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Landslide susceptibility assessment in complex geolog-
ical settings: sensitivity to geological information
and insights on its parameterization

Abstract The literature about landslide susceptibility mapping is
rich of works focusing on improving or comparing the algorithms
used for the modeling, but to our knowledge, a sensitivity analysis
on the use of geological information has never been performed,
and a standard method to input geological maps into susceptibility
assessments has never been established. This point is crucial,
especially when working on wide and complex areas, in which a
detailed geological map needs to be reclassified according to more
general criteria. In a study area in Italy, we tested different con-
figurations of a random forest–based landslide susceptibility mod-
el, accounting for geological information with the use of lithologic,
chronologic, structural, paleogeographic, and genetic units. Differ-
ent susceptibility maps were obtained, and a validation procedure
based on AUC (area under receiver-operator characteristic curve)
and OOBE (out of bag error) allowed us to get to some conclusions
that could be of help for in future landslide susceptibility assess-
ments. Different parameters can be derived from a detailed geo-
logical map by aggregating the mapped elements into broader
units, and the results of the susceptibility assessment are very
sensitive to these geology-derived parameters; thus, it is of para-
mount importance to understand properly the nature and the
meaning of the information provided by geology-related maps
before using them in susceptibility assessment. Regarding the
model configurations making use of only one parameter, the best
results were obtained using the genetic approach, while lithology,
which is commonly used in the current literature, was ranked only
second. However, in our case study, the best prediction was ob-
tained when all the geological parameters were used together.
Geological maps provide a very complex and multifaceted infor-
mation; in wide and complex area, this information cannot be
represented by a single parameter: more geology-based parame-
ters can perform better than one, because each of them can
account for specific features connected to landslide predisposition.
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Introduction
Landslide susceptibility mapping (LSM henceforth) is a very im-
portant activity in landslide hazard assessment, consisting in
representing over appropriate spatial units the relative spatial
probability of landslide occurrence (Brabb 1984). The overwhelm-
ing literature on landslide susceptibility is rich of works presenting
applications to case studies from the local to the global scale
(Youssef et al. 2016; Pradhan et al. 2019; Yang et al. 2019; Trigila
et al. 2013; Günther et al. 2013; Hong et al. 2007) obtained mainly
by means of statistical techniques (Reichenbach et al. 2018, and
references therein), artificial neural networks (Catani et al. 2005),
and machine learning algorithms (Brenning 2005, and references
therein; Catani et al. 2013).

Many researchers recently presented new improvements in the
techniques (Huang et al. 2017; Shirzadi et al. 2017; Pham et al. 2019)
or focused on the comparison between different models (Akgun
2012; Pham et al. 2016; Youssef et al. 2016; Bueechi et al. 2019), thus
improving the state of the art with analysis tools capable of an
increased effectiveness. Some works also performed a sensitivity
analysis to different model settings (resolution, scale, parameters,
or methods to use parameters) that can be a reference for future
works to design a correct and robust model configuration (Catani
et al. 2013; Greco and Sorriso-Valvo 2013).

Surprisingly, it seems that these undoubtedly useful and inter-
esting aspects overshadowed the importance of geology in LSM: to
the best of our knowledge, a sensitivity analysis on the use of
geological information has never been performed, nor a standard
method to input geological maps into susceptibility assessments
has ever been established.

Geological maps depict the spatial distribution on the topo-
graphic surface of rocks with different ages, natures, and charac-
teristics. The aim is not limited to represent the spatial
relationships of different mapped units, but it involves also the
conveying of information about the Earth’s crust evolution (Butler
and Bell 1988). Thus, geological maps are not directly conceived to
assist landslide modeling, and sometimes, they can be subdivided
into a very large number of mapped elements, some of which are
not directly related to slope stability (e.g., different units may be
defined based on the appearance/disappearance of a fossil species,
even if they have the same lithology and geomechanical
characteristics).

In the recent literature, it is possible to identify two main
methodologies to use geological information in LSM: (i) pre-
existing thematic maps about the nature of the bedrock are
retrieved and used without further elaborations (Pourghasemi
and Kerle 2016; Pradhan et al. 2019; Xiao et al. 2019); (ii)
existing detailed digital geological maps undergo a reclassifica-
tion aimed at reducing the number of classes and at defining a
stronger correlation with landsliding. This approach is used
especially when working over large or complex areas, where a
too detailed geological information needs to be generalized
(Bălteanu et al. 2010; Van Den Eeckhaut et al. 2012; Trigila
et al. 2013). Usually, the reclassification is performed on a
lithological or lithotechnical basis, in search for a stronger
correlation with landslide predisposition (Catani et al. 2005;
Segoni et al. 2018), and may entail some subjectivity in the
choice of classes.

