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Multiple eigenvalues for the Steklov problem
in a domain with a small hole. A functional
analytic approach
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Abstract. Let α ∈ ]0, 1[. Let Ωo be a bounded open domain of Rn of class C1,α. Let νΩo denote the outward unit normal to ∂Ωo.
We assume that the Steklov problem ∆u = 0 in Ωo, ∂u

∂νΩo = λu on ∂Ωo has a multiple eigenvalue λ̃ of multiplicity r. Then we

consider an annular domain Ω(ε) obtained by removing from Ωo a small cavity of class C1,α and size ε > 0, and we show that
under appropriate assumptions each elementary symmetric function of r eigenvalues of the Steklov problem ∆u = 0 in Ω(ε),
∂u

∂νΩ(ε)
= λu on ∂Ω(ε) which converge to λ̃ as ε tend to zero, equals real a analytic function defined in an open neighborhood

of (0, 0) in R2 and computed at the point (ε, δ2,nε log ε) for ε > 0 small enough. Here νΩ(ε) denotes the outward unit normal to
∂Ω(ε), and δ2,2 ≡ 1 and δ2,n ≡ 0 if n > 3. Such a result is an extension to multiple eigenvalues of a previous result obtained
for simple eigenvalues in collaboration with S. Gryshchuk.

Keywords: Multiple Steklov eigenvalues and eigenfunctions, singularly perturbed domain, Laplace operator, real analytic
continuation

1. Introduction

In this paper we consider a Steklov eigenvalue problem in a domain perforated by a hole. First we
introduce the problem with no hole, and then we consider the case with the hole.

We consider an open bounded connected subset of Ωo of Rn of class C1,α, for some α ∈ ]0, 1[, such
that 0 ∈ Ωo and such that the complement in Rn of the closure cl Ωo is also connected. Then we consider
the Steklov eigenvalue problem

∆u = 0 in Ωo,
∂u
∂νΩo

= λu on ∂Ωo. (1.1)

Here νΩo denotes the outward unit normal to ∂Ωo. By definition, a Steklov eigenvalue for ∆ in Ωo is
a real number λ for which problem (1.1) has a nontrivial solution in C1,α(cl Ωo). As is well known,
problem (1.1) has an increasing sequence of eigenvalues {λ j[Ω

o]} j∈N, and we write each eigenvalue as
many times as its multiplicity (cf. e.g., Henrot [13, p. 113]). Here N denotes the set of natural numbers
including 0. In this paper, we assume that there exists t ∈ N \ {0} such that the eigenvalue λ̃ ≡ λt[Ω
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has multiplicity r ∈ N \ {0} and that

λt−1

[
Ωo] < λt

[
Ωo] = · · · = λt+r−1

[
Ωo] < λt+r

[
Ωo].

Then problem (1.1) has an eigenspace of solutions u ∈ C1,α(cl Ωo) of dimension r.
Next we make a hole in the domain Ωo. Namely, we consider another open bounded connected subset

Ωi of Rn of class C1,α such that 0 ∈ Ωi and such that the complement in Rn of cl Ωi is also connected,
and we take ε0 ∈ ]0, 1[ such that ε cl Ωi ⊆ Ωo for |ε| 6 ε0, and we consider the annular (or perforated)
domain Ω(ε) ≡ Ωo \ ε cl Ωi. Obviously, ∂Ω(ε) = (ε∂Ωi) ∪ ∂Ωo. For each ε ∈ ]0, ε0[, we consider the
Steklov eigenvalue problem

∆u = 0 in Ω(ε),
∂u

∂νΩ(ε)
= λu on ∂Ω(ε). (1.2)

Here νΩ(ε) denotes the outward unit normal to ∂Ω(ε). By definition, a Steklov eigenvalue for ∆ in Ω(ε)
is a real number λ for which problem (1.2) has a nontrivial solution. As is well known, problem (1.2)
has an increasing sequence of Steklov eigenvalues {λ j[Ω(ε)]} j∈N, and we write each Steklov eigenvalue
as many times as its multiplicity. We are interested in the behaviour of the eigenvalues of (1.2) as ε tends
to 0. This type of problem has been considered for a long time. We mention the explicit computations of
Dittmar [6] in a circular annulus. Then we mention Nazarov [29], who has proved that the eigenvalues
of {λ j[Ω(ε)]} j∈N tend to those of {λ j[Ω

o]} j∈N as ε tends to zero and who has computed corresponding
complete asymptotic expansions.

We also mention the asymptotic expansions for singularly perturbed domains with a peak of
Nazarov [27, 28], and the paper of Nazarov and Taskinen [30] on the spectrum in a domain with a
peak. We also mention the work of Chiado Piat, Nazarov, Piatnitski [3], Douanla [8], Mel’nik [24],
Pastukhova [31], Vanninathan [36], which concern the case of periodic perforations and who aim at
understanding the limiting behaviour of the eigenvalues and the existence of asymptotic expansions.

In this paper instead, we generalize the work of [12] with Gryshchuk in the case of simple eigenvalues
and by following a pattern for problems with multiple eigenvalues of Lamberti and the author in [18],
of Lamberti [17], and of Buoso and Lamberti [1] for regular perturbations, we show that there exist ε∗,
ι∗ ∈ ]0,+∞[ and real analytic functions Λt,1(·, ·), . . . ,Λt,r(·, ·) from ]−ε∗, ε∗[×]−ι∗, ι∗[ to R such that

Λt,1(ε, δ2,nε log ε) =

r∑
j1=1

λt+ j1−1

[
Ω(ε)

]
,

Λt,2(ε, δ2,nε log ε) =
∑

j1, j2=1,...,r
j1< j2

λt+ j1−1

[
Ω(ε)

]
· λt+ j2−1

[
Ω(ε)

]
,

. . . . . . . . .

Λt,r−1(ε, δ2,nε log ε) =
∑

j1,..., jr=1,...,r
j1<···< jr−1

λt+ j1−1

[
Ω(ε)

]
· · · · · λt+ jr−1−1

[
Ω(ε)

]
,

Λt,r(ε, δ2,nε log ε) = λ1

[
Ω(ε)

]
· · · · · λr

[
Ω(ε)

]
,

(1.3)

for ε ∈ ]0, ε∗[ (cf. Theorem 11.1). Here δ2,n ≡ 1 if n = 2, δ2,n ≡ 0 if n > 3.
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By (1.3), if n = 2, then (1.3) implies that the following convergent series expansion holds

∑
j1,..., js=1,...,r

j1<···< js

λt+ j1−1

[
Ω(ε)

]
· · · · · λt+ js−1

[
Ω(ε)

]
=

∑
β≡(β1,β2)∈N2

1

β!
DβΛs[0, 0]εβ1(ε log ε)β2

for ε > 0 sufficiently small and for all s ∈ {1, . . . , r}. Instead, if n > 3, then possibly shrinking ε∗, the
s-th elementary symmetric functions of the eigenvalues λt+l−1[Ω(ε)] for l ∈ {1, . . . , r} can be continued
real analytically in ε ∈ ]−ε∗, ε∗[, and the following convergent series expansion holds

∑
j1,..., js=1,...,r

j1<···< js

λt+ j1−1

[
Ω(ε)

]
· · · · · λt+ js−1

[
Ω(ε)

]
=

∞∑
l=0

1

l!
∂l
εΛs[0, 0]ε l

for ε > 0 sufficiently small and for all s ∈ {1, . . . , r}. Here ∂l
ε denotes a partial differentiation with

respect to the first variable of Λs. In case n > 3, we also prove that each λ j[Ω(ε)] can be continued
analytically to (small) negative values of ε.

In our analysis we reduce our problem to a system of integral equations, and we mention that the
reduction of the Steklov problem to integral equations has also been exploited by Kuznetsov and Mo-
tygin [16], and by Shamma [35]. In this paper, we have considered the case of a single hole. By the
same ideas one could consider the case with a finite number of holes, at the price of having to consider
systems of integral equations with more equations. One could also consider our problem under weaker
regularity assumptions on the domain as long as the spectrum is discrete as in the case of Lipschitz sets.
The author believes that the ideas of the present paper could be applied as long as the corresponding
integral equations still correspond to Fredholm operators.

This paper is organized as follows. Section 2 is a section of preliminaries. In Section 3, we introduce
some basic notation and results in potential theory. In Section 4, we formulate the Steklov eigenvalue
problem on a domain as an eigenvalue problem for a compact selfadjoint operator in a Hilbert function
space on the boundary. In Section 5, we formulate the Steklov eigenvalue problem in Ω(ε) as an eigen-
value problem for a compact selfadjoint operator Ãε in the space L2(∂Ωi)×L2(∂Ω0) with a specific scalar
product Qε . In Section 6, we show that the family of scalar products {Qε}ε∈ ]0,ε0[ can be continued ana-
lytically for negative values of ε. In Section 7, we prove that the operator Ãε can be defined implicitly. In
Section 8, we prove the real analytic representation formula for the family {Ãε}ε∈ ]0,ε0[ of Theorem 8.1.
In Section 9, we prove Theorem 9.5 on the representation of the elementary symmetric functions of the
eigenvalues of the operators of the family {Ãε}ε∈ ]0,ε0[ which split from a given multiple eigenvalue. In
Section 10, we present the above mentioned continuity result for the Steklov eigenvalues of Nazarov
[27, Thm. 2.1, p. 288]. In Section 11, we prove our main result Theorem 11.1 on the representation of
the elementary symmetric functions of the Steklov eigenvalues.

2. Preliminaries and notation

We denote the norm on a normed space X by ‖ · ‖X . Let X and Y be normed spaces. We endow the
product space X×Y with the norm defined by ‖(x, y)‖X×Y ≡ ‖x‖X +‖y‖Y ∀(x, y) ∈ X×Y , while we use
the Euclidean norm for Rn. We denote by L(X,Y) the normed space of linear and continuous maps from
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X to Y , equipped with its usual norm of the uniform convergence on the unit sphere of X (and we set
L(X) ≡ L(X, X)). If T is a linear map from X to Y , then we set Im T ≡ T (X). For standard definitions
of Calculus in normed spaces, we refer to Cartan [2] and to Prodi and Ambrosetti [32]. The symbol N
denotes the set of natural numbers including 0. Throughout the paper,

n ∈ N \ {0, 1}.

A dot ‘·’ denotes the inner product in Rn. Let D ⊆ Rn. Then clD denotes the closure of D and ∂D
denotes the boundary of D. For all R > 0, x ∈ Rn, x j denotes the j-th coordinate of x, |x| denotes the
Euclidean modulus of x in Rn, and Bn(x,R) denotes the ball {y ∈ Rn : |x − y| < R}. Let Ω be an open
subset of Rn. The space of m times continuously differentiable real-valued functions on Ω is denoted
by Cm(Ω,R), or more simply by Cm(Ω). Let r ∈ N \ {0}, f ∈ (Cm(Ω))r. The s-th component of f is
denoted fs and the Jacobian matrix of f is denoted D f . Let η ≡ (η1, . . . , ηn) ∈ Nn, |η| ≡ η1 + · · ·+ ηn.
Then Dη f denotes ∂|η| f

∂x
η1
1 ...∂xηn

n
. The subspace of Cm(Ω) of those functions f such that f and its derivatives

Dη f of order |η| 6 m can be extended with continuity to cl Ω is denoted Cm(cl Ω). The subspace of
Cm(cl Ω) whose functions have m-th order derivatives that are Hölder continuous with exponent α ∈
]0, 1] is denoted Cm,α(cl Ω) (cf. e.g. Gilbarg and Trudinger [11]). Now let Ω be a bounded open subset
of Rn. Then Cm(cl Ω) endowed with the norm ‖ f‖Cm(cl Ω) ≡

∑
|η|6m supcl Ω |Dη f | is a Banach space. If

f ∈ C0,α(cl Ω), then its Hölder constant | f : Ω|α is defined as sup{ | f (x)− f (y)|
|x−y|α : x, y ∈ cl Ω, x 6= y}. The

space Cm,α(cl Ω), equipped with its usual norm ‖ f‖Cm,α(cl Ω) = ‖ f‖Cm(cl Ω) +
∑
|η|=m |Dη f : Ω|α, is well-

known to be a Banach space. We say that a bounded open subset of Rn is of class Cm or of class Cm,α, if
its closure is a manifold with boundary imbedded in Rn of class Cm or Cm,α, respectively (cf. e.g., Gilbarg
and Trudinger [11, §6.2]). For standard properties of the functions of class Cm,α both on a domain of Rn

or on a manifold imbedded in Rn we refer to Gilbarg and Trudinger [11] (see also [20, §2, Lem. 3.1,
4.26, Thm. 4.28], [23, §2]). We retain the standard notation of Lp spaces and of corresponding norms.
Also, we find convenient to set

−
∫
∂Ω
≡ 1

mn−1(∂Ω)

∫
∂Ω
, Y0 ≡

{
f ∈ Y :

∫
∂Ω

f dσ = 0

}
, χ∂Ω(x) ≡ 1 ∀x ∈ ∂Ω,

where mn−1 is the (n − 1)-dmensional measure of ∂Ω and Y is a vector subspace of L1(∂Ω). We note
that throughout the paper ‘analytic’ means ‘real analytic’. For the definition and properties of analytic
operators, we refer to Deimling [5, p. 150] and to Prodi Ambrosetti [32, p. 89].

3. Some basic facts in potential theory

We denote by S n the function of Rn \ {0} to R defined by

S 2(ξ) ≡ 1

s2
log |ξ| ∀ξ ∈ R2 \ {0}, S n(ξ) ≡ 1

(2− n)sn
|ξ|2−n ∀ξ ∈ Rn \ {0}, if n > 2,

where sn denotes the (n − 1) dimensional measure of ∂Bn(0, 1) for n > 2. S n is well-known to be the
fundamental solution of the Laplace operator. Now let Ω be an open bounded connected subset of Rn of
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class C1,α for some α ∈ ]0, 1[. Let νΩ denote the outward unit normal to ∂Ω. Let

Ω− ≡ Rn \ cl Ω,

be the exterior of Ω. Then we set

vΩ[µ](x)≡
∫
∂Ω

S n(x− y)µ(y) dσy ∀x ∈ Rn,

wΩ[µ](x)≡
∫
∂Ω

∂

∂νΩ(y)

(
S n(x− y)

)
µ(y) dσy ≡ −

∫
∂Ω
νΩ(y) · DS n(x− y)µ(y) dσy ∀x ∈ Rn,

for all µ ∈ L2(∂Ω), and we introduce a notaton for the corresponding boundary operators. Namely,

VΩ[µ](x) ≡ vΩ[µ](x), WΩ[µ](x) ≡ wΩ[µ](x),

W t
Ω[µ](x) ≡

∫
∂Ω

∂

∂νΩ(x)

(
S n(x− y)

)
µ(y) dσy

for all x ∈ ∂Ω and µ ∈ L2(∂Ω). As is well known (cf. e.g., Folland [10, Prop. 3.25, p. 129]), if µ ∈
C0(∂Ω), then vΩ[µ] ∈ C0(Rn), and we set

v+
Ω [µ] ≡ vΩ[µ]| cl Ω, v−Ω [µ] ≡ vΩ[µ]| cl Ω− .

