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was considerably smaller during gamma-frequency binau-
ral beats exposure than during the control condition. Our 
results suggest that binaural beats enhance selectivity in 
updating episodic memory traces and further strengthen the 
hypothesis that neural activity in the gamma band is criti-
cally associated with the control of feature binding.

Keywords  Binaural beats · Gamma-frequency · Feature 
bindings · Neural synchronization · Event file

Introduction

Binaural beats represent the auditory experience of an 
oscillating sound that occurs when two sounds with neigh-
boring frequencies are presented to one’s left and right ear 
separately. Binaural beats are perceived as periodic loud-
ness fluctuations of a sound (Karino et al. 2006). The expe-
rience of such oscillations is described as hearing a sound 
with a frequency equal to the difference in frequencies 
between the original tones (Oster 1973). For instance, when 
the left ear is presented with a tone of 320 Hz, and the right 
ear with a tone of 360 Hz, the subject will perceive a tone 
that oscillates at a frequency of 40  Hz (i.e., 40 beats per 
second). In a seminal study, Karino et al. (2006) explored 
the cortical representation of binaural beat frequencies by 
applying modulation frequencies of 4.00–6.66 Hz while 
recording magnetic fields using magnetoencephalogra-
phy. It was shown that the auditory steady-state responses 
(ASSR) to binaural beats emerged from the superior tem-
poral, posterior parietal, and frontal cortices, in addition to 
the auditory cortex. However, beat-generated ASSR in the 
gamma-frequency seem to originate mainly in the primary 
auditory cortex (Pastor et  al. 2002; Pantev et  al. 1996). 
Even though direct causal links between neural activity and 

Abstract  Binaural beats represent the auditory experience 
of an oscillating sound that occurs when two sounds with 
neighboring frequencies are presented to one’s left and right 
ear separately. Binaural beats have been shown to impact 
information processing via their putative role in increasing 
neural synchronization. Recent studies of feature-repetition 
effects demonstrated interactions between perceptual fea-
tures and action-related features: repeating only some, but 
not all features of a perception–action episode hinders per-
formance. These partial-repetition (or binding) costs point 
to the existence of temporary episodic bindings (event 
files) that are automatically retrieved by repeating at least 
one of their features. Given that neural synchronization in 
the gamma band has been associated with visual feature 
bindings, we investigated whether the impact of binaural 
beats extends to the top-down control of feature bindings. 
Healthy adults listened to gamma-frequency (40  Hz) bin-
aural beats or to a constant tone of 340 Hz (control condi-
tion) for ten minutes before and during a feature-repetition 
task. While the size of visuomotor binding costs (indicating 
the binding of visual and action features) was unaffected by 
the binaural beats, the size of visual feature binding costs 
(which refer to the binding between the two visual features) 
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binaural beats are yet to be demonstrated, there is converg-
ing evidence that binaural beats are accompanied by, and 
systematically related to, neural synchronization. Indeed, 
it has been proposed that binaural beats represent a neural 
entrainment technique by means of which the brain “takes 
over” or synchronizes its activity based on external acous-
tic stimulation (Chaieb et al. 2015). The basic assumption 
is that listening to binaural beats in a specific frequency 
band will entrain the same frequency in the brain (Becher 
et al. 2015). The theoretical idea behind neural entrainment 
is that the rhythmic oscillatory activity within and between 
different brain regions can enhance cognitive functioning 
(see Chaieb et al. 2015 for a review on the effect of binau-
ral beats on cognition and mood). Indeed, in recent years, 
it has been shown that binaural beats have an impact on the 
efficiency of allocating attention over time (Reedijk et  al. 
2015), attentional focusing (Colzato et  al. 2015), dual-
talk crosstalk effect (Hommel et  al. 2016), and creativity 
(Reedijk et al. 2013). If binaural beats impact cognition via 
neural synchronization, it is most likely through the fre-
quency of the beat. Whereas short-range communication 
within brain areas is often linked to neural synchronization 
in the gamma-frequency (i.e., centered on 40  Hz), long-
range communication is related to neuronal phase locking 
in the slower frequency bands (von Stein and Sarnthein 
2000; Schnitzler and Gross 2005). In line with this idea, 
the increase of gamma band power through neurofeedback 
improved the top-down control of feature bindings (Keizer 
et al. 2010a, b). Given this aforementioned link, in the cur-
rent study, we were interested in searching for converging 
evidence of whether high-frequency binaural beats (gamma 
range) enhance the control and management of feature 
bindings.

