 7 and j are interchanged,
it follows from (A.10) that W;; vanishes and Eq. (A.7) indeed holds. The calcula-
tions to establish (A.11) rely on the following identity whose proof may be found
in Garcia-Naranjo and Marrero [22, Lemma B.1]:

(A12) Ei/\Ej[Rkl] = Rkiéjl _Rkjéih 1,7, k,l € {1,...7’)’L}.
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Using (A.12), and writing v = ;" wE; and v = Ry, it is straightforward to
obtain (recall that we assume that i,j,k € {1,...,n — 1} and i # j):

i
(A.13) ¥ N Ei[Ryj] = —vjRpi =7 NE; [TRM}’ v N\ Ep[Ryj] = —vjRien.

With a little bit more work, and using >, | Ryt = >y RiiRni = kn = 0, one
obtains

(A.14) vy A E, [ﬁRkn} = *lngn — ’}/jR]m.
’Y”l ry'n,
Identities (A.13) and (A.14) imply that (A.11) holds.
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XAMUWJITOHN3AIINJA, OUYBAIBE MEPE 1
ITPB MHTEI'PAJIV BUINTEJMMEH3NOHE
T'YMEHE PYTOBE C®EPE

PE3UME. Pazmarpamo BUIIEMMEH3NOHO YOUINITEHE IPobiieMa KOTPIbamba, cde-
pe, ca OCHOCHMETPUIHOM DAaCIIOJEJOM Mace, 0e3 Kju3arma M pOTallfje 110 PaBHHU.
Kopucrehin najuosuje pesynrare uz Garcia-Naranjo [21] u Garcia-Naranjo and
Marrero [22], nmokazaiau cMo Jia pejlyKOBaHe jelHaunHe KPeTalba NMa]y UHBAPUjAHT-
HY Mepy U Jia Ce MOTY TIPEJICTABUTH Y XaMUJITOHOBOM 00/IMKY momohy Hamaurumnose
MeTO/Ie PEeIYKITMOHOT MHOYXKUTE ha. Takohe cMO J0Ka3a/I1 OIIIITH PE3YITAT O TOCTO-
jamy npBuX mHTerpaJa 3a oapehene Xamumiaronnzabuiane YammruHose cucreme ca
YHYTDAIILUM CHUMeTpHjaMa KOju ce KOPHCTH 3a ojpeljuBame OUyBaHUX BEJINYNHA
pobJieMa.
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