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1 Introduction

Quantum field theories of two dimensional fermions are among the simplest to write down,
and nevertheless have remarkably rich physics. For example, perhaps the simplest 2d
conformal field theory (CFT), the critical point of the 2d Ising model, can be described
in terms of a free Majorana fermion. More elaborate fermionic CFTs appear as edge
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modes in quantum Hall systems [53], as well as in the classification of symmetry-protected
topological (SPT) phases [49]. Two-dimensional Bose-Fermi duality also relates fermionic
CFTs to lattice CFTs of bosons, which appear in, e.g., toroidal compactifications of string
theory. Recent works on dualities have also shed light on subtle discrete invariants required
to understand the rich physics of two dimensional fermions [37–39].

In this paper, we will rather emphasize intricate Lie algebraic structures hidden in
the deceptively simple physics of 2d free fermions.1 As has been emphasized in several
corners of the mathematical physics landscape (see, to give an incomplete list, [24, 25, 54]
and references therein), systems with certain distinguished numbers of fermions can enjoy
special properties and intertwine with several species of modular objects; our interest will
be in various symmetry structures present in a system of 24 chiral fermions and some
associated automorphic forms.

In this paper we study a system of 24 free chiral fermions in 2d. This is a holomorphic
superconformal field theory, or super-vertex operator algebra (SVOA), with central charge
12 and which we refer to throughout as F24. It is notable because it is one of three so-
called self-dual SVOAs with central charge 12.2 These theories were classified in [15] and
are given by (up to isomorphism):

1. V fE8 : this is the theory of 8 chiral bosons compactified on R8/ΛE8 , where ΛE8 is the
E8 root lattice, and their 8 fermionic superpartners.

2. V f\: this is the unique holomorphic SCFT with c = 12 and no weight-1/2 fields. First
discussed in [18], it has a unique N = 1 superconformal structure which is stabilized
by Conway’s largest sporadic group.

3. F24: this is a theory of 24 free chiral fermions. One can build an N = 1 super-
conformal structure by taking a linear combination of cubic Fermi terms, and the
allowed choices are classified by semisimple Lie algebras of dimension 24. Each of
these generates an affine Kac-Moody algebra, of which there are eight possibilities:

(ŝu(2)2)⊕8 , (ŝu(3)3)⊕3 , ŝu(4)4 ⊕ (ŝu(2)2)⊕3 , ŝu(5)5 , ŝo(5)3 ⊕ ĝ2,4 ,

ŝo(5)3 ⊕ ŝu(3)3 ⊕ (ŝu(2)2)⊕2 , ŝo(7)5 ⊕ ŝu(2)2 , ŝp(6)4 ⊕ ŝu(2)2 ,

which we describe in section 2.

On the face of it, these three theories are quite different — they have notably different
constructions and symmetry groups. However, as is described in [2, 15, 18, 19] and section 3,
by gauging symmetries, one can move from one to the other. Furthermore, in [48] and [31],
respectively, the theories V fE8 and V f\ have been used to furnish constructions of a special
type of infinite-dimensional Lie superalgebra known as a Borcherds-Kac-Moody (BKM)
superalgebra. BKM algebras were originally introduced by Borcherds [7] in his proof of
the monstrous moonshine conjectures of Conway and Norton [14], and Thompson [51, 52].3

1Interesting work in a similar spirit appeared recently in [55], which studied quantummechanical fermions
valued in (gauged) Lie algebras.

2A self-dual SVOA W is one that is rational and the unique irreducible W-module (up to isomorphism).
3For reviews of moonshine, see, e.g., [1, 21].
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The monster BKM arises from BRST quantization of a chiral bosonic string theory and
elucidates connections between modular functions, the monster sporadic simple group, and
the physics of 2d CFT.

One of the goals of the present paper is to describe the construction of a family of BKM
superalgebras based on the theory F24, similar to the constructions of BKM superalgebras
based on V fE8 and V f\ mentioned above. For each choice of N = 1 superconformal
structure for F24 we construct a corresponding BKM superalgebra g with Kac-Moody
symmetry determined by the choice of N = 1 supercurrent. The main results of this work
are threefold:

• We show that all choices of N = 1 structure on F24 can be obtained from orbifolds
of the SVOA V fE8 (see section 3),

• We prove that the Lie superalgebra g satisfies the conditions of a BKM superalgebra
(see theorem 2 in section 4.3),

• We provide an infinite product formula for the Borcherds-Weyl-Kac denominator for
each g (see section 5.4).

Besides the fact that we construct a new family of examples of (super)-BKM algebras,
of which there are only very few explicit constructions, one of our long-term interests is
to elucidate the connection between BKM algebras and BPS states in string theory, which
was originally envisaged by Harvey and Moore [32, 33]. They suggested that BPS states in
string and field theories with extended supersymmetry should form an algebra, and that
— at least in some contexts — this algebra would be a generalized4 Kac-Moody algebra
(or contain one as a subalgebra).

An interesting example of this proposal, similar in spirit to the present study, was
studied by the last three named authors [42, 43], where it was found that spacetime BPS
states in a second quantized heterotic string theory furnished a natural module over the
Monster BKM.5 The worldsheet string theory for this construction employed the Monster
vertex operator algebra V \, and the construction has been used to shed light on the physical
interpretation of the genus zero property of monstrous moonshine. Similarly, the theories
V fE8 , V f\, F24 all naturally occur as (chiral halves) of worldsheet CFTs at special points
in the moduli space of maximally supersymmetric type II string compactifications to 2d.
We expect that the BKM superalgebras constructed in [31, 48], and this paper, occur as
algebras acting on spacetime BPS states at such special points. This is a notion we make
precise in upcoming work [30]. Furthermore, given the close relation between V f\, V fE8, F24
via orbifolding, by analogy with the constructions in [42, 44, 45] we expect that we may
uncover new 2d spacetime string dualities by considering worldsheet theories which are a
tensor product V ⊗ W̄ with V,W taken to be one of these theories.

The outline of the rest of the paper is as follows. In section 2, we review the construction
of F24, its canonically-twisted module F tw

24 , the allowed choices of N = 1 supercurrent, and
4That is, a Borcherds-Kac-Moody algebra.
5See also [13] for a proposal for the appearance of a BKM algebra in string theory in a quite different

context, building on the pioneering results of [17].
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its character. In section 3, we describe how F24 with a choice of N = 1 structure can be
obtained from orbifolds of the SVOA V fE8 . In section 4 we explain the general construction
of BKM superalgebras from N = 1 SVOAs. We then go on to construct a family of BKM
superalgebras g from F24 with a choice of N = 1 superconformal structure. In section 5 we
prove our main theorem, showing that g is a super BKM-algebra. In this section we also
discuss the denominator and super denominator formulas of g. We give more details on
the example with Â8

1 Kac-Moody symmetry in the following section 6. We conclude with
a brief discussion of open questions in section 7. Finally, two appendices provide further
details about multivariable Jacobi forms (section A) and the relative BRST cohomology
for physical states in our theories (section B).

2 The SVOA and its N = 1 structures

2.1 Construction

The starting point of our construction is a simple holomorphic chiral superconformal field
theory (SCFT) F24 of central charge c = 12, given by 24 chiral free fermions. In mathe-
matical language, this is a self-dual C2-cofinite super vertex operator algebra (SVOA) of
CFT type of central charge 12. In our definition of SCFT (or SVOA) we do not include
the choice of an N = 1 subalgebra. For this reason, we refer to F24 as a single SVOA, even
though, as discussed below, it admits different N = 1 structures.

This theory is generated by 24 chiral free fermions, λ1(z), . . . , λ24(z), with OPE

λi(z)λj(w) ∼ δij

z − w
, (2.1)

and stress-energy tensor,

T (z) = −1
2

24∑
i=1

:λi∂λi : (z) , (2.2)

with respect to which λi have conformal weight 1/2. The
(24

2
)

= 276 currents λiλj , 1 ≤
i < j ≤ 24, generate an ŝo(24)1 Kac-Moody algebra, which is the bosonic (even) subVOA
of F24. By bosonization, the same SVOA can be described as a lattice model based on the
odd unimodular lattice Z12, with the ŝo(24)1 algebra corresponding to the D12 sublattice.
The space of odd (fermionic) states in F24 form a vector module for the ŝo(24)1 algebra.
N = 1 structures in free fermion theories were classified in [26]. AnN = 1 supercurrent

must be a linear combination of conformal primaries of weight 3/2, so it must be of the form

G = − i6
∑
i,j,k

cijk : λiλjλk : (2.3)

for some totally antisymmetric cijk ∈ C. The stress tensor (2.2) and the supercurrent G(z)
defined by (2.3) generate an N = 1 superconformal algebra at central charge 12 if and only
if the following conditions are satisfied [26]:∑

k

(cijkcklm + clikckjm + cjlkckim) = 0 , (2.4)∑
k,l

ciklcjkl = 2δij . (2.5)
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The first condition is equivalent to the requirement that the G(z)G(0) OPE does not contain
any singular term with four fermions λλλλ; the second is equivalent to the requirement
that the z−1 term in the OPE reproduces the stress-energy tensor T (z).

These conditions imply that cijk are the structure constants of a semisimple Lie algebra
g of dimension 24 (and any rank), i.e. g is the complex Lie algebra generated by t1, . . . , t24

with commutation relations
[tj , tk] = icjklt

l . (2.6)

Given a choice of cijk satisfying (2.4) and (2.5), the 24 currents

Ja(z) = − i2

24∑
j,k=1

cajk : λjλk : (z) , a = 1, . . . , 24 , (2.7)

satisfy the OPE

Ja(z)Jb(0) = δab
z2 + i

z

24∑
k=1

cabkJ
k(0) + . . . , (2.8)

which shows that the Ja(z) generate an affine Kac-Moody algebra ĝ based on the finite
Lie algebra g. Thus, g is a 24-dimensional subalgebra of the ŝo(24) algebra generated by
the zero modes of fermion bilinears λiλj . The OPEs

G(z)λa(0) = Ja(0)
z

+ . . . , and (2.9)

Ja(z)λb(0) = i

z

n∑
k=1

cabkλ
k(0) + . . . (2.10)

show that the currents Ja(z) are singled out as the N = 1 descendants of the 24 free
fermions λa, while the remaining 252 currents are superconformal primaries. Furthermore,
the free fermions λa transform in the adjoint representation with respect to the algebra g
of zero modes.

The SVOA admits a canonical non-degenerate invariant bilinear form (·|·), given by
the Zamolodchikov metric. By (2.8), the set of currents {Ja}a=1,...,24 is orthonormal with
respect to this bilinear form. In the following sections, we will need to choose a normal-
ization for the Cartan-Killing form (·|·)g on the finite dimensional Lie algebra g. It is
convenient to choose

(t|u)g = 1
2 Tr(Ad(t)Ad(u)) . (2.11)

With this choice, the Cartan-Killing form (·|·)g on the algebra of zero modes Ja0 coincides
with the bilinear form induced by the Zamolodchikov metric, since

(Ja0 |Jb0)g = 1
2 Tr(Ad(Ja0 )Ad(Jb0)) = −1

2

n∑
j,k=1

cajkcbkj = δab , (2.12)

where we used (2.5) and that Ad(Ja0 )jk = −icajk in the basis {Ja0 }. In the following, we
will often drop the subscript g on the Killing form. Notice that if g is a direct sum of
simple components g = ⊕igi, where gi has dual Coxeter number h∨gi , then the restriction
of the Killing form to gi is such that the long roots have square length 2/h∨gi .
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In terms of modes Ja(z) =
∑
n∈Z J

a
nz
−n−1, the OPE (2.8) yields the commutation

relations
[Jan , Jbm] = nδabδm,−n + i

∑
c

cabcJ
c
m+n . (2.13)

We recall that, for an affine Kac-Moody algebra ĝ′k based on a simple algebra g′ at level k,
the commutation relations read

[tn, um] = k
(t|u)g′
h∨g′

δabδm,−n + (Ad(t).u)n+m , (2.14)

when the Killing form is normalized as in (2.11).6 Comparing these equations, we see that
if g is the sum g = ⊕igi of simple components of dual Coxeter number h∨gi , the affine
algebra ĝ is given by

ĝ = ⊕i(ĝi)h∨gi , (2.15)

i.e. the levels of the simple components equal the dual Coxeter numbers.7

For dim g = 24, there are eight distinct possibilities for g:

A8
1 , A3

2 , A3A
3
1 , A4 , B2G2 , B2A2A

2
1 , B3A1 , C3A1 . (2.16)

The corresponding affine algebras are,

Â8
1,2 , Â3

2,3 , Â3,4Â
3
1,2 , Â4,5 , B̂2,3Ĝ2,4 , B̂2,3Â2,3Â

2
1,2 , B̂3,5Â1,2 , Ĉ3,4Â1,2 ,

(2.17)
that is,

(ŝu(2)2)⊕8 , (ŝu(3)3)⊕3 , ŝu(4)4 ⊕ (ŝu(2)2)⊕3 , ŝu(5)5 , ŝo(5)3 ⊕ ĝ2,4 , (2.18)
ŝo(5)3 ⊕ ŝu(3)3 ⊕ (ŝu(2)2)⊕2 , ŝo(7)5 ⊕ ŝu(2)2 , ŝp(6)4 ⊕ ŝu(2)2 .

Finally, this SVOA admits a unique (up to isomorphism) canonically twisted module
F tw

24 , which also admits an invariant non-degenerate bilinear form (·|·). Using the string
theory terminology, we will often refer to the SVOA F24 as the Neveu-Schwarz (NS) sector
and to its twisted module as the Ramond (R) sector. Recall that the even subalgebra of
F24 is the bosonic lattice VOA VD12 based on the D12 lattice. This VOA VD12 has four
irreducible modules which are in one-to-one correspondence with the cosets D∗12/D12. We
can label the four modules as ‘adjoint’, ‘vector’, ‘spinor’ and ‘conjugate spinor’ in terms of
their so(24) representations. While F24 is given by the direct sum of the adjoint and vector

6More generally, the relations are

[tn, um] = k
|θ|2

2 (t|u)δabδm,−n + (Ad(t).u)n+m ,

where |θ|2 is the length of the long roots. With the choice (2.11) for the normalization, one has |θ|2 = 2
h∨

g′
,

hence the formula.
7The same conclusion can be reached by noticing that, for a simple algebra g′, the dual Coxeter number is

the embedding index of g′ ⊂ so(dim g′). The embedding index is the ratio of the levels for the corresponding
embedding of affine algebras. Since dim g′ fermions generate an algebra ŝo(dim g′)q at level 1, we have that
ĝ′ must have level h∨g′ .
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VD12-modules, the canonically twisted module can be identified with the direct sum of the
two spinor VD12-modules, with opposite fermion number. This description immediately
shows that the lowest conformal weight in the Ramond sector is 3/2, and in particular
there are no states of weight 1/2. For any choice of the N = 1 supercurrent G(z), the
relation G2

0 = L0 − 1
2 implies that the zero mode G0 has zero kernel in the Ramond

sector, and therefore establishes an isomorphism between the components with positive
and negative fermion number.