Studies of feature-repetition effects commonly show 
interactions between perceptual features and action-related 
features: in contrast to complete repetitions and alterna-
tions, repeating only some but not all features of a per-
ception–action episode (i.e., of a particular combination 
of stimulus and response features) hinders performance 
(Hommel 1998). Later studies have provided evidence 
that this effect is due to the fact that (a) the co-occurrence 
of stimulus and response features leads to the binding of 
the respective feature codes into the so-called event files 
(Hommel 2004), which are then (b) retrieved whenever 
at least one of the features is repeated (Beste et  al. 2016; 
Colzato et al. 2005; Keizer et al. 2008; Frings et al. 2007; 
Kühn et  al. 2011; Moeller and Frings 2014; Petruo et  al. 
2016). The binding part of this scenario seems to be rather 
immune to all sorts of attentional and instructional varia-
tion, while the retrieval part is systematically affected by 
the degree to which a particular stimulus dimension is 
attended (e.g., Hommel 2004, 2007). In particular, there 
is evidence that bindings including irrelevant features are 

less likely to be retrieved in individuals with high cogni-
tive control abilities, such as individuals high in fluid 
intelligence (Colzato et  al. 2006) and normally develop-
ing children as compared to children suffering from autis-
tic spectrum disorder (Zmigrod et al. 2013). Of particular 
interest for the present investigation, two studies in which 
neurofeedback training was designed to increase local 
gamma band activity (Keizer et al. 2010a, b) found greater 
flexibility in handling (selectively retrieving) visual feature 
binding costs (which refer to the binding between the two 
visual features), but not visuomotor binding costs (indicat-
ing the binding of visual and action features).

If we assume that high-frequency binaural beats (gamma 
range) promote cognitive control (Hommel et  al. 2016) 
and that neural synchronization in the gamma-frequency is 
associated with visual feature bindings (Keizer et al. 2010a, 
b), we would predict decreased visual feature but not visuo-
motor binding costs when listening to gamma-frequency 
beats as compared to a constant tone. If this were the 
case, we would expect an interaction between visual fea-
ture bindings and the kind of beats (gamma-frequency vs. 
control), with a greater flexibility in handling (selectively 
retrieving) visual feature binding costs with gamma-fre-
quency beats than with a constant tone. Theoretically, such 
an interaction would suggest that binaural beats enhance 
selectivity in updating episodic memory traces. We tested 
this prediction by adopting a feature-repetition task (i.e., a 
task known to generate event file effects) and having par-
ticipants perform it while listening to either high-frequency 
binaural beats (the gamma group) or to a continuous tone 
of 340 Hz (the control group).

Method

Participants

Forty Leiden University undergraduate students (30 
females, 10 males, mean age =  22.10  years, SD =  2.82, 
range 18–28) without sensory problems participated in 
the experiment. Participants were recruited via an online 
recruiting system and were offered course credits for par-
ticipating in the study. Once recruited, all participants 
were screened individually by the same lab assistant using 
the Mini International Neuropsychiatric Interview (MINI; 
Sheehan et al. 1998). The MINI is a short, structured inter-
view that screens for several psychiatric disorders and drug 
use, often used in clinical and pharmacological research 
(Colzato et  al. 2010, 2013a; Sheehan et  al. 1998). Par-
ticipants were randomly and equally distributed in two 
experimental groups. Twenty participants (4 males, mean 
age = 22.2 years, SD = 3.3) were exposed to gamma-fre-
quency (40 Hz) binaural beats, and the other 20 (6 males, 



2127Exp Brain Res (2017) 235:2125–2131	

1 3

mean age = 22.0 years, SD = 2.4) were assigned to a con-
trol condition, in which they were exposed to a constant 
tone of 340 Hz.

All procedures performed were in accordance with the 
ethical standards of the institutional research committee 
(Leiden University, Institute for Psychological Research) 
and with the 1964 Helsinki declaration and its later amend-
ments or comparable ethical standards. Informed consent 
was obtained from all individual participants included in 
the study.