Also, if µ ∈ C0(∂Ω), then wΩ[µ]|Ω admits a unique continuous extension to cl Ω, which we denote by
w+

Ω [µ], and wΩ[µ]|Ω− admits a unique continuous extension to cl Ω−, which we denote by w−Ω [µ]. Then
we have the following result of classical potential theory (cf. Miranda [25, 26], see also [23, Thm. 3.1]).

Theorem 3.1. Let α ∈ ]0, 1[. Let Ω be a bounded open subset of Rn of class C1,α. Let R > 0 be such that
cl Ω ⊆ Bn(0,R). Then the following statements hold.

(i) The map from C1,α(∂Ω) to C1,α(cl Ω) which takes µ to w+
Ω [µ] is linear and continuous. The map

from C1,α(∂Ω) to C1,α(clBn(0,R)\Ω) which takes µ to w−Ω [µ]| clBn(0,R)\Ω is linear and continuous.

Furthermore, w±Ω [µ] = ±1
2µ + WΩ[µ] on ∂Ω, and ∂w+

Ω [µ]
∂νΩ

=
∂w−Ω [µ]
∂νΩ

on ∂Ω for all µ ∈ C1,α(∂Ω),
and w+

Ω [1] = 1 on cl Ω, and WΩ[1] = 1/2 on ∂Ω.
(ii) The map from C0,α(∂Ω) to C1,α(cl Ω) which takes µ to v+

Ω [µ] is linear and continuous. The map
from C0,α(∂Ω) to C1,α(clBn(0,R)\Ω) which takes µ to v−Ω [µ]| clBn(0,R)\Ω is linear and continuous.

Furthermore, v+
Ω [µ] = v−Ω [µ] on ∂Ω, and ∂v±Ω [µ]

∂νΩ
= ∓1

2µ+ W t
Ω[µ] on ∂Ω.

(iii) The map from C0,α(∂Ω) to C0,α(∂Ω) which takes µ to W t
Ω[µ] is linear and continuous.

Then we have the following two known elementary lemmas.

Lemma 3.2. Let α ∈ ]0, 1[. Let Ω be a bounded open connected subset of Rn of class C1,α. Then

(i) The map Υ from C0,α(∂Ω)0 × R to the subspace of C1,α(cl Ω) of those functions which are har-
monic in Ω and which takes (µ, c) to Υ[µ, c] ≡ v+

Ω [µ] + c is a linear homeomorphism.
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(ii) The map Υ|∂Ω from C0,α(∂Ω)0 × R to C1,α(∂Ω) which takes (µ, c) to Υ|∂Ω[µ, c] ≡ VΩ[µ] + c is a
linear homeomorphism.

For a proof we refer for example to [12, Lem. 3.6], and to the mongraph [4, Thms. 6.41, 6.42] with
Dalla Riva and Musolino. For a proof of the following lemma, we refer for example to paper [12,
Lem. 3.10 (i)] with Gryshchuk together with the Open Mapping Theorem.

Lemma 3.3. Let α ∈ ]0, 1[. Let Ω be a bounded open connected subset of Rn of class C1,α such that the
exterior Ω− is connected. Then the operator 1

2 I + W t
Ω is an isomorphism of L2(∂Ω) onto itself.

4. Formulation of the Steklov eigenvalue problem as an eigenvalue problem for a compact
selfadjoint operator in a Hilbert function space on the boundary

We plan to write a formulation of the Steklov problem in an open subset Ω of Rn by means of integral
equations on ∂Ω. To do so, one can resort to the representation Lemma 3.2(i) for harmonic functions in
Ω and obtain and integral equation (cf. paper [12, Cor. 3.7] with Gryshchuk). However, such an equation
is not an eigenvalue equation for a self adjoint operator in L2(∂Ω). In order to obtain an eigenvalue
equation for a self adjoint operator in L2(∂Ω), we need the following preliminary statement.

Lemma 4.1. Let α ∈ ]0, 1[. Let Ω be a bounded open connected subset of Rn of class C1,α. Then the
map Υ† from L2(∂Ω) to L2(∂Ω)0 × R which takes τ to Υ†[τ] ≡ ((−1

2 I + W t
Ω)[τ],

∫
∂Ω τ dσ) is a linear

homeomorphism. In particular, problem(
−1

2
I + W t

Ω

)
[τ] = 0 on ∂Ω,

∫
∂Ω
τ dσ = 1, (4.1)

has a unique solution τΩ in L2(∂Ω). Moreover, τΩ ∈ C0,α(∂Ω) and τΩ generates Ker(−1
2 I + W t

Ω).

Proof. Since the kernel of the integral operator W t
Ω has a weak singularity, W t

Ω is compact in L2(∂Ω).
Since

∫
∂Ω−

1
2τ+W t

Ω[τ] dσ =
∫
∂Ω−

1
2τ+τWΩ[1] dσ =

∫
∂Ω−

1
2τ+τ

1
2 dσ = 0, Υ† is linear and continuous

from L2(∂Ω) to L2(∂Ω)0 × R. By Folland [10, Prop. 3.34, 3.36], Ker(−1
2 I + W t

Ω) has dimension one
and thus it has a generator τ]. If

∫
∂Ω τ

] dσ = 0, then τ] is orthogonal to Ker(−1
2 I + WΩ), which is

generated by the characteristic function χ∂Ω (cf. e.g., Folland [10, Prop. 3.34, 3.36]). Then equality
(Ker(−1

2 I + WΩ))⊥∩ Ker(−1
2 I + W t

Ω) = {0} implies that τ] = 0, a contradiction (cf. e.g., Folland [10,
Prop. 3.38]). Hence,

∫
∂Ω τ

] dσ 6= 0. By classical regularity theory, τΩ ≡ τ]∫
∂Ω τ] dσ

∈ C0,α(∂Ω) (cf. e.g.,

[21, Thm. 5.1 (i)]). By equality Ker(−1
2 I + WΩ) = 〈χ∂Ω〉, we can apply Fredholm Alternative to the

first component of Υ† and show that Υ† is surjective. If τ ∈ L2(∂Ω) and Υ†[τ] = 0, then there exists
a ∈ R such that τ = aτΩ and condition

∫
∂Ω aτΩ dσ = 0 implies that a = 0 and Υ† is injective. Hence

Υ† is a bijection and the Open Mapping Theorem implies that Υ† is a homeomorphism. �

By Lemma 4.1, (−1
2 I +W t

Ω) restricts to an isomorphism from L2(∂Ω)0 onto itself. Then we can prove
the following.
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Proposition 4.2. Let α ∈ ]0, 1[. Let Ω be a bounded open connected subset of Rn of class C1,α. The set

G1(Ω)≡
{

(µ, γ) ∈ L2(∂Ω)0 ×
(
R \ {0}

)
:

γµ =

(
−1

2
I + W t

Ω

)(−1)(
VΩ[µ]−−

∫
∂Ω

VΩ[µ] dσ
)

on ∂Ω

}
, (4.2)

is contained in C0,α(∂Ω)0×(R\{0}) and the map from G1(Ω) to the set of (u, λ) ∈ C1,α(cl Ω)×(R\{0})
which satisfy the Steklov eigenvalue value problem

∆u = 0 in Ω,
∂u
∂νΩ

= λu on ∂Ω, (4.3)

which takes (µ, γ) to (v+
Ω [µ] − −

∫
∂Ω VΩ[µ] dσ, 1/γ) is a bijection. In particular, if (µ, γ) ∈ G1(Ω) and

µ 6= 0, then γ > 0.

Proof. We first assume that (µ, γ) ∈ G1(Ω). Then (µ, γ) satisfies equation(
−1

2
I + W t

Ω

)
[µ] =

1

γ

(
VΩ[µ]−−

∫
∂Ω

VΩ[µ] dσ
)

on ∂Ω, (4.4)

which we rewrite as

−1

2
µ(x) +

∫
∂Ω

[
∂

∂νΩ(x)

(
S n(x− y)

)
− 1

γ
S n(x− y)

]
µ(y) dσy = −1

γ
−
∫
∂Ω

VΩ[µ] dσ for a.a. x ∈ ∂Ω.

Since the kernel in brackets has a weak singularity, a classical regularization argument implies that
µ ∈ C0(∂Ω) (cf. e.g., Folland [10, Prop. 3.13]). Then V[µ] ∈ C0,α(∂Ω) (cf. e.g., Miranda [26], and
paper [7, Thm. 7.2] with Dondi). Since µ satisfies equation (4.4), a classical regularity result implies
that µ ∈ C0,α(∂Ω) (cf. e.g., [21, Thm. 5.1 (i)]). Then the jump relations for the single layer of The-
orem 3.1 imply that (v+

Ω [µ] − −
∫
∂Ω VΩ[µ] dσ, 1/γ) belongs to C1,α(cl Ω) × (R \ {0}) and satisfies the

Steklov eigenvalue value problem (4.3). In particular, if (µ, γ) belongs to G1(Ω), then its image by the
map of the statement solves the Steklov eigenvalue problem. If (µ1, γ1), (µ2, γ2) belong to G1(Ω) and if
v+

Ω [µ1] − −
∫
∂Ω VΩ[µ1] dσ = v+

Ω [µ2] − −
∫
∂Ω VΩ[µ2] dσ, γ1 = γ2, then Lemma 3.2(i) implies that µ1 = µ2

and that −
∫
∂Ω VΩ[µ1] dσ = −

∫
∂Ω VΩ[µ2] dσ. Hence, the map of the statement is injective.

We now assume that (u, λ) ∈ C1,α(cl Ω) × (R \ {0}) satisfies the Steklov eigenvalue value problem
(4.3). Then Lemma 3.2(i) and the jump relations for the single layer potential ensure that there exists
(µ, c, λ) ∈ C0,α(∂Ω)0×R×(R\{0}) such that u = v+

Ω [µ]+c and−1
2µ+W t

Ω[µ] = λ(VΩ[µ]+c). Then we
can integrate on ∂Ω and deduce that−1

2

∫
∂Ω µ dσ+

∫
∂Ω W t

Ω[µ] dσ = λ
∫
∂Ω VΩ[µ] dσ+λcmn−1(∂Ω). Since∫

∂Ω W t
Ω[µ] dσ =

∫
∂Ω µWΩ[1] dσ =

∫
∂Ω µ

1
2 dσ and λ 6= 0, we deduce that c = −−

∫
∂Ω VΩ[µ] dσ, and that

accordingly (−1
2 I+W t

Ω)[µ] = λ(VΩ[µ]−−
∫
∂Ω VΩ[µ] dσ) on ∂Ω. Since the integral of the right hand side on

∂Ω equals 0, the right hand side belongs to L2(∂Ω)0 and thus Lemma 4.1 implies that the right hand side
belongs to the image of (−1

2 I+W t
Ω) and thus we can write 1

λ
µ = (−1

2 I+W t
Ω)(−1)(VΩ[µ]−−

∫
∂Ω VΩ[µ] dσ),

and (µ, 1/λ) belongs to G1(Ω). In particular, the map of the statement is surjective. �
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Proposition 4.2 provides a formulation of our problem in L2(∂Ω)0. To obtain a formulation in L2(∂Ω),
we exploit the following decomposition of L2(∂Ω), where χ∂Ω is the constant function equal to 1 on ∂Ω.

Lemma 4.3. Let α ∈ ]0, 1[. Let Ω be a bounded open connected subset of Rn of class C1,α. Then the
map π from L2(∂Ω) onto L2(∂Ω)0 which takes µ to π[µ] ≡ µ−−

∫
∂Ω µ dσχ∂Ω is a projection onto L2(∂Ω)0

along the subspace of L2(∂Ω) generated by the function χ∂Ω. In particular, L2(∂Ω) = L2(∂Ω)0⊕〈χ∂Ω〉,
where the direct sum is both topological and orthogonal in L2(∂Ω).

We now consider the inclusion J∂Ω of L2(∂Ω)0 into L2(∂Ω), and we show that the map AΩ defined by

AΩ[µ] ≡ J∂Ω[µ] ◦
(
−1

2
I + W t

Ω

)(−1)

◦
(

VΩ

[
π[µ]

]
−−
∫
∂Ω

VΩ

[
π[µ]

]
dσ
)
∀µ ∈ L2(∂Ω) (4.5)

is selfadjoint in L2(∂Ω) endowed by a scalar product, which we introduce in the following proposition.

Proposition 4.4. Let α ∈ ]0, 1[. Let Ω be a bounded open connected subset of Rn of class C1,α. Then the
bilinear form 〈〈·, ·〉〉Ω from L2(∂Ω)2 to R defined by

〈〈µ1, µ2〉〉Ω ≡
∫
∂Ω

(
−1

2
I + W t

Ω

)[
π[µ1]

](
−1

2
I + W t

Ω

)[
π[µ2]

]
dσ

+

∫
∂Ω

[
−
∫
∂Ω
µ1 dσχ∂Ω−

∫
∂Ω
µ2 dσχ∂Ω

]
dσ ∀(µ1, µ2) ∈ L2(∂Ω)2, (4.6)

is continuous and the following statements hold.

(i) 〈〈·, ·〉〉Ω is a real scalar product on L2(∂Ω).
(ii) infµ∈L2(∂Ω)\{0}

〈〈µ,µ〉〉Ω
‖µ‖L2(∂Ω)

> 0. In particular the norm 〈〈·, ·〉〉1/2Ω which is canonically associated to

the scalar product 〈〈·, ·〉〉Ω is equivalent to the usual norm of L2(∂Ω).

