
1. Introduction
Rainfall-induced remobilizations of coseismic landslide deposits, propagating from hillslopes to down-
stream (Dahlquist & West, 2019), are a typical hazard in areas affected by earthquake-induced landslides 
(X. Fan et al., 2019a). These deposits are typically constituted by loose materials with significant amounts 
of fines, hence they are susceptible to sudden collapse and liquefaction upon loss of suction or pore water 
pressure increase (Hu et al., 2017, 2018). Debris remobilization events may occur in the earthquake-affect-
ed areas for years or decades (Hovius et al., 2011; Keefer, 1994; Yunus et al., 2020), even multiple times in 
the same deposit, largely depending on the volumes of coseismic deposits and rainfall intensities (Dadson 
et al., 2004; Hovius et al., 1997; Marc et al., 2016). Together with delayed (postseismic) slope failures, they 
concur to the generation of destructive debris flows, posing an additional threat to areas already hit by the 
earthquake. Where these remobilizations evolved into debris flows, such as in Wenchuan county (China), 
they caused human losses and extensive damage to property and infrastructure (Tang et al., 2011; Q. Xu 
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et al., 2012). Hence, understanding their spatial likelihood and controlling factors is critical for mitigating 
the risk through proper countermeasures and reconstruction strategies.

A generally accepted assumption in landslide susceptibility/hazard mapping is that the controlling factors 
do not change significantly over a long period of time; therefore, susceptibility/hazard maps for a given area 
can be assumed to be static (Segoni et al., 2018). This hypothesis is especially convenient if the susceptibility 
is derived from landslide inventories that cover a considerable time span, as it simplifies their interpreta-
tion. However, high-relief landscapes after a strong earthquake undergo rapid evolution, accompanied by 
rapid changes in hydro-mechanical properties. Grain size coarsening, increase of permeability, consolida-
tion, and progressive revegetation have indeed been observed in coseismic landslide deposits (Domènech 
et al., 2019; G. Li et al., 2017; Zhang & Zhang, 2017). Therefore, predicting subsequent debris flows using a 
static set of factors and weights may not be advisable, and the resulting susceptibility/hazard maps may be 
unreliable. At present, though, these statements remain unproven, mainly owing to the scarcity of multi-
temporal inventories tracking debris remobilization occurrences in the years following a strong earthquake. 
Such inventories are essential for understanding the spatiotemporal patterns of future landslides. To the 
best of our knowledge, only a few studies have mapped these occurrences systematically in worldwide 
earthquake cases (Dahlquist & West, 2019; R. L. Fan et al., 2018a; Lin et al., 2004; Shafique, 2020; Shou 
et al., 2011; Tian et al., 2020), and in limited areas affected by the Wenchuan Earthquake (M. Chen et al., 
2020; X. Fan et al., 2019b; Shen et al., 2020; Tang et al., 2016; Yang et al., 2017, 2018), yet no multitemporal 
postseismic susceptibility and controlling factor assessments have been attempted thus far.

Here, we explore the evolving controls of coseismic landslides and postseismic material remobilizations 
along the hillslopes following the 2008 Wenchuan Earthquake using a multitemporal landslide inventory 
of the epicentral region (X. Fan et al., 2018b, 2019b). We assess and rank controlling factors, predict the 
likelihood of remobilizations, and discuss implications and challenges in hazard assessment procedures.

2. Study Area
The 2008 Mw 7.9 Wenchuan Earthquake triggered an unprecedented number of landslides across the Long-
menshan mountain range, generating at least 2–3 km3 of mass wasting (Li et al., 2018b; C. Xu et al., 2014). 
Many previous studies concluded that the earthquake-affected area still retains a high geological hazard 
related to delayed landslides, postseismic debris flows, and severe erosion (Li et al., 2018; Tang et al., 2016; 
Yang et al., 2018). Coseismic landslide deposits on steep (>40°) hillslopes are more likely to be remobilized 
and supply material for debris flows during subsequent rainfall events (Zhang & Zhang, 2017). Here, we 
investigate a portion of the Longmenshan between the Wenchuan-Maowen and Yingxiu-Beichuan faults, 
where the earthquake rupture initiated (Figure 1).

The study area (471 km2) is subdivided into 42 catchments with elevations of ∼450–4,000 m a.s.l. The cli-
mate is subtropical and monsoonal (mean annual temperature: 13°C; precipitation: >1,250 mm/year), with 
rainfall concentrated in July and August.