Procedure

All participants took part in a single session and were tested 
individually. A double-blinded, sham/placebo-controlled, 
between-subject design was used to assess the effect of 
online gamma-frequency (40  Hz) binaural beats exposure 
on the top-down control of feature binding in healthy young 
volunteers. Upon arrival, after having read and signed the 
informed consent, participants familiarized with the event 
file task. Subsequently, they listened to gamma-frequency 
(40  Hz; 320  Hz left ear, 360  Hz right ear) binaural beats 
or to a constant tone of 340  Hz (control condition), for 
10 min before (at rest) and during the event file task. Bin-
aural beats were presented through in-ear headphones (Ety-
motic Research ER-4B microPro), which provide 35  dB 
noise attenuation. All tones were embedded in white noise, 
20 Hz–10 kHz band filtered, to enhance clarity of the beats 
(Oster 1973; Reedijk et  al. 2013). As beats are best per-
ceived with a carrier frequency between 300 and 600  Hz 
(Licklider et al. 1950; Perrott and Nelson 1969), the binau-
ral beats were centered around a 340 Hz carrier tone, which 
served as the constant tone in the control condition. After 
the event file task, the experimental session ended and par-
ticipants were debriefed and dismissed.

Event file task

The task, which was originally developed by Hommel 
(1998), was adapted from Colzato et al. (2012, 2013b), see 
Fig.  1. During the task, participants were seated approxi-
mately 50 cm from a 17-inch monitor (96 dpi with a refresh 
rate of 120  Hz). The E-Prime 2.0 software system (Psy-
chology Software Tools, Inc., Pittsburgh, PA) was used to 
generate the task and collect the responses.

The task measures binding-related effects by examining 
partial-repetition costs related to combinations of stimulus 
features (shape and color in our case) and combinations of 
stimulus features and the response. To manipulate the repe-
tition versus alternation of stimulus features and responses, 
each trial involved a response to the presentation of a prime 
stimulus (S1 →  R1) followed by a response to presenta-
tion of a probe stimulus (S2 → R2), see Fig. 1. Prime and 
probe stimuli consisted of yellow or green colored images 
of a banana or an apple. The probe trial required a manual 
binary left–right response (R2) to the shape of the second 
stimulus S2 (an apple or a banana). The prime trial required 
a manual response (R1) to the mere onset of the first stim-
ulus (S1). The correct R1 was signaled in advance of S1 
(through a left- or right-pointing arrowhead), so that S1 and 
R1 could be varied independently, which was necessary to 
create orthogonal repetitions and alternations of stimulus 
shape and response. An additional stimulus feature, namely 
color, was also varied by presenting the apple or banana in 
green or yellow (see Colzato et al. 2013b). So the follow-
ing combinations were possible: green apple, green banana, 
yellow apple, and yellow banana.

Each trial began with the presentation of an arrowhead 
(stimulus duration =  1500  ms) that pointed to the left or 
to the right, and that signaled the response to be given 
upon the onset of the prime stimulus (S1), which appeared 
after a 1000 ms inter-stimulus period. The prime stimulus 

Fig. 1   Sequence of events in the event file task. A visual response 
cue signaled a left or right response (R1) that was to be delayed until 
presentation of the first stimulus S1 (S1 is used as a detection signal 

for R1). The second stimulus S2 appeared 1000 ms after S1. S2 sig-
naled R2, a speeded left or right response according to the shape
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was presented for 1000  ms. Participants were instructed 
to press the left (“z”) key if the arrowhead preceding the 
prime stimulus pointed to the left, and the right (“m”) key 
if the arrowhead pointed to the right. After the response to 
the prime, the probe stimulus (S2) appeared (stimulus dura-
tion =  1500  ms). Participants were instructed to respond 
to the shape of the stimulus: the presentation of an “apple” 
required them to press the left (“z”) key, whereas the pres-
entation of a “banana” required them to press the right 
(“m”) key. Participants were asked to respond as quickly 
and accurately as possible to both S1 and S2.