Proof. 〈〈·, ·〉〉Ω is obviously bilinear and symmetric. The continuity of 〈〈·, ·〉〉Ω in L2(∂Ω)2 follows by
the continuity of π, by the continuity of (−1

2 I + W t
Ω), by the continuity of the ordinary scalar product

in L2(∂Ω) and of the integral in L2(∂Ω). By Lemma 4.1, (−1
2 I + W t

Ω) is a linear homeomorphism in

L2(∂Ω)0, and thus we have a ≡ infµ∈L2(∂Ω)0\{0}
‖(− 1

2
I+W t

Ω)[µ]‖L2(∂Ω)

‖µ‖L2(∂Ω)
> 0. Hence,

〈〈µ, µ〉〉Ω =

∥∥∥∥(−1

2
I + W t

Ω

)[
π[µ]

]∥∥∥∥2

L2(∂Ω)

+

∥∥∥∥−∫
∂Ω
µ dσχ∂Ω

∥∥∥∥2

L2(∂Ω)

> a
∥∥π[µ]

∥∥2

L2(∂Ω)
+

∥∥∥∥−∫
∂Ω
µ dσχ∂Ω

∥∥∥∥2

L2(∂Ω)

>min{a, 1}
(∥∥π[µ]

∥∥2

L2(∂Ω)
+

∥∥∥∥−∫
∂Ω
µ dσχ∂Ω

∥∥∥∥2

L2(∂Ω)

)
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for all µ ∈ L2(∂Ω). Since the sum L2(∂Ω) = L2(∂Ω)0 ⊕ 〈χ∂Ω〉 is topological, the map from L2(∂Ω) to
L2(∂Ω)0×〈χ∂Ω〉 which takes µ to (π[µ], (I−π)[µ]) = (π[µ],−

∫
∂Ω µ dσχ∂Ω) is a continuous isomorphism.

Then the Open Mapping Theorem implies the existence of c > 0 such that(∥∥π[µ]
∥∥2

L2(∂Ω)
+

∥∥∥∥−∫
∂Ω
µ dσχ∂Ω

∥∥∥∥2

L2(∂Ω)

)1/2

> c‖µ‖L2(∂Ω) ∀µ ∈ L2(∂Ω),

and thus 〈〈·, ·〉〉Ω is positive definite and accordingly a scalar product. By the same inequality statement
(ii) holds true. �

We are now ready to prove the following.

Proposition 4.5. Let α ∈ ]0, 1[. Let Ω be a bounded open connected subset of Rn of class C1,α. Then
the operator AΩ defined in (4.5) is compact and selfadjoint in the real Hilbert space (L2(∂Ω), 〈〈·, ·〉〉Ω).
Moreover, the map from the set

G2(Ω) ≡
{

(µ, γ) ∈ L2(∂Ω)×
(
R \ {0}

)
: γµ = AΩ[µ]

}
, (4.7)

to the set G1(Ω) defined in (4.2) which takes (µ, γ) to (π[µ], γ) is a bijection. In particular, if (µ, γ)
belongs to G2(Ω) and µ 6= 0, then γ > 0.

Proof. Since VΩ has a weakly singular kernel, it defines a compact operator in L2(∂Ω). Since AΩ is the
composition of linear and continuous operators and of a compact operator, it is compact.

We now show that AΩ is selfadjoint. Let µ1, µ2 ∈ L2(∂Ω). Since the image of J∂Ω is contained in
L2(∂Ω)0, the π-projection equals the identity map on the image of J∂Ω and the integral of an element of
the image of J∂Ω equals zero. Then the second Green identity implies that〈〈

AΩ[µ1], µ2

〉〉
Ω

=

∫
∂Ω

[
VΩ

[
π[µ1]

]
−−
∫
∂Ω

VΩ

[
π[µ1]

]
dσ
][(
−1

2
I + W t

Ω

)[
π[µ2]

]]
dσ

+−
∫
∂Ω

AΩ[µ1] dσ−
∫
∂Ω
µ2 dσ

∫
∂Ω
χ2
∂Ω dσ

=

∫
∂Ω

[
VΩ

[
π[µ1]

]
−−
∫
∂Ω

VΩ

[
π[µ1]

]
dσ
]
∂

∂νΩ

(
v+

Ω

[
π[µ2]

]
−−
∫
∂Ω

VΩ

[
π[µ2]

]
dσ
)

dσ

=

∫
∂Ω

∂

∂νΩ

(
v+

Ω

[
π[µ1]

]
−−
∫
∂Ω

VΩ

[
π[µ1]

]
dσ
)[

VΩ

[
π[µ2]

]
−−
∫
∂Ω

VΩ

[
π[µ2]

]
dσ
]

dσ.

Now by interchanging the roles of µ1 and µ2 in the first two equalities, the right hand side equals
〈〈AΩ[µ2], µ1〉〉Ω, and thus AΩ is selfadjoint. The last part of the statement follows because the mem-
bership of (µ, γ) in G2(Ω) implies that µ ∈ L2(∂Ω)0, and accordingly that µ = π[µ]. �

We conclude this section by showing that if µ ∈ L2(∂Ω), then AΩ[µ] is uniquely determined by an
implicit relation. Namely, we show the following.
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Proposition 4.6. Let α ∈ ]0, 1[. Let Ω be a bounded open connected subset of Rn of class C1,α. Let
µ ∈ L2(∂Ω). Then the problem(

−1

2
I + W t

Ω

)
[ζ] = VΩ

[
π[µ]

]
−−
∫
∂Ω

VΩ

[
π[µ]

]
dσ,

∫
∂Ω
ζ dσ = 0

has a unique solution ζ ∈ L2(∂Ω) and ζ = AΩ[µ].

Proof. Since
∫
∂Ω(VΩ[π[µ]]− −

∫
∂Ω VΩ[π[µ]]) dσ = 0, the statement follows by Lemma 4.1. �

5. A boundary Hilbert space formulation of the Steklov eigenvalue problem in the perforated
domain Ω(ε)

We shall consider the following assumptions for some α ∈ ]0, 1[.

Let Ω be a bounded open connected subset of Rn of class C1,α.

Let Rn \ cl Ω be connected. Let 0 ∈ Ω.
(5.1)

Now let Ωi, Ωo be as in (5.1). Then there exists

ε0 ∈ ]0, 1[ such that ε cl Ωi ⊆ Ωo ∀ε ∈ [−ε0, ε0]. (5.2)

A simple topological argument shows that Ω(ε) ≡ Ωo \ ε cl Ωi is connected, and that Rn \ cl Ω(ε) has
exactly the two connected components εΩi and Rn \ cl Ωo, and that ∂Ω(ε) = (ε∂Ωi) ∪ ∂Ωo for all
ε ∈ ]−ε0, ε0[\{0}. For brevity, we set

νi ≡ νΩi νo ≡ νΩo νε ≡ νΩ(ε).

Obviously, νε(x) = −νi(x/ε) sgn(ε) ∀x ∈ ε∂Ωi, and νε(x) = νo(x) ∀x ∈ ∂Ωo for all ε ∈ ]−ε0, ε0[\{0},
where sgn(ε) = 1 if ε > 0, sgn(ε) = −1 if ε < 0. In order to shorten our notation, we set

Xio ≡ L2
(
∂Ωi,R

)
× L2

(
∂Ωo,R

)
,

and we emphasize that Xio has a natural real Hilbert space structure (although not the only one that we
will consider). We now convert the Steklov eigenvalue problem (1.2) in the perforated domain Ω(ε)
for ε > 0 small enough into an eigenvalue problem for a selfadjoint operator in Xio by exploiting the
results of the previous section. By Proposition 4.5, the nonzero Steklov eigenvalues of problem (1.2)
are precisely the reciprocals of those of the compact selfadjoint operator AΩ(ε) in the Hilbert space
(L2(∂Ω(ε)), 〈〈·, ·〉〉Ω(ε)). So we now introduce an isomorphism Ψε from Xio onto L2(∂Ω(ε)) and exploit
it to define an ε-dependent map in Xio which corresponds to AΩ(ε) and an ε-dependent scalar product
on Xio which corresponds to 〈〈·, ·〉〉Ω(ε). To do so, we define Ψε to be the isomorphism from Xio onto
L2(∂Ω(ε)) defined by

Ψε

[
θi, θo](x) ≡ θi(x/ε) ∀x ∈ εΩi, Ψε

[
θi, θo](x) ≡ θo(x) ∀x ∈ ∂Ωo,
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for each ε ∈ ]0, ε0[ (cf. (5.2)). Then the operator

Ãε ≡ Ψ(−1)
ε ◦ AΩ(ε) ◦Ψε

belongs to L(Xio) and can be considered to be the operator in L(Xio) which corresponds to AΩ(ε) and the
bilinear map

Qε

[(
θi

1, θ
o
1

)
,
(
θi

2, θ
o
2

)]
≡
〈〈

Ψε

[
θi

1, θ
o
1

]
,Ψε

[
θi

2, θ
o
2

]〉〉
Ω(ε)

∀
(
θi

1, θ
o
1

)
,
(
θi

2, θ
o
2

)
∈ Xio, (5.3)

is a scalar product in Xio which can be considered to be the scalar product in Xio which corresponds to
〈〈·, ·〉〉Ω(ε). Next we note that the equalities∥∥(θi, θo)∥∥

Qε
≡ Qε

[(
θi, θo), (θi, θo)]1/2

=
〈〈

Ψε

[
θi, θo],Ψε

[
θi, θo]〉〉1/2

Ω(ε)
≡
∥∥Ψε

[
θi, θo]∥∥

〈〈·,·〉〉1/2
Ω(ε)

,∥∥(θi, θo)∥∥
Xio
≡
(
θi, θi)1/2

L2(∂Ωi)
+
(
θo, θo)1/2

L2(∂Ωo)

= ε(1−n)/2
(
Ψε

[
θi, θo]

|ε∂Ωi ,Ψε

[
θi, θo]

|ε∂Ωi

)1/2
L2(ε∂Ωi)

+
(
Ψε

[
θi, θo]

|∂Ωo ,Ψε

[
θi, θo]

|∂Ωo

)1/2
L2(∂Ωo)

∀
(
θi, θo) ∈ Xio,

and the equivalence of the norm

ε(1−n)/2(µ|ε∂Ωi , µ|ε∂Ωi)1/2
L2(ε∂Ωi)

+ (µ|∂Ωo , µ|∂Ωo)1/2
L2(∂Ωo)

∀µ ∈ L2
(
∂Ω(ε)

)
,

and of the usual norm ‖µ‖L2(∂Ω(ε)) of L2(∂Ω(ε)) and Proposition 4.4(ii) applied to Ω = Ω(ε) imply that
the norm ‖ · ‖Qε is equivalent to the usual norm∥∥(θi, θo)∥∥

Xio
≡
(
θi, θi)1/2

L2(∂Ωi)
+
(
θo, θo)1/2

L2(∂Ωo)
∀
(
θi, θo) ∈ Xio,

of Xio for all ε ∈ ]0, ε0[. Then we have the following consequence of Propositions 4.2, 4.5

Proposition 5.1. Let α ∈ ]0, 1[. Let Ωi, Ωo be as in (5.1). If ε ∈ ]0, ε0[, then the linear operator Ãε is
compact and selfadjoint in the real Hilbert space (Xio,Qε). Moreover, the map from the set

G3(Xio, ε) ≡
{(
θi, θo, γ

)
∈ Xio ×

(
R \ {0}

)
: γ
(
θi, θo) = Ãε

(
θi, θo)}

to the set of pairs (u, λ) ∈ C1,α(cl Ω(ε)) × (R \ {0}) which satisfy the Steklov eigenvalue problem
(1.2) in Ω(ε), which takes (θi, θo, γ) to (v+

Ω [π[Ψε [θ
i, θo]]] − −

∫
∂Ω VΩ[π[Ψε [θ

i, θo]]] dσ, 1/γ), is a bijection.
In particular, γ ∈ R \ {0} is an eigenvalue of multiplicity r ∈ N \ {0} of Ãε if and only if 1/γ is an
eigenvalue of multiplicity r of the Steklov eigenvalue value problem (1.2) and if so, we must necessarily
have γ > 0.

We now devote the next three sections to the behavior of {Qε}ε∈ ]0,ε0[ and {Ãε}ε∈ ]0,ε0[ as ε is close to
0.



12 Multiple Steklov eigenvalues

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

6. Real analytic continuation for the family of scalar products {Qε}ε∈ ]0,ε0[

We are now ready to show the existence of an analytic continuation of the family {Qε}ε∈ ]0,ε0[ to
negative values of ε. To do so, we write out Qε explicitly by exploiting formula (5.3).

Theorem 6.1. Let α ∈ ]0, 1[. Let Ωi, Ωo be as in (5.1), ε1 ≡ min{ε0, (mn−1(∂Ωo)/mn−1(∂Ωi))1/(n−1)}.
Let

mi[ε, θi, θo] ≡ θi
j −

∫
∂Ωi θ

i
j dσεn−1 +

∫
∂Ωo θ

o
j dσ

εn−1mn−1(∂Ωi) + mn−1(∂Ωo)
χ∂Ωi on ∂Ωi,

mo[ε, θi, θo] ≡ θo
j −

∫
∂Ωi θ

i
j dσεn−1 +

∫
∂Ωo θ

o
j dσ

εn−1mn−1(∂Ωi) + mn−1(∂Ωo)
χ∂Ωo on ∂Ωo,

(6.1)

for all (ε, θi, θo) ∈ ]−ε1, ε1[×Xio. If ε ∈ ]−ε1, ε1[ , then the bilinear and symmetric map Qε defined by

Qε

[(
θi

1, θ
o
1

)
,
(
θi

2, θ
o
2

)]
≡ ε(n−1)

∫
∂Ωi

∏
j=1,2

{
−1

2
mi[ε, θi

j, θ
o
j

]
(ξ)−W t

Ωi

[
mi[ε, θi

j, θ
o
j

]]
(ξ)

−
∫
∂Ωo

νi(ξ)DS n(εξ − y)mo[ε, θi
j, θ

o
j

]
(y) dσy

}
dσξ

+

∫
∂Ωo

∏
j=1,2

{
−1

2
mo[ε, θi

j, θ
o
j

]
(x) + W t

Ωo

[
mo[ε, θi

j, θ
o
j

]]
(x)

+

∫
∂Ωi

νo(x) · DS n(x− εη)mi[ε, θi
j, θ

o
j

]
(η) dσηε(n−1)

}
dσx

+
(
εn−1mn−1

(
∂Ωi)+ mn−1

(
∂Ωo))−1

∏
j=1,2

(∫
∂Ωi

θi
j dσεn−1 +

∫
∂Ωo

θo
j dσ

)
, (6.2)

for all (θi
1, θ

o
1), (θi

2, θ
o
2) ∈ Xio is continuous. Moreover, the following statements hold.