2.2 Partition functions

In this section, we compute the partition functions of the SVOA F24 (NS sector) and its
canonically twisted module F tw

24 (R sector).
First we describe our notation. Let us choose a Cartan subalgebra h of the Lie algebra

g and let g = g− ⊕ h ⊕ g+ be a triangular decomposition. Let ∆+ ⊂ h∗ ∼= Cr be the set
of positive roots, where r = rank(g) is the rank of g, α1, . . . , αr ∈ h∗ be the simple roots,
and α∨1 , . . . , α

∨
r ∈ h be the coroots. We normalize the Killing form (·|·)g as in (2.11) so

that the long roots in each simple component g′ of g have length-squared 2/h∨g′ , where h∨g′
is the dual Coxeter number of g′. We denote by Qg =

∑
i Zαi ⊂ h∗ the root lattice, by

Q∨g =
∑
i Zα∨i ⊂ h the coroot lattice and by

Pg ≡ (Q∨g )∗ = {w ∈ h∗ | w(α∨i ) ∈ Z , ∀i} (2.19)

its dual lattice (the weight lattice).8 The Killing form (2.5) defines an isomorphism i : h→
h∗, which we often keep implicit, simply identifying h and h∗. With this Killing form, the
coroot lattice Q∨g is even, so that i(Q∨g ) ⊂ Pg.9

We can choose the basis vectors of the SVOA to be simultaneous eigenstates of L0
and of the Cartan generators (α∨1 , . . . , α∨r ) of g. The r-tuple of eigenvalues (the charges)
for (α∨1 , . . . , α∨r ) is a weight w ≡ (w1, . . . , wr) ∈ Pg. To keep track of both the L0 and h

eigenvalues, we introduce characters depending on τ ∈ H and on ξ ∈ h ∼= Cr, namely:

φNS(τ, ξ) = TrNS
(
qL0− c

24 e2πiξ
)

=
∑
n∈ 1

2Z

∑
w∈Pg

cNS(n,w)qne2πi(ξ|w) , (2.20)

φ
ÑS

(τ, ξ) = TrNS
(
qL0− c

24 e2πiξ(−1)F
)

=
∑
n∈ 1

2Z

∑
w∈Pg

(−1)2n+1c
ÑS

(n,w)qne2πi(ξ|w) , (2.21)

φR(τ, ξ) = TrR
(
qL0− c

24 e2πiξ
)

=
∑
n∈Z

∑
w∈Pg

cR(n,w)qne2πi(ξ|w) , (2.22)

φR̃(τ, ξ) = TrR
(
qL0− c

24 e2πiξ(−1)F
)

=
∑
n∈Z

∑
w∈Pg

cR̃(n,w)qne2πi(ξ|w) . (2.23)

8Occasionally, when it is clear from context which g we are studying, we will omit the subscript on the
root, coroot and weight lattices.

9We notice that the isomorphism i depends on the normalization of the Killing form, which is not
completely standard (long roots do not have length 2, but 2/h∨g ). For example, for su(2), the root has
length 2/2 = 1, so that one can identify Qg = Z, Pg = 1

2Z and i(Q∨g ) = 2Z.
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A direct calculation then gives (here ρ = 1
2
∑
α∈∆+ α ∈ Pg denotes the Weyl vector of g):

φ
ÑS

(τ, ξ) = q−1/2
∞∏
n=1

(1− qn−
1
2
)r ∏

α∈∆+

(
1− qn−

1
2 e2πi(ξ|α)

) (
1− qn−

1
2 e−2πi(ξ|α)

)
=
θ4(τ, 0)r/2

∏
α∈∆+ θ4(τ, (ξ|α))
η(τ)12 (2.24)

φNS(τ, ξ) = q−1/2
∞∏
n=1

(1 + qn−
1
2
)r ∏

α∈∆+

(
1 + qn−

1
2 e2πi(ξ|α)

) (
1 + qn−

1
2 e−2πi(ξ|α)

)
=
θ3(τ, 0)r/2

∏
α∈∆+ θ3(τ, (ξ|α))
η(τ)12 (2.25)

φR(τ, ξ) = e−2πi(ξ|ρ)2
r
2 q

∞∏
m=1

(1 + qm)r
∏

α∈∆+

[ ∞∏
n=0

(
1 + qne2πi(ξ|α)

) ∞∏
k=1

(
1 + qke−2πi(ξ|α)

)]

=
θ2(τ, 0)r/2

∏
α∈∆+ θ2(τ, (ξ|α))
η(τ)12 = 2

r
2
η(2τ)r

∏
α∈∆+ θ2(τ, (ξ|α))
η(τ)12+r/2 , (2.26)

and
φR̃(τ, ξ) = 0 . (2.27)

See appendix A for the definition of the multivariable theta functions.
The last equality follows because, as discussed above, kerG0 = 0 so that the Ramond

spaces with positive and negative fermion number are isomorphic. In this computation,
we use the fact that the Ramond ground states form a 212-dimensional representation of
the algebra g, which is isomorphic to the direct sum of 2r/2 copies of the representation Lρ
whose highest weight is the Weyl vector ρ. In particular, dimLρ = 2N , with N = (24−r)/2
being the number of positive roots. To show this, we first notice that the space of ground
states forms an irreducible module for the Clifford algebra of fermionic zero modes. Using
this description, it is easy to check that the difference between the highest and the lowest
weights in this representation is the sum over the positive roots, i.e. 2ρ, and that the
multiplicity of either the lowest or highest weight is 2r/2: the space of highest weight vectors
is itself a module for the Clifford subalgebra of r fermionic zero modes corresponding to
the Cartan generators of g. Finally, this g-representation must be self-conjugate, because
the canonically twisted module of F24 is unique, so it must be isomorphic to its dual. Thus,
the highest weight must be the opposite of the lowest, and therefore equal to ρ.

In the following, we also need the linear combinations

φNS±(τ, ξ) = TrNS

(
qL0− c

24 e2πiξ 1± (−1)F

2

)
= 1

2(φNS(τ, ξ)± φ
ÑS

(τ, ξ)) (2.28)

and
φR±(τ, ξ) = TrR

(
qL0− c

24 e2πiξ 1± (−1)F

2

)
= 1

2φR(τ, ξ) , (2.29)

giving the partition functions on the eigenspaces of the fermion number.
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As shown in appendix A, these functions admit a Fourier expansion

φX(τ, ξ) =
∑
n

∑
w∈Pg

cX(n,w)qne2πi(ξ|w) , (2.30)

where X ∈ {NS, ÑS,R, R̃,NS±, R±}, and the sum over n is over integers in the Ramond
sector or when X = NS−, and over half-integers in all other cases. The sum over w can
be reduced to a sum over the root lattice Qg ⊂ Pg in the NS sector, or over the coset
ρ+ Qg ⊂ Pg in the R sector. More generally, the sum over w can be restricted to

Q̃g := Qg ∪ (ρ+Qg) . (2.31)

In appendix A we show that the coefficients cX(n,w) depend on n and w ∈ Pg only
through the discriminant

D = 2n− (w|w)g (2.32)

and on the class [w] of w in Pg/i(Q∨g ); we will sometimes write cX(n,w) ≡ cX(D, [w]) to
emphasize this dependence.

In particular, when X ∈ {NS−, R±}, the coefficients cX(n,w) are non-zero only when

cX(n,w) 6= 0 ⇒

n ≥ 0
2n− (w|w)g ≥ −m([w]) ,

(2.33)

where
m([w]) = min{(w′|w′) | w′ ∈ w + i(Q∨g )} (2.34)

is the minimal square length of vectors in the coset w + i(Q∨g ). Since there are only a
finite number of cosets in Pg/i(Q∨g ), we can also give a bound on the discriminant that is
independent of the class of w,

cX(n,w) 6= 0 ⇒

n ≥ 0
2n− (w|w)g ≥ −M ,

(2.35)

where
M = max

[w]∈Pg/i(Q∨g )
m([w]) . (2.36)

Finally, for n = 0, one has

cNS−(0, w) =


1 if w is a root of g
r if w = 0
0 otherwise

(2.37)

while cR±(0, w) = 0 for all w ∈ Pg, given the absence of Ramond states of weight 1/2.
The coefficients cNS− and cR± will correspond to the (respectively, even and odd) root

multiplicities for the BKM superalgebra that we will construct in section 4.
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If we set all ξ = 0, we get the same formulas for all choices of N = 1 structure, namely

φNS(τ, 0) = TrNS
(
qL0− c

24
)

= −
η
(
τ+1

2

)24

η(τ)24 = q1/2 + 24 + 276q1/2 + 2048q + . . . (2.38)

φ
ÑS

(τ, 0) = TrNS
(
(−1)F qL0− c

24
)

= η(τ/2)24

η(τ)24 = q1/2 − 24 + 276q1/2 − 2048q + . . . (2.39)

φR(τ, 0) = TrR
(
qL0− c

24
)

= 212 η(2τ)24

η(τ)24 = 4096q + 98304q2 + . . . (2.40)

φR̃(τ, 0) = TrR
(
(−1)F qL0− c

24
)

= 0 . (2.41)

In particular,
φNS−(τ, 0) = 24 + 2048q + 49152q2 + . . . (2.42)

and
φR+(τ, 0) = φR−(τ, 0) = 2048q + 49152q2 + . . . (2.43)

showing that φNS−(τ, 0) = φR±(τ, 0) + 24.
Having established some basic properties of the F24 SVOA, we will next explain how

one can obtain this theory, including the choice of N = 1 structure, via orbifolds of V fE8 .
Though we do not undertake a full string theoretic construction in this work (though
see [30]), the orbifolds discussed in the next section will be a precursor to various spacetime
dualities relating string theories with different perturbative worldsheet descriptions based
upon the c = 12 self-dual SVOAs.

3 F24 from orbifolds of V fE8

In [15] it was shown that the SVOA F24 can be obtained from the SVOAs V fE8 or V f\

by an orbifold by a cyclic group of symmetries. However, in both cases, this group of
symmetries did not preserve the N = 1 supercurrent of V fE8 or V f\. As a consequence,
when F24 is constructed in this way, there is no N = 1 superconformal structure inherited
from the original SVOA. This raises the question whether F24 with a given choice of N = 1
superconformal structure can be obtained from V fE8 or V f\ by an orbifold procedure,
where the group of symmetries we quotient by preserves the superconformal current of
V fE8 or V f\, and the N = 1 structure on F24 is exactly the one induced by the parent
theory. In this section, we will show that all choices of N = 1 structure on F24 can be
obtained from the V fE8 SVOA.

This result is interesting in view of the correspondence between chiral vertex operator
superalgebras and non-chiral N = (4, 4) supersymmetric nonlinear sigma models proposed
in [2, 12, 15, 20, 50]. In particular, in [2] it was shown that there is a certain set of su-
persymmetry preserving automorphisms of V fE8 that are closely related to symmetries of
supersymmetric sigma models on T 4, and that the orbifold of V fE8 by any such automor-
phism is either the SVOA V f\ or V fE8 . Similar relationships between the chiral SVOA
V s\ with c = 12 (essentially V f\) and the non-chiral N = (4, 4) K3 sigma models with
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c = c̄ = 6 have also been explored in previous works [12, 20]; in [15, 50], it was shown that
they can be related via a certain reflection procedure. Here, we show that V fE8 admits
some further N = 1 preserving automorphisms for which the orbifold is F24. It would be
very interesting to understand what the meaning of this result is on the sigma model side
of the correspondence.

3.1 Generalities

Let us show that each choice of N = 1 structure on F24 can be obtained from an orbifold
of the E8 SVOA V fE8 , with its standard N = 1 structure, by a symmetry that commutes
with the N = 1 supercurrent. Let ψi, ∂X i, i = 1, . . . , 8, and Vλ, λ ∈ E8 be the fields of
weights 1/2, 1, and λ2/2, respectively, generating V fE8 . The standard N = 1 supercurrent
is G ∼:

∑
i ψ

i∂X i : (up to normalization).
Let us first consider the case of F24 with the N = 1 structure corresponding to g = A8

1.
We use a description of the E8 lattice as E8 = D8 ∪ (χ+D8), where

D8 =
{

(x1, . . . , x8) ∈ Z8 |
8∑
i=1

xi ∈ 2Z
}
, (3.1)

and χ = (1/2, 1/2, . . . , 1/2) ∈ R8, so that

χ+D8 =
{

(x1, . . . , x8) ∈
(1

2 + Z
)8
|

8∑
i=1

xi ∈ 2Z
}
. (3.2)

We note that χ+D8 is one of the four cosets in D∗8/D8. Consider a symmetry δ of V fE8

that acts trivially on ψi, ∂X i, i = 1, . . . , 8, and Vλ, for all λ ∈ D8 but acts by Vλ 7→ −Vλ
for λ ∈ χ + D8. This is a symmetry of order 2 of the SVOA acting trivially on the
supercurrent G. The group 〈δ〉 ∼= Z2 is a subgroup of a U(1)8 group of symmetries which
preserves ∂X i, ψi (and therefore preserves the supercurrent) and acts by Vλ 7→ e2πiα·λVλ for
some α ∈ (E8 ⊗ R)/E8. In particular, δ corresponds to α = (1, 0, 0, . . . , 0) ∈ (E8 ⊗ R)/E8.

The orbifold of V fE8 by 〈δ〉 is again an N = 1 SVOA, with the supercurrent G
inherited from the parent theory. The δ-invariant subalgebra (V fE8)δ is a supersymmetric
lattice SVOA based on the lattice D8. The δ-invariant δ-twisted sector is the (V fE8)δ-
module corresponding to the coset α + D8, another of the four cosets of D∗8/D8. Since
D8∪(α+D8) ∼= Z8, it turns out that the orbifold can be described as a lattice SVOA based
on the odd unimodular lattice Z8, together with the 8 fermions ψi. To check that this is
actually the same as the SVOA generated by 24 free fermions, notice that there are 24 fields
of weight 1/2, namely ψi and V±ei , i = 1, . . . , 8, where {ei}, with ei = (0, . . . , 0, 1, 0, . . . , 0) ∈
Z8, is the standard basis of Z8. Furthermore, since : VeiV−ei :∼ ∂X i, these 24 fields of
weight 1/2 generate the whole SVOA. Set λi := ψi, λ8+i := Vei , λ16+i := V−ei , i = 1, . . . , 8.
Then, the supercurrent G can be written (up to normalization) as

G ∼
8∑
i=1

: ψi∂X i :∼
8∑
i=1

: ψiVeiV−ei :=
8∑
i=1

: λiλ8+iλ16+i : , (3.3)

which is of the form (2.3) with cijk the structure constants of A8
1.
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There are similar orbifolds of V fE8 giving all the other N = 1 structures on F24. In
order to describe them, it is easier to implement the procedure in reverse, i.e. to find a
cyclic group of symmetries of F24 which preserves a given N = 1 supercurrent and such
that the orbifold theory is isomorphic to V fE8 with its N = 1 structure. Then, one uses the
fact that orbifolds by cyclic groups are ‘invertible’. This means that if a CFT B is obtained
from the CFT A via an orbifold by a cyclic group 〈δ〉, then the CFT B has a ‘quantum
symmetry’ Q such that the orbifold of B by 〈Q〉 is again A. The symmetry Q has the same
order N as δ and acts on B by multiplying the states in the δr-twisted sector by e

2πir
N . In

particular, if A has a δ-invariant N = 1 supercurrent, the induced supercurrent in B is also
Q-invariant, because it resides in the untwisted sector. By applying this general procedure
to the case we are interested in, then if we can show that V fE8 can be obtained from F24
through an orbifold by an N = 1-preserving cyclic group, we know that the orbifold of
V fE8 by the ‘quantum symmetry’ will give back F24.

To implement this construction, we need a symmetry σ of F24 that projects out most
of the 24 spin 1/2 fields, leaving at most 8 of them — this is the number of spin 1/2 fields in
V fE8 . Furthermore, the currents that are supersymmetric descendants of these σ-invariant
fermions must commute with each other — this is what happens with the supersymmetric
descendants of the 8 free fermions in V fE8 . In order to preserve the supercurrent G,
it is sufficient that σ acts on the 24 fermions λi — whose supersymmetric descendants
(currents) generate one of the Lie algebras g listed in (2.16) — by an automorphism of
the corresponding Lie algebra g. Explicitly, let J i be the current superpartner of the free
fermion λi, i = 1, . . . , 24, and let θ be a Lie algebra automorphism acting as J i → θ(J i) =∑
j θijJ

j on the currents. Then, we let the symmetry σ act by λi 7→ σ(λi) ≡
∑
j θijλ

j .
Since θ is an automorphism of g, it must preserve the structure constants cijk, which
implies that G ∼

∑
i,j,k cijkλ

iλjλk is also preserved by this symmetry. The condition that
the superpartners of σ-invariant fermions must commute (i.e., they must be contained in
some Cartan subalgebra of the Lie algebra g) automatically ensures that there are at most
8 spin 1/2 fields surviving the orbifold projection, because the algebras listed in (2.16) have
rank at most 8. This condition can be achieved by taking θ to be an inner automorphism
of g in a given Cartan torus acting non-trivially on all non-zero roots.