The task comprised a practice block of 10 trials, and an 
experimental block of 192 trials, presented in a random 
order. Experimental trials were equally distributed across 
eight conditions, resulting for the combinations of stimulus 
features (shape and color) and responses, which could all 
either repeat or alternate, thus creating a 2 × 2 × 2 facto-
rial design.

Statistical analyses

First, an independent samples t test was performed to test 
age differences between the two groups. A Chi-square test 
was used to verify whether the two groups were compara-
ble in terms of gender distribution.

The effect of binaural beats on the updating of stimu-
lus–response episodes was assessed by submitting R2 cor-
rect reaction times (RTs) and percentage of errors (PEs) to 
separate 2 × 2 × 2 ANOVAs with Group (gamma vs. con-
trol) as a between-participant factor and the repetition vs. 
alternation of response (R1 → R2) and stimulus shape and 
color (S1 → S2) [hereafter referred to as Response, Shape, 
and Color, respectively] as within-participant factors. For 
the analysis of RTs, we excluded anticipatory responses, 
that is, RTs faster than 100 ms.

Bindings of stimulus features are indexed by a sig-
nificant two-way interaction between Shape and Color, 
whereas stimulus–response bindings are reflected by sig-
nificant two-way interactions between Shape and Response 
and between Color and Response (Hommel 1998). Partial-
repetition costs were calculated as the difference between 
RTs for partial-repetitions (feature X repeated and fea-
ture Y alternated, or vice versa) and the RTs for complete 
repetitions and “complete” alternations. That is, if fea-
tures X and Y repeated and alternated, their binding effect  
BXY would be calculated as BXY  =  [(RTX/alt, Y/rep  +  
RTX/rep,Y/alt)/2)  −  ((RTX/rep,Y/rep  +  RTX/alt,Y/alt)/2]. A value 
close to zero means that the repetition effects of the two 
given features do not interact; a value greater than zero indi-
cates a “binding-type” interaction.

A significance level of p < 0.05 was adopted for all sta-
tistical tests.

Results

Participants

No significant differences were found among groups with 
respect to age t(38) = 0.2, p = 0.83, or gender distribu-
tion, χ2 (1, 40) = 0.53, p = 0.47.

Event file task

Table 1 provides an overview of the relevant ANOVA out-
comes for RTs and PEs obtained for R2. The analysis of 
RTs did not reveal any significant main effects, all Fs ≤ 3.6, 
all ps ≥  0.07, all η2ps ≤  0.09. Replicating earlier findings 
(Hommel 1998; Hommel and Colzato 2004; Colzato et al. 
2012, 2013b), the analysis of RTs revealed a significant 
interaction between Response and Shape, F(1.38) = 65.48, 
p < 0.001, η2p = 0.63: repeating one but not the other fea-
ture slowed down responses (479 vs. 449 ms). The interac-
tions between Response and Color and between Shape and 
Color were not significant, all Fs ≤  3.1, all ps ≥  0.09, all 
η
2
ps  ≤  0.07—repeating one but not the other feature pro-

duced comparable responses (467 vs. 461  ms and 466 vs. 
463  ms, respectively). Crucially, a significant three-way 
interaction involving Shape, Color, and Group was found, 
F(1,38) =  12.20, p =  0.001, η2p =  0.24: partial-repetition 
costs for color–shape binding occurred for the control group, 
but not for the gamma group, see Table 1. In contrast, par-
tial-repetition costs for color–response and shape–response 
bindings were comparable across the two groups, as indi-
cated by the absence of any significant three-way interaction 
involving Group with either Color and Response, or Shape 
and Response, all Fs < 1, all ps ≥ 0.34, all η2ps ≤ 0.02, see 
Table 1. All the remaining interactions were not significant 
either, all Fs ≤ 2.6, all ps ≥ 0.11, all η2ps ≤ 0.07.

The analysis of PEs revealed only two significant 
sources of variance. First, a significant main effect 
of Response was found, F(1,38)  =  10.35, p  =  0.003, 
η
2
p =  0.21: response repetition produced less errors than 

response alternation (3.3 vs. 5.1%). Second, a signifi-
cant interaction between Shape and Response was found, 
F(1,38) = 63.16, p < 0.001, η2p = 0.62: repeating one but 
not the other feature elicited less accurate responses (1.6 
vs. 6.8%). No other significant main effects or interactions 
were found, all Fs ≤ 3.7, all ps ≥ 0.06, all η2ps ≤ 0.09.