(i) Qε = Qε for all ε ∈ ]0, ε1[.
(ii) Q0[(θi

1, θ
o
1), (θi

2, θ
o
2)] = 〈〈θo

1, θ
o
2〉〉Ωo for all (θi

1, θ
o
1), (θi

2, θ
o
2) ∈ Xio. In particular, the continuous

symmetric bilinear form Q0 is positive semidefinite.
(iii) The map from ]−ε1, ε1[×X2

io to R which takes (ε, θi
1, θ

o
1, θ

i
2, θ

o
2) toQε [(θ

i
1, θ

o
1), (θi

2, θ
o
2)], is analytic,

and {Qε}ε∈ ]−ε1,ε1[ is a real analytic family in the space Bs(Xio×Xio,R) of real valued symmetric
bilinear and continuous maps on X2

io.

Proof. Since the integral is a linear and continuous functional on L2(∂Ωi) and L2(∂Ωo), the operator
mi[ε, ·, ·] is linear and continuous from X2

io to L2(∂Ωi) and the operator mo[ε, ·, ·] is linear and continuous
from X2

io to L2(∂Ωo). Since the pointwise product is continuous from L2(∂Ωi)2 to L1(∂Ωi) and from
L2(∂Ωo)2 to L1(∂Ωo) and the terms in braces are compositions of linear and continuous operators in
L2(∂Ωi) and in L2(∂Ωo), we conclude that Qε is bilinear and continuous in X2

io.
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We now verify the formula of statement (i). To do so, we compute the pull back of the bilinear form
〈〈·, ·〉〉Ω(ε) (cf. (4.6), (5.3)). Clearly,

Ψ(−1)
ε [χ∂Ω(ε)] = (χ∂Ωi , χ∂Ωo) (6.3)

for all ε ∈ ]0, ε0[. Let j ∈ {1, 2}. By the rule of change of variables in integrals, we have∫
∂Ω(ε)

Ψε

[
θi

j, θ
o
j

]
dσ =

(∫
∂Ωi

θi
j dσεn−1 +

∫
∂Ωo

θo
j dσ

)
, (6.4)

mn−1

(
∂Ω(ε)

)
= εn−1mn−1

(
∂Ωi)+ mn−1

(
∂Ωo), (6.5)

π
[
Ψε

[
θi

j, θ
o
j

]]
(εξ) = Ψε

[
θi

j, θ
o
j

]
(εξ)−−

∫
∂Ω(ε)

Ψε

[
θi

j, θ
o
j

]
dσχ∂Ω(ε)(εξ)

= θi
j(ξ)−

∫
∂Ωi θ

i
j dσεn−1 +

∫
∂Ωo θ

o
j dσ

εn−1mn−1(∂Ωi) + mn−1(∂Ωo)
χ∂Ωi(ξ)

= mi[ε, θi
j, θ

o
j

]
(ξ) ∀ξ ∈ ∂Ωi, (6.6)

π
[
Ψε

[
θi

j, θ
o
j

]]
(x) = Ψε

[
θi

j, θ
o
j

]
(x)−−

∫
∂Ω(ε)

Ψε

[
θi

j, θ
o
j

]
dσχ∂Ω(ε)(x)

= θo
j(x)−

∫
∂Ωi θ

i
j dσεn−1 +

∫
∂Ωo θ

o
j dσ

εn−1mn−1(∂Ωi) + mn−1(∂Ωo)
χ∂Ωo(x)

= mo[ε, θi
j, θ

o
j

]
(x) ∀x ∈ ∂Ωo, (6.7)

for all ε ∈ ]0, ε1[, and

W t
Ω(ε)

[
π
[
Ψε

[
θi

j, θ
o
j

]]]
(εξ) =

∫
ε∂Ωi

νΩ(ε)(εξ) · DS n(εξ − y)π
[
Ψε

[
θi

j, θ
o
j

]]
(y) dσy

+

∫
∂Ωo

νΩ(ε)(εξ) · DS n(εξ − y)π
[
Ψε

[
θi

j, θ
o
j

]]
(y) dσy

=−
∫
∂Ωi

νi(ξ) · DS n(ξ − η)π
[
Ψε

[
θi

j, θ
o
j

]]
(εη) dση

−
∫
∂Ωo

νi(ξ) · DS n(εξ − y)π
[
Ψε

[
θi

j, θ
o
j

]]
(y) dσy (6.8)

for all ξ ∈ ∂Ωi and for all ε ∈ ]0, ε1[, and

W t
Ω(ε)

[
π
[
Ψε

[
θi

j, θ
o
j

]]]
(x)

=

∫
ε∂Ωi

νΩ(ε)(x) · DS n(x− y)π
[
Ψε

[
θi

j, θ
o
j

]]
(y) dσy

+

∫
∂Ωo

νΩ(ε)(x) · DS n(x− y)π
[
Ψε

[
θi

j, θ
o
j

]]
(y) dσy
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=

∫
∂Ωi

νo(x)DS n(x− εη)π
[
Ψε

[
θi

j, θ
o
j

]]
(εη) dσηεn−1

+

∫
∂Ωo

νΩo(x) · DS n(x− y)π
[
Ψε

[
θi

j, θ
o
j

]]
(y) dσy ∀x ∈ ∂Ωo, (6.9)

for all ε ∈ ]0, ε1[. By combining formulas (4.6), (5.3) and (6.3)–(6.9), and by the rule of change of
variables in integrals over ∂Ω(ε) = ε∂Ωi ∪ Ωo, we deduce the validity of the formula of statement (i).

(ii) By setting ε = 0, we obtain

mi[0, θi
j, θ

o
j

]
= θi

j −−
∫
∂Ωo

θo
j dσχ∂Ωi , mo[0, θi

j, θ
o
j

]
= θo

j −−
∫
∂Ωo

θo
j dσχ∂Ωo ,

and

Q0

[(
θi

1, θ
o
1

)
,
(
θi

2, θ
o
2

)]
=

∫
∂Ωo

∏
j=1,2

{
−1

2

[
θo

j −−
∫
∂Ωo

θo
j dσχ∂Ωo

]

+ W t
Ωo

[
θo

j −−
∫
∂Ωo

θo
j dσχ∂Ωo

]}
dσ+

∫
∂Ωo

χ2
∂Ωo dσ

∏
j=1,2

(
−
∫
∂Ωo

θo
j dσ

)
,

and the right hand side equals 〈〈θo
1, θ

o
2〉〉Ωo (cf. (4.6)).

(iii) Next we show that Qε [(θ
i
1, θ

o
1), (θi

2, θ
o
2)] is analytic in (ε, θi

1, θ
o
1, θ

i
2, θ

o
2) ∈ ]−ε1, ε1[×X2

io. Since the
integral is a linear and continuous functional on L2(∂Ωi) and on L2(∂Ωo), the last addendum in the right
hand side of the definition (6.2) of Qε [(θ

i
1, θ

o
1), (θi

2, θ
o
2)] is analytic in ]−ε1, ε1[×X2

io. Since the pointwise
product is continuous from L2(∂Ωi)2 to L1(∂Ωi) and from L2(∂Ωo)2 to L1(∂Ωo), it suffices to show
that the terms in braces in the right hand side of (6.2) define real analytic maps from ]−ε1, ε1[×X2

io to
L2(∂Ωi) in case of the first addendum and to L2(∂Ωo) in case of the second addendum. We consider
the first term in braces. Since the integral is a linear and continuous functional, the maps mi and mo

are real analytic in ]−ε1, ε1[×X2
io. Since W t

Ωi is linear and continuous in L2(∂Ωi), we conclude that
−1

2mi[ε, θi
j, θ

o
j ] − W t

Ωi [mi[ε, θi
j, θ

o
j ]] is analytic from ]−ε1, ε1[×X2

io to L2(∂Ωi). By an analyticity result
for integral operators with real analytic kernel, the map from ]−ε1, ε1[×L1(∂Ωo) to C1(∂Ωi) which
takes (ε, f o) to the function

∫
∂Ωo ν

i(ξ) ·DS n(εξ− y) f o(y) dσy of the variable ξ ∈ ∂Ωi is analytic (cf. [22,
Prop. 4.1 (ii)]). Then the map from ]−ε1, ε1[×X2

io to L2(∂Ωi) which takes (ε, θi
1, θ

o
1, θ

i
2, θ

o
2) to the function∫

∂Ωo ν
i(ξ) · DS n(εξ − y)mo[ε, θi

j, θ
o
j ](y) dσy of the variable ξ ∈ ∂Ωi is analytic for j ∈ {1, 2}. Hence,

the first term in braces in the right hand side of (6.2) defines a real analytic map from ]−ε1, ε1[×X2
io

to L2(∂Ωi). The proof for the second term in braces is similar. Hence the proof of the analyticity of
Qε [(θ

i
1, θ

o
1), (θi

2, θ
o
2)] in the variable (ε, θi

1, θ
o
1, θ

i
2, θ

o
2) ∈ ]−ε1, ε1[×X2

io is complete.
Next we prove that the map from ]−ε1, ε1[×X2

io to Bs(Xio × Xio,R), which takes ε to the bilinear
map Qε is analytic. By the formula for the second order differential of the monomial associated to the
symmetric bilinear and continuous map Qε , we have ∂2

(θi,θo)Qε [(θ
i, θo), (θi, θo)][·, ·] = 2!Qε [·, ·] for all

(θi, θo) ∈ Xio, for all ε ∈ ]−ε1, ε1[ (cf. e.g., Prodi and Ambrosetti [32, (10.1)]). By the proof above, the
mapQε [(θ

i, θo), (θi, θo)] in the variable (ε, θi, θo) ∈ ]−ε1, ε1[×Xio is analytic, and accordingly its second
order partial differential ∂2

(θi,θo)Qε [(θ
i, θo), (θi, θo)] is analytic from ]−ε1, ε1[×Xio to Bs(Xio × Xio,R).

Hence, the map from ]−ε1, ε1[×Xio to Bs(Xio × Xio,R), which takes (ε, θi, θo) to Qε [·, ·] is analytic.
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Since such a map is constant with respect to (θi, θo), the map from ]−ε1, ε1[ to Bs(Xio × Xio,R), which
takes ε to Qε [·, ·] is analytic and the proof is complete. �

7. An implicit definition of the operators of the family {Ãε}ε∈ ]0,ε0[

The proof of a real analytic representation formula for the family {Ãε}ε∈ ]0,ε0[ is based upon an implicit
relation satisfied by the operators Ãε and which we derive by pulling back on Xio the characterization of
AΩ(ε) of Proposition 4.6. We do so in the following statement.

Proposition 7.1. Let α ∈ ]0, 1[. Let Ωi, Ωo be as in (5.1). Let ε1 be as in Theorem 6.1. Let ε ∈ ]0, ε1[.
If (θi, θo) ∈ Xio, then the pair (ψi, ψo) ≡ Ãε [θ

i, θo] is the only solution in Xio of the system of the
following three equations

−1

2
ψi(ξ)−W t

Ωi

[
ψi](ξ)− ∫

∂Ωo
νi(ξ) · DS n(εξ − y)ψo(y) dσy

= εVΩi

[
mi[ε, θi, θo]](ξ) +

(δ2,nε log ε)

2π

∫
∂Ωi

mi[ε, θi, θo] dσ

+

∫
∂Ωo

S n(εξ − y)mo[ε, θi, θo](y) dσy

− 1

mn−1(∂Ωi)εn−1 + mn−1(∂Ωo)

∫
∂Ωi

{
εVΩi

[
mi[ε, θi, θo]](ξ)

+
(δ2,nε log ε)

2π

∫
∂Ωi

mi[ε, θi, θo] dσ

+

∫
∂Ωo

S n(εξ − y)mo[ε, θi, θo](y) dσy

}
dσεn−1

− 1

mn−1(∂Ωi)εn−1 + mn−1(∂Ωo)

∫
∂Ωo

{∫
∂Ωi

S n(x− εη)mi[ε, θi, θo](η) dσηεn−1

+ VΩo
[
mo[ε, θi, θo]](y) dσy

}
dσx ∀ξ ∈ ∂Ωi, (7.1)

−1

2
ψo(x) + W t

Ωo

[
ψo](x) +

∫
∂Ωi

νo(x) · DS n(x− εη)ψi(η) dσηεn−1

=

{∫
∂Ωi

S n(x− εη)mi[ε, θi, θo](η) dσηεn−1 + VΩo
[
mo[ε, θi, θo]](y) dσy

}
− 1

mn−1(∂Ωi)εn−1 + mn−1(∂Ωo)

∫
∂Ωi

{
εVΩi

[
mi[ε, θi, θo]](ξ)

+
(δ2,nε log ε)

2π

∫
∂Ωi

mi[ε, θi, θo] dσ+

∫
∂Ωo

S n(εξ − y)mo[ε, θi, θo](y) dσy

}
dσξεn−1
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− 1

mn−1(∂Ωi)εn−1 + mn−1(∂Ωo)

∫
∂Ωo

{∫
∂Ωi

S n(x− εη)mi[ε, θi, θo](η) dσηεn−1

+ VΩo
[
mo[ε, θi, θo]](y) dσy

}
dσx ∀x ∈ ∂Ωo, (7.2)∫

∂Ωi
ψi dσεn−1 +

∫
∂Ωo

ψo dσ = 0. (7.3)

Proof. By Proposition 4.6, ζε ≡ Ψε [ψ
i, ψo] = Ψε ◦ Ãε [θ

i, θo] = AΩ(ε)[Ψε [θ
i, θo]], is characterized to be

the only solution of the following problem(
−1

2
I + W t

Ω(ε)

)
[ζε ] = VΩ(ε)

[
π
[
Ψε

[
θi, θo]]]−−∫

∂Ω(ε)
VΩ(ε)

[
π
[
Ψε

[
θi, θo]]],∫

∂Ω(ε)
ζε dσ = 0.

(7.4)

We have already computed the terms in the left hand side in terms of ψi, ψo (see the computations of
(6.4), (6.8), (6.9) where we can replace (θi

j, θ
o
j) by (ψi, ψo) and π[Ψε [·, ·]] by Ψε [·, ·]). By formulas (6.6),

(6.7), we have

π
[
Ψε

[
θi, θo]](εξ) = mi[ε, θi, θo](ξ) ∀ξ ∈ ∂Ωi,

π
[
Ψε

[
θi, θo]](x) = mo[ε, θi, θo](x) ∀x ∈ ∂Ωo.