In any case, the lithological information is the most recurrent in
LSM literature (Akgun 2012; Youssef et al. 2016): different units are
grouped according to the main lithologies encountered. In turn,
lithologies are defined based on physical characteristics such as
grain size, texture, and constituting minerals, which are clearly
connected with slope stability.
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Some studies (Catani et al. 2005; Manzo et al. 2013) use a
lithotechnical approach that moves from a lithological basis but
defines classes according to the typical values (measured, estimat-
ed, or supposed) of their shear strength parameters. The advantage
of this approach is that a stronger correlation between classifica-
tion and landsliding should be provided by the focus on the
geotechnical parameters. The drawback is that spatially distributed
maps of geotechnical properties of surface deposits are usually
unavailable, with the exception of some recent studies (e.g.,
Bicocchi et al. 2019). Other studies use also geological units, which
are mainly based on the age of deposition of the units (Van Den
Eeckhaut et al. 2012; Xiao et al. 2019) even if in local-scale studies
this could also partially or totally reflect lithological aspects
(Youssef et al. 2016; Cárdenas and Mera 2016; Pourgashemi and
Kerle 2016). Besides, a number of alternate approaches can be
found in the recent literature about landslide susceptibility map-
ping: as instance, Meinhardt et al. (2015) use a broad classification
into 5 rock types subdivided by the different genesis (e.g., loose
soils and metamorphic, intrusive, extrusive, and sedimentary
rocks); Myronidis et al. (2016) make use of units classified based
on the geological structure; Camarinha et al. (2014), to study
shallow landslide susceptibility in a test site in Brazil, used a
rock-type classification based on a complex criterion
encompassing geology, lithology, and pedology.

The examples above show that a standard method to consider
geology in LSM has not been defined, nor a sensitivity analysis to
the parameterization of geology has ever been performed (to the
best of our knowledge).

In a large and complex area, a detailed geological map could be
classified using different approaches. All of them could make sense
from a geological point of view and all of them could be put in
relation with landslide predisposition. The main objective of this
work is to test several of these approaches and to try to answer the
following research questions: (i) do the derived susceptibility out-
puts show noticeable differences? (ii) Which approach performs
better? (iii) Can we devise some best practices to handle geological
data for future landslide susceptibility assessments?

To pursue this objective, we selected a 3000-km2 test site in
Italy characterized by a very complex geological setting, we classi-
fied the mapped geological units according to six different ap-
proaches, and we used them as input variables in several tests of a
landslide susceptibility model based on the Treebagger random
forest algorithm (Breiman 2001; Catani et al. 2013). Afterwards, we
compared the results of the tests in terms of AUC (area under
receiver-operator characteristic curve) and OOBE (out of bag
error). Results were then critically analyzed and discussed, pro-
viding new insights on the effectiveness of different parameteriza-
tion approaches and on the possible use of geological information
in landslide susceptibility assessment.

Material and methods

Study area
The study area is located in Northern Tuscany, Italy, and it is a
3100-km2 territory composed by hills, mountains (up to
2000 m of elevation), and limited alluvial plains (Fig. 1). The
geological setting is quite complex (Vai and Martini 2001): the
area belongs to the Northern Apennine fold and thrust belt,
and since the Tertiary different tectonic units were stacked on

each other because of compressive tectonic forces, and since
the Upper Tortonian, an extensional tectonic regime dissected
the aforementioned units producing a horst and graben struc-
ture. Later, in the Pliocene and Quaternary, marine and fluvio-
lacustrine basins fostered the sedimentation of terrains, filling
the tectonic depressions.

This tectonic evolution has now left the presence of NW-SE
trending ridges and a pervasive pattern of faults, thrusts, and folds.
Roughly speaking, the area can be divided in two sectors. In the
western one, the bedrock is mainly constituted by carbonaceous
rocks and metamorphic rocks (mainly metamorphic sandstones
and phyllitic schists), giving rise to a sharper relief with higher
slope gradients than in the eastern sector, which is characterized
by sedimentary rocks (mainly flysch-alternating layers of different
lithologies and textures). The mountainsides are mantled by a
residual colluvium with a thickness ranging from a few centime-
ters to a few meters (Mercogliano et al. 2013), which exhibit a
marked contrast in geotechnical properties with respect to the
bedrock (Tofani et al. 2017).

The area is a significant hotspot of landslides (Battistini et al.
2013) and it is affected by landslides of different typologies (Segoni
et al. 2014): rotational and translational slides in the colluvium and
complex movements (slides evolving into slow flows) are the most
representative, but also, debris flows and rockfalls are present. The
typical areal extension of the landslides ranges from 102 to 106 m2

and rainfall is the main triggering factor. The area receives an
average annual precipitation around 2000 mm/year in the moun-
tains and 1100 mm/year in the plains, with short and intense
rainstorms increasing their frequency and severity as a conse-
quence of the recent trends in climate change (Segoni et al. 2015).