A symmetry σ projecting out all spin 1/2 fields corresponding to non-trivial roots of
g, and such that the orbifold is consistent, can be constructed as follows. Let g = ⊕kgk
be the decomposition of g into simple components gk, with Weyl vectors ρk and dual
Coxeter numbers h∨gk . Then, the Weyl vector of g is ρ = ⊕kρk ∈ Pg = ⊕kPgk . With our
normalization of the Killing form, the Freudenthal-de Vries strange formula reads

(ρk|ρk) = dim gk
12 , (3.4)

so that
(ρ|ρ) =

∑
k

(ρk|ρk) = dim g

12 = 2 . (3.5)

We take the symmetry σ to act on the fermion λα corresponding to a root α by
σ(λα) = e2πi(ρ|α)λα, and to act trivially on the spin 1/2 fields corresponding to the Cartan
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subalgebra. Notice that, for each positive root α in the gk component, we have

0 < (ρ|α) ≤ (ρ|θk) , (3.6)

where θk is the highest root of gk. With our normalization for the Killing form, we have

(ρ|θk) = (ρk|θk) = 1− 1
h∨gk

, (3.7)

so that 0 < (ρ|α) < 1 for all positive roots. In particular, σ acts non-trivially on all λ±α,
so that only the spin 1/2 fields corresponding to the Cartan subalgebra are preserved by
the orbifold projection.

In order to check that the orbifold is consistent, one needs to check the level-matching
condition, i.e. to verify that the levels of the σ-twisted NS sector are valued in 1

2NZ, where
N is the order of σ. In general, for a theory of 2n free fermions with a symmetry σ of
order N acting with eigenvalues e±2πiri , i = 1 . . . , n, ri ∈ 1

NZ, the σ-twisted NS states have
conformal weights valued in 1

2
∑
i r

2
i + 1

2NZ. In particular, if we take |ri| ≤ 1
2 , then the σ-

twisted ground states have conformal weight exactly 1
2
∑
i r

2
i . This standard formula can be

obtained, for example, by writing the Virasoro generators Ln in the twisted sector in terms
of normal ordered products of fermionic generators, and fixing the normal ordering constant
in L0 by requiring that the relation [L1, L−1] = 2L0 is satisfied (see, for example, [46]).
Applying this formula to our case, we obtain

1
2
∑
i

r2
i = 1

2
∑
α∈∆+

(ρ|α)2 = 1
2(ρ|ρ) = 1 ∈ 1

2N Z . (3.8)

Thus, the conformal weights are valued in 1
2NZ, and the level matching condition is satisfied.

We stress that it is not necessarily true that |(ρ|α)| ≤ 1/2 for all α ∈ ∆+, so this formula
does not imply that the conformal weights of the ground states are always 1.

We conclude that the orbifold of F24 by σ is a consistent holomorphic SVOA of central
charge 12, so the only possibilities are V fE8 , F24 or V f\. The latter case can be easily ruled
out: the orbifold theory contains at least the spin 1/2 fields λi corresponding to the Cartan
subalgebra of g, while V f\ contains no such fields. Finally, we verified in a case-by-case
analysis that the orbifold theory never contains 24 fields of spin 1/2, so we conclude that
the orbifold is the V fE8 theory.

For example, for an An algebra, the automorphism σ acts by multiplication by e
2πi
n+1

on the root space gαi for every simple root α1, . . . , αn; then, for any root α =
∑
imiαi the

automorphism acts on the root spaces gα by multiplication by e
2πi
∑

i
mi

n+1 ; since
∑
imi ≤ n

(and
∑
imi ≥ −n for negative roots) for the An algebra,10 one has that σ acts trivially only

on the Cartan subalgebra. Besides the currents in the Cartan subalgebra of g, which are
supersymmetric descendants, the symmetry σ leaves invariant a number of superconformal
primary currents. These can be easily determined since we know the eigenvalues of σ on
λi. Below we shall consider some explicit examples.

10This is automatic by one of the definitions of the Coxeter number.
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Simple Lie algebra gk Dimension Eigenvalues λgk
A1 3 {1,−1,−1}

A2 8
{

1, 1, e
(

1
3

)
, e
(

1
3

)
, e
(

1
3

)
, e
(

2
3

)
, e
(

2
3

)
, e
(

2
3

)}

A3 15

{
1, 1, 1,−1,−1,−1,−1, e

(1
4

)
, e
(1

4

)
, e
(1

4

)
,

e
(1

4

)
, e
(3

4

)
, e
(3

4

)
, e
(3

4

)
, e
(3

4

)}

A4 24

{
1, 1, 1, 1, e

(1
5

)
, e
(1

5

)
, e
(1

5

)
, e
(1

5

)
, e
(2

5

)
, e
(2

5

)
, e
(2

5

)
, e
(2

5

)
,

e
(3

5

)
, e
(3

5

)
, e
(3

5

)
, e
(3

5

)
, e
(4

5

)
, e
(4

5

)
, e
(4

5

)
, e
(4

5

)}
B2 10

{
1, 1,−1,−1, e

(
1
3

)
, e
(

1
3

)
, e
(

2
3

)
, e
(

2
3

)
, e
(

1
6

)
, e
(

5
6

)}

B3 21

{
1, 1, 1,−1,−1, e

(1
5

)
, e
(1

5

)
, e
(1

5

)
, e
(2

5

)
, e
(2

5

)
, e
(2

5

)
,

e
(3

5

)
, e
(3

5

)
, e
(3

5

)
, e
(4

5

)
, e
(4

5

)
, e
(4

5

)
, e
( 1

10

)
, e
( 3

10

)
, e
( 7

10

)
, e
( 9

10

)}

C3 21

{
1, 1, 1,−1,−1,−1,−1, e

(1
4

)
, e
(1

4

)
, e
(1

4

)
, e
(3

4

)
, e
(3

4

)
, e
(3

4

)
,

e
(1

8

)
, e
(1

8

)
, e
(3

8

)
, e
(3

8

)
, e
(5

8

)
, e
(5

8

)
e
(7

8

)
, e
(7

8

)
}

G2 14

{
1, 1,−1,−1, e

(1
4

)
, e
(1

4

)
, e
(3

4

)
, e
(3

4

)
, e
(1

3

)
, e
(2

3

)
,

e
( 1

12

)
, e
( 5

12

)
, e
( 7

12

)
, e
(11

12

)}

Table 1. Eigenvalues for symmetries σg which relate F24 with g-preserving N = 1 supercurrent to
V fE8 . The 24 eigenvalues λg of σg can be decomposed into sets of eigenvalues which act on each
simple component of g, such that λg = ∪kλgk

whenever σg = ⊕kσgk
. Here we use the abbreviation

e(x) := e2πix.

3.2 Examples

In this section, we summarize the action of N = 1-preserving orbifolds of F24 which re-
produce the SVOA V fE8 , for each choice of g in F24. Let σg be the orbifold symmetry
which relates F24 with N = 1 supercurrent determined by g to V fE8 , and λg be the set
of 24 eigenvalues of σg. As explained in the previous section, these eigenvalues can be
computed independently for each simple component gk of each choice of semisimple Lie
algebra g = ⊕kgk, such that λg = ∪kλgk . See table 1 for a summary of these eigenvalues
for each choice of simple Lie algebra which arises in our construction.

Below we give more details of these orbifolds for several choices of Lie algebra g:

• g = A8
1. We have already studied this case, albeit beginning with an orbifold of V fE8 ;

let us consider the same algebra from an orbifold of F24. We take the automorphism
σ to act by +1 on the 8 spin 1/2 fermions corresponding to a Cartan subalgebra
of A8

1, which we denote by λa+, a = 1, . . . , 8, and to act by −1 on the 16 spin 1/2
fermions corresponding to non-zero roots, which we denote by λa−, a = 1, . . . , 16.
The untwisted sector contains the 8 fields λa+ of spin 1/2, as well as the currents
λa+λb+, 1 ≤ a < b ≤ 8, and λa−λb−, 1 ≤ a < b ≤ 16, which together form a
so(8)⊕so(16) algebra of dimension 28+120 = 148. In the σ-twisted (NS) sector, the
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fermions λa+ have a mode expansion λa+ =
∑
r λ

a+
r z−r−1/2 with r ∈ 1

2 +Z, while the
λa− have modes λa−r with r ∈ Z. The ground state level can be easily computed to be
16∗ 1

4(1/2)2 = 1. The ground states must form a representation of the Clifford algebra
of the 16 zero modes λa−0 , so they must be degenerate with multiplicity 28 = 256.
Since each of these zero modes changes the σ-eigenvalue of the states, half of these
256 ground states are σ-invariant and half have σ-eigenvalue −1. It follows that,
after the orbifold projection, there will be 128 additional currents, commuting with
the so(8) generated by λa+λb+ and transforming in a spinor representation of the
so(16) generated by λa−λb−. Together, the untwisted so(16) currents and the 128
σ-twisted currents form a copy of the E8 current algebra.

• g = A3
2. We let σ act trivially on the six λi corresponding to the Cartan subalgebra

and by multiplication by ω = e
2πi
3 on each of the spin 1/2 fields corresponding to

simple roots. Therefore, the eigenvalues of σ on the 24-dimensional representation
of spin 1/2 fermions are: 1 with multiplicity 6, e

2πi
3 with multiplicity 9, and e−

2πi
3

with multiplicity 9. The untwisted sector currents are λ1
aλ

1
b , 1 ≤ a < b ≤ 6, and

λωaλ
ω̄
b , 1 ≤ a, b,≤ 9 (note that we do not require a < b here). We have a total of

15 + 81 = 96 currents, forming an so(6)⊕u(9) ∼= so(6)⊕u(1)⊕ su(9) algebra. In the
σ-twisted sector, the λωa are moded in 1

6 +Z and the λω̄a are moded in 5
6 +Z (and vice

versa in the σ2-twisted sector). Thus, the level of the twisted sector ground state
is 18 × 1

4(1/3)2 = 1/2. There are no zero modes, so that there is a unique ground
state in each of the twisted sectors, and we can choose them to be σ-invariant. This
gives 6 untwisted spin-1/2 fields and one more from each of the two twisted sectors,
for a total of 8 spin-1/2 fields. From each twisted sector, we have six additional
σ-invariant currents of the form λ1

a,−1/2|gr〉, a = 1, . . . , 6, and 9 · 8 · 7/3! = 84 of the
form λωa,−1/6λ

ω
b,−1/6λ

ω
c,−1/6|gr〉, 1 ≤ a < b < c ≤ 9 obtained by acting on the ground

state |gr〉. The untwisted so(6)⊕u(1), together with the six currents λ1
a,−1/2|gr〉 from

each of the two twisted sectors, combine into an so(8) algebra. The untwisted su(9),
together with the 84 λωa,−1/6λ

ω
b,−1/6λ

ω
c,−1/6|gr〉 from each twisted sector combine to

form the E8 algebra.

• g = A3A
3
1. We let σ act as it did for g = A8

1 on the subset of the λi corresponding
to A3

1, and let σ act by multiplication by i on the simple roots of A3. The eigenvalue
distribution in the form (multiplicity × eigenvalue) in the 24-dimensional represen-
tation of the free fermions is (6 × 1), (10 × −1), (4 × i), (4 × −i). The invariant
currents form the algebra so(6)⊕ so(10)⊕u(4) ∼= so(6)⊕ so(10)⊕u(1)⊕ su(4), for a
total of 15 + 45 + 16 = 76 untwisted sector currents. The ground states of the σ- and
σ3-twisted sector have level 1

4(4(1/4)2 + 4(1/4)2 + 10(1/2)2) = 3/4; there are 25 = 32
degenerate ground states, forming a representation of the Clifford algebra of the zero
modes of the 10 free fermions with eigenvalues −1. Half of them have a σ-eigenvalue ζ
while the other half have eigenvalue −ζ. We fix the action of σ on the twisted sectors
in such a way that ζ = i. This means that in each of the σ- and σ3-twisted sectors,
there are 4 · 16 = 64 σ-invariant currents, transforming in a (16, 4)-representation
of so(10) ⊕ u(4). Since σ2 has an eigenvalue distribution (16 × 1), (8 × −1), the
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σ2-twisted ground states have level 8× 1
4(1/2)2 = 1

2 , and form a 24 = 16 dimensional
representation of the Clifford algebra of the 8 fermionic zero modes. The σ-eigenvalue
distribution on the ground states is (2× 1), (6×−1), (4× i), (4×−i). Currents in
the σ2-twisted sector are obtained by acting on the ground states with one of the 16
half-integrally moded fermions, which have σ-eigenvalues +1 (6 of them) or −1 (10
of them). Therefore, we get 6×2+10×6 = 72 σ-invariant currents. In total, we have
76 + 64 + 72 + 64 = 276 currents, as expected. In particular, the so(6)⊕u(1) algebra,
together with the 6 × 2 currents in the σ2-twisted sector, form the ‘fermionic’ so(8)
obtained from the OPE of two spin 1/2 fields, while the so(10)⊕ su(4) algebra in the
untwisted sector combines with the 64 in each of the σ- and σ3-twisted sectors (in the
(16, 4) and (16, 4̄) representation of so(10)⊕su(4)) and the 10×6 from the σ2-twisted
sector (in the (10, 6) representation of so(10)⊕ su(4)) to form the E8 algebra.
• g = G2B2 & the rest. For the other algebras, in particular with non-simply-laced
components, the analysis is slightly more complicated. We illustrate the general
procedure by describing one example, the g = G2B2 case. The symmetry σ has
order 12 and fixes 4 fermions, corresponding to the Cartan subalgebra of g. On the
remaining 20 fermions, the eigenvalues are e±2πri , where the ri ∈ 1

12Z, i = 1, . . . , 10,
are 1

4 ,
1
12 ,

1
3 ,

5
12 ,

1
2 ,

3
4 from the G2 component, and 1

3 ,
1
6 ,

1
2 ,

2
3 from the B2 component.

From these data, one can compute the conformal weights of the σn-twisted ground
states (NS sector), obtaining 7

12 for n = 1, 5, 7, 11, 1
2 for n = 2, 10, 1

2 for n = 3, 9, 1
3

for n = 4, 8, 1
2 for n = 6. As expected, the level matching condition is satisfied. The

degeneracy of the ground states is determined by the number of fermionic zero modes
in each twisted sector. Using the algebra of fermionic oscillators, one can determine
the number of spin-1/2 states in each twisted sector. Next, one needs to project
on the σ-invariant subspace. On each twisted sector, the action of σ can be easily
determined up to an overall phase. The general theory of orbifolds tells us that, when
the level matching condition is satisfied, there exists a choice for these phases such
that the σ-invariant fields define a consistent SVOA. However, determining the right
phases explicitly is usually complicated, so in practice we take the following shortcut
for this example. We verified that, for any choice of the phases, the total number
of σ-invariant spin 1/2 fields is less than 24 (and more than 0). This is sufficient to
conclude that the orbifold theory is V fE8 . As a consistency check, we also verified
that there is a choice of phases for which the number of σ-invariant spin 1/2 fields
is exactly 8. We performed a similar analysis for all choices of g, and in all cases we
obtained V fE8 as the orbifold theory.

With the analysis of F24 orbifolds complete, we will now turn to a uniform construction
of BKM superalgebras for each choice of g.

4 BKM superalgebras from N = 1 SVOAs: a general construction

In this section, we describe a procedure to construct a BKM superalgebra starting from a
holomorphic SVOA V with central charge c = 12 with an N = 1 structure. The procedure
is heavily inspired by the definition of physical states in superstring theory — it is, in
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a sense, a ‘chiral version’ of that construction — and is a supersymmetric generalization
of Borcherds’ construction of the fake Monster and Monster Lie algebras [5, 7] that was
inspired by bosonic string theory. The main steps have been developed in [48] for the
specific example where V is the lattice SVOA V fE8 based on the E8 lattice, and has been
generalized to the example where V = V f\ in [31]. We will briefly describe the main steps
in this construction and refer to [31, 40, 48] for the proofs of most statements.

4.1 Super vertex algebras

For this construction, we need to consider a super vertex algebra (SVA) V tot given by a
product

V tot = V m ⊗ V gh = V int ⊗ V X,ψ ⊗ V gh (4.1)

where the ‘matter’ SVA V m has central charge 15 and the ‘ghost’ SVA V gh has central
charge −15. The matter SVA V m is itself a product of an ‘internal’ SVOA V int of central
charge 12 and a ‘space-time’ SVA V X,ψ of central charge 3.