Hence,

VΩ(ε)

[
π
[
Ψε

[
θi, θo]]](εξ) =

∫
∂Ωi

S n(εξ − εη)π
[
Ψε

[
θi, θo]](εη) dσηεn−1

+

∫
∂Ωo

S n(εξ − y)π
[
Ψε

[
θi, θo]](y) dσy

= ε

∫
∂Ωi

S n(ξ − η)π
[
Ψε

[
θi, θo]](εη) dση

+
δ2,nε log ε

2π

∫
∂Ωi

π
[
Ψε

[
θi, θo]](εη) dση

+

∫
∂Ωo

S n(εξ − y)π
[
Ψε

[
θi, θo]](y) dσy ∀ξ ∈ ∂Ωi,

VΩ(ε)

[
π
[
Ψε

[
θi, θo]]](x) =

∫
∂Ωi

S n(x− εη)π
[
Ψε

[
θi, θo]](εη) dσηεn−1

+

∫
∂Ωo

S n(x− y)π
[
Ψε

[
θi, θo]](y) dσy ∀x ∈ ∂Ωo.

Then we can compute W t
Ω(ε)[ζε ](εξ) = W t

Ω(ε)[Ψε [ψ
i, ψo]](εξ) for ξ ∈ ∂Ωi and W t

Ω(ε)[ζε ](x) =

W t
Ω(ε)[Ψε [ψ

i, ψo]](x) for x ∈ ∂Ωo by exploiting the rule of change of variables in integrals, and we
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can invoke formula (6.4) in which we replace (θi
j, θ

o
j) by (ψi, ψo) and rewrite system (7.4) in the form of

the system of the three equations (7.1)–(7.3). �

Next we note that by letting ε tend to 0 in (7.1)–(7.3), we obtain the following ‘limiting system’

−1

2
ψi(ξ)−W t

Ωi

[
ψi](ξ) + νi(ξ) ·

∫
∂Ωo

DS n(y)ψo(y) dσy

=

∫
∂Ωo

S n(−y)

[
θo(y)−−

∫
∂Ωo

θo dσχ∂Ωo(y)

]
dσy

−−
∫
∂Ωo

VΩo

[
θo −−

∫
∂Ωo

θo dσχ∂Ωo

]
dσ ∀ξ ∈ ∂Ωi,

−1

2
ψo(x) + W t

Ωo

[
ψo](x)

= VΩo

[
θo −−

∫
∂Ωo

θo dσχ∂Ωo

]
(x)−−

∫
∂Ωo

VΩo

[
θo −−

∫
∂Ωo

θo dσχ∂Ωo

]
dσ ∀x ∈ ∂Ωo,∫

∂Ωo
ψo dσ = 0.

(7.5)

Now assume that (ψi, ψo), (θi, θo) ∈ Xio satisfy the limiting system. Then Proposition 4.6 with Ω = Ωo

and the last two equations of the limiting system imply that

ψo = AΩo
[
θo] (7.6)

(cf. (4.5)). Since the exterior Ωi− is connected, Lemma 3.3 implies that 1
2 I + W t

Ωi is an isomorphism in
L2(∂Ωi) and accordingly, the first equation of the limiting system implies that

ψi =−
(

1

2
I + W t

Ωi

)(−1)[
−νi(·) ·

∫
∂Ωo

DS n(y)AΩo
[
θo](y) dσy

+ v+
Ωo

[
θo −−

∫
∂Ωo

θo dσχ∂Ωo

]
(0)−−

∫
∂Ωo

VΩo

[
θo −−

∫
∂Ωo

θo dσχ∂Ωo

]
dσ
]
, (7.7)

on ∂Ωi. Then we introduce the following.

Definition 7.2. Let α ∈ ]0, 1[. Let Ωi, Ωo be as in (5.1). We define the limiting operator Ã0 ≡ (Ãi
0, Ã

o
0)

to be the operator from Xio to itself which maps (θi, θo) of Xio to the pair (ψi, ψo) of Xio defined by the
right hand sides of (7.6), (7.7).

We note that Ã0 is independent of its first functional variable θi and that the following holds.

Proposition 7.3. Let α ∈ ]0, 1[. Let Ωi, Ωo be as in (5.1). The positive semidefinite bilinear and symmet-
ric form Q0 is positive definite on the subspace Im Ã0 of Xio. In particular, Q0 is positive definite on all
the eigenspaces of Ã0.
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Proof. By Theorem 6.1(ii), Q0 is positive semidefinite and if (ψi, ψo) belongs to Im Ã0, then
Q0[(ψi, ψo), (ψi, ψo)] = 〈〈ψo, ψo〉〉Ωo . Thus if Q0[(ψi, ψo), (ψi, ψo)] = 0, then we have ψo = 0. Since
(ψi, ψo) ∈ Im Ã0, there exists (θi, θo) ∈ Xio such that (ψi, ψo) = Ã0[θi, θo]. Since 0 = ψo = AΩo [θo],
Proposition 4.6 implies that 0 = ψo and θo must satisfy the second and the third equation of the limiting
system (7.5) and accordingly

VΩo

[
θo −−

∫
∂Ωo

θo dσχ∂Ωo

]
(x) = −

∫
∂Ωo

VΩo

[
θo −−

∫
∂Ωo

θo dσχ∂Ωo

]
dσ ∀x ∈ ∂Ωo.

In particular, v+
Ωo [θo − −

∫
∂Ωo θ

o dσχ∂Ωo ] is constant on ∂Ωo and thus the Maximum Principle implies that
v+

Ωo [θo − −
∫
∂Ωo θ

o dσχ∂Ωo ] is constant on the whole of cl Ωo. In particular,

v+
Ωo

[
θo −−

∫
∂Ωo

θo dσχ∂Ωo

]
(0) = −

∫
∂Ωo

VΩo

[
θo −−

∫
∂Ωo

θo dσχ∂Ωo

]
dσ ∀x ∈ ∂Ωo.

Since ψi satisfies (7.7), we have ψi = 0 and thus (ψi, ψo) = (0, 0) and Q0 is positive definite on Im Ã0.
�

Since Ã0 is entirely determined by its first component AΩo , which is a selfadjoint and compact operator
in (L2(∂Ωo), 〈〈·, ·〉〉Ωo) whose nonzero eigenvalues coincide precisely with the reciprocals of those of the
Steklov problem (1.1) in Ωo, we can prove the following, which corresponds to Proposition 5.1 in case
ε = 0.

Proposition 7.4. Let α ∈ ]0, 1[. Let Ωi, Ωo be as in (5.1). Then the linear operator Ã0 is compact and the
following equality holds Q0[Ã0[θi

1, θ
o
1], (θi

2, θ
o
2)] = Q0[(θi

1, θ
o
1), Ã0[θi

2, θ
o
2]] for all (θi

1, θ
o
1), (θi

2, θ
o
2) ∈ Xio.

Moreover, the map Ξ0 from the set G2(Ωo) defined in (4.7) with Ω = Ωo to the set

G3(Xio, 0) ≡
{(
θi, θo, γ

)
∈ Xio ×

(
R \ {0}

)
: γ
(
θi, θo) = Ã0

[
θi, θo]},

which takes (θo, γ) to (θi, θo, γ), where

θi =−
(

1

2
I + W t

Ωi

)(−1)[
−νi(·) ·

∫
∂Ωo

DS n(y)θo(y) dσy

+
1

γ
v+

Ωo

[
θo −−

∫
∂Ωo

θo dσχ∂Ωo

]
(0)− 1

γ
−
∫
∂Ωo

VΩo

[
θo −−

∫
∂Ωo

θo dσχ∂Ωo

]
dσ
]
, (7.8)

on ∂Ωi, is a bijection. In particular, if (θi, θo, γ) ∈ G3(Xio, 0) and (θi, θo) 6= (0, 0), then γ > 0. Finally, if
γ ∈ R\{0}, then the map Ξ0(·, γ) is an isomorphism from the space {θo ∈ L2(∂Ωo) : (θo, γ) ∈ G3(Ωo)}
onto the space {(θi, θo) ∈ Xio : (θi, θo, γ) ∈ G3(Xio, 0)}.

Proof. Since the integral operator associated to a single layer potential has a weakly singular kernel, it
is compact. Then the operator Ãi

0 delivered by the right hand side of (7.7) equals the composition of the
bounded operator (1

2 I+W t
Ωi)

(−1) and of a compact operator and is accordingly compact. Then we already
know that Ão

0 is compact and we can conclude that Ã0 = (Ãi
0, Ã

o
0) is compact. By Theorem 6.1(ii) and by

the Definition 7.2 of Ã0, we haveQ0[Ã0[θi
1, θ

o
1], (θi

2, θ
o
2)] = 〈〈AΩo [θo

1], θo
2〉〉Ωo . Since AΩo is selfadjoint, we

have 〈〈AΩo [θo
1], θo

2〉〉Ωo = 〈〈θo
1, AΩo [θo

2]〉〉Ωo , and by switching the roles of (θi
1, θ

o
1) and (θi

2, θ
o
2), we conclude
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that 〈〈θo
1, AΩo [θo

2]〉〉Ωo = Q0[(θi
1, θ

o
1), Ã0[θi

2, θ
o
2]]. By Definition 7.2 of Ã0, we have (θi, θo, γ) ∈ G3(Xio, 0)

if and only if γθo = Ão
0[θi, θo] = AΩo [θo], i.e., (θo, γ) ∈ G2(Ωo), and

γθi =−
(

1

2
I + W t

Ωi

)(−1)[
−νi(·) ·

∫
∂Ωo

DS n(y)AΩo
[
θo](y) dσy

+ v+
Ωo

[
θo −−

∫
∂Ωo

θo dσχ∂Ωo

]
(0)−−

∫
∂Ωo

VΩo

[
θo −−

∫
∂Ωo

θo dσχ∂Ωo

]
dσ
]
.

Hence, the second part of the statement holds. Then the last part follows by the linearity of Ξ0(·, γ). �

8. A real analytic representation formula for the family {Ãε}ε∈ ]0,ε0[

We now turn to show a real analytic representation formula for the family {Ãε}ε∈ ]0,ε0[ in a sense
which we clarify below. The starting point is that {Ãε}ε∈ ]0,ε0[ is implicitly defined by equations (7.1)–
(7.3). Then we observe that if we replace the term (δ2,nε log ε) in equations (7.1)–(7.3) by a new variable
ι, we obtain a system of equations whose terms are analytic in all functional variables and in ε, ι and that
can be analyzed by an appropriate application of the Implicit Function Theorem in Banach spaces.

Theorem 8.1. Let α ∈ ]0, 1[. Let Ωi, Ωo be as in (5.1). Let ε1 be as in Theorem 6.1. Then the following
statements hold.

(i) There exists ε2 ∈ ]0, ε1[, ι2 ∈ ]0,+∞[ and a real analytic family

{A(ε,ι)}(ε,ι)∈ ]−ε2,ε2[×]−ι2,ι2[ (8.1)

in L(Xio) such that δ2,nε log ε ∈ ]−ι2, ι2[ and A(ε,δ2,nε log ε) = Ãε for all ε ∈ ]0, ε2[.
(ii) A(0,0) = Ã0 (cf. Definition 7.2).

Proof. By Proposition 7.1, Ãε [θ
i, θo] is implicitly defined by system (7.1)–(7.3) for all (θi, θo) in Xio.

Thus we now recast system (7.1)–(7.3) into an abstract functional equation in Banach space, which we
analyze by means of the Implicit Function Theorem.

To do so, we introduce a map F ≡ (F1,F2,F3) from ]−ε1, ε1[×X2
io to Xio × R as follows.

We define F1(ε, ι, θi, θo, ψi, ψo) to be equal to the difference between the left hand side and the right
hand side of equation (7.1), once we have replaced the term (δ2,nε log ε) which appears in the right hand
side by ι, for all (ε, ι, θi, θo, ψi, ψo) ∈ ]−ε1, ε1[×R× X2

io.
We define F2(ε, ι, θi, θo, ψi, ψo) to be equal to the difference between the left hand side and the right

hand side of equation (7.2), once we have replaced the term (δ2,nε log ε) which appears in the right hand
side by ι, for all (ε, ι, θi, θo, ψi, ψo) ∈ ]−ε1, ε1[×X2

io.
We define F3(ε, ι, θi, θo, ψi, ψo) to be equal to the left hand side of equation (7.3), for all

(ε, ι, θi, θo, ψi, ψo) ∈ ]−ε1, ε1[×X2
io.

By definition of F , if ε ∈ ]0, ε1[, then we can rewrite the system of equations (7.1)–(7.3) as

F
(
ε, δ2,nε log ε, θi, θo, ψi, ψo) = 0, (8.2)
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and (ψi, ψo) ≡ Ãε [θ
i, θo] is the unique solution of such equation whenever (θi, θo) ∈ Xio. So equation

(8.2) characterizes Ãε [θ
i, θo] for each (θi, θo) ∈ Xio. We now wish to introduce an operator equation

which characterizes the operator Ãε [·, ·]. Thus we introduce the operator valued map F̃ from the set
] − ε1, ε1] × R × L(Xio) to L(Xio, Xio × R) which takes (ε, ι,Z) with Z ≡ (Z1,Z2) to the operator
F̃ [ε, ι,Z](·, ·) defined by the following formula

F̃ [ε, ι,Z]
(
θi, θo) ≡ F(ε, ι, θi, θo,Z1

(
θi, θo),Z2

(
θi, θo)) ∀

(
θi, θo) ∈ Xio.

Since the integral is a linear and continuous functional on L2(∂Ωi) and on L2(∂Ωo), we conclude
that mi[ε, ψi, ψo], mo[ε, ψi, ψo] depend analytically on (ε, ψi, ψo) (cf. (6.1)). Similarly, mi[ε, θi, θo] and
mo[ε, θi, θo] depend analytically on (ε, θi, θo). Then we know that the linear operators 1

2 I + W t
Ωi , VΩi and

−1
2 I +W t

Ωo , VΩo are linear and continuous in L2(∂Ωi) and in L2(∂Ωo), respectively. Moreover, an analyt-
icity result for integral operators with real analytic kernel implies that the maps from ]−ε1, ε1[×L2(∂Ωo)
to L2(∂Ωi) which take (ε, f o) to the function S 1,ε [ f o](·) ≡

∫
∂Ωo ν

i(·)DS n(ε · −y) f o(y) dσy and (ε, f o) to
the function S 2,ε [ f o](·) ≡

∫
∂Ωo S n(ε · −y) f o(y) dσy, and the maps from ]−ε1, ε1[×L2(∂Ωi) to L2(∂Ωo)

which take (ε, f i) to the function S 3,ε [ f i](·) ≡
∫
∂Ωi ν

o(·)DS n(·−εη) f i(η) dση, and (ε, f i) to the function
S 4,ε [ f i](·) ≡

∫
∂Ωi S n(· − εη) f i(η) dση, are analytic (cf. [22, Prop. 4.1(ii)]). As a consequence, the cor-

responding Fréchet derivatives with respect to the second variable are analytic and thus the maps from
]−ε1, ε1[ to L(L2(∂Ωo), L2(∂Ωi)) which take ε to S 1,ε [·], S 2,ε [·] are analytic, and the maps from ]−ε1, ε1[
to L(L2(∂Ωi), L2(∂Ωo)) which take ε to S 3,ε [·], S 4,ε [·] are analytic.