Discussion

The aim of this study was to investigate whether high-
frequency binaural beats (gamma range) would show a 
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specific effect in the top-down control of feature bind-
ings, that is, of bindings between codes that represent the 
features of experienced objects and stimulus–response 
episodes (Hommel 1998, 2004). As expected, the size 
of visuomotor binding costs (indicating the binding of 
visual and action features) was unaffected by the binau-
ral beats, while the size of visual feature binding costs 
(which refer to the binding between the two visual fea-
tures) was considerably smaller in the gamma-frequency 
binaural beats group than in the control group. Our 
findings suggest that binaural beats enhance selectiv-
ity in updating episodic memory traces. Our results fit 
with previous neurofeedback training studies in which 
increased local gamma band activity led to greater flex-
ibility in handling (selectively retrieving) only of visual 
feature binding costs, but not of visuomotor binding costs 
(Keizer et al. 2010a, b). Even though direct causal links 
between gamma activity and feature integration are yet to 
be confirmed, there is converging evidence that processes 
involved in the creation and maintenance of visual feature 

bindings are systematically associated with neural activ-
ity in the gamma band. In particular, gamma band power 
has been linked to visual awareness (Engel and Singer 
2001; Wyar and Tallon-Baudry 2008) and visual working 
memory (Tallon-Baudry et al. 1998). Further, neural syn-
chronization in gamma band and visual feature integra-
tion seem to be linked to the same neurotransmitter sys-
tem. Gamma synchronization in the primary visual cortex 
of the cat is promoted by muscarinic–cholinergic ago-
nists and impaired by muscarinic–cholinergic antagonists 
(Rodriguez-Bermudez et  al. 2004). This is in line with 
the findings in healthy young humans showing that caf-
feine—a muscarinic–cholinergic agonist—enhances the 
updating of visual feature bindings (Colzato et al. 2005), 
while alcohol—a muscarinic–cholinergic antagonist—
hampers such selective retrieval (Colzato et  al. 2004). 
Future studies should investigate whether the concomi-
tant administration of muscarinic–cholinergic agonists 
and high-frequency binaural beats (gamma range) might 
have an additive effect on enhancing the updating of 

Table 1   Mean RTs and PEs for responses to R2 as a function of group (Gamma vs. Control), the relationship between the responses (R1 and 
R2), and the relationship between the stimulus features (S1 and S2) for shape and color

Standard errors of the mean are shown in parentheses. The rightmost column gives the partial-repetition (binding) costs that, for the analysis of 
RTs, differed significantly in color–shape between Gamma and Control groups

Group Response repeated Response alternated Binding costs

Shape repeated Shape alternated Shape repeated Shape alternated

RTs (ms)

 Gamma 462 (19.7) 490 (20.6) 498 (21.4) 473 (18,9) 26 (5.2)

 Control 429 (19.7) 461 (20.6) 467 (21.4) 432 (18.9) 33 (5.2)

PEs (%)

 Gamma 0.8 (0.4) 4.3 (1.0) 8.3 (1.5) 2.3 (0.7) 4.8 (0.9)

 Control 1.6 (0.4) 6.5 (1.9) 8.1 (1.5) 1.6 (0.7) 5.7 (0.9)

Group Response repeated Response alternated Binding costs

Color repeated Color alternated Color repeated Color alternated

RTs (ms)

 Gamma 477 (19.5) 476 (20.9) 490 (20.4) 481 (19.8) 4 (4.7)

 Control 439 (19.5) 451 (20.9) 452 (20.4) 448 (19.8) 8 (4.7)

PEs (%)

 Gamma 2.2 (0.6) 2.9 (0.8) 5.9 (1.1) 4.7 (1.0) 1.0 (0.7)

 Control 4.0 (0.6) 4.2 (0.8) 4.4 (1.1) 5.2 (1.0) −0.3 (0.7)

Group Shape repeated Shape alternated Binding costs

Color repeated Color alternated Color repeated Color alternated

RTs (ms)