3. Data and Methods
Over the past decades, the availability of high-resolution remotely sensed data has led to increasingly com-
plete inventories of coseismic landslides becoming available (Martha et al., 2013; Tang et al., 2016, 2019; 
van Westen et al., 2008). We used a multitemporal inventory of landslides in the epicentral region of the 
2008 Wenchuan Earthquake, produced from pre and postearthquake remote sensing images recorded from 
2005 to 2018 (X. Fan et al., 2019b), as it covers the largest area and longest time span for the Wenchuan 
Earthquake-affected region thus far. The total area of coseismic landslides in these catchments is 72.8 km2 
(Figure 1). Key details of the inventories can be found in Domènech et al. (2018) and in Text S1 (supporting 
information).

We examined the factors controlling landslide occurrences in the study area. In the literature, no stand-
ard guideline exists on the appropriate selection of landslide conditioning factors (LCF). According to 

FAN ET AL.

10.1029/2020GL090509

2 of 12



Geophysical Research Letters

Reichenbach et al. (2018), the availability of data pertaining to the study area is often crucial in deciding 
the selection of LCF. Merghadi et al. (2020) explained a step-by-step procedure for selecting the LCF which 
involves identifying and selecting all geo-environmental factors available for the study area, followed by 
collinearity tests and feature selection algorithms. Therefore, we initially selected a large set of independent 
variables from the literature (lithologic, tectonic, topographic, hydrologic, and seismic factors) that may 
explain the governing mechanisms and spatial distribution of coseismic landslides (e.g., Carro et al., 2003; 
Y. Chen et al., 2020; Lee et al., 2008; Nowicki Jessee et al., 2018) as well as of “nonseismic” landslides in 
our study area (Table 1 and Text S2, supporting information). The distribution and volume of coseismic 
landslides also may have a significant impact on the distribution of postseismic remobilizations. Hence, the 
volumes of coseismic and remobilized landslides were also analyzed (Table 1).

Subsequently, we performed a collinearity test to reveal relations among (initially assumed) independent 
variables. Multicollinearity occurs when a variable is highly correlated with one or more other variables 
(Allen, 1997). Variance inflation factor (VIF) and tolerance (TOL, i.e., 1/VIF) are two common tests for 
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Figure 1. (a) Location of the study area in Sichuan, China; (b) coseismic landslide distribution (Source: Domènech 
et al., 2018); and (c) inset showing high-resolution satellite imagery (Worldview 2) used for landslide mapping.
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collinearity. According to previous studies, VIF > 10 or TOL < 0.1 indicate significant multicollinearity 
(Dormann et al., 2013; Merghadi et al., 2018). Table 1 summarizes the VIF values for the LCF. Among the 
factors that exhibited significant multicollinearity, we decided to remove those with the largest VIF value in 
the further analysis. Therefore, we removed POS but retained MRI, and removed MINT but retained PGV. 
After removal, a new collinearity test did not evidence issues.

FAN ET AL.

10.1029/2020GL090509

4 of 12

Type Landslide conditioning factor Source, meaning

Collinearity test

VIF

VIF (after 
removing 

MRI, 
MINT, and 

AAA)

I ELE—Elevation Elevation data taken directly from the 25 m resolution digital elevation 1.76 1.65

SLO—Slope Slope angle (in degrees) 2.50 2.20

ASP—Aspect Orientation of the slope being the north defined as 0° and 360° and the south 180° 1.10 1.10

CUR—Planar curvature Displays the shape or curvature of the slope. Plan curvature relates to the convergence and 
divergence of flow across a surface

1.96 1.95

POS—Positive openness Positive openness expresses surface convexity (Yokoyama et al., 2002) 7667.99 1.00

MRI—Melton Ruggedness 
Number

Expresses the relative dynamism of the basin; indicator of hazardousness of the basin 
(Slaymaker, 2010)

7671.67 REMOVED

MPI—Morphometric 
Protection Index

Analyses the immediate surrounding of each cell up to a given distance and evaluates how 
the relief protects it

5.76 5.63

TPI—Topographic Position 
Index

Index of cell position relative to ridges and valleys. Positive TPI = closer to ridges. 
Negative TPI = closer to valleys. TPI zero = either flat areas or areas of constant slope 
(Jenness, 2006)

6.28 5.60

II LITH—Lithology Categorical code of the main lithological units present in the study area (scale 1:200,000) 1.03 1.02

III NDVI Normalized difference vegetation index derived from Landsat 5 TM, 7 ETM, and 8 OLI images 1.009 1.002