Hence, the map F̃ is real analytic from ]−ε1, ε1[×R × L(Xio) to the space L(Xio, Xio × R). Next we
note that equation F(0, 0, θi, θo, ψi, ψo) = 0 is just another way of writing the limiting system (7.5),
which implies that formulas (7.6), (7.7) hold and that accordingly F(0, 0, θi, θo, Ãi

0[θi, θo], Ão
0[θi, θo)] = 0

(cf. Definition 7.2). Then the definition of F̃ implies that F̃(0, 0, Ã0) = 0. We now wish to compute the
Fréchet differential of F̃ at the point (0, 0, Ã0) with respect to its last (operator) argument. Since F̃ is
linear with respect to its last argument, we have dZF̃(0, 0, Ã0)[Z] = F̃(0, 0,Z) for all Z ∈ L(Xio). We
now show that the linear map from L(Xio) to L(Xio, Xio × R) which takes Z to F̃(0, 0,Z) is a bijection.

Let B ≡ (Bi, Bo, b) ∈ L(Xio, Xio × R). We must show that there exists a unique Z ∈ L(Xio) such that

F̃(0, 0,Z) = B. (8.3)

By the definition of F̃ , we rewrite such an equality in the form

F
(
0, 0, θi, θo,Zi(

θi, θo),Zo(
θi, θo)) = B

(
θi, θo) ∀

(
θi, θo) ∈ Xio. (8.4)

In order to shorten our notation, we set ψi ≡ Zi
(θi, θo), ψo ≡ Zo

(θi, θo). Then we can rewrite equation
(8.4) in the following form.

−1

2
ψi(ξ)−W t

Ωi

[
ψi](ξ) + νi(ξ) ·

∫
∂Ωo

DS n(y)ψo(y) dσy

=

∫
∂Ωo

S n(−y)

[
θo(y)−−

∫
∂Ωo

θo dσχ∂Ωo(y)

]
dσy

−−
∫
∂Ωo

VΩo

[
θo −−

∫
∂Ωo

θo dσχ∂Ωo

]
dσ+ Bi(θi, θo)(ξ) ∀ξ ∈ ∂Ωi,
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−1

2
ψo(x) + W t

Ωo

[
ψo](x) (8.5)

= VΩo

[
θo −−

∫
∂Ωo

θo dσχ∂Ωo

]
(x)

−−
∫
∂Ωo

VΩo

[
θo −−

∫
∂Ωo

θo dσχ∂Ωo

]
dσ+ Bo(θi, θo)(x) ∀x ∈ ∂Ωo,∫

∂Ωo
ψo dσ = b

(
θi, θo).

By Lemma 4.1, the map ΞΩo from L2(∂Ωo) onto L2(∂Ωo)0 × R which takes f o to the pair ((−1
2 I +

W t
Ωo)[ f o],

∫
∂Ωo f o dσ) is an isomorphism. Then the last two equations can be rewritten as

ψo ≡ S o(
θi, θo)

= Ξ
(−1)
Ωo

[
VΩo

[
θo −−

∫
∂Ωo

θo dσχ∂Ωo

]
−−
∫
∂Ωo

VΩo

[
θo −−

∫
∂Ωo

θo dσχ∂Ωo

]
dσ+ Bo(θi, θo), b(θi, θo)] on ∂Ωo,

and the right hand side is linear and continous in (θi, θo) ∈ Xio. Since Ωi− is connected, Lemma 3.3
implies that 1

2 I + W t
Ωi is an isomorphism in L2(∂Ωi), and thus the first equation of (8.5) can be rewritten

as

ψi ≡ Zi(
θi, θo)

=−
(

1

2
I + W t

Ωi

)(−1)[
−νi(·) ·

∫
∂Ωo

DS n(y)Zo(
θi, θo)(y) dσy

+

∫
∂Ωo

S n(−y)

[
θo(y)−−

∫
∂Ωo

θo dσχ∂Ωo(y)

]
dσy

−−
∫
∂Ωo

VΩo

[
θo −−

∫
∂Ωo

θo dσχ∂Ωo

]
dσ+ Bi(θi, θo)] on ∂Ωi,

and the right hand side is linear and continous in (θi, θo) ∈ Xio. In particular, equation (8.3) has one and
only one solution Z for each B as above and dZF̃(0, 0, Ã0) is a linear isomorphism. Since dZF̃(0, 0, Ã0) is
continuous, the Open Mapping Theorem implies that it is a homeomorphism. Then the Implicit Function
Theorem in Banach space implies the existence of ε2 ∈ ]0, ε1[ and of ι2 ∈ ]0,+∞[, and of an open
neighborhood U of Ã0 in L(Xio) and of a real analytic family as in (8.1) in U such that{

(ε, ι,A(ε,ι)) : (ε, ι) ∈ ]−ε2, ε2[×]−ι2, ι2[
}

=
{

(ε, ι,Z) ∈ ]−ε2, ε2[× ]−ι2, ι2[×U : F̃ [ε, ι,Z] = 0
}
.

In particular, A(0,0) = Ã0 and thus (ii) holds true. Possibly shrinking ε2, we can assume that δ2,nε log ε

belongs to ]−ι2, ι2[ for all ε ∈ ]0, ε2[. By the definition of F̃ , we know that F̃(ε, δ2,nε log ε, Ãε) = 0
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for all ε in ]0, ε2[, and we know that Ãε is the only solution in L(Xio) of such an equation. Hence,
A(ε,δ2,nε log ε) = Ãε for all ε ∈ ]0, ε2[. �

9. Symmetric functions of multiple eigenvalues of the operators of the family {Ãε}ε∈[0,ε0[

Propositions 4.2, 4.5, 7.4 imply that if we fix λ ∈ R \ {0}, then λ is an eigenvalue of multiplicity
r ∈ N \ {0} for the Steklov problem (1.1) in Ωo if and only if γ = 1/λ is an eigenvalue of multplicity r
for the operator AΩo , if and only if γ = 1/λ is an eigenvalue of multplicity r for Ã0.

Similarly, Propositions 4.2, 4.5, 5.1 imply that if ε ∈ ]0, ε1[, then a number λ ∈ R\{0} is an eigenvalue
of multiplicity r ∈ N \ {0} for the Steklov problem (1.2) in Ω(ε) if and only if γ = 1/λ is an eigenvalue
of multplicity r for Ãε .

Since the operators AΩo and Ãε are compact and self adjoint with respect to suitable scalar products,
their nonzero eigenvalues are real isolated and positive.

We now assume that λ̃ ∈ ]0,+∞[ is an eigenvalue of mutiplicity r ∈ N \ {0} of the Steklov problem
(1.1) in Ωo. Then γ̃ ≡ 1/λ̃ is a nonzero isolated eigenvalue of multiplicity r for Ã0.

In order to study the behavior of the eigenvalues of Ãε as ε approaches zero, we plan to complexify the
operators Ã0, Ãε in Xio. The complexification of Xio coincides with the space X̂io ≡ {x + iy : x, y ∈ Xio}.
Since Xio = L2(∂Ωi,R) × L2(∂Ωo,R), we have X̂io ≡ L2(∂Ωi,C) × L2(∂Ωo,C). If Q is a real bilinear
form on X2

io, then its complexification Q̂ coincides with the sesquilinear form on X̂2
io defined by

Q̂[x1 + iy1, x2 + iy2] ≡
(
Q[x1, x2] + Q[y1, y2]

)
+ i
(
Q[y1, x2]− Q[x1, y2]

)
∀(x1 + iy1), (x2 + iy2) ∈ X̂io.

If Q is symmetric, then Q̂ is conjugate symmetric, i.e., Q̂[x1 + iy1, x2 + iy2] = Q̂[x2 + iy2, x1 + iy1] for
all (x1 + iy1), (x2 + iy2) ∈ X̂io. If Q is a scalar product on the real space X, then Q̂ is a scalar product on
the complex space X̂io. So for example, the complexification of the usual scalar product

((
θi

1, θ
o
1

)
,
(
θi

2, θ
o
2

))
Xio
≡
∫
∂Ωi

θi
1θ

i
2 dσ+

∫
∂Ωo

θo
1θ

o
2 dσ ∀

(
θi

1, θ
o
1

)
,
(
θi

2, θ
o
2

)
∈ Xio,

in Xio, coincides with the usual scalar product

((
θi

1, θ
o
1

)
,
(
θi

2, θ
o
2

))
X̂io
≡
∫
∂Ωi

θi
1θ

i
2 dσ+

∫
∂Ωo

θo
1θ

o
2 dσ ∀

(
θi

1, θ
o
1

)
,
(
θi

2, θ
o
2

)
∈ X̂io

in the complexified space X̂io. Then if T is a linear operator from Xio to Xio, the complexified operator
T̂ of T is defined by T̂ [x + iy] ≡ T [x] + iT [y] for all x + iy ∈ X̂io. If T is selfadjoint in the real Hilbert
space (Xio,Q), then T̂ is easily verified to be selfadjoint in the complex Hilbert space (X̂io, Q̂).

We also note that if λ is a real eigenvalue of finite geometric multiplicity r of the operator T in Xio,
i.e., the real dimension of the eigenspace corresponding to λ equals r, then λ is also an eigenvalue
for the operator T̂ in X̂io of geometric multiplicity r, i.e., the complex dimension of the eigenspace
corresponding to λ equals r. By the Spectral Stability Theorem, we immediately deduce the validity of
the following statement.
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Theorem 9.1. Let α ∈ ]0, 1[, r ∈ N \ {0}. Let Ωi, Ωo be as in (5.1). Let γ̃ ∈ ]0,+∞[ be an eigenvalue
of multiplicity r of Ã0. Then γ̃ is an eigenvalue of geometric multiplicity r of the compact complexified
operator ˆ̃A0 and is an isolated point of the spectrum of ˆ̃A0. Let ε2, ι2 be as in Theorem 8.1.

Let δ ∈ ]0,+∞[ such that clBC(γ̃, 2δ) \ {γ̃} does not contain 0 and does not contain any point of the
spectrum of ˆ̃A0. Then there exist (ε3, ι3) ∈ ]0, ε2[×]0, ι2[ such that

δ2,nε log ε ∈ ]−ι3, ι3[ ∀ε ∈ ]0, ε3[, (9.1)

and such that the spectrum of the complexified operator Â(ε,ι) does not contain elements of the set
clB2(γ̃, 2δ) \ B2(γ̃, δ) for all (ε, ι) ∈ ]−ε3, ε3[×]−ι3, ι3[.

Proof. Since γ̃ is a real eigenvalue of multiplicity r for Ã0, then γ̃ is also an eigenvalue of geometric
multiplicity r for its complexified operator ˆ̃A0. Since ˆ̃A0 is compact and γ̃ 6= 0, γ̃ is an isolated eigenvalue
of ˆ̃A0 and there exists δ as in the statement. Then U ≡ C \ (clB2(γ̃, 2δ) \B2(γ̃, δ)) is an open set which
contains the spectrum of ˆ̃A0. Since {A(ε,ι)}(ε,ι)∈ ]−ε2,ε2[×]−ι2,ι2[ is a real analytic family in L(Xio), then
the family of complexified operators {Â(ε,ι)}(ε,ι)∈ ]−ε2,ε2[×]−ι2,ι2[ is real analytic in L(X̂io). In particular,

such a family is continuous at (0, 0) and Â(0,0) = ˆ̃A0. Then the Spectral Stability Theorem ensures
that there exist (ε3, ι3) ∈ ]0, ε2[×]0, ι2[ such that the spectrum of Â(ε,ι) is contained in U for all (ε, ι) ∈
]−ε3, ε3[×]−ι3, ι3[ (cf. e.g., Rudin [34, Thm. 10.20, p. 257]). Possibly shrinking ε3, we can ensure the
validity of (9.1). �

By the exploiting Kato Projection, we can prove the following.

Theorem 9.2. Let α ∈ ]0, 1[, r ∈ N \ {0}. Let Ωi, Ωo be as in (5.1). Let γ̃ ∈ ]0,+∞[ be an eigenvalue of
multiplicity r of Ã0. Let δ, ε3, ι3 be as in Theorem 9.1. Let ς be the curve defined by ς(ϕ) ≡ γ̃ + δeiϕ for
all ϕ ∈ [0, 2π]. Then the following statements hold.

(i) If (ε, ι) ∈ ]−ε3, ε3[×]−ι3, ι3[, then the operator

P]
(ε,ι) ≡

1

2πi

∫
ς

(ζIX̂io
− Â(ε,ι))

(−1)dζ, (9.2)

is a projection of the complexified space X̂io onto an Â(ε,ι)-invariant subspace of X̂io.
(ii) The map from ]−ε3, ε3[×]−ι3, ι3[ to L(X̂io) which takes (ε, ι) to P]

(ε,ι) is real analytic.

(iii) P]
(0,0) coincides with the projection onto the eigenspace of ˆ̃A0 corresponding to the eigenvalue γ̃,

which has complex dimension equal to r.
(iv) There exist (ε4, ι4) ∈ ]0, ε3[×]0, ι3[ such that δ2,nε log ε ∈ ]−ι4, ι4[ for all ε ∈ ]0, ε4[ and such that

if (ε, ι) ∈ ]−ε4, ε4[×]−ι4, ι4[, then the image of P]
(ε,ι) has complex dimension equal to r.