Each of these SVAs has a Z2-grading given by a fermion parity (−1)F , and there
is a canonically twisted module on which one can choose an action of the fermion par-
ity (−1)F (though with a certain ambiguity). We again use the physics parlance: the
vertex superalgebras are the Neveu-Schwarz (NS) sector and the twisted module is the
Ramond (R) sector. For this reason, we will often put a subscript NS on the SVAs, such
as V int

NS ≡ V int, V gh
NS ≡ V gh etc.

In more detail, the various factors are as follows:

• The ‘internal (Neveu-Schwarz) sector’ of the superstring theory V int
NS = V int is aN = 1

self-dual SVOA (holomorphic SCFT) of central charge 12. Up to a choice of theN = 1
supercurrent, there are only three possible such SVOAs, up to isomorphism [15].
One is given by the 24 free fermion SVOA F24 described in section 2; the other
two are the supersymmetric E8 lattice SVOA V fE8 and the Conway module V f\

studied in [18]. The name ‘internal’ comes from the idea of compactifying the 10-
dimensional spacetime of a type II superstring on an 8-dimensional compact manifold,
whose corresponding non-linear sigma model is a SCFT of central charge 12. Note
however that the standard superstring construction has also an anti-holomorphic
sector, while our construction in this article is chiral. The space V int

NS

(
1
2

)
of states

of conformal weight (L0-eigenvalue) 1/2 is 24-dimensional for F24, 8 dimensional
for V fE8 and 0-dimensional for V f\. The space GV−1/2V

int
NS

(
1
2

)
⊆ V int

NS(1) of their
superpartners will be relevant in the following. The zero modes of these currents
generate a finite-dimensional Lie algebra g, where g = 0 for V f\ and g = u(1)⊕8

for V fE8 ; for F24 the possible algebras g, which are non-abelian and depend on the
choice of the supercurrent GV , are described in section 2. The canonically twisted
module (Ramond sector) is denoted by V int

R .

• The ‘uncompactified’ directions are represented by an SVA V X,ψ ≡ V X,ψ
NS (the NS

sector) based on the even unimodular lattice Γ1,1 of signature (1, 1), and its canoni-
cally twisted module V X,ψ

R . The basic fields are two chiral free bosons X+(z), X−(z)
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and their superpartners, the free fermions ψ+, ψ−. The chiral bosons alway appear
either with derivatives ∂nX±, n ≥ 1, or exponentiated in the form of vertex operators
eikX for each k ∈ Γ1,1. A convenient description of Γ1,1 is as the lattice of vectors
k ≡ (k+, k−) = (m,n) ∈ Z⊕ Z with quadratic form

k2 ≡ kµkµ ≡ ηµνkµkν = −2k+k− = −2mn . (4.2)

Roughly speaking, X+, X− represent the light-cone coordinates in a 1+1 dimensional
space-time R1,1 with metric η++ = η−− = 0, η+− = −1. The mode expansions are

i∂Xµ =
∑
n∈Z

αµnz
−n−1 , µ ∈ {+,−} . (4.3)

ψµ(z) =
∑

r∈Z+ν
ψµr z

−r−1/2 , µ ∈ {+,−} . (4.4)

where ν = 1/2 in the NS sector and ν = 0 in the R sector. The vertex operators eikX

correspond to states |k〉 that are eigenstates of the zero modes Pµ = αµ0 (momentum
operators) of i∂Xµ with eigenvalues kµ, µ ∈ {+,−}. The stress energy tensor TX,ψ(z)
and N = 1 supercurrent GX,ψ(z) are given by

TX,ψ(z) = 1
2 : ∂Xµ∂Xµ : (z) + 1

4 : ψµ∂ψµ : (z) (4.5)

GX,ψ(z) =: ψµ∂Xµ : (z) (4.6)

and generate an N = 1 superalgebra with central charge c = 3. The fields ψµ and
eikX are superconformal primaries with conformal weight 1/2 and k2/2, respectively;
the fields ∂Xµ are superconformal descendants of ψµ and have weight 1.

We refer to the product of the SVAs V int and V X,ψ as the matter sector V m =
V int ⊗ V X,ψ, with matter stress-energy tensor

Tm(z) = T V (z) + TX,ψ(z), (4.7)

N = 1 supercurrent
Gm(z) = GV (z) +GX,ψ(z), (4.8)

and total central charge c = 15.

• The ghost sector V gh is a SVA generated by the anticommuting bosonic fields

b(z) =
∑
n∈Z

bnz
−n−2 c(z) =

∑
n∈Z

cnz
−n+1 , (4.9)

and their superpartners, the commuting fermionic fields

β(z) =
∑

r∈Z+ν
βrz
−r−3/2 γ(z) =

∑
r∈Z+ν

γrz
−r+1/2 , (4.10)

where ν = 1/2 in the NS sector V gh
NS ≡ V gh and ν = 0 in the Ramond sector V gh

R (the
canonically twisted module of V gh). The stress-energy tensor T gh(z) and the N = 1
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supercurrent Ggh(z) are given by

T gh = − : (∂b)c : −2 : b∂c : −1
2 : (∂β)γ : −3

2 : β∂γ : (4.11)

Ggh(z) = −(∂β)c(z)− 3
2β∂c(z)− 2bγ(z) (4.12)

and form an N = 1 superVirasoro algebra with central charge c = −15. The fields
b and c and their superpartners β and γ have conformal weights 2, −1, 3/2 and
−1/2, respectively. One can define a ghost quantum number, with respect to which
c and γ have charge +1, while b and β have charge −1. It is often useful to have an
alternative description of the superghosts β, γ as a subalgebra of a SVA generated by
two anticommuting fields ξ and η of conformal weight 0 and 1 and a chiral scalar φ

β = ∂ξe−φ γ = ηeφ . (4.13)

The fields η, ξ obey the same OPE as b and c, while φ generates a lattice vertex
algebra based on a 1-dimensional lattice, and always appears with derivatives ∂nφ,
n > 0 or in exponentials e

m
2 φ, m ∈ Z. More precisely, the fields e

m
2 φ, have m even

or odd depending on whether they act on the NS or the R sector. The stress energy
tensor becomes

T gh = − : (∂b)c : −2 : b∂c : −1
2∂φ∂φ− ∂

2φ− η∂ξ (4.14)

in terms of these fields. Note that the SVA generated by η, ξ and φ is strictly larger
than the one generated by β and γ.

The βγ-module built starting from the PSL(2,C)-invariant vacuum |0〉 is un-
bounded from below, since the states (γ1/2)n|0〉 have arbitrarily low L0-eigenvalues.
More generally, one can consider different βγ-modules, starting from a state |p〉, p ∈ Z
(NS sector) or p ∈ 1

2 + Z (R sector), satisfying

βr|p〉 = 0, r ≥ −p− 1/2 (4.15)
γr|p〉 = 0, r > p+ 1/2 . (4.16)

p is the picture number of the βγ-module. It is easy to see that only for p ∈
{−1,−1/2,−3/2}, all positive modes of both β and γ annihilate |p〉; therefore, only
in this case the L0 eigenvalues are bounded from below with |p〉 having the lowest
eigenvalue (ground state). The different βγ-modules are related to each other in the
larger algebra generated by ξ, η, φ, by

|p〉 = epφ|0〉. (4.17)

The full SVA

V tot
NS ≡ V tot = V int ⊗ V X,µ ⊗ V gh ≡ V m ⊗ V gh (4.18)

contains a N = 1 superVirasoro subalgebra with central charge ctot = 0 generated by the
stress-energy tensor T (z) =

∑
n Lnz

−n−2

T = Tm + T gh = T V + TX,ψ + T gh (4.19)
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and N = 1 supercurrent

G = Gm +Ggh = GV +GX,ψ +Ggh . (4.20)

The fermion number operator on V tot, leaving bosons fixed and multiplying fermions by
−1, is the product of the fermion number operators on the single factors. The canonically
twisted module (Ramond sector) of V tot is just the product

V tot
R = V int

R ⊗ V X,µ
R ⊗ V gh

R = V m
R ⊗ V

gh
R , (4.21)

of the Ramond sectors, where we defined the matter Ramond sector V m
R = V int

R ⊗ V X,µ
R .

For each of these SVA, the action of the fermion number operator on the algebra can be
extended to an action on the Ramond sector. There is a certain ambiguity in choosing
this expansion; we assume that a choice has been made, so that (−1)F has order 2 on the
Ramond sector.

4.2 BRST cohomology

The next step on the path to obtaining the chiral physical states, mimicking the usual
superstring construction, is to perform a GSO projection, i.e. to consider only the even
subspace

V GSO ≡ V tot
NS+ ⊕ V tot

R+ , (4.22)

which is the eigenspace of the total fermion number with eigenvalue +1, and then to further
restrict to the kernel of b0, L0 (NS sector) or to the kernel of b0, L0, β0, G0 (R sector)11

C = (V tot
NS+ ∩ ker〈b0, L0〉)⊕ (V tot

R+ ∩ ker〈b0, L0, β0, G0〉) , (4.23)

where 〈b0, L0〉 and 〈b0, L0, β0, G0〉 denote the subalgebras generated by the corresponding
elements. On this space, we introduce some gradings given by the ghost and picture
numbers n ∈ Z and p ∈ 1

2Z, and the momentum k = (k+, k−) ∈ Γ1,1 ∼= Z⊕ Z

C = ⊕k∈Γ1,1C(k) = ⊕k,p,nCnp (k) . (4.24)

Notice that the NS and the Ramond sector can be distinguished by their picture number
p, which is integral in the NS sector and half-integral in the Ramond sector. We now
introduce the BRST charge

Q =
∑
n

c−nL
m
n +

∑
r

γ−rG
m
r + 1

2(: cT gh :)0 + 1
2(: γGgh :)0 , (4.25)

which is a nilpotent operator that commutes with p, k and shifts the ghost number by 1.
For each picture number p and momentum k ∈ Γ1,1, we have a complex

. . . Cn−1
p (k) Q−→ Cnp (k) Q−→ Cn+1

p (k) Q−→ . . . (4.26)

and we define the corresponding cohomology spaces as Hn
p (k).

11Strictly speaking, it is not clear that one needs to impose the extra restrictions to kerβ0, kerG0 in the
R sector, though it is a choice that is sometimes made for convenience. The states at nonzero momentum
are insensitive to this restriction, but computations of the cohomology of states at zero-momentum can
become simpler. In [30] we will study a non-chiral superstring theory based on V f\⊗ V̄ f\ and compute the
physical states without imposing this extra R sector condition.
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Let us recall some results about this cohomology:

Picture changing. For each n, k, there is a ‘picture raising operator’ homomorphism

X : Hn
p (k)→ Hn

p+1(k) (4.27)

which is an isomorphism if k 6= 0. Therefore, at least at nonzero momentum, one is
led to consider only the cohomology groups in the ‘canonical pictures’ p = −1 (NS
sector) and p = −1/2,−3/2 (R sector). It is also reasonable to expect that one can
restrict to these canonical pictures at zero momentum without losing any interesting
information, and we do so throughout this text.

Canonical ghost number. For k 6= 0 and n 6= 1,

Hn
p (k) = 0 . (4.28)

This theorem is proved in section 3 of [40]; an alternative proof is given in [23].
The proof only uses the fact that for k 6= 0 the matter sector is a free module
for the superalgebra generated by the negative modes of the matter superVirasoro
algebra. This is true for any critical internal SVOA V int, so the theorem generalizes
immediately to the case we are considering. It fails for k = 0 because the module is
not free in that case: there are relations corresponding to the fact that G−1/2 and
L−1 annihilate the PSL(2,C)-invariant vacuum state of the matter SVA V m.

Bilinear form. There is a non-degenerate bilinear form (·, ·)H pairing Hn
p (k) with

H2−n
−2−p(−k), which is defined in terms of the bilinear forms on the matter and

ghost vertex algebras. In particular, (·, ·)H restricts to a non-degenerate form on
⊕kH1

−1(k). In the Ramond sector, this bilinear form non-degenerately pairs H1
−1/2(k)

and H1
−3/2(−k). For k 6= 0, combining this bilinear form with the spectral flow iso-

morphism X : H1
−3/2(k) → H1

−1/2(k), we get a non-degenerate bilinear form on
⊕k 6=0H

1
−1/2(k). For k = 0, the homomorphism X might have a non-trivial kernel and

the induced bilinear form on H1
−1/2(0) might be degenerate. We will deal with the

k = 0 case separately in the following.

Equivalence with light-cone quantization. For k 6= 0, the no-ghost theorem ensures
that there is an isomorphism of vector spaces

H1
−1(k) ∼= V int

NS−

(
−k

2

2 + 1
2

)
, k 6= 0 ,

where V int
NS−(h) denotes the component of the internal SVOA V int with L0-eigenvalue

h and negative fermion number (the latter condition is automatically satisfied, since
h = −k2

2 + 1
2 ∈

1
2 + Z). Similarly, there is an isomorphism of vector spaces

H1
−1/2(k) ∼= V int

R+

(
−k

2

2 + 1
2

)
∼= V int

R−

(
−k

2

2 + 1
2

)
, k2 6= 0 ,

where V int
R+(h) and V int

R−(h) denote the components of the canonically twisted module
V int
R of the internal SVOA V with L0-eigenvalue h and with positive (respectively,

– 21 –



J
H
E
P
0
2
(
2
0
2
1
)
0
3
9

negative) fermion number. The isomorphism V int
R+(h) ∼= V int

R−(h) is given by the zero
mode GV0 of the N = 1 supercurrent. For null momentum k, it is convenient to per-
form a case-by-case analysis. For F24, since VR−

(
1
2

)
= VR+

(
1
2

)
= 0, we simply get

H1
−1/2(k) = 0 for k2 = 0, V int = F24 . (4.29)

For the V fE8 and V f\ cases, we refer to [48] and [31], respectively. In superstring
theory, the isomorphisms for k 6= 0 are the statements that the BRST quantization for
non-zero momentum is equivalent to the light-cone quantization. This isomorphism
is actually an isometry, since it preserves the bilinear forms on the cohomology groups
and on the SVOA (and its module).

Cohomology representatives from old covariant quantization. A particularly use-
ful set of representatives for the cohomology classes in H1

−1(k) is given by states of
the form

c1e
−φ|χ, k〉 , (4.30)

where |χ, k〉 is a state of momentum k in the matter SVA V m
NS = V int

NS ⊗ V
X,ψ
NS that

satisfies (
Lm0 −

1
2

)
|χ, k〉 = 0 , (4.31)

Lmn |χ, k〉 = Gmr |χ, k〉 = 0 , ∀n, r > 0 , (4.32)

i.e. it is a superconformal primary of weight 1/2. It is easy to see that states of
the form (4.30) and satisfying (4.31), (4.32) are Q-closed and therefore define classes
in H1

−1(k). Vice versa it can be shown [46] that every class in H1
−1(k) has a rep-

resentative of this form, but possibly more than one (i.e. some of the states (4.30)
might be Q-exact). Similarly, all classes in H1

−1/2(k) admit (possibly non-unique)
representatives of the form

c1e
−φ/2|u, k〉 (4.33)

where |u, k〉 is a state of momentum k in the matter Ramond sector V m
R = V int

R ⊗V
X,ψ
R

with fermion number −1 and such that

Lmn |u, k〉 = Gmr |u, k〉 = 0 , ∀n > 0, r ≥ 0 , (4.34)

(since (Gm0 )2 = Lm0 − 5
8 , the condition G

m
0 |u, k〉 = 0 implies

(
Lm0 − 5

8

)
|u, k〉 = 0). The

definition of the space of physical states in terms of states satisfying (4.31), (4.32)
or (4.34) is known as the ‘Old Covariant Quantization’ in superstring theory.

Zero momentum. It is clear from the previous observations that the k = 0 sector needs
to be considered separately, since most of the theorems we mentioned above do not
apply in this case. Fortunately, it is easy to find the cohomology groups by a direct
computation. The analysis is described in appendix B. The outcome is that in the
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(−1)-picture (NS sector) the cohomology is non-zero only at degrees 0, 1, 2, with

dimH0
−1(0) = 1 (4.35)

dimH1
−1(0) = dim V int

NS

(1
2

)
+ 2 (4.36)

dimH2
−1(0) = 1. (4.37)

In fact, all states in Ci−1(0) are Q-closed and there are no Q-exact states, so that
there is an isomorphism of Ci−1(0) ∼= H i

−1(0). In particular, H1
−1(0) is spanned by

ψµ−1/2e
−φc1|0〉 , µ ∈ {+,−} (4.38)

va−1/2e
−φc1|0〉 , a = 1, . . . , N = dim V int

NS

(1
2

)
, (4.39)

where va, a = 1, . . . , N are the fields of weight 1/2 in V int. One has N = 24 for F24,
N = 8 for V fE8 and N = 0 for V f\. Notice that these states are of the form (4.30).