IV FACC—Flow Accumulation Cumulative hydrologic flow values representing the number of input pixels contributing 
water to any outlets

1.23 1.23

DTS—Distance to Stream Distance from the channel network extracted using 0.4 km2 as threshold contributing area 1.03 1.03

RAIN—Rainfall Anomaly Gridded 25 m resolution map of interpolated rain anomaly using SM2RAIN algorithm 
(Brocca et al., 2014)

2.42 2.10

RAIN1—TRMM Rainfall Gridded 0.25° annual rainfall derived from TRMM for each analyzed year 1.07 1.07

DAH—Diurnal Anisotropic 
Heat

Simple approximation of the anisotropic diurnal heat (Ha) 1.07 1.06

V PGA—Peak Ground 
Acceleration

Seismic data obtained from the China Earthquake Networks Center (CENC) 6.63 5.28

PGV—Peak Ground Velocity 10.57 4.87

MINT—Maximum seismic 
Intensity

11.14 REMOVED

VI COS—Volume of Coseismic 
Deposits

Estimated from postevent satellite images (2008–2018; Domènech et al., 2018). Volume of 
landslides were calculated based on Larsen et al. (2010) but channelized debris and debris 
flows were not calculated using area-volume relationships but directly by integrating the 
area covered by the deposits over the pre-earthquake DEM

1.16 1.14

VPS—Volume of Active 
Landslides of Previous 
Year

1.09 1.09

VII RAND—Random Variable 1.00 1.00

Types: I—topographic factors, II—lithologic factors, III—vegetation, Type IV—hydro-climatic factors, V—seismic factors, VI—postseismic factors.

Table 1 
Conditioning Factors Used in This Study, General Description, and Collinearity Test Results
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We then analyzed the relative importance of the 18 remaining variables, and a random variable with respect 
to the explanatory power for postseismic debris remobilizations for each mapped year using the information 
gain (IG) function.

According to Hall and Holmes (2003), IG is one of the quick and easiest attribute ranking methods that is 
often used in feature selections and for identifying root nodes in tree-based models (e.g., Alhaj et al., 2016; 
Lei, 2012; Quinlan, 1986). Therefore, the attributes providing more information on the dependent variable 
will have a higher IG value. To perform IG and later susceptibility model analysis, we randomly selected 
50,000 sampling points within the basin area for each analyzed year, including both landslide and nonland-
slide pixels. As the number of nonlandslide samples is predominant compared to the number of landslide 
samples, we also introduced a censoring of nonlandslide samples to avoid data imbalancing. We finally 
extracted the values of each LCF (Table 1) for each of the selected pixels. The mathematical representation 
of IG and a sample calculation, the reader is referred to Text S3 (supporting information) and Andrews 
et al. (2007). We calculated IG for each LCF in each inventory, before and after the earthquake. A ranking 
of the IG values was made according to their weights, which we used to study the temporal evolution of the 
factors.

Finally, we applied a random forest model (RFM) to assess the landslide susceptibility via the 18 selected 
variables, thereby evaluating changes of predictive power with time. We chose the RFM after exploring var-
ious machine-learning alternatives (e.g., logistic regression, decision trees, and K-nearest neighbors), which 
were all outperformed by the RFM (see Texts S4 and S5, supporting information). Also, since our objective 
is to compare susceptibility estimations made under evolving controls, we needed to adopt a statistical 
inference model with a low sensitivity toward changes in the independent variable set. RFM is particular-
ly robust on this regard, provided that the forest of binary trees is dense enough (Catani et al., 2013; Dou 
et al., 2019; Yunus et al., 2019).

We first trained the RFM using the 2011 inventory data. A 10k-fold cross validation approach was used for 
validating the models, and a complete set of pixels was used to validate the 2011 model in the subsequent 
(2013, 2015, and 2017–2018) years. Similarly, susceptibility models were built and validated using the 2013, 
2015, and 2017–2018 inventories. The hyperparameters, that is, the number of trees, maximum depth, and 
the number of predictive variables used to split the nodes in RFM are selected as the default values in 
WEKA© environment to replicate the results. The model estimated a pixel-based probability of remobiliza-
tion for the same year and the subsequent ones. For performance evaluation, the confusion matrix, Kappa 
values, accuracy (ACC), area underneath the receiver operating characteristic (ROC) curve (AUC), and the 
precision recall area under the curve (PRC) were used (the matrix evaluation is explained in Text S4, sup-
porting information).