(v) If ε ∈ ]0, ε4[, then Â(ε,δ2,nε log ε) is selfadjoint in (X̂io, Q̂(ε,δ2,nε log ε)) and the restriction of
Â(ε,δ2,nε log ε) to the Â(ε,δ2,nε log ε)-invariant subspace Im P]

(ε,ι) has precisely r real eigenvalues
counted with their multiplicity γr(ε) 6 · · · 6 γ1(ε), in the interval ]γ̃ − δ, γ̃ + δ[. Moreover,
]γ̃ − δ, γ̃ + δ[ contains no other eigenvalue of Â(ε,δ2,nε log ε).
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Proof. For a proof of statement (i), we refer to Kato [15, p. 178]. We now turn to the proof of (ii).
The space C0

b(ς[0, 2π],L(X̂io)) of bounded and continuous functions from the compact set ς[0, 2π] to
L(X̂io) with the supς[0,2π] ‖ · ‖L(X̂io)-norm is a complex Banach algebra with unity. Let I(X̂io) denote
the set of invertible elements of L(X̂io). Then C0

b(ς[0, 2π], I(X̂io)) is the set of invertible elements of
C0

b(ς[0, 2π],L(X̂io)) and is open in the space C0
b(ς[0, 2π],L(X̂io)) of bounded and continuous functions

from the compact set ς[0, 2π] to L(X̂io), and the map from C0
b(ς[0, 2π], I(X̂io)) to itself which takes an

element to its inverse is real analytic (cf. e.g., Hille and Phillips [14, Thms. 4.3.2 and 4.3.4]).
Since the map which takes (ε, ι) ∈ ]−ε3, ε3[×]−ι3, ι3[ to the map (ζIX̂io

− Â(ε,ι)) of the variable ζ ∈
ς([0, 2π]) of C0

b(ς[0, 2π], I(X̂io)) is analytic, and the line integral
∫
ς

is a linear and continuous from

C0
b(ς[0, 2π],L(X̂io)) to L(X̂io), we conclude that P]

(ε,ι) is real analytic from ]−ε3, ε3[×]−ι3, ι3[ to L(X̂io).
For a proof of statement (iii), we refer to Kato [15, p. 178]. Indeed, γ̃ is the only element of the

spectrum of Ã0 which belongs to B2(γ̃, δ).
We now consider statement (iv). Since P]

(0,0) is a projection onto the eigenspace Ê(γ̃) of Ã0 corre-
sponding to γ̃, which has finite dimension equal to r a known result of functional analysis implies that
there exists a neighborhood of P]

(0,0) in L(X̂io) such that all projection operators which belong to such
a neighborhood have an image of dimension r (cf. Dunford and Schwartz [9, Ch. VII, Lem. 7]). Since
lim(ε,ι)→(0,0) P]

(ε,ι) = P]
(0,0) in L(X̂io), there exists (ε4, ι4) ∈ ]0, ε3[×]0, ι3[ such that dim Im P]

(ε,ι) = r for

all (ε, ι) ∈ ]−ε4, ε4[×]−ι4, ι4[. By Theorem 8.1, A(ε,δ2,nε log ε) = Ãε . Then Proposition 5.1 implies that
A(ε,δ2,nε log ε) is selfadjoint in (Xio,Qε) and accordingly that Â(ε,δ2,nε log ε) is selfadjoint in (X̂io, Q̂ε). Then
the restriction of Â(ε,δ2,nε log ε) to the r-dimensional invariant subspace Im P]

(ε,ι) has r real eigenvalues
counted with their multiplicity.

By Theorem 9.1, the intersection of B2(γ̃, δ) and the spectrum of the operator Â(ε,δ2,nε log ε) is a spec-
tral set and the image of P]

(ε,δ2,nε log ε) is the corresponding projection (cf. (9.2)). Then the intersection

of the spectrum of Â(ε,δ2,nε log ε) and of B2(γ̃, δ) equals the spectrum of the restriction of the opera-
tor Â(ε,δ2,nε log ε) to Im P]

(ε,δ2,nε log ε), i.e., the set of the eigenvalues γr(ε), . . . , γ1(ε) (cf. Dunford and
Schwartz [9, Ch. VII, Thm. 20]). �

Next we turn to show that possibly shrinking ε4, ι4, we can choose r vectors ul[ε, ι] for l ∈ {1, . . . , r}
which generate the space Im P]

(ε,ι) and which satisfy the orthonormality conditions

Q̂ε

[
ul[ε, ι], u j[ε, ι]

]
= δl j, (9.3)

for all l, j ∈ {1, . . . , r} and which depend real analytically on (ε, ι) when (ε, ι) ∈ ]−ε4, ε4[×]−ι4, ι4[.
Namely, we prove the following by a variant of an argument of the proof of a corresponding result of
paper [18, Prop. 2.20] with Lamberti.

Proposition 9.3. Let α ∈ ]0, 1[, r ∈ N \ {0}. Let Ωi, Ωo be as in (5.1). Let γ̃ ∈ ]0,+∞[ be an eigenvalue
of multiplicity r of Ã0. Let δ, ε4, ι4 be as in Theorem 9.2.

Then there exist (ε5, ι5) ∈ ]0, ε4[×]0, ι4[ such that δ2,nε log ε ∈ ]−ι5, ι5[ for all ε ∈ ]0, ε5[ and r real
analytic functions ul[·, ·] for l ∈ {1, . . . , r}, from ]−ε5, ε5[×]−ι5, ι5[ to X̂io which satisfy the orthonor-
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mality conditions (9.3) and such that {ul[ε, ι] : l ∈ {1, . . . , r}} generates the space Im P]
(ε,ι) for all

(ε, ι) ∈ ]−ε5, ε5[×]−ι5, ι5[.

Proof. Since γ̃ is an eigenvalue of multiplicity r of Ã0, Proposition 7.4 ensures that γ̃ is an eigenvalue of
multiplicity r of the compact self adjoint operator AΩo in (L2(∂Ωo,R), 〈〈·, ·〉〉Ωo). Then the eigenspace of
AΩo corresponding to γ̃ has an orthonormal basis {θo

l : l ∈ {1, . . . , r}}, and we have 〈〈θo
l , θ

o
j〉〉Ωo = δl, j for

all l, j ∈ {1, . . . , r}. Now let θi
l be the function defined by the right hand side of formula (7.8) when θo =

θo
l , γ = γ̃. By Proposition 7.4, {(θi

l, θ
o
l ) : l ∈ {1, . . . , r}}, is a basis of the eigenspace of Ã0 corresponding

to γ̃ and Theorem 6.1(ii) ensures the validity of the equalities Q0[(θi
l, θ

o
l ), (θi

j, θ
o
j)] = 〈〈θo

l , θ
o
j〉〉Ωo = δl, j

for all l, j ∈ {1, . . . , r}. Then {(θi
l, θ

o
l ) : l ∈ {1, . . . , r}} is a basis of the (complex) eigenspace of the

complexification ˆ̃A0 of Ã0 corresponding to the real eigenvalue γ̃. By the definition of the complexified
Hermitian form Q̂0, we have Q̂0[(θi

l, θ
o
l ), (θi

j, θ
o
j)] = Q0[(θi

l, θ
o
l ), (θi

j, θ
o
j)] = δl, j for all l, j ∈ {1, . . . , r}.

By Lemma A.1 of the Appendix, and by the continuity of P]
(ε,ι) in (ε, ι) at (ε, ι) = (0, 0), there exist

(ε5, ι5) ∈ ]0, ε4[×]0, ι4[ such that the restriction P]

(ε,ι)|Ê(γ̃)
is injective when (ε, ι) ∈ ]− ε5, ε5[×]− ι5, ι5[

and accordingly, {vl[ε, ι] ≡ P]
(ε,ι)[(θ

i
l, θ

o
l )] : l ∈ {1, . . . , r}} is a system of r linearly independent vectors

which generates Im P]
(ε,ι). If ε ∈ ]− ε5, ε5[, we know that Q̂ε is a sesquilinear conjugate symmetric form.

If ε ∈ ]0, ε5[, then we also know thatQε = Qε is a scalar product in Xio and that accordingly Q̂ε is a scalar
product on X̂io. By Proposition 7.3, Q0 is positive definite on the subspace Im Ã0 of Xio and accordingly
on the eigenspace of Ã0 corresponding to γ̃. Hence, Q̂0 is a scalar product on the eigenspace Ê(γ̃) of ˆ̃A0

corresponding to the real eigenvalue γ̃. Now the equalities

Q̂0

[
vl[0, 0], v j[0, 0]

]
= Q̂0

[
P]

(0,0)

[(
θi

l, θ
o
l

)]
, P]

(0,0)

[(
θi

j, θ
o
j

)]]
= Q̂0

[(
θi

l, θ
o
l

)
,
(
θi

l, θ
o
l

)]
= δ j,l

for all l, j ∈ {1, . . . , r}, and the continuity of Q̂ε at ε = 0 and of P]
(ε,ι) at (ε, ι) = (0, 0) ensure that

possibly shrinking ε5, ι5 Q̂ε [vl[ε, ι], vl[ε, ι]] > 0 for all l ∈ {1, . . . , r}, for all (ε, ι) ∈ ]−ε5, ε5[×]−ι5, ι5[.
Then by following the Gram–Schmidt procedure, we set u1[ε, ι] ≡ v1[ε,ι]

Q̂ε [v1[ε,ι],v1[ε,ι]]1/2
for all pairs (ε, ι)

in ]−ε5, ε5[×]−ι5, ι5[. Next we argue by induction and we assume that possibly shrinking ε5, ι5, the
real analytic functions ul[·, ·] have been defined for l = 1, . . . , h with h < r and that {ul[ε, ι] : l ∈
{1, . . . , h}} generates the space generated by {vl[ε, ι] : l ∈ {1, . . . , h}} for all (ε, ι) ∈ ]−ε5, ε5[×]−ι5, ι5[

and we define uh+1[·, ·]. To do so, we consider the vector vh+1[ε, ι] −
∑h

l=1 Q̂ε [vh+1[ε, ι], ul[ε, ι]]ul[ε, ι].
For (ε, ι) = (0, 0), we have

Q̂0

[
vh+1[0, 0]−

h∑
l=1

Q̂0

[
vh+1[0, 0], ul[0, 0]

]
ul[0, 0],

vh+1[0, 0]−
h∑

l=1

Q̂0

[
vh+1[0, 0], ul[0, 0]

]
ul[0, 0]

]
> 0. (9.4)

Indeed, Q̂0 is positive semidefinite, and it is positive definite on the eigenspace Ê(γ̃) of Â corresponding
to γ̃, and if the number in (9.4) were to be equal to zero, then we would have the equality vh+1[0, 0] −



26 Multiple Steklov eigenvalues

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

∑h
l=1 Q̂0[vh+1[0, 0], ul[0, 0]]ul[0, 0] = 0, and vh+1[0, 0] would belong to the space generated by the set

{ul[0, 0] : l ∈ {1, . . . , h}}, which by inductive assumption equals the space generated by the set {vl[0, 0] :
l ∈ {1, . . . , h}}, a contradiction. By inequality (9.4) and possibly shrinking ε5, ι5, we can assume that∥∥∥∥∥vh+1[ε, ι]−

h∑
l=1

Q̂ε

[
vh+1[ε, ι], ul[ε, ι]

]
ul[ε, ι]

∥∥∥∥∥
(Im P]

(ε,ι)
,Q̂ε)

≡ Q̂ε

[
vh+1[ε, ι]−

h∑
l=1

Q̂ε

[
vh+1[ε, ι], ul[ε, ι]

]
ul[ε, ι], vh+1[ε, ι]

−
h∑

l=1

Q̂ε

[
vh+1[ε, ι], ul[ε, ι]

]
ul[ε, ι]

]

is strictly positive for all (ε, ι) ∈ ]−ε5, ε5[×]−ι5, ι5[. Then we can set

uh+1[ε, ι] ≡
vh+1[ε, ι]−

∑h
l=1 Q̂ε [vh+1[ε, ι], ul[ε, ι]]ul[ε, ι]

‖vk+1[ε, ι]−
∑h

l=1 Q̂ε [vh+1[ε, ι], ul[ε, ι]]ul[ε, ι]‖(Im P]
(ε,ι)

,Q̂ε)

for all (ε, ι) ∈ ]−ε5, ε5[×]−ι5, ι5[. Then conditions (9.3) hold true for all l, j ∈ {1, . . . , h + 1} and
{ul[ε, ι] : l ∈ {1, . . . , h + 1}} generates the space generated by {vl[ε, ι] : l ∈ {1, . . . , h + 1}} for all
(ε, ι) ∈ ]−ε5, ε5[×]−ι5, ι5[.

So by finite induction, the same is true for h = r − 1 and {ul[ε, ι] : l ∈ {1, . . . , r}} satisfies conditions
(9.3) and generates the space Im P]

(ε,ι) for all (ε, ι) ∈ ]−ε5, ε5[×]−ι5, ι5[. Possibly shrinking ε5, we can
assume that δ2,nε log ε ∈ ]−ι5, ι5[ for all ε ∈ ]0, ε5[. �

Next we introduce an (ε, ι)-dependent family of (complex) r× r matrices, which represents the matrix
of the restriction of Â(ε,ι) to the invariant subspace P]

(ε,ι). We do so by means of the following.

Proposition 9.4. Let α ∈ ]0, 1[. Let Ωi, Ωo be as in (5.1). Let γ̃ ∈ ]0,+∞[ be an eigenvalue of multiplicity
r of Ã0. Let δ, ε5, ι5, {ul[ε, ι] : l ∈ {1, . . . , r}} be as in Proposition 9.3. Let S be the map from the set
]−ε5, ε5[×]−ι5, ι5[ to the space Mr(C) of r × r matrices with complex entries defined by

S(ε, ι) ≡
(
Sh,k(ε, ι)

)
h,k∈{1,...,r} ≡

(
Q̂ε

[
Â(ε,ι)

[
uh[ε, ι]

]
, uk[ε, ι]

])
h,k∈{1,...,r}

for all (ε, ι) ∈ ]−ε5, ε5[×]−ι5, ι5[. Then the following statements hold.

(i) S is real analytic.
(ii) If ε ∈ ]0, ε5[, then S(ε, δ2,nε log ε) is the Hermitian r × r matrix associated to the restriction of
Â(ε,δ2,nε log ε) to the invariant space Im P]

(ε,δ2,nε log ε) and has precisely r real eigenvalues counted
with their multiplicity γr[ε] 6 · · · 6 γ1[ε], in the interval ]γ̃ − δ, γ̃ + δ[. Moreover, ]γ̃ − δ, γ̃ + δ[

contains no other eigenvalue of Â(ε,δ2,nε log ε).