In the (−1/2)-picture, the cohomology is non-zero only at ghost number 1, with

dimH1
−1/2(0) = dim V int

R

(1
2

)
. (4.40)

The description of Ramond states is a bit more complicated, and we refer to [48]
and [31] for the cases V int = V fE8 and V int = V f\. When V int = F24, one has
dim V int

R

(
1
2

)
= 0, so there is no cohomology for k = 0 at picture number −1/2

or −3/2.

To conclude, the space of physical states is given by

Hphys = ⊕k∈Γ1,1(H1
−1(k)⊕H1

−1/2(k)) . (4.41)

Notice that the dimensions of the cohomology spaces do not depend on the choice of the
N = 1 structure on V int, in particular when V int is F24. However, the representatives of
the cohomology classes do depend on this choice and, most importantly, the superalgebra
of physical states that we will define in the next section depends on this choice.

4.3 Lie superalgebra of physical states

Let us now exhibit the structure of Lie superalgebra on the space Hphys of physical states.
The starting point is to define a Lie superalgebra structure on the graded complex C.
Following [41], we define a Lie bracket {, } : Cnp (k)× Cmq (k′)→ Cn+m−1

p+q (k + k′) by

{u, v} = (−1)|u|(b−1u)0v (4.42)

where the parity |u| ∈ Z/2Z of an element u ∈ Cnp (k) is defined by |u| = n+2p+1 mod 2.
This Lie bracket satisfies Z2-graded versions of skew-symmetry and Jacobi identity, and is
compatible with the picture changing operator X and BRST charge Q, in the sense that

X{u, v} = {Xu, v} = {u,Xv} , (4.43)
Q{u, v} = {Qu, v}+ (−1)|u|+1{u,Qv} . (4.44)
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The latter property ensures that {, } induces a well-defined bracket (which, by slight abuse
of notation, we denote by the same symbol) {, } : Hn

p (k)×Hm
q (k′) → Hn+m−1

p+q (k + k′) on
the BRST cohomology — the bracket between Q-closed states is still Q-closed, and the
bracket between a Q-exact and a Q-closed state is Q-exact.

One then defines a Lie superalgebra g = g0 ⊕ g1, where the even and the odd compo-
nents g0 and g1 are given, respectively, by the Neveu-Schwarz and by the Ramond physical
states:

g0 =
⊕
k∈Γ1,1

H1
−1(k) g1 =

⊕
k∈Γ1,1

H1
−1/2(k). (4.45)

The Lie bracket [u, v] on classes u ∈ H1
p (k) and v ∈ H1

q (k′) is defined by

[u, v] =

{u, v} ∈ H1
−1(k + k′) if p = q = −1/2 ,

X{u, v} ∈ H1
p+q+1(k + k′) otherwise .

(4.46)

In other words, when both u and v are odd (in the Ramond sector), then the bracket
[, ] coincides with {, } : H1

−1/2(k) × H1
−1/2(k′) → H1

−1(k + k′); when one of the elements
(say, u) is even (in the NS sector), then one needs first to map it to its 0-picture version
Xu ∈ H1

0 (k) and then use the bracket {, } : H1
0 (k) ×H1

p (k′) → H1
p (k + k′). In particular,

the picture changing operator X, and therefore the bracket [ , ], depends on the choice of
the N = 1 supercurrent.

This is made more explicit if we take representatives of H1
−1(k) of the form (4.30), i.e.

u = c1e
−φ|χ, k〉, where |χ, k〉 is a state in the matter vertex algebra V m

NS = V int
NS ⊗ V

X,ψ
NS

that is a superconformal primary of weight 1/2 (see eqs. (4.31), (4.32)). Then

Xu = Xc1e
−φ|χ, k〉 = c1G

m
−1/2|χ, k〉+ γ1/2|χ, k〉 (4.47)

so that
b−1Xu = Gm−1/2|χ, k〉 . (4.48)

As a consequence, (b−1Xu)0 is just the zero mode of the current corresponding to the
weight 1 matter state Gm−1/2|χ, k〉.

The bilinear form (·, ·)H that non-degenerately pairs Hn
p (k) with H2−n

−2−p(−k) deter-
mines a non-degenerate bilinear form 〈·|·〉 on g0 ⊕

⊕
k 6=0 g1(k), defined by

〈u|v〉 =


(u, v)H if u, v ∈ g0 ,

−(ũ, v)H with u = Xũ if u, v ∈
⊕

k 6=0 g1(k) ,
0 otherwise .

(4.49)

On g1(0) = H1
−1/2(0) the bilinear form is in general not defined, because the picture

changing operator X : H1
−3/2(0) → H1

−1/2(0) is not an isomorphism in this case. In [48]
and [31], it was proven that when V int is V fE8 or V f\, g0(0) ⊕

⊕
k 6=0 g(k) is a subalgebra

of g, and in particular it is the derived subalgebra [g, g]. When V int = F24, one has
g1(0) = 0, so this case is simpler. This form is symmetric when restricted to g0 and
antisymmetric when restricted to g1 (see [48], proposition 5.17 for a proof); bilinear forms
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on a superspace satisfying this property are called supersymmetric. The form 〈·|·〉 is also
invariant, meaning that 〈[w, x]|y〉 = 〈x|[w, y]〉 for all x, y, w ∈ g; this properties follows
from analogous properties of the bilinear form on the vertex algebras.

Cartan subalgebra and root multiplicities. Let us specialize to the case where V int ∼=
F24, and consider the even k = 0 component g0(0), which is a finite dimensional Lie
subalgebra of g (again, g1(0) = 0). Acting by b−1X on the two states ψ±−1/2e

−φc1|0〉, we
get the weight 1 states Gm−1/2ψ

±
−1/2|0〉 = α±−1|0〉 corresponding to the space-time currents

∂X±. The zero modes are P± = α±0 , whose eigenvalues are the space-time momenta
k+, k−. These operators obey the commutation relations

[Pµ, u] = kµu u ∈ g(k) , (4.50)

with elements u ∈ g of definite momentum k. An obvious consequence is that the only
generators commuting with both P+ and P− are the ones in the zero momentum component
g(0). When the internal SVOA is F24, there are 24 further states of the form (4.39)
in H1

−1(0). The 0-picture version of these states correspond to the 24 currents Ja, a =
1, . . . , 24, that are superconformal descendants of the weight 1/2 fields λa. As described in
section 2, the zero modes of these currents generate a semi-simple Lie algebra g ⊂ so(24)
of dimension 24. Thus, the zero momentum subalgebra g0(0) of g is isomorphic to

g0(0) = u(1)⊕2 ⊕ g , (4.51)

with the abelian component u(1)⊕2 generated by P+, P−. A maximal abelian subalgebra
of g0(0) is given by

h = u(1)⊕2 ⊕ h , (4.52)

where h ⊂ g is a Cartan subalgebra for g, with generators α∨1 , . . . , α∨r . For V int = F24,
the zero momentum odd component g1(0) is 0, and no other generator with nonzero mo-
mentum can commute with Pµ ∈ h. We conclude that h is actually a maximal abelian
subalgebra for the whole g. Thus, g has rank r + 2, where r is the rank of g. We see that,
while our construction provided a natural Γ1,1-grading for g in terms of momentum (i.e.,
Pµ eigenvalues), by taking into account the eigenvalues with respect to the remaining r

generators α∨1 , . . . , α∨r of the Cartan algebra, we can now introduce a finer grading for the
superalgebra g with values in the lattice

Qg := Γ1,1 ⊕ Q̃g ∼= Z⊕ Z⊕ Q̃g ⊂ h∗ . (4.53)

Here, Q̃g := Qg ∪ (ρ+Qg) ⊆ Pg is the union of the root lattice Qg of the finite dimensional
algebra g and its translate ρ+Qg (see eq. (2.31)). Thus

g = ⊕k̂∈Qgg(k̂) , (4.54)

where k̂ = (m,n,w) ∈ Z ⊕ Z ⊕ Q̃g. In particular, the even and odd components are
graded as

g0 =
⊕
m,n∈Z
w∈Qg

g0(m,n,w) , (4.55)
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and

g1 =
⊕
m,n∈Z
w∈ρ+Qg

g1(m,n,w) . (4.56)

The bilinear form on the cohomology, when restricted to the zero momentum space NS
space, defines an invariant non-degenerate bilinear form 〈·|·〉g on g0(0) which extends the
Cartan-Killing form (·|·)g on g. This form satisfies

〈P+|P−〉 = −1 , 〈P+|P+〉 = 〈P−|P−〉 = 0 (4.57)

and both P+ and P− are orthogonal to g. With this choice, one has

k̂2 ≡ 〈m,n,w|m,n,w〉 = −2mn+ (w|w)g , (4.58)

for k̂ ≡ (m,n,w) ∈ Qg. We denote by

∆̂ ≡ ∆̂0 ∪ ∆̂1 := {k̂ ∈ Qg | g(k̂) 6= 0} ⊂ Qg , (4.59)

the set of roots of g, with ∆̂0 and ∆̂1 the subsets of even and odd roots, respectively. The
bilinear form 〈·|·〉 restricted to the real spaces

hR := RP+ ⊕ RP− ⊕ (Q∨g ⊗ R) , (4.60)

and h∗R := Qg ⊗ R is real-valued, with signature (r + 1, 1).
Since all (super)ghosts and superconformal generators commute with α∨1 , . . . , α∨r , the

equivalence between BRST and light-cone quantization is compatible with this finer grad-
ing. As a consequence, if we denote by

V int
NS(n,w) n ∈ 1

2Z, w ∈ Qg , (4.61)

the component of the SVOA V int
NS
∼= F24 with L0-eigenvalue n and α∨1 , . . . , α∨r -eigenvalues

w and
V int
R (n,w) n ∈ Z, w ∈ ρ+Qg , (4.62)

the analogous component in the twisted module V int
R , one has

dim g0(m,n,w) = dim V int
NS−(mn,w) = cNS−(nm,w) , (4.63)

dim g1(m,n,w) = dim V int
R±(mn,w) = cR+(nm,w) = cR−(nm,w) . (4.64)

Here, cNS−(nm,w) and cR±(nm,w) are the Fourier coefficients of the Jacobi forms (2.28)
and (2.29). As discussed in appendix A and section 2.2, general properties of the coefficients
of Jacobi forms imply that the dimension of the root spaces g0(m,n,w) and g1(m,n,w)
depend only on the norm −2mn + (w|w)g of the root and on the class [w] of w in the
quotient Pg/i(Q∨g ). Furthermore, the condition (2.35) implies that

dim g(m,n,w) 6= 0 ⇒

mn ≥ 0
−2mn+ (w|w)g ≤M ,

(4.65)

where M > 0 is a constant depending on the choice of the N = 1 superalgebra: see (2.36).
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5 The Lie superalgebra g as a Borcherds-Kac-Moody superalgebra

In this section we will prove that the Lie superalgebra g that we constructed in the pre-
vious section is a Borcherds-Kac-Moody (BKM) superalgebra. BKM algebras differ from
the usual Kac-Moody algebras because the simple roots are allowed to have non-positive
norm. They can be defined in terms of Chevalley-Serre generators and relations (see for
example [47]). In our case, it is useful to use an alternative characterization of BKM su-
peralgebras, which was given by Ray [47], and we begin by describing this below before
embarking on the proof.

5.1 Generalities on BKM superalgebras

First, we list some relevant definitions. According to definition 2.3.17 of [47], a root α ∈ ∆̂
is said to be of finite type if it acts locally nilpotent on g, i.e. if for all x ∈ g(α) and for all
y ∈ g, there is an integer n (possibly depending on x and y), such that (adx)ny = 0. A
root is said to be of infinite type if it is not of finite type. The bound (4.65) on the norm of
the roots implies that a root of positive norm is necessarily of finite type. Indeed, if α ∈ ∆̂
with 〈α|α〉 > 0, then for any β ∈ ∆̂ we have

〈β + nα|β + nα〉 = 〈β|β〉+ 2n〈α|β〉+ n2〈α|α〉 n→±∞−→ +∞ . (5.1)

Thus, for sufficiently large n, β + nα is not a root, so that (adx)ny = 0 for all x ∈ g(α)
and y ∈ g(β).

Theorem 1 ([47], corollary 2.5.11). Let G = G0⊕G1 be a (complex) Lie superalgebra.
Suppose that the following conditions are satisfied:

1. There is a self-centralizing even subalgebra H ⊂ G such that G can be decomposed
as a direct sum ⊕αGα of eigenspaces for H, with each eigenspace Gα being finite
dimensional. A non-zero eigenvalue α ∈ H∗ is called a root of G.

2. There is a non-degenerate, supersymmetric, invariant bilinear form 〈·|·〉 on G, with
respect to which G0 and G1 are orthogonal to each other.

3. The algebra H admits a real form HR such that the restriction of 〈·|·〉 to HR is real
(so that HR ∼= H∗R). Furthermore, H∗R ∼= HR contains all roots.

4. There is an element h ∈ HR (a regular element) that is not orthogonal to any root
and such that for all N > 0 there is only a finite number of roots α such that 0 <
|α(h)| < N . A root is called positive if α(h) > 0 and negative if α(h) < 0.

5. For any α, β of infinite type or of zero norm that are both positive or both negative,
one has 〈α|β〉 ≤ 0. Moreover, if 〈α|β〉 = 0 and if x ∈ Gα is such that [x,G−γ ] = 0
for all roots γ with |γ(h)| < |α(h)|, then [x,Gβ ] = 0.

Then, G is a Borcherds-Kac-Moody superalgebra.
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5.2 Proof that g is a BKM superalgebra

Using the characterization of BKM superalgebras presented in the previous subsection, we
can prove that the Lie superalgebra g, constructed in section 4.3, is a BKM superalgebra.
The following lemma will prove to be a useful intermediate step.

Lemma 1. Let η ∈ Q∨g ⊂ h be an element of the Cartan subalgebra of g such that α(η) 6= 0
for all non-zero roots α ∈ ∆g of g. Then, there exists a positive integer L such that the
element h = −LP+−LP−+η ∈ hR in the real Cartan subalgebra of g satisfies the following
properties:

1. if γ = (m,n,w) ∈ ∆̂g is a non-zero root of g, then γ(h) 6= 0;

2. if γ = (m,n,w) ∈ ∆̂g with m > 0 or n > 0, then γ(h) > 0;

3. for all N > 0, there are only a finite number of roots γ ∈ ∆̂g such that 0 < |γ(h)| < N ;

4. if α = (m,n,w) ∈ ∆̂g, with 〈α|α〉 ≡ −2mn+ (w|w) = 0, is a non-zero null root of g,
and γ = (0, 0, w′) ∈ ∆̂g is a root with γ(P+) = γ(P−) = 0, then |α(h)| > |γ(h)|.

Proof. We take L to be very large, so that, in particular,

〈h|h〉 = −L2 + (η|η) < 0 . (5.2)

Let us prove the h is not orthogonal to any root, for L large enough. If γ = (m,n,w) ∈ ∆̂
is a root with (m,n) 6= (0, 0), then by (4.65) one has

w(η)2 ≤ (η|η)(w|w) ≤ (η|η)(M + 2mn) (5.3)

so that

L2(m+n)2−w(η)2 ≥ L2(m2 +n2) + 2mn(L2− (η|η))− (η|η)M ≥ L2− (η|η)M > 0 (5.4)

where we used that mn ≥ 0 by (4.65), that L2 − (η|η) = −〈h|h〉 > 0, that m2 + n2 ≥ 1
for m,n not both null, and that for L large enough L2 > (η|η)M . This means that a root
γ = (m,n,w) of g with (m,n) 6= (0, 0) is positive γ(h) = L(m+ n) + w(η) > 0 if and only
if m,n ≥ 0 (notice the m and n cannot have opposite sign, since for a root mn ≥ 0). If
γ = (m,n,w) is a root of g with m = n = 0, then w must be a root of g; then, γ(h) > 0 if
and only if w(η) > 0, i.e. if w is a positive root of g. This shows that no root is orthogonal
to h.