Gamma 485 (20.2) 481 (19.6) 475 (20.7) 482 (19.6) −5 (3.3)

Control 441 (20.2) 450 (19.6) 456 (20.7) 443 (19.6) 11 (3.3)

PEs (%)

Gamma 5.1 (1.0) 3.1 (0.8) 4.1 (1.0) 3.5 (0.8) −0.7 (0.6)

Control 4.3 (1.0) 4.1 (0.8) 5.4 (1.0) 4.0 (0.8) 0.6 (0.6)
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visual feature bindings compared to the separate admin-
istration of the single factors. The fact that the effect of 
gamma-frequency beats was limited to visual feature 
bindings is consistent with previous research, demon-
strating that while visual feature integration is associated 
with gamma band activity, visuomotor integration relies 
on beta band activity (Roelfsema et al. 1997). It would be 
interesting in future studies to investigate whether beta-
frequency beats might impact visuomotor bindings but 
not visual feature bindings.

The finding of greater flexibility in handling visual 
feature binding costs when listening to gamma-frequency 
beats may be of particular interest for some clinical con-
ditions and intoxication state. Previous studies have 
found impairment in the updating of feature bindings in 
children with Autism Spectrum Disorder (ASD) (Zmi-
grod et  al. 2013), patients suffering from Gilles de la 
Tourette syndrome (Beste et al. 2016), after acute alcohol 
consumption (Colzato et al. 2004), and in elderly as com-
pared to young adults (Hommel et al. 2011). That is, bin-
aural beats, by enhancing selectivity in updating episodic 
memory traces, may slow down and (partially) compen-
sate for the cognitive negative consequences associated 
with ASD, Gilles de la Tourette syndrome, alcohol con-
sumption, and aging.

Our study used a between-subject design to avoid pos-
sible practice effects on task performance. However, a 
between-subject design can be sensitive to differences 
between the individuals in the two groups. Hence, fol-
low-up investigations should point out whether our find-
ings can be replicated in a within-subject comparison 
(where the same participants will be exposed to both the 
control and binaural beats conditions) and extended using 
different versions of the feature-repetition task across dif-
ferent modalities.

Our findings bring converging evidence on the idea 
that binaural beats act as a neural entrainment technique 
that works by moderating brain oscillations that specific 
cognitive processes require or profit from (Chaieb et  al. 
2015), and oscillations in the gamma-frequency band 
might be particularly relevant for this purpose (Schwarz 
and Taylor 2005; Pastor et al. 2002). Accordingly, future 
studies should make use of electro- or magnetoenceph-
alographic methods (e.g., Picton et  al. 1987; Galam-
bos et  al. 1981, Becher et  al. 2015), which would per-
mit directly assessing the relationship between binaural 
beats, the auditory entrainment of brain oscillations, and 
cognitive processes.

Acknowledgements  This work was supported by a research grant 
from the Netherlands Organization for Scientific Research (NWO; 
www.nwo.nl) awarded to L.S.C. (Vidi grant: #452-12-001). The 
NWO had no further role in study design; in the collection, analy-
sis, and interpretation of data; in the writing of the report; and in the 

decision to submit the paper for publication. We thank Andres von 
Schnehen for his enthusiasm and invaluable assistance in the data 
collection.

Compliance with ethical standards 

Conflict of interest  The authors declare that they have no conflict of 
interest.

Open Access  This article is distributed under the terms of the Crea-
tive Commons Attribution 4.0 International License (http://crea-
tivecommons.org/licenses/by/4.0/), which permits unrestricted use, 
distribution, and reproduction in any medium, provided you give 
appropriate credit to the original author(s) and the source, provide a 
link to the Creative Commons license, and indicate if changes were 
made.