4. Results
4.1. Evolving Controls

The conditioning factors, ranked according to their IG values, are shown in Figure 2. Consistently with 
general knowledge on nonseismic landslides, rainfall (rainfall anomaly) exerted the strongest control on 
landslide occurrence before the earthquake (2005–2007). Topographic variables, such as elevation, slope, as-
pect, and positive openness also ranked high. Upon the earthquake (2008), however, the importance of the 
topographic variables remained high, whereas lithology, curvature, and normalized difference vegetation 
index (NDVI) decreased significantly. The seismic strength indicators, PGA and PGV, did not rank as high 
as expected. One possible explanation is that PGA and PGV for the Wenchuan Earthquake varied signifi-
cantly over a spatial scale, in the direction orthogonal to that of the seismogenic fault, which is quite large 
in comparison with the size of the study area in the same direction. Lithology exerted a weak control owing 
to the limited variation of lithologies in our study area, which in turn limits the statistical significance. With 
reference to the whole earthquake-affected area, Gorum et al. (2011) also showed that the effect of lithology 
was not very clear, whereas the fault mechanism, the hanging wall/footwall effect, and topography con-
trolled the landslide distribution the most. Our study area lies entirely on the hanging wall, and features a 
rather homogeneous lithology. Another reason for the limited relevance of lithology could be linked to the 

FAN ET AL.

10.1029/2020GL090509

5 of 12



Geophysical Research Letters

very nature of the available geological maps, which mostly convey information on the bedrock materials 
rather than on the regolith cover and the slope deposits that are the main source of material for landslides 
in the area (Segoni et al., 2020).

In 2011 (Figure 2), the volume of coseismic landslides (COS), NDVI (indicating uprooted vegetation), top-
ographic position (MPI, POS, and TPI), and rainfall (annual) became the main controls. The influence 
of vegetation on the occurrence of landslides, however, is not a straightforward one in the sense that a 
low vegetation coverage might contribute to make landslides more likely, but may also be the result of 
the occurrence of landslides in the immediate past. In the study area, the strong seismic forcing overrode 
many other factors in determining the occurrence of landslides: areas with deep-rooted arboreal vegetation 
suffered landslides as much as areas covered with grass or bare land. The relationship between the slope 
location, as well as topographic factors, were more relevant in determining landslide occurrence than the 
preearthquake vegetation cover. In the years after the earthquake, the situation changes such that a low 
NDVI values can signal the locations affected by coseismic landslides. In subsequent years (2013–2015), 
the volume of previous landslides (VPS), that of coseismic landslides (COS), rainfall (annual) largely de-
termined the remobilizations (Figure 2). Additionally, rainfall anomaly progressively regained importance 
up to the preearthquake value, which is consistent with the observation that increasingly heavier rainfall 
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Figure 2. Information gain (IG) ranking (descending order in each column) of conditioning factors obtained for each 
year (2005–2018).
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triggered all of the postearthquake debris flows (X. Fan et al., 2019a; Zhang & Zhang, 2017). One can also 
notice that the PGA has gained significance after the 2011. This is because as time elapses, it is mostly 
the larger deposits that remain active; these are, in general, associated with stronger shaking and weaker 
underlying materials. In this sense, these hillslopes carry with them the signature of the earthquake for a 
comparatively longer time.

Finally, in 2017 and 2018, a limited control of coseismic landslide deposits (COS) and VPS was observed, 
possibly in response to a progressive depletion of fines from the hillslope deposits (Domènech et al., 2019), 
which decreases the likelihood of hydrologically triggered instability. Revegetation also was observed (re-
duced NDVI rank) to play a role in limiting soil erosion, and thus runoff-induced failures (Shen et al., 2020; 
Yunus et al., 2020). Interestingly, the distance to streams (DTS) became the most important factor, con-
sistently with the higher landslide rates observed in channels and by river sides rather than high on the 
hillslopes. Confirming this analysis, during a heavy rainfall period in August 2019, catastrophic debris flows 
occurred in 20 gullies involving an area of 4.72 × 106 m2 in the study area. The total accumulated rain from 
August 1st to 20th was 331 mm, much higher than the average for August (250 mm). Noticeably, all the debris 
flows occurred within tributary channels (see Text S6, supporting information). The topographic position 
index (TPI) gradually moved toward the top of ranking since 2005, suggesting that the material has moved 
closer to the streams from the hill-slopes.