Without loss of generality, we can assume that h is a primitive vector in the lattice
ZP+ ⊕ ZP− ⊕ Q∨ ⊂ hR. If we denote by P = Γ1,1 ⊕ Pg ⊂ h∗ the dual lattice, then there
exists u ∈ P such that u(h) = 1. Any root γ ∈ ∆̂g ⊂ Q ⊆ P can be uniquely decomposed
as tu + γ⊥, where t = γ(h) ∈ Z and γ⊥ ∈ P ∩ h⊥. By (4.65) 〈γ|γ〉 ≤ M , so that for each
fixed t ∈ Z there is an upper bound B(t) > 0 such that 〈γ⊥|γ⊥〉 ≤ B(t) for all ut+γ⊥ ∈ ∆̂.
Since P ∩ h⊥ is a positive definite lattice, for each t ∈ Z there are only finitely many
γ⊥ ∈ P ∩ h⊥ satisfying this bound, and therefore finitely many roots with γ(h) = t. This
proves point 3.
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As for point 4, it is sufficient to prove it for α = (m,n,w) ∈ ∆̂ a null root with
α(h) > 0. Suppose first that w 6= 0, so that 2mn = (w|w) 6= 0. Let γ = (0, 0, w′) be
another non-zero root of g, where w′ is a root of g. Let us prove that |γ(h)| < α(h) for
sufficiently large L. We have

α(h) = L(m+ n) + w(η) ≥ L(m+ n)−
√

(w|w)(η|η) = L(m+ n)−
√

2mn(η|η) . (5.5)

Set y =
√

m
n (recall that mn 6= 0), so that

α(h) ≥ n
[
L(y2 + 1)−

√
2(η|η)y

]
. (5.6)

As a function of y, the right-hand side has a minimum at y=
√

2(η|η)
2L with value nL

(
1− (η|η)

2L

)
,

so that
α(h) ≥ nL

(
1− (η|η)

2L

)
≥ L

(
1− (η|η)

2L

)
> 0 . (5.7)

Since there are only finitely many roots of the form γ = (0, 0, w′), w′ ∈ ∆g, one can choose
L sufficiently large so that

|γ(h)| = |w′(η)| < L

(
1− (η|η)

2L

)
≤ α(h) , (5.8)

for all roots w′ of g. Now, suppose that α = (m,n,w) 6= 0 is a positive null root with
w = 0. This implies mn = 0, so that either m = 0 or n = 0, but not both. Thus, for
sufficiently large L, we have

α(h) = L(m+ n) ≥ L > |w′(η)| = |γ(h)| ,

for all roots w′ of g.

We are now ready to prove the main theorem:

Theorem 2. g is a BKM superalgebra.

Proof. The subalgebra h constructed in the previous subsection is a self-centralizing even
subalgebra, and all components g(α) in the decomposition ⊕α∈Qgg(α) are finite dimen-
sional. As a real form hR, we can take the real algebra generated by Pµ, µ ∈ {+,−} and
by the coroots α∨1 , . . . , α∨r ; the latter generate a Cartan subalgebra of the compact real
form of the finite dimensional Lie algebra g. The dual space h∗R contains the root lattice
Q = Γ1,1 ⊕ Q̃g, and therefore all roots of g. The non-degenerate bilinear form satisfies
all the required properties: 〈·|·〉 is non-degenerate, supersymmetric, invariant, and g0 is
orthogonal to g1. Its restriction to hR is real with signature (r + 1, 1). Eq. (4.65) implies
that the norms of the roots are bounded from above. As a regular element, we can take
an element h ∈ hR as in lemma 1, which clearly satisfies the properties in point 4.

To complete the proof, we just need to establish point 5. As discussed above, a root
of infinite type in g cannot have positive norm. For a lattice of Lorentzian signature,
if α, β are both positive or both negative of non-positive norm, then they belong to the
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same connected component of the cone of non-positive norm vectors, so that their product
automatically satisfies 〈α|β〉 ≤ 0. Furthermore, one has 〈α|β〉 = 0 if and only if α and β
are both null and are proportional to each other. Let α = (m,n,w) ∈ ∆̂ be any non-zero
null root of g. By lemma 1, any γ = (0, 0, w′) ∈ ∆̂ satisfies |γ(h)| < |α(h)|. Let us prove
that a non-zero element x ∈ g(α) cannot commute with g(0, 0,−w′) for all 0 6= w′ ∈ ∆g.
If w 6= 0, then x belongs to a non-trivial representation of the finite Lie algebra g, so it
cannot commute with all generators of g+ and g−. When w = 0, since α = (m,n, 0) is
null and non-zero, one has that either m = 0 or n = 0, but not both. For such m,n,
one has that (m,n,w) is a root of ĝ if and only if w is a root of g, and ⊕w∈∆g(m,n,w)
forms a 24-dimensional adjoint representation of g. This means that no non-zero element
x ∈ g(α) ⊂ ⊕w∈∆g(m,n,w) can commute with all g(−γ) for all γ of the form (0, 0, w′).

5.3 Simple roots and Weyl vector

In this section, we discuss some of the simple roots of the BKM algebras g and the existence
of a Weyl vector. A complete description of all simple roots of g requires a case by case
treatment. In section 6 we perform this analysis for the BKM algebra corresponding to
A8

1, while we leave the other cases to future work.

Proposition 1. Let α1, . . . , αr ∈ ∆g be the simple roots of g. If g is the sum g = ⊕nk=1gk
of n simple components gk, k = 1, . . . , n, let θk ∈ ∆g be the highest root of gk. Then
α̂i := (0, 0, αi), i = 1, . . . , r, δ+

k := (1, 0,−θk), δ−k = (0, 1,−θk), k = 1, . . . , n, are real
simple roots of g. For each k = 1, . . . , n, let Ik ⊆ {1, . . . , r} be such that {αi}i∈Ik is the
set of simple roots of gk, and set D+

k := {α̂i}i∈Ik ∪ {δ
+
k } and D−k := {α̂i}i∈Ik ∪ {δ

−
k }.

Then, the subalgebra of g generated by h ⊕
⊕
±γ∈D+

k
g(γ) and the subalgebra generated by

h⊕
⊕
±γ∈D−

k
g(γ) are both isomorphic to the affine Kac-Moody algebra ĝk.

Proof. A root α = (m,n,w) is positive if m,n ≥ 0 and, in the case m = n = 0, if w is
a positive root of g, i.e. w ∈ ∆+

g . Therefore, α̂i := (0, 0, αi), i = 1, . . . , r are necessarily
simple. The space g(1, 0) := ⊕w∈Pgg(1, 0, w) is 24 dimensional and transforms in the adjoint
representation of g, so (1, 0, w) is in ∆̂ if and only if w ∈ ∆g. The only way to obtain a root
of the form (1, 0, w) as a sum over positive roots is as (1, 0, w) = (1, 0, w − w′) + (0, 0, w′)
where w′ ∈ ∆+

g and w − w′ ∈ ∆g. But if w = −θk, then (1, 0,−θk − w′) is not in ∆̂ for
any w′ ∈ ∆+

g , so (1, 0,−θk) must be a simple root. An analogous result holds for roots of
the form (0, 1,−θk). For the last statement, it is sufficient to notice that, if {γ1, γ2, . . .}
is a set of real simple roots equal to either D+

k or D−k , then the matrix (Aij) = 〈γi|γj〉 is
the Cartan matrix of the affine Kac-Moody algebra ĝk, so the subalgebra generated by the
corresponding root elements must be isomorphic to ĝk.

We stress that, while the simple real roots α̂i = (0, 0, αi), i = 1, . . . , r, δ+
k = (1, 0,−θk),

k = 1, . . . , n, span the space h∗, this does not necessarily mean that they form a complete
set of real simple roots. For example, in section 6, we will show that in the case g = A8

1
there are infinitely many real simple roots.
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Let ρ =
∑n
k=1 ρk be the Weyl vector of the algebra g = ⊕nk=1gk, with ρk the Weyl

vector of the simple component gk. The Weyl vector obeys the usual property

(ρ|αi) = 1
2(αi|αi) . (5.9)

Furthermore, with the normalization we have chosen for the Killing form, we obtain

(θk|θk) = 2
h∨gk

, (ρ|θk) = (ρk|θk) = 1− 1
h∨gk

. (5.10)

Thus, if we define ρ̂ = (−1,−1, ρ) ∈ Qg, we get

〈ρ̂|α̂i〉 = (ρ|αi) = 1
2〈αi|αi〉 , (5.11)

and
〈ρ̂|δ±k 〉 = 1− (ρ|θk) = 1

h∨gk
= 1

2〈δ
±
k |δ
±
k 〉 . (5.12)

The condition that 〈ρ̂|α〉 = 1
2〈α|α〉 for all simple roots α is the defining property of a Weyl

vector for the algebra g. Since the space h∗ is spanned by the simple real roots α̂1, . . . , α̂r,
δ+
k , δ

−
k , we conclude that if the algebra g admits a Weyl vector, then it must be equal to

ρ̂ = (−1,−1, ρ) ∈ Qg. (5.13)

To verify that this is actually the Weyl vector of the algebra, one must check that it
satisfies the defining properties with respect to all the real and imaginary simple roots
of g. In section 6.4 we prove that the BKM algebra corresponding to g = A8

1 coincides
with an algebra studied by Borcherds [5–8], who showed that the Weyl vector is indeed
ρ̂. We conjecture that the Weyl vector exists, and therefore coincides with ρ̂, for all the
other cases as well, but we leave the proof for future work. Based on this conjecture, in
the following we refer to ρ̂ as the Weyl vector of g. Note that even if ρ̂ only satisfies the
defining properties with respect to the real simple roots, it may still be used to construct
the denominator formula, as we discuss in section 5.4 below. By (3.5), we obtain

〈ρ̂|ρ̂〉 = −2 + (ρ|ρ) = 0 , (5.14)

so that the Weyl vector has zero norm. Finally, we notice that −ρ̂ = (1, 1,−ρ) is an
odd simple root; this follows from the fact that, for V int = F24, one has H1

−1/2(k) ∼=
V int
R

(
−k2

2 + 1
2

)
is nonzero only for −k2

2 + 1
2 ≥ 3/2. Given that k2 = −2mn, this means

that mn ≥ 1. For m = n = 1, one has that H1
−1/2(k) ∼= V int

R

(
3
2

)
which is the sum of

irreducible representations of g with lowest weight −ρ. This implies that (1, 1,−ρ) cannot
be obtained as a sum of positive roots, and therefore it is simple.

If γ ∈ ∆̂ is a root of non-zero norm, it makes sense to consider the reflection rγ with
respect to hyperplane perpendicular to γ

rγ(β) = β − 2〈γ|β〉
〈γ|γ〉

γ , (5.15)
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where β ∈ h∗. Following [47], we define the Weyl group W of the infinite dimensional BKM
algebra g as the group generated by reflections rγ , where the root γ is even and real (and
therefore automatically of finite type and non-zero norm). As in the finite dimensional
case, the Weyl group preserves the bilinear form

〈w(α)|w(β)〉 = 〈α|β〉 , w ∈W , (5.16)

for all α, β ∈ h∗.
Notice that the real roots of g are always even. Indeed, it is well-known that real

roots in BKM algebras have multiplicity 1 [47]. Formulas (2.26) and (2.29) show that the
multiplicities of all odd roots are a multiple of 2r/2−1, where r ≥ 4 is the rank of the algebra
g. This implies that there are no odd real roots, i.e. all odd roots γ satisfy 〈γ|γ〉 ≤ 0.

With our knowledge of the roots, we can now study some interesting representation
theoretic, automorphic functions associated with our BKM superalgebras g.

5.4 Denominator and superdenominator

As in the case of finite or Kac-Moody Lie (super)algebras, BKM (super)algebras with Weyl
vectors possess a version of the Weyl-Kac character formula which, when one considers the
character of the trivial module, produces a Weyl-Kac denominator identity. Each side of
the denominator identity contains valuable information about the root spaces, root space
multiplicities, and (real and imaginary) simple roots of the algebra in question, and takes
the form of an equality between two very different formulations of a given modular or
automorphic object. In certain nice examples, like the Monster BKM, knowledge of both
sides of the denominator identity is sufficient to determine the algebra itself. Furthermore,
in the ordinary Kac-Moody case, the Weyl-Kac denominator is itself the character for a
module whose highest weight is the Weyl vector; again, this holds for some particularly
simple low-rank BKMs (see [43] for the proof in the Monster case).12

Let us now write down the (super-)denominator formula for our BKM algebra. First
we introduce some generalities. Let g = g0 ⊕ g1 be a BKM superalgebra with even and
odd components g0 and g1, respectively. Let us denote the roots by α ∈ ∆̂ and set

m0(α) = dim(gα ∩ g0), m1(α) = dim(gα ∩ g1) = mult(α)−m0(α). (5.17)

We further denote the positive even or odd roots by ∆̂+
0 , ∆̂

+
1 , respectively. Let I be an

index set, indexing the simple roots αi. Any root α may then be expanded as α =
∑
i∈I kiαi

and we define the height of α to be

ht(α) =
∑
i∈I

ki. (5.18)

We also define the “even height” as

ht0(α) =
∑
i∈I\S

ki, (5.19)

12It is known that this cannot hold for general BKMs since, for instance, there are known examples of
BKMs that do not have a Weyl vector.
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where S ⊆ I indexes only the odd roots. Before we can state the denominator formulas we
introduce the following sums

T = e−ρ̂
∑
µ

(−1)ht(µ)eµ, T ′ = e−ρ̂
∑
µ

(−1)ht0(µ)eµ, (5.20)

where ρ̂ is the Weyl vector. The sums here are taken over all sums µ of distinct pairwise
orthogonal imaginary simple roots.

We now have all the ingredients to state the desired formulas. For any super BKM g

we have the denominator formula

e−ρ̂
∏
α∈∆̂+

0
(1− eα)m0(α)∏

α∈∆̂+
1

(1 + eα)m1(α) =
∑

w∈W
det(w)w(T ), (5.21)

and, in addition, we have the super-denominator formula

e−ρ̂
∏
α∈∆̂+

0
(1− eα)m0(α)∏

α∈∆̂+
1

(1− eα)m1(α) =
∑

w∈W
det(w)w(T ′). (5.22)

For obvious reasons we call the left hand side the product side and the right hand side
the sum side of the denominator formula. The sum side is sometimes referred to as the
denominator function. Thus the denominator formula provides a product representation
of the denominator function.

Let us now discuss the denominator formulas for the super BKM g constructed in
section 5. Recall from section 4.3 that a root α of g is parametrized by (m,n,w) and the
root multiplicities are given by

m0(α) = cNS−(mn,w), m1(α) = cR+(mn,w) = cR−(mn,w), (5.23)

where cNS−(mn,w) and cR±(mn,w) are the Fourier coefficients of the Jacobi forms
φNS−(τ, ξ) and φR±(τ, ξ) constructed in section 2.2. The Weyl vector of g was found
in section 5 to be

ρ̂ = (−1,−1, ρ) . (5.24)

Combining everything, we deduce that the product side of the denominator formula be-
comes

pqe−ρ
∏

w∈∆+
g

(1− ew)cNS−(0,w) ∏
m,n∈Z≥0

(m,n) 6=(0,0)

∏
w∈Q̃g

(1− pmqnew)cNS−(mn,w)

(1 + pmqnew)cR+(mn,w) . (5.25)

Here g denotes the underlying finite-dimensional subalgebra of g and the zero momentum
contribution e−ρg

∏
`>0(1−ew)cNS−(0,w) coincides with the Weyl denominator formula of g.