References

Becher AK, Höhne M, Axmacher N, Chaieb L, Elger CE, Fell J 
(2015) Intracranial electroencephalography power and phase 
synchronization changes during monaural and binaural beat 
stimulation. Eur J Neurosci 41(2):254–263

Beste C, Tübing J, Seeliger H, Bäumer T, Brandt V, Stock AK, Mün-
chau A (2016) Altered perceptual binding in Gilles de la Tourette 
syndrome. Cortex 83:160–166

Chaieb L, Wilpert EC, Reber TP, Fell J (2015) Auditory beat stimula-
tion and its effects on cognition and mood states. Front Psychiat 
6:70

Colzato LS, Erasmus V, Hommel B (2004) Moderate alcohol con-
sumption in humans impairs feature binding in visual per-
ception but not across perception and action. Neurosci Lett 
360:103–105

Colzato LS, Fagioli S, Erasmus V, Hommel B (2005) Caffeine, but 
not nicotine enhances visual feature binding. Eur J Neurosci 
21:591–595

Colzato LS, van Wouwe NC, Lavender TJ, Hommel B (2006) Intel-
ligence and cognitive flexibility: fluid intelligence correlates with 
feature “unbinding” across perception and action. Psychon B 
Rev 13:1043–1048

Colzato LS, Pratt J, Hommel B (2010) Dopaminergic control of 
attentional flexibility: inhibition of Return is associated with the 
dopamine transporter gene (DAT1). Front Hum Neurosci 14:53. 
doi:10.3389/fnhum.2010.00053

Colzato LS, van Wouwe NC, Hommel B, Zmigrod S, Ridderinkhof 
KR, Wylie SA (2012) Dopaminergic modulation of the updat-
ing of stimulus–response episodes in Parkinson’s disease. Behav 
Brain Res 228(1):82–86

Colzato LS, van den Wildenberg WP, Hommel B (2013a) The genetic 
impact (C957T-DRD2) on inhibitory control is magnified by 
aging. Neuropsychologia 51(7):1377–1381

Colzato LS, Zmigrod S, Hommel B (2013b) Dopamine, norepi-
nephrine, and the management of sensorimotor bindings: indi-
vidual differences in updating of stimulus–response episodes 
are predicted by DAT1, but not DBH5′-ins/del. Exp Brain Res 
228(2):213–220

Colzato LS, Barone H, Sellaro R, Hommel B (2015) More attentional 
focusing through binaural beats: evidence from the global-local 
task. Psychol Res. doi:10.1007/s00426-015-0727-0

Engel AK, Singer W (2001) Temporal binding and the neural corre-
lates of sensory awareness. Trends Cogn Sci 5:16–25

Frings C, Rothermund K, Wentura D (2007) Distractor repeti-
tions retrieve previous responses to targets. Q J Exp Psychol 
60(10):1367–1377

http://www.nwo.nl
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://dx.doi.org/10.3389/fnhum.2010.00053
http://dx.doi.org/10.1007/s00426-015-0727-0


2131Exp Brain Res (2017) 235:2125–2131	

1 3

Galambos R, Makeig S, Talmachoff PJ (1981) A 40-Hz auditory 
potential recorded from the human scalp. Proc Natl Acad Sci 
USA 78(4):2643–2647

Hommel B (1998) Event files: evidence for automatic integration of 
stimulus response episodes. Vis Cogn 5:183–216

Hommel B (2004) Event files: feature binding in and across percep-
tion and action. Trends Cogn Sci 8:494–500

Hommel B (2007) Feature integration across perception and action: 
event files affect response choice. Psychol Res 71:42–63

Hommel B, Kray J, Lindenberger U (2011) Feature integration across 
the lifespan: stickier stimulus-response bindings in children and 
older adults. Front Psychol 2:268

Hommel B, Sellaro R, Fischer R, Borg S, Colzato LS (2016) High-
frequency binaural beats increase cognitive flexibility: evidence 
from dual-task crosstalk. Front Psychol 7:1287

Karino S, Yumoto M, Itoh K, Uno A, Yamakawa K, Sekimoto S, Kaga 
K (2006) Neuromagnetic responses to binaural beat in human 
cerebral cortex. J Neurophysiol 96:1927–1938

Keizer AW, Colzato LS, Hommel B (2008) Integrating faces, houses, 
motion, and action: spontaneous binding across ventral and dorsal 
processing streams. Acta Psychol 127(1):177–185

Keizer AW, Verment R, Hommel B (2010a) Enhancing cognitive control 
through neurofeedback: a role of gamma-band activity in manag-
ing episodic retrieval. Neuroimage 49:3404–3413