These results suggest that, in general, the importance of coseismic variables, initially high, should decrease 
progressively in favor of nonseismic or postseismic factors within a few years (Figure 2). In turn, this may 
imply that strong seismic shocks may produce sudden changes in the spatial distribution of mass wasting 
processes on slopes, by “resetting” slope instability drivers and refilling the sediment storage on hillslopes. 
These processes would continue until the preearthquake physical parameters are restored, and hence also 
the controls to mass wasting. This observation may have important implications for mapping and predicting 
the landslide hazard after strong earthquakes, as will be discussed in the following sections.

4.2. Postseismic Debris Remobilization Susceptibility Assessment

To provide a benchmark on the implications of time-variable controls to hazard prediction, we performed 
a postseismic debris remobilization susceptibility assessment for the study area using a RFM on random-
ly sampled pixels (of postseismic remobilizations and nonremobilizations within the coseismic landslide 
boundaries) from the 2011 inventory maps. The spatial probability of postseismic remobilizations obtained 
from the RFM for 2011 is shown in Figures 3a–3d. Quantitative assessment of the remobilization suscep-
tibility classes (very low, 0–0.2; low, 0.2–0.4; medium, 0.4–0.6; high, 0.6–0.8; and very high, 0.8–1) assigns 
61% of the coseismic deposits to the very low susceptibility class, 24% to the low/medium classes, and 15% 
to the high/very high classes. The latter cover ∼16.44 out of 471 km2 of the study area, a value very similar 
to the areas with actual remobilization in 2011 (17.42 km2), with which they have a statistically significant 
correlation (R2 = 0.89, p < 0.01).

The model performance was evaluated using the confusion matrix, Kappa coefficient, ACC, and area under 
the ROC curve (AUC). These indicators are presented in Figure 3e. The true positive rate (TPR) and Kappa 
for the RFM in 2011 (70% and 0.57, respectively) indicate a good predictive performance. The prediction of 
postseismic landslides in 2013 using the model trained on the 2011 inventory yields lower TPR and Kappa 
values (43% and 0.41, respectively). Validation of the same model for the 2015 and 2017–2018 inventories 
yields lower TPR and Kappa values similar to those in 2013, which are unsatisfactory considering that the 
false negative rate (FPR) exceeds the TPR (Figure 3e). Similarly, susceptibility models were also trained on 
the 2013 and 2015 inventories, and validated on the same and subsequent inventories (Text S4, supporting 
information). TPR, FPR, and Kappa values indicate that the models are less successful in predicting future 
scenarios (Text S4, supporting information).

5. Discussion
Our analysis of statistically derived temporal controls of landslides highlights two prominent mechanisms 
of postseismic activities: (i) typical topographic controls of landslide such as slope and elevation gained 
importance and became predominant within a decade (Figure 2), in line with a frequency of new hillslope 
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failures (hillslope deposit remobilizations) decreasing progressively; (ii) the importance of hydrological fac-
tors (DTS and FACC) and topographic position (TPI) has increased since 2008 (Figure 2), indicating that 
debris materials have moved into or closer to channels (remobilizations are constrained by erosion of chan-
nel deposits and debris flows).
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Figure 3. (a–d) Postseismic remobilization susceptibility assessment in the study area in 2011 revealed by a Random Forest model. (e) Performance of 
susceptibility models trained on landslide inventories from different years evaluated by confusion matrix, Kappa coefficient, accuracy (ACC), area under the 
ROC curve (AUC), and the precision Recall area under curve (PRC).
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The first point is a positive sign in a disaster perspective view. The frequency of postseismic debris remobili-
zations decreased from 3,549 to less than 100 per year within a decade. This rapid decay is consistent among 
all recent major earthquakes (Hovius et al., 2011b; Marc et al., 2015; Zhang et al., 2016), and partly con-
strained the postseismic sediment transport (Wang et al., 2017). In both the Wenchuan and Gorkha regions, 
researchers argue that most of the loose material generated by earthquake-induced landslides remained 
confined to hillslopes and tributary channels of catchments, whereas only a minor proportion of it has been 
evacuated from the catchments thus far (Dahlquist & West, 2019). In Wenchuan, previous studies (X. Fan 
et al., 2018b, 2019a) indicate that more than 90% of coseismic landslide deposits remained on the moun-
tainous landscapes and became stabilized, possibly as a result of preferential removal of fine sediment and 
revegetation processes (e.g., Domènech et al., 2019). However, the mechanisms governing the postseismic 
sediment cascade and the rate at which the remaining sediment is removed from the landslide-impacted re-
gions are unknown, which calls for in-depth research toward a better understanding of landscape evolution 
in tectonically active mountain ranges (Croissant et al., 2019) over larger time frames.