Similarly, the product side of the super-denominator formula takes the form

pqe−ρ
∏

w∈∆+
g

(1− ew)cNS−(0,w) ∏
m,n∈Z≥0

(m,n) 6=(0,0)

∏
w∈Q̃g

(1− pmqnew)cNS−(mn,w)

(1− pmqnew)cR−(mn,w) . (5.26)
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6 The example of g = A8
1

We conclude this note by illustrating the formal properties of our BKMs g in the simplest
concrete example: when the choice of N = 1 structure in F24 produces currents generating
the Lie algebra g = A8

1. In particular, we will discuss the root spaces and their multiplicities
and the Weyl group of this BKM.

6.1 Construction

The F24 theory with N = 1 structure of type A8
1 has a symmetry SU(2)8 o S8 ⊂ O(24)

preserving the N = 1 current. The corresponding finite dimensional Lie algebra g = su(2)8

has dual Coxeter number h∨ = 2 for all simple components, so that the roots of g have
length 2

h∨g
= 1. The root, coroot and weight lattices are, respectively, Q = Z⊕8, Q∨ =

(2Z)⊕8, P =
(

1
2Z
)⊕8

. The Weyl vector is ρ =
(

1
2 , . . . ,

1
2

)
with norm (ρ|ρ) = 2, and the

highest roots are θk = (0, . . . , 0, 1, 0 . . . , 0) with the 1 at the k-th position, k = 1, . . . , 8.
The even roots (m,n,w) ∈ ∆̂ of g have w valued in the root lattice Q ⊂ Pg, while the odd
roots have w in ρ + Q ⊂ Pg. The root lattice of the BKM algebra g is Q = Γ1,1 ⊕ Q̃g,
where Q̃g = Qg ∪ (ρ+ Qg) = Z⊕8 ∪

(
1
2 + Z

)⊕8
. The dual lattice

Q̃∗g =
{

(x1, . . . , x8) ∈ Z⊕8 |
∑
i

xi ∈ 2Z
}
∼= D8 (6.1)

is an even lattice isomorphic to the root lattice D8.

6.2 Description of real roots

In order to find the multiplicities of the real roots of g, we proceed as follows. If γ =
(m,n,w) ∈ ∆̂0 is an even root, we know that the multiplicity m0(m,n,w) is the Fourier
coefficient cNS−(mn,w) of the Jacobi form φNS−(τ, ξ). As explained in appendix A, this
multiplicity depends only on the class of w in Qg/Q̃∗g ∼= Z2 and on the norm 〈γ|γ〉 = −2mn+
(w|w). In fact, in this case, the norm −2mn+ (w|w) is an even or odd integer depending
on whether the class of w is trivial or not in Qg/Q̃∗g ∼= Z2. Thus, it is sufficient to choose a
representative w for each class in Z2, and check for which n one has cNS−(n,w) 6= 0; recall
that this is the number of states of g-weight w in F24 with negative fermion number and
L0 − 1

2 = n. The multiplicities of real roots correspond to cNS−(n,w) with 2n < (w|w), so
there are only a finite number of states to check in order to find all real root multiplicities.

For the trivial class in Qg/Q̃∗g , the shortest vector is w = 0, and the lowest n for which
cNS−(n, 0) 6= 0 is n = 0, with cNS−(0, 0) = 8. The corresponding vectors of weight n+1

2 = 1
2

in F24 are of the form λi−1/2|0〉, i = 1, . . . , 8, where λi are the 8 free fermions corresponding
to the Cartan subalgebra of g. This means that all non-zero even roots of g with zero norm
have multiplicity cNS−(0, 0) = 8. Furthermore, all even roots γ = (m,n,w) ∈ ∆̂0 with
w in the trivial class of Qg/Q̃∗g ∼= Z2 (equivalently, 〈γ|γ〉 ∈ 2Z) have norm at most 0; in
particular, there are no real roots with even norm.

For the non-trivial class in Qg/Q̃∗g , a short vector is given by θ1, and the first non-zero
Fourier coefficient is cNS−(0, θ1) = 1, corresponding to a state λθ1−1/2|0〉, where λ

θ1 is the
free fermion corresponding to the root θ1. Thus, all roots γ = (m,n,w) with w in the
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non-trivial class (equivalently, with 〈γ|γ〉 ∈ 2Z + 1) have 〈γ|γ〉 ≤ 1. We conclude that
the even real roots of g are exactly the vectors (m,n,w) ∈ Qg with norm 1, and their
multiplicity is cNS−(0, θ1) = 1, as expected.

As for the odd roots, there are again two classes of w in (ρ + Qg)/Q̃∗g , with shortest
representatives −ρ and −ρ + θ1, both of square length (ρ|ρ) = (θ1 − ρ|θ1 − ρ) = 2. For
both these representatives, the smallest n for which cR±(n,w) 6= 0 is n = 1, corresponding
to Ramond ground states of weight n + 1

2 = 3
2 , and both with multiplicity cR±(1, w) =

22/r − 1 = 8 (formulas (2.26) and (2.29) imply that all cR±(n,w) are multiple of 2r/2−1).
Thus, the odd roots have maximal norm −2n + (ρ|ρ) = −2n + (θ1 − ρ|θ1 − ρ) = 0 and in
particular there are no odd real roots. This is consistent with the observation that odd
roots cannot have multiplicity 1. The fact that the coefficients cR±(1, w) are the same for
w in the two classes of

(ρ+ Qg)/Q̃∗g
is not a coincidence: the coefficients cR±(n,w) are invariant under the Weyl group of
su(2)⊕8, and some elements in this Weyl group exchange a vector w in one class of

(ρ+ Qg)/Q̃∗g
with a vector of the same norm in the other class. As a consequence, cR±(n,w) only depend
on the discriminant 2n − (w|w); equivalently, the multiplicity of odd roots γ = (m,n,w)
only depends on their norm 〈γ|γ〉 = −2mn+ (w|w).

6.3 Weyl group

Let us now consider the Weyl group of the BKM algebra g, which is generated by reflections
with respect to real roots. As discussed above, the even root lattice Γ1,1⊕Z8 is the (unique,
up to isomorphisms) odd unimodular lattice I9,1 of signature (9, 1), and the real roots are
all vectors of norm 1 in this lattice. The Weyl group W of g is the group of automorphisms
of I9,1 generated by reflections with respect to norm 1 vectors. This reflection group is
studied in [9, 10]. As usual, one splits the set ∆̂real of real roots into the disjoint union
∆̂real = ∆̂real

+ t ∆̂real
− of positive and negative ones, depending on the sign of the product

with a regular element. There is an infinite number of simple real roots (i.e. positive roots
that cannot be written as sum of other positive roots), whose corresponding reflections
generate W . Simple roots are characterized as the vectors of norm 1 that have inner
product 1/2 with the vector ρ̂ = (−1,−1, ρ). The set of simple roots can be identified with
the vectors of the affine E8 lattice, in the sense that, for any choice of an arbitrary fixed
simple root x0, the set of vectors x−x0, where x is any simple root, form a copy of the E8
lattice. The full group W̃ of reflection automorphisms of I9,1 is strictly larger than W , and
includes reflections with respect to vectors of norm 2. It is also finitely generated, and the
quotient W̃/W is isomorphic to the affine Weyl group of E8, W aff (E8) = E8 oW (E8).
The group W aff(E8) acts on the set of simple roots of W : W (E8) is the subgroup that
fixes a given simple root (say x0), while the E8 factor in W aff(E8) acts by translations by
E8 lattice vectors. Since the multiplicities of both the odd and the even roots of g only
depend on their norm, they are actually invariant under the full group of automorphisms
of I1,9, and in particular under W̃ .

– 35 –



J
H
E
P
0
2
(
2
0
2
1
)
0
3
9

6.4 Root multiplicities and denominator formulas

In order to find the root multiplicities for all roots of the algebra, it is more useful to
adopt a different description of the F24 SVOA with the N = 1 structure corresponding
to A8

1. We bosonize the 8 pairs of fermions λθk , λ−θk , k = 1, . . . , 8, by replacing them
by 8 chiral free scalars Y 1, . . . , Y 8 compactified on Z8, by setting i∂Y k =: λθkλ−θk : and
λ±θk = e±iY

k . The remaining 8 fermions, corresponding to the Cartan subalgebra of A8
1

are now interpreted as the superpartners of the currents ∂Y k. In this description, it is easy
to obtain the NS partition function

φNS(τ, ξ) = ΘZ8(τ, ξ)
η(τ)8 × θ3(τ)4

η(τ)4 , (6.2)

where the first factor comes from the free scalars Y i and the second from the 8 free fermions,
their superpartners. We are interested in the function φNS− counting the negative fermion
number states, which is obtained from φNS by keeping only the integral powers of q. It is
convenient to split the theta function as

ΘZ8(τ, z) = ΘD8(τ, z) + Θv+D8(τ, z) , (6.3)

where ΘD8 contains only integral powers of q and Θv+D8 only the half-integral ones. Here,
D8 is the lattice (6.1), v +D8 is the translate

v +D8 =
{

(x1, . . . , x8) ∈ Z8 |
∑
i

xi ∈ 2Z + 1
}
, (6.4)

of D8 by v = (1, 0, . . . , 0), and we used Z8 = D8 ∪ (v+D8). We perform a similar splitting
of the function f(τ) = θ3(τ)4

η(τ)12 , i.e.

f(τ) = feven(τ) + fodd(τ) , (6.5)

where feven and fodd contain only integral and half-integral powers of q, respectively. Then,
we have

φNS−(τ, ξ) = ΘD8(τ, z)feven(τ) + Θv+D8(τ, z)fodd(τ) . (6.6)

We recognize this form as the theta decomposition of the Jacobi function φNS− (see ap-
pendix A), with

feven(τ) =
∑
D∈2Z

cNS−(D, [0])q
D
2 , fodd(τ) =

∑
D∈2Z+1

cNS−(D, [v])q
D
2 . (6.7)

Thus, the multiplicities of an even root γ = (m,n,
∑
i kiθi) of g is given by cNS−(−〈γ|γ〉, [0])

or cNS−(−〈γ|γ〉, [v]), depending on whether the norm 〈γ|γ〉 = −2mn+
∑
i k

2
i is an even or

odd integer. Altogether, the multiplicities of even roots are the Fourier coefficients of the
function

f(τ) = feven(τ) + fodd(τ) = θ3(τ)4

η(τ)12 = q−1/2
∞∏
n=1

(1 + qn−1/2)8

(1− qn)8 = η(τ)8

η(2τ)8η(τ/2)8 . (6.8)
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The Ramond sector of the theory is given by the product of the module of the Z8 SVOA
corresponding to the coset ρ + Z8, times the Ramond sector for 8 free fermions. The
Ramond partition function, therefore, is

φR(τ, ξ) =
Θρ+Z8(τ, ξ)
η(τ)8 × θ2(τ)4

η(τ)4 = (Θρ+D8(τ, ξ) + Θρ+v+D8(τ, ξ))θ2(τ)4

η(τ)12 . (6.9)

The function φR+ = φR− is obtained simply by dividing φR by two. The form above is
already a theta decomposition, so that the multiplicities of odd roots γ = (m,n, ρ+

∑
i kiθi)

are the Fourier coefficients cR−(−〈γ|γ〉, [ρ]) = cR−(−〈γ|γ〉, [ρ+ v]) of the function

1
2
θ2(τ)4

η(τ)8 = 8
∞∏
n=1

(1 + qn)8

(1− qn)8 = 8η(2τ)8

η(τ)16 . (6.10)

This analysis shows that the BKM superalgebra associated to A8
1 is a superalgebra already

considered in [5], and discussed also in [6], in section 2 of [7], and in example 13.7 of [8].
Besides the real simple roots described above, the algebra contains imaginary simple roots
corresponding to negative integer multiples of the Weyl vector −nρ̂, n ∈ N, all of them
with multiplicity 8. The root −nρ̂ is even or odd depending on n being even or odd. The
additive side of the denominator identity, therefore, in this case reads

∑
w∈W

det(w)e−w(ρ̂)
∞∏
n=1

(1− e−nw(ρ̂))(−1)n8 . (6.11)

As discussed in [8], the denominator of the BKM algebra g admits an analytic con-
tinuation to a holomorphic automorphic form for Aut(M), the group of automorphisms
of the lattice M which is the maximal even sublattice of the odd unimodular lattice of
signature (2, 10). The lattice M has two orbits of primitive norm zero vectors, which are
associated to two different expansions of the automorphic form into infinite (Borcherds)
products. One of these infinite products is the denominator of the algebra g considered
in this section, while the other is the denominator of the BKM superalgebra constructed
in [48]. In [6], this automorphic form was also interpreted as a non-vanishing function on
the moduli space of Enriques surfaces.

7 Conclusions & future directions

In this note we studied some properties of the c = 12 SVOA (holomorphic SCFT) F24 of 24
free fermions, as well as its role as the internal, “compactification” SCFT in a chiral super-
string worldsheet theory. The latter system is a super-analogue of Borcherds’ method for
proving the monstrous moonshine conjectures (see also [31, 48]). Using this construction,
we produced a new family of Borcherds-Kac-Moody superalgebras, and their corresponding
denominators, labeled by semisimple Lie algebras of dimension 24 and arbitrary rank.

As with our analogous study concerning the c = 12 Conway module V f\ [31], this note
should be viewed as a warm-up for producing complete (i.e. non-chiral) low-dimensional
string compactifications whose internal worldsheet SCFTs are given by products V ⊗ W̄ of
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these c = 12 SVOAs, see [30].13 Such peculiar critical string vacua have proved relevant for
understanding aspects of moonshine, including the genus zero property, when the SVOAs
used are moonshine modules; this was illustrated for the Monster case in [42, 43]. We also
believe these vacua, viewed as machines to produce explicit BKM algebras, can serve as
useful toy systems for exploring and understanding BPS-algebras.

We conclude by highlighting a few outstanding questions raised by our study:

• In section 3, we described how one can obtain F24, with a choice of supercurrent, from
orbifolds of V fE8 . It would also be interesting to understand what N = 1-preserving
orbifolds of V f\ yield F24 with a fixed choice of superconformal structure. The non-
trivial question here is to determine whether one can obtain F24 from an orbifold of
V f\ by a cyclic group. These orbifolds will be relevant in studying string theoretic
dualities (see [42] for analogous appearances of orbifolds of the Monster and Leech
VOAs in a string compactification).

• In section 5.4 we determined the product sides of the denominator and super-denom-
inator formulas associated with the super BKM g. In the case of g = A8

1 we showed
that g coincides with a BKM superalgebra already studied by Borcherds [5–8], who
was able to determine the additive side of these formulas and explicitly describe the
simple roots of the algebra (see section 6). It would be instructive to explicitly deter-
mine all simple roots, as well as the additive sides of the denominator identities, for
the remaining N = 1 structures labeled by g. We leave this question for future work.

• A single automorphic form can have distinct expansions at different cusps in moduli
space; the expansions can each be (super)denominators for different BKM algebras
(as in, e.g., [28]). When embedded into a string theory construction, the BKM
algebras are expected to be associated to different perturbative descriptions of the
model, and related to one another via dualities [29, 42, 43]. As just mentioned
above, in the example of g = A8

1 the denominator of the BKM superalgebra arises
from the expansion along the “level 2 cusp” of a holomorphic automorphic form Ψ
on Γ\SO(2, 10)/(SO(2) × SO(10)), where Γ = Aut(M) (defined below eq. (6.11)),
a moduli space closely related to that of the Enriques Calabi-Yau threefold. The
same automorphic form Ψ can also be expanded along its “level 1 cusp” in which
case it gives rise to a denominator formula of another BKM-algebra [8]. It would be
fascinating to understand if the A8

1 BKM (or F24) played a role in organizing BPS
states in a string compactification on the Enriques CY, in some perturbative duality
frame, and if it could be related to the BKM at the other cusp of Ψ by an explicit
string duality.

• To expand on the previous point, we further note that the same automorphic form Ψ
arises as the genus one topological amplitude F1 in the “geometric reduction” of the
FHSV model [36], i.e. in type II string theory on the Enriques CY X. In this context
Ψ can be interpreted as a counting rational curves, i.e. Gromov-Witten invariants, on
X. The expression for Ψ, expanded along the level-1 cusp, coincides with the form of

13Related examples which are potentially relevant for this investigation are explored in [29, 34].
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the gravitational threshold correction of the FHSV-model obtained in [35]. In view
of these observations, and their connection to BPS states in string theory on X, it
would be interesting to further explore the role of g and F24 in this context, and to
connect our BKMs to curve-counts.