Keizer AW, Verschoor M, Verment R, Hommel B (2010b) The effect of 
gamma enhancing neurofeedback on measures of feature-binding 
flexibility and intelligence. Int J Psychophysiol 75:25–32

Kühn S, Keizer AW, Colzato LS, Rombouts SA, Hommel B (2011) 
The neural underpinnings of event-file management: evidence for 
stimulus-induced activation of and competition among stimulus–
response bindings. J Cogn Neurosci 23(4):896–904

Licklider JCR, Webster JC, Hedlun JM (1950) On the frequency limits 
of binaural beats. J Acoust Soc Am 22(4):468–473

Moeller B, Frings C (2014) Long-term response-stimulus associations 
can influence distractor-response bindings. Adv Cogn Psychol 
10(2):68–80

Oster G (1973) Auditory beats in the brain. Sci Am 229:94–102
Pantev C, Roberts LE, Elbert T, Roß B, Wienbruch C (1996) Tono-

topic organization of the sources of human auditory steady-state 
responses. Hear Res 101(1):62–74

Pastor MA, Artieda J, Arbizu J, Marti-Climent JM, Peñuelas I, Masdeu 
JC (2002) Activation of human cerebral and cerebellar cortex by 
auditory stimulation at 40 Hz. J Neurosci 22(23):10501–10506

Perrott DR, Nelson MA (1969) Limits for the detection of binaural 
beats. J Acoust Soc Am 46(6B):1477–1481

Petruo VA, Stock AK, Münchau A, Beste C (2016) A systems neuro-
physiology approach to voluntary event coding. Neuroimage 
135:324–332

Picton TW, Skinner CR, Champagne SC, Kellett AJ, Maiste AC (1987) 
Potentials evoked by the sinusoidal modulation of the amplitude or 
frequency of a tone. J Acoust Soc Am 82(1):165–178

Reedijk SA, Bolders A, Hommel B (2013) The impact of binaural beats 
on creativity. Front Hum Neurosci 7:786

Reedijk SA, Bolders A, Colzato LS, Hommel B (2015) Eliminating the 
attentional blink through binaural beats: a case for tailored cogni-
tive enhancement. Front Psychiatry 6:82

Rodriguez-Bermudez R, Kallenbach U, Singer W, Munk MH (2004) 
Short- and long-term effects of cholinergic modulation on gamma 
oscillations and response synchronization in the visual cortex. J 
Neurosci 24:10369–10378

Roelfsema PR, Engel AK, König P, Singer W (1997) Visuomotor inte-
gration is associated with zero time-lag synchronization among 
cortical areas. Nature 385(6112):157–161

Schnitzler A, Gross J (2005) Normal and pathological oscillatory com-
munication in the brain. Nat Rev Neurosci 6:285–296

Schwarz DW, Taylor P (2005) Human auditory steady state responses 
to binaural and monaural beats. Clin Neurophysiol 116(3):658–668

Sheehan DV, Lecrubier Y, Sheehan KH et  al (1998) The Mini-Inter-
national Neuropsychiatric Interview (MINI): the development 
and validation of a structured diagnostic psychiatric interview for 
DSM-IV and ICD-10. J Clin Psychiatry 59:22–23

Tallon-Baudry C, Bertrand O, Peronnet F, Pernier J (1998) Induced 
γ-band activity during the delay of a visual short-term memory 
task in humans. J Neurosci 18:4244–4254

von Stein A, Sarnthein J (2000) Different frequencies for different scales 
of cortical integration: from local gamma to long range alpha/theta 
synchronization. Int J Psychophysiol 38:301–313

Wyar V, Tallon-Baudry C (2008) Neural dissociation between visual 
awareness and spatial attention. J Neurosci 28:2667–2679

Zmigrod S, de Sonneville LMJ, Colzato LS, Swaab H, Hommel B 
(2013) Cognitive control of feature bindings: evidence from chil-
dren with autistic spectrum disorder. Psychol Res 77:147–154


	The effect of gamma-enhancing binaural beats on the control of feature bindings
	Abstract 
	Introduction
	Method
	Participants
	Procedure
	Event file task
	Statistical analyses

	Results
	Participants
	Event file task

	Discussion
	Acknowledgements 
	References