On the downside, destructive debris flows keep occurring during rainy seasons even a decade after the 
mainshock because of the increasing coupling between the location of debris deposits and the hydrological 
controls of remobilizations (see point (ii) above). The latest record is from August 2019, causing 10 fatalities 
related to debris flows in Wenchuan region (Petley, 2019). An elevated frequency of debris flows has been 
reported also after the 2015 Gorkha earthquake in Nepal (Dahlquist & West, 2019).

The decreasing frequency of remobilizations of hillslope deposits and the persisting debris flow occur-
rences, though seemingly inconsistent, are both supported by the rapid evolution of controlling factors, 
as shown by our analysis. The significant control of the volume of landslide deposits (COS and VPS) and 
the reduced role of topographic and hydrological factors in the first few years (2008–2015) after the earth-
quake (Figure 2) imply that remobilizations are triggered almost stochastically wherever there are landslide 
deposits. This also explains why a static susceptibility model calibrated on a landslide map and factors of 
a specific year does not perform well when predicting remobilizations in next years. However, through 
time, a preferential occurrence of remobilizations in deposits closer to channels tends to emerge, reflecting 
the increasing importance of hydrological factors (Figure 2), which are usually dominant in nonseismic 
scenarios. Therefore, aiming at risk reduction with a temporal horizon beyond that of the postearthquake 
emergency response, the focus of attention should shift onto monitoring the loose debris in gully networks.

The rapid change of relative importance among the controlling factors of postseismic landslides suggests 
that the susceptibility analysis in areas affected by recent strong earthquakes is markedly time-dependent, 
thus it cannot be performed without carefully subsetting the landslide inventory to account for the time of 
landslide occurrence. Therefore, to improve the hazard assessment model, we recommend the following: (i) 
frequent updating of the inventory to be used in the modeling, and (ii) repeated model training and variable 
set selection to update the susceptibility model and maps.

In addition, we noticed that by employing a postevent TanDEM-X data, the significance of the variable SLO 
(slope) increased when compared with that obtained using the preevent DEM. This confirms that the suscep-
tibility to further landslides is affected to a significant extent by the changes of topography caused by previous 
landslides. Consequently, it is appropriate to always use the most recent DEM data for susceptibility mapping 
(J. Y. Li et al., 2020), especially in contexts in which landslides occur frequently and affect significant portions 
of the landscape (see Text S7, supporting information). However, the data gaps observed in the TanDEM-X 
DEM for the whole study area caused by layover and shadow effect hindered us to allow the full potential of 
this recent DEM. On the other hand, we noticed that the other topographic factors such as ELE, CUR, FAC, 
TPI, POS, ASP, DAH were not so sensitive to those changes. All this considered, we recommend employing 
multitemporal high resolution DEMs, if available. However, no systematic collection of such data is available 
for the entire study area, in our case, as the work of Tang et al. (2019) only covers a small portion of it.

6. Summary and Conclusion
Based on a multitemporal landslide inventory produced after the 2008 Wenchuan Earthquake, we revealed 
that the controls of postseismic debris remobilizations are evolving rapidly. This implies that susceptibility 
models relying on a single time-related inventory and a static set of controlling factors and weights may 
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likely be unreliable, considering the very dynamic nature of the geoenvironment after strong earthquakes. 
The same applies to susceptibility models trained on cumulative “historical” inventories that collect all the 
mass displacements within the same sampling set (Text S8 in the supporting information). For postseismic 
landslide risk assessment and reduction, it is essential to understand for how long a trained susceptibility/
hazard model can still be used for successful predictions of postseismic landslides. This study shows that 
a set of controlling factors determined from a postseismic inventory in a given year may not be suitable for 
predicting landslides susceptibility already after a few years. This suggests that possible controlling factor 
evolutions should be carefully assessed when training statistical predictive models, and only time-related 
observations should be used for sampling. Once recorded, the time of occurrence of new landslide or re-
mobilizations can be profitably used to subset time-dependent parameter spaces for multivariate statistical 
analysis. This is especially true in areas affected by large-magnitude earthquakes, where the methodology 
and conditioning factors presented in this study could be applied for forecasting the spatial probability of 
postseismic landslide occurrences, as suggested by the high success rate (AUC) obtained for the immediate 
postseismic period. Our results also support the need of continued monitoring of channel deposits, from 
which prolonged threats originate in postearthquake scenarios.
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