(iii) S(0, 0) is the Hermitian matrix of the restriction of ˆ̃A0 to the eigenspace Ê(γ̃) of ˆ̃A0 corresponding
to γ̃, which has the real eigenvalue γ̃ with multiplicity r, and we set γl[0] ≡ γ̃ ∀l ∈ {1, . . . , r}.
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Proof. Since Q̂ε depends real analytically on ε ∈ ]−ε5, ε5[ and Â(ε,ι), ul[ε, ι] depend real analytically on
(ε, ι) ∈ ]−ε5, ε5[×]−ι5, ι5[, then Sh,k(ε, ι) depends real analytically on (ε, ι) ∈ ]−ε5, ε5[×]−ι5, ι5[ for all
h, k ∈ {1, . . . , r}.

(ii) By Proposition 5.1 and Theorem 8.1(i), A(ε,δ2,nε log ε) = Ãε is selfadjoint in (Xio,Qε). Then
Â(ε,δ2,nε log ε) is selfadjoint in (X̂io, Q̂ε). By Proposition 9.3, {ul[ε, δ2,nε log ε] : l ∈ {1, . . . , r}} is an
orthonormal basis of the invariant space Im P]

(ε,δ2,nε log ε) of Â(ε,δ2,nε log ε), which has dimension r (cf. The-

orem 9.2(iv)). Hence, S(ε, δ2,nε log ε) is the matrix of the restriction of Â(ε,δ2,nε log ε) to Im P]
(ε,δ2,nε log ε)

of Â(ε,δ2,nε log ε). Hence, S(ε, δ2,nε log ε) is Hermitian and has r real eigenvalues counted with their mul-
tiplicity. Also, Theorem 9.2 implies that ]γ̃ − δ, γ̃ + δ[ can contain no other eigenvalue of Â(ε,δ2,nε log ε).

(iii). Since S is analytic, then it is continuous at (ε, ι) = (0, 0), and accordingly S(0, 0) =
limε→0+ S(ε, δ2,nε log ε) must be Hermitian. By Proposition 9.3, {ul[0, 0] : l ∈ {1, . . . , r}} is an or-
thonormal basis of the Â(0,0)-invariant space Im P]

(0,0), which equals the eigenspace Ê(γ̃) of ˆ̃A0 cor-
responding to the eigenvalue γ̃ (see Theorem 9.2(iii)). Then the r × r Hermitian matrix S(0, 0) is the
matrix of the restriction of Â(0,0) to Ê(γ̃), which has only γ̃ as eigenvalue and accordingly has r real
eigenvalues counted with their multplicity, all of them equal to γ̃. �

We are now ready to analyze the behavior of the eigenvalues γr[ε], . . . , γ1[ε] of Proposition 9.4(ii),
which ‘split’ from the multiple eigenvalue γ̃ of Ã0 (or of AΩo). We do so by means of the following.

Theorem 9.5. Let α ∈ ]0, 1[, r ∈ N \ {0}. Let Ωi, Ωo be as in (5.1). Let γ̃ ∈ ]0,+∞[ be an eigenvalue
of multiplicity r of Ã0. Let δ be as in Theorem 9.1. Then there exist ε∗ ∈ ]0, ε0[ and ι∗ ∈ ]0,+∞[ and
r real analytic functions Γ1, . . . ,Γr from ]−ε∗, ε∗[×]−ι∗, ι∗[ to C such that δ2,nε log ε ∈ ]−ι∗, ι∗[ for all
ε ∈ ]0, ε∗[, and such that Ãε has precisely r real eigenvalues γr[ε] 6 · · · 6 γ1[ε] counted with their
multiplicity in the interval ]γ̃ − δ, γ̃ + δ[ and

Γ1(ε, δ2,nε log ε) ≡
r∑

j1=1

γ j1 [ε],

Γ2(ε, δ2,nε log ε) ≡
∑

j1, j2=1,...,r
j1< j2

γ j1 [ε] · γ j2 [ε],

. . . . . . . . .

Γr−1(ε, δ2,nε log ε) ≡
∑

j1,..., jr=1,...,r
j1<···< jr−1

γ j1 [ε] · · · · · γ jr−1 [ε],

Γr(ε, δ2,nε log ε) ≡ γ1[ε] · · · · · γr[ε],

(9.5)

for all ε ∈ ]0, ε∗[. Moreover,

Γs(0, 0) =

(
r
s

)
γ̃s ∀s ∈ {1, . . . , r}, (9.6)
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and

lim
ε→0+

γl[ε] = γ̃ ∀l ∈ {1, . . . , r}. (9.7)

If we further assume that n > 3, then there exists ε] ∈ ]0, ε∗[ such that for each l ∈ {1, . . . , r} there exists
an analytic function ζl from ]−ε], ε][ to R such that γl[ε] = ζl(ε) for all ε ∈ ]0, ε][, and ζl(0) = γ̃.

Proof. Let ε5, ι5 be as in Proposition 9.3. Then we take ε∗ = ε5, ι∗ = ι5. If ε ∈ ]0, ε∗[, Proposition 9.4(ii)
ensures that the operator Â(ε,δ2,nε log ε) = ˆ̃Aε has precisely r real eigenvalues γr[ε] 6 · · · 6 γ1[ε]

counted with their multiplicity in the interval ]γ̃ − δ, γ̃ + δ[. Since Â(ε,δ2,nε log ε) is the complexifica-
tion of A(ε,δ2,nε log ε), the above real eigenvalues are also eigenvalues of A(ε,δ2,nε log ε) and have the same
multiplicity. Then we note that if I is the identity matrix in Mr(C), then we must have

det
(
γI − S(ε, δ2,nε log ε)

)
=

r∏
l=1

(
γ − γl[ε]

)
∀γ ∈ R, (9.8)

for all ε ∈ ]0, ε∗[. Indeed, S(ε, δ2,nε log ε) is the Hermitian matrix of the restriction of Â(ε,δ2,nε log ε) to
Im P]

(ε,δ2,nε log ε) (see Proposition 9.4). We now define Γs(ε, ι) to be the coefficient of γr−s multiplied
by (−1)s of the polynomial det(γI − S(ε, ι)) for all (ε, ι) ∈ ]−ε∗, ε∗[×]−ι∗, ι∗[ and s ∈ {1, . . . , r}.
Since the Γs(ε, ι) are sums of products of the entries of the matrix S(ε, ι), Proposition 9.4 ensures that
the functions Γs are analytic in ]−ε∗, ε∗[×]−ι∗, ι∗[. Moreover, equality (9.8) ensures the validity of the
equalities in (9.5) and that equality (9.6) holds true.

Since limε→0+ S(ε, δ2,nε log ε) = S(0, 0) and the spectrum of S(0, 0) equals {λ̃}, the Spectral Stabil-
ity Theorem implies that equality (9.7) holds true (cf. e.g., Rudin [34, Thm. 10.20, p. 257]).

If we further assume that n > 3, then by applying the Rellich Theorem to the analytic family
{S(ε, 0)}ε∈ ]−ε∗,ε∗[ of Hermitian matrixes, we deduce the existence of ε] and of the analytic functions ζl

(cf. e.g., Rellich [33, Thm. 1, p. 57]). �

10. Continuity of the eigenvalues of the operators of the family {Ãε}ε∈ ]0,ε0[

If ε ∈ ]0, ε0[, then the operator Ãε is self adjoint in the Hilbert space (Xio,Qε) and thus all of its eigen-
values ar real and positive, and we can write the nonzero ones as a decreasing sequence {γ j[Ãε ]} j∈N\{0},
which has 0 as limiting point and we know that γ j[Ãε ] = 1/λ j[Ω(ε)] for all j ∈ N \ {0} (cf. Proposi-
tion 5.1).

Then we know that the nonzero eigenvalues of Ã0 coincide with those of the compact self adjoint
operator AΩo , which in turn equal the reciprocals of the nonzero Steklov eigenvalues in Ωo. Thus the
eigenvalues of Ã0 are real and positive and we can write the nonzero ones as a decreasing sequence
{γ j[Ã0]} j∈N\{0}, which has 0 as limiting point. Moreover, we know that γ j[Ã0] = 1/λ j[Ω

o] for all
j ∈ N \ {0} (cf. Proposition 7.4).

By Theorems 6.1 and 8.1, the family {Ãε}ε∈[0,ε0[ of operators of L(Xio) and the family {Qε}ε∈]0,ε0[ of
bilinear and continuous maps on Xio are continuous in ε and a continuity result for parameter dependent
self adjoint and compact operators in a Hilbert space with a parameter dependent scalar product implies
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that for each j ∈ N \ {0}, the eigenvalue γ j[Ãε ] depends continuously on ε ∈ ]0, ε0[ (cf. e.g., paper [19,
Thm. 5.5] with Lamberti). Then by the continuity result for λ j[Ω(ε)] at ε = 0 of Nazarov [27, Thm. 2.1,
p. 288], we deduce the validity of the following.

Theorem 10.1. Let α ∈ ]0, 1[, r ∈ N\{0}. Let Ωi, Ωo be as in (5.1). Then the map from [0, ε0[ to ]0,+∞[
which takes ε to γ j[Ãε ] is continuous for all j ∈ N \ {0} and the map from ]0, ε0[ to ]0,+∞[ which takes
ε to λ j[Ω(ε)] is continuous and limε→0+ λ j[Ω(ε)] = λ j[Ω

o] for all j ∈ N \ {0}.

One could also prove Theorem 10.1 by exploiting Theorem 9.5, but for brevity we omit such a proof.

11. Symmetric functions of multiple Steklov eigenvalues

Theorem 11.1. Let α ∈ ]0, 1[. Let Ωi, Ωo be as in (5.1). Let t ∈ N \ {0} be such that λ̃ ≡ λt[Ω
o] is an

eigenvalue of multiplicity r ∈ N \ {0} of the Steklov problem (1.1) in Ωo and that

λ̃ = λt
[
Ωo] = · · · = λt+r−1

[
Ωo].

Then there exist ε∗ ∈ ]0, ε0[ and ι∗ ∈ ]0,+∞[ and r real analytic functions Λt,1, . . . ,Λt,r from the set
]−ε∗, ε∗[×]−ι∗, ι∗[ to R such that δ2,nε log ε ∈ ]−ι∗, ι∗[ for all ε ∈ ]0, ε∗[, and such that the equalities in
(1.3) hold true for all ε ∈ ]0, ε∗[. Moreover,

Λt,s(0, 0) =

(
r
s

)
λ̃s ∀s ∈ {1, . . . , r}. (11.1)

If we further assume that n > 3, then there exists ε] ∈ ]0, ε∗[ such that for each l ∈ {1, . . . , r} there exists
an analytic function ξl from ]−ε], ε][ to R such that λt+l−1[Ω(ε)] = ξl(ε) for all ε ∈ ]0, ε][ and ξl(0) = λ̃.

Proof. Since λ̃ is a non zero eigenvalue of multiplicity r of the Steklov eigenvalue problem (1.1) in Ωo,
then Proposition 4.2 implies that γ̃ ≡ 1/λ̃ is an eigenvalue of multiplicity r of AΩo . Then Proposition 7.4
implies that γ̃ ≡ 1/λ̃ is an eigenvalue of multiplicity r of Ã0. Then Theorem 9.1 implies that there exists
δ > 0 such that ]γ̃ − 2δ, γ̃ + 2δ[\{γ̃} does not contain 0 and does not contain any point of the spectrum
of Ã0 and Theorem 9.5 implies that there exist ε∗ ∈ ]0, ε0[ and ι∗ ∈ ]0,+∞[ and r real analytic functions
Γ1, . . . ,Γr from ]−ε∗, ε∗[×]−ι∗, ι∗[ to C such that δ2,nε log ε ∈ ]−ι∗, ι∗[ for all ε ∈ ]0, ε∗[, and such that
Ãε has precisely r real eigenvalues counted with their multiplicity γr[ε] 6 · · · 6 γ1[ε] in the interval
]γ̃ − δ, γ̃ + δ[ and that equalities (9.5) and (9.6) hold true.

By the continuity Theorem 10.1, limε→0+ γt+l−1[Ω(ε)] = γ̃ for all l ∈ {1, . . . , r}. Then possibly
shrinking ε∗ we can assume that γt+l−1[Ω(ε)] ∈ ]γ̃− δ, γ̃+ δ[ and thus we must necessarily have γl[ε] =
γt+l−1[Ω(ε)] for all ε ∈ ]0, ε∗[, and thus λt+l−1[Ω(ε)] = 1/γl[ε] for all ε ∈ ]0, ε∗[ (see Proposition 5.1).
Then we set Γ0(ε, ι) ≡ 1 for all (ε, ι) ∈ ]−ε∗, ε∗[×]−ι∗, ι∗[, and Λt,s(ε, ι) ≡ <Γr−s(ε,ι)

Γr(ε,ι)
for all (ε, ι) ∈

]−ε∗, ε∗[×]−ι∗, ι∗[ and for all s ∈ {1, . . . , r}, then the equalities in (1.3) and (11.1) hold true. Here <
denotes the real part.

Then the last part of the statement follows by the equalities λt+l−1[Ω(ε)] = 1/γt+l−1[Ω(ε)] = 1/γl[ε]
for all ε ∈ ]0, ε∗[ and for all l ∈ {1, . . . , r} and by the last part of the statement of Theorem 9.5. �
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Appendix. An elementary lemma of operator theory

Lemma A.1. Let Y , Z be (real or complex) normed spaces. Let Y1 be a finite dimensional subspace of
Y . Let T̃ ∈ L(Y,Z). If the restriction of T̃ to Y1 is injective, then there exists an open neighborhood W of
T̃ in L(Y,Z) such that the restriction of T to Y1 is injective for all T ∈ W.

Proof. Assume by contradiction that W does not exist. Then there exists a sequence {T j} j∈N in L(Y,Z)
such that T j|Y1

is not injective for each j and lim j→∞ T j = T̃ in L(Y,Z).
Let y j ∈ Y1 be such that ‖y j‖Y = 1 and T j[y j] = 0 for all j ∈ N. Since the sequence {y j} j∈N is

bounded in the finite dimensional normed space Y1, then there exists a subsequence {y jk}k∈N which
converges to an element ỹ ∈ Y1. By continuity of the norm, we have ‖ỹ‖Y = 1. Next we note that∥∥T̃ [ỹ]− T jk [y jk ]

∥∥
Z 6 ‖T̃‖L(Y,Z)‖ỹ− y jk‖Y + ‖T̃ − T jk‖L(Y,Z)‖y jk‖Y ∀k ∈ N.

Hence, limk→∞ ‖T̃ [ỹ] − T jk [y jk ]‖Z = 0. Since T jk [y jk ] = 0 ∀k ∈ N, we have T̃ [ỹ] = 0, a contradic-
tion. �
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