• We constructed our BKM algebras from the cohomology of “physical states” in our
chiral construction. In a true string theory, one must take the semirelative cohomol-
ogy; certain variants of this cohomology (e.g., [4]) contain information about anoma-
lies and D-brane states. It would be very interesting to explore these cohomologies
in the corresponding non-chiral string constructions.

• More generally, it would be very interesting to better understand the D-brane states
in the non-chiral string models and their representations under moonshine groups.
See [16] for an exploration of boundary states in a bosonic Monster string theory.

• Though there is not moonshine for F24 as there is for its close cousin V f\, there are
numerous modular coincidences among their McKay-Thompson series. It would be
fascinating to see if/how the full string theory construction detects the genus zero
property for V f\, particularly in contrast with the other c = 12 SVOA compactifica-
tions. The BKMs constructed in this note should play a key role in that study.

• Finally, it would be interesting to study the discrete symmetry groups of our BKM
algebras. Various sporadic symmetry groups have been shown to stabilize extended
superconformal algebras within V f\ [11], on the one hand, and certain sub-VOAs of
V \ [3] on the other. It may be interesting to explore generalizations of both of these
constructions for F24.
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A Multivariable Jacobi forms

In this section we first recall some known facts about multivariable Jacobi forms, and
then use them to obtain some useful results about the Fourier coefficients of the partition
functions for the F24 SVOA. We follow the treatment in [27, 28], and refer to those articles
for proofs and details.
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Consider an even positive definite lattice L with bilinear form (·, ·). A Jacobi form of
weight k ∈ Z and index m ∈ N for L is a holomorphic function ϕ(τ, ξ) on H × (L ⊗ C)
satisfying

ϕ

(
aτ + b

cτ + d
,

ξ

cτ + d

)
= (cτ + d)keπi

mc(ξ,ξ)
cτ+d ϕ(τ, ξ)

(
a b

c d

)
∈ SL2(Z) , (A.1)

ϕ(τ, ξ + λτ + µ) = e−πim((λ,λ)τ+2(λ,ξ))ϕ(τ, ξ) , (λ, µ) ∈ L× L . (A.2)

The Jacobi form is called weak, holomorphic, or cusp, if in its Fourier expansion

ϕ(τ, ξ) =
∑
n∈Z
`∈L∗

c(n, `)qne2πi(ξ,`) , q = e2πiτ , (A.3)

the sum over n and ` is restricted to, respectively, n ≥ 0, or 2mn − (`, `) ≥ 0, or 2mn −
(`, `) > 0. It is called weakly holomorphic if ∆(τ)Nϕ(τ, ξ) is a weak Jacobi form for some
N ∈ N, with ∆(τ) = η(τ)24. These definitions can be generalized in the obvious way to
Jacobi forms with respect to subgroups of SL2(Z). Furthermore, one can consider Jacobi
forms of half-integral index, at the cost of introducing some sign in the transformation
properties (A.1) and (A.2).

The condition (A.2) implies that the coefficients c(n, `) only depend on 2mn − (`, `)
and on the image of ` in L∗/mL.

According to this definition, ‘ordinary’ single-variable Jacobi forms of weight k and
index m as defined, for example, in [22] are Jacobi forms of the same index and weight for
the 1-dimensional even lattice L =

√
2Z. The Jacobi theta functions

θ1(τ, z) = −θ
[ 1

2
1
2

]
= −iq

1
8

(
y

1
2−y−

1
2

) ∞∏
n=1

(1−qn)(1−qny)(1−qny−1) = −
∑
n∈Z

q
1
2 (n+ 1

2 )2
e2πi(n+ 1

2 )(z+ 1
2 )

(A.4)

θ2(τ, z) = θ
[

1
2
0

]
= q

1
8

(
y

1
2 +y−

1
2

) ∞∏
n=1

(1−qn)(1+qny)(1+qny−1) =
∑
n∈Z

q
1
2 (n+ 1

2 )2
e2πi(n+ 1

2 )z (A.5)

θ3(τ, z) = θ [ 0
0 ] =

∞∏
n=1

(1−qn)
(

1+qn−
1
2 y
)(

1+qn−
1
2 y−1

)
=
∑
n∈Z

q
1
2n

2
e2πinz (A.6)

θ4(τ, z) = θ
[

0
1
2

]
=
∞∏
n=1

(1−qn)
(

1−qn−
1
2 y
)(

1−qn−
1
2 y−1

)
=
∑
n∈Z

q
1
2n

2
e2πin(z+ 1

2 ) (A.7)

are Jacobi forms of weight 1/2 and index 1/2 for a subgroup of index 3 in SL2(Z).
Let us now show that the functions φX(τ, ξ), X ∈ {NS, ÑS,R, R̃,NS±, R±}, defined

in section 2.2 are weakly holomorphic Jacobi forms of index m = 1 and weight 0 for the
lattice L = Q∨g (the coroot lattice of the algebra g). Let us first notice that all such functions
are given by a product

∏
α∈∆+ θi(τ, (ξ|α)) of theta functions times modular function that

depends on τ only.
Given the elliptic properties of the theta functions

θ [ ab ] (τ, z + n+mτ) = (−1)2an+2bme−πi(m
2τ+2mz)θ [ ab ] (τ, z) , n,m ∈ Z , (A.8)
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where a, b ∈
{

0, 1
2

}
, we get, for all λ, µ ∈ Q∨g (coroot lattice)

∏
α∈∆+

θi(τ, (ξ + λτ + µ|α)) =
∏

α∈∆+

θi(τ, (ξ|α) + (λ|α)τ + (µ|α))

= ±e−πi
∑

α∈∆+((λ|α)2τ+2(λ|α)(α|ξ)) ∏
α∈∆+

θi(τ, (ξ|α))

= ±e−πi((λ|λ)τ+2(λ|ξ)) ∏
α∈∆+

θi(τ, (ξ|α)) , (A.9)

for i = 2, 3, 4, where we used the identity14

∑
α∈∆+

(λ|α)(α|µ) = (λ|µ) ∀λ, µ ∈ Qg ⊗ R . (A.10)

This implies that
∏
α∈∆+ θi(τ, (ξ|α)) has the elliptic properties of a Jacobi form of index

1 for the even lattice Q∨g . The general theory of Jacobi forms for lattices tells us that the
Jacobi forms φX(τ, ξ) admits a Fourier expansion of the form (2.30), where the coefficients
cX(n,w) only depend on

D ≡ D(n,w) = 2n− (w|w) , (A.11)

and on the class [w] of w in the quotient Pg/i(Q∨g ), possibly up to a sign. We will sometimes
use the notation c(D, [w]) to stress this dependence. The sign is easily recovered by noticing
that, by definition, all Fourier coefficients cX(n,w) are non negative, except when X = ÑS,
where the sign is (−1)2n, with n ∈ 1

2Z.
When X = NS− or R±, the sum over n in the Fourier expansion is bounded by n ≥ 0.

Therefore, if c(D, [w]) 6= 0 then for all w′ ∈ w + Q∨g we must have 2n ≡ D + (w′|w′) ≥ 0.
If m([w]) is the minimal squared length of a vector in the coset w+ Q∨g , we get the bound

c(D, [w]) 6= 0 ⇒ D ≥ −m([w]) . (A.12)

This bound can be also written as

c(n,w) 6= 0 ⇒ (w|w) ≤ 2n+m([w]) , (A.13)

which shows that for each given n there are only a finite number of vectors w ∈ Pg for
which c(n,w) 6= 0.

The fact that the coefficients c(D, [w]) only depend on the discriminant D and on
[w] ∈ Pg/i(Q∨g ) implies that the Jacobi functions admit a theta decomposition

φX(τ, ξ) =
∑

[w]∈Pg/i(Q∨g )

∑
D

∑
w′∈w+Q∨g

cX(D, [w])q
D+(w′|w′)

2 e2πi(ξ|w′) (A.14)

=
∑

[w]∈Pg/i(Q∨g )
hX,[w](τ)Θw+Q∨g (τ, ξ) , (A.15)

14Once again, the relative normalization of the two sides of this identity depends on our choice (2.5) of
Killing form.
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where
Θw+Q∨g (τ, ξ) =

∑
w′∈w+Q∨g

q
(w′|w′)

2 e2πi(ξ|w′) (A.16)

is the theta series of the coset w + Q∨g , and

hX,[w](τ) =
∑
D

cX(D, [w])qD/2 , (A.17)

is a weakly holomorphic modular form containing all non-trivial information about the
Fourier coefficients cX .

In some cases, the functions φX(τ, z) are Jacobi forms with respect to a lattice that is
‘finer’ than Q∨, and this leads to more stringent conditions on their Fourier coefficients. In
particular, the coefficients cNS(n,w) and cR(n,w) are nonzero only for w ∈ Qg ⊆ Pg and
w ∈ ρ+Qg ⊆ Pg, respectively. If the lattice Q̃g generated by ρ and Qg is a proper sublattice
of the weight lattice Pg, then φNS(τ, z) and φR(τ, z) are Jacobi forms with respect to any
lattice Q̃∨g that is even and contained in the dual (Q̃g)∗, so that Q̃∨g ⊇ Q∨. This means
that cX(n,w) only depends on the discriminant 2n − (w|w) and on the coset of w + Q̃∨g ,
rather than w + Q∨. Correspondingly, the theta decomposition (A.15) becomes

φX(τ, ξ) =
∑

[w]∈Q̃g/Q̃∨g

hX,[w](τ)Θw+Q̃∨g (τ, ξ) . (A.18)

For example, when g = (A1)⊕8, one has Qg = Z⊕8, Pg =
(

1
2Z
)⊕8

and Q∨g = (2Z)⊕8,
with ρ =

(
1
2 , . . . ,

1
2

)
∈ Pg. In this case, the lattice Q̃g = Qg ∪ (ρ + Qg) is given by Z⊕8 ∪(

1
2 + Z

)⊕8
. The dual of Q̃g is

Q̃∗g =
{

(x1, . . . , x8) ∈ Z⊕8 |
∑
i

xi ∈ 2Z
}
, (A.19)

which is an even lattice (isomorphic to the D8 lattice), so that we can set Q̃∨g := Q̃∗g. Thus,
cNS(n,w) and cR(n,w) depend only on 2n − (w|w) and on the class [w] ∈ Qg/Q̃

∨
g
∼= Z2

(NS sector) or [w] ∈ (ρ + Qg)/Q̃∨g (R sector). By comparison, one has Qg/Q∨g = Z8
2, so

that, just for the NS sector, using the most naive constraints one needs to compute the
coefficients for 28 different classes rather than just 2.

B Details about cohomology

In this note, we follow a chiral version of the construction of the relative cohomology of
physical string states. The BRST charge is given by

Q =
∑
m

cmL
m
−m+

∑
r

γrG
m
−r (B.1)

+
∑
m,n

1
2(n−m) : b−n−mcncm : +

∑
m,r

[1
2(2r−m) : β−m−rcmγr : − : b−mγm−rγr :

]
+ac0

(B.2)
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where a = −1
2 in the NS sectors and a = −5

8 in the Ramond sector. Relative cohomology
(which is equivalent to the physically relevant semirelative cohomology for a non-chiral
theory) is given by considering Q-closed states in the kernel of b0, modulo states of the
form |χ〉 ∼ Q|λ〉 with |λ〉 in ker b0.

As discussed in the main text, the cohomology classes for zero momentum have to
be treated separately from the nonzero momentum states, but are amenable to a direct
computation using standard techniques and explicit representatives.

The zero momentum states in the −1-picture with L0 = 0 are obtained by acting by
any operator of weight 1/2 on the ground state e−φc1|0〉. States with integral L0 eigenvalue
are automatically included by the GSO projection. There are the following possibilities:

• Suppose the internal SVOA V has N states va, a = 1, . . . , N , of weight 1/2 in the
NS sector. Then, we have N states

va−1/2e
−φc1|0〉 , a = 1, . . . , N,

with ghost number 1.

• There are two states

ψµ−1/2e
−φc1|0〉 , µ ∈ {+,−}

again with ghost number 1.

• One state
γ−1/2e

−φc1|0〉

with ghost number 2.

• One state
β−1/2e

−φc1|0〉

with ghost number 0.

Notice that
{Q, cn} =

∑
m

1
2(n− 2m) : cn−mcm : −

∑
r

: γn−rγr : (B.3)

and in particular
{Q, c1} =

∑
m>0

(1− 2m)c1−mcm −
∑
r

: γ1−rγr : (B.4)

With non-zero null momentum k, k2 = 0, the BRST variation of β−1/2e
−φc1|k〉 is pro-

portional to kµψµ−1/2e
−φc1|k〉, while the BRST variation of ψµ−1/2e

−φc1|k〉 is proportional
to kµγ−1/2e

−φc1|k〉; va−1/2e
−φc1|k〉 and γ−1/2e

−φc1|k〉 are always Q-closed (the latter is
obvious, since there are no states with ghost number 3). Therefore, when k 6= 0, we
have N + 2 closed states (va−1/2e

−φc1|k〉, a = 1, . . . , N , γ−1/2e
−φc1|k〉 and one linear com-

bination of ψµ−1/2e
−φc1|k〉), but two of them are Q-exact (γ−1/2e

−φc1|k〉 and the linear
combination of ψµ−1/2e

−φc1|k〉), so we are left with N classes in H1(k)p=−1 with repre-
sentatives va−1/2e

−φc1|k〉. When k = 0, all these states are Q-closed, and they therefore
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correspond to distinct cohomology classes. The dimensions of the non-zero cohomology
spaces are therefore

dimH0(k = 0)p=−1 = 1 ,
dimH1(k = 0)p=−1 = N + 2 ,
dimH2(k = 0)p=−1 = 1 .

Let us now consider the Ramond sector. Let us assume that the SVOA V has K+
(respectively, K−) Ramond states ui+, i = 1, . . . ,K+ (respectively, ui−, i = 1, . . . ,K−)
with weight 1/2 and V -fermion number (−1)FV equal to +1 (respectively, −1). The Ra-
mond sector of the V X,ψ ‘space-time’ vertex algebra contains two ground states |k,±〉 with
momentum k where the sign denotes space-time spin (and the fermion number). Then,
in the (−1/2)-picture, the k = 0 states with total fermion number (−1)Ftot = +1 and in
ker b0 ∩ kerβ0 are:

• e−φ/2c1|0, ui+,+〉, i = 1, . . . ,K+

• e−φ/2c1|0, ui−,−〉, i = 1, . . . ,K−

all of them with ghost number 1. If we drop the requirement that the states are in kerβ0,
then we have states

γn−1
0 ne−φ/2c1|0, ui+, (−1)n−1〉, i = 1, . . . ,K+ (B.5)

γn−1
0 e−φ/2c1|0, ui−, (−1)n〉, i = 1, . . . ,K− (B.6)

for each ghost number n ≥ 1. There are no states with ghost number n ≤ 0.
For ghost number 1, one has

Qe−φ/2c1|0, ui±,±〉 = γ0G
m
0 e
−φ/2c1|0, ui±,±〉 . (B.7)

Actually, for all the matter SVOA we are considering, the Ramond ground states are all
contained in kerGm0 , so that all the states are Q-closed and represent K+ + K− distinct
cohomology classes (since there are no states with ghost number 0, there cannot be exact
states at ghost number 1).

At higher ghost number, we use

[Q, γn] =
∑
r

1
2(3r − n) : cn−rγr : (B.8)

and in particular
[Q, γ0] =

∑
r

3
2r : c−rγr : (B.9)

to conclude that

Qγn−1
0 e−φ/2c1|0, ui±,±(−1)n−1〉 = γn−1

0 Qe−φ/2c1|0, ui±,±(−1)n−1〉 = 0 . (B.10)

Thus, all cohomology groups of degree n ≥ 1 are isomorphic to each other, with the
isomorphism given by γ0.
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In the −3/2-picture, the k = 0 states with total fermion number (−1)Ftot = +1 and in
ker b0 are:

• βn0 ui+−1/2e
−3φ/2c1|0,−〉, i = 1, . . . ,K+

• βn0 ui−−1/2e
−3φ/2c1|0,+〉, i = 1, . . . ,K−

for all n ≥ 0 (note that they have the opposite space-time spin, because e−3φ/2 and e−φ/2

have opposite fermion number). These states have ghost number 1− n.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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