Susceptibility assessment
The susceptibility assessment was carried out using an updated
version of the software program named Claret (Lagomarsino
et al. 2017), which is based on the Treebagger random forest
machine learning technique and which automates several pas-
sages of the analysis, including random selection of the
training/test dataset, evaluation and ranking of the input var-
iables according to their explanatory power, and identification
and application of the optimal regression model, model
validation.

The random forest is a technique that has been applied to
landslide susceptibility only recently (Brenning 2005; Catani
et al. 2013); however, it can be considered well-established because
its use has been consolidated through many applications in differ-
ent case studies and because it has often shown better perfor-
mances when compared wi th other s ta te -o f - the-ar t
methodologies (Trigila et al. 2013; Xiao et al. 2019). In addition, it
is very flexible and straightforward to apply, because it can handle
at the same time both numerical and categorical variables, it
implicitly accounts for mutual dependency between variables, it
reduces overfitting, and it does not require particular assumptions
on the statistical distribution of the values of the data.

Based on the experience learnt from past sensitivity studies
(Catani et al. 2013), the following model configuration was used
in this work:

– Training data were sampled randomly in the landslide and in
the non-landslide areas;
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– In the sampled data, landslide conditions and no-landslide
conditions are balanced 50–50% to guarantee a balanced
prediction;

– The sampled dataset was randomly split into a training (70%)
and a test (30%) subset, in which landslide and no-landslide
conditions are still equally balanced.

– We performed a regression using a 200-tree forest structure,
and for each analysis, the model was run 20 times to get more
robust conclusions.

The dependent variable used in susceptibility assessments is
represented by landslide and no-landslide conditions. To train and
validate the susceptibility model, we used an excerpt of the Italian
national inventory of landslides (IFFI) at 1:10,000 scale, which is
the most complete catalogue of landslides available in Italy (Trigila
et al. 2010), as recently updated by means of radar satellite inter-
ferometry technique (Rosi et al. 2018). However, before preparing
the landside dataset for the susceptibility model, some preliminary
considerations on the mapped landslide typologies are needed. In
the study area, the inventory includes 3452 slides, 3294 complex
movements, 16 falls, 540 rapid flows, and 522 landslides of unspec-
ified typology. According to the general knowledge of the charac-
teristics of the IFFI inventory in the Tuscany Apennines, and
according to some previous studies (Trigila et al. 2013; Segoni
et al. 2016), unspecified movements and complex movements were
aggregated with the “slides” typology for the following reasons. In
the study area, complex movements are typically represented by
compound slides evolving into slow flows: since the triggering
mechanism and predisposing factors are the same, the suscepti-
bility assessment can consider both slides and complex

movements together. Another argument supporting this decision
is that in the inventory, the difference among these two categories
in small, thus the category in which a landslide is classified may
vary according to the subjective interpretation of the surveyors,
which were different from province to province. About landslides
with unspecified movements, this is a shortcoming of the classifi-
cation in the IFFI inventory and it can be easily resolved observing
the geometrical features of the polygons and the analogy with the
dominant landslide typology of the area: these landslides can be
also grouped together with slides and complex movements (Catani
et al. 2016; Segoni et al. 2016). Our analyses do not account for
rockfalls and debris flows, because their number in the study area
is limited and their spatial distribution is confined only to some
spots. These shortcomings prevent form having a good sample for
a rigorous susceptibility analysis regarding falls and debris flows.
Moreover, since the triggering mechanism and predisposing fac-
tors of rockfalls and debris flows may be very different from those
characterizing slides, these typologies could not be grouped with
slides in the same susceptibility analysis. As a consequence, only
the mapped landsides that can be associated with the “slides”
typology of movement were extracted from the IFFI database
and used in the susceptibility assessment.

Concerning the independent variables, there is no consensus on
the number of parameters to use in a susceptibility assessment:
many studies have been published that make use of a high number
of parameters (Lee and Pradhan 2007; Nefeslioglu et al. 2011;
Segoni et al. 2015; Xiao et al. 2019) and many that use only a few
(Hong et al. 2007; Akgun 2012; Manzo et al. 2013). In this study, we
decided to use a very basic and reduced set of parameters, because
the objective is to explore the sensitivity to geology and to focus
the discussion on the impact of this parameter. Using too many

Fig. 1 Study area and landslides
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parameters is not useful to this purpose; rather, it could cast a
shadow on the effect of geology. Consequently, 7 parameters have
been selected that are broadly used in literature and that resulted
in a high predictive power in other susceptibility assessment per-
formed in this study area (Segoni et al. 2016): elevation, slope
gradient, land cover, flow accumulation, aspect, planar curvature,
geology.

All morphologic and hydrologic parameters (elevation, slope
gradient, flow accumulation, aspect, and planar curvature)
were derived by a digital elevation model with 10-m spatial
resolution. Land cover was derived by the 1:50,000 Corine
Land Cover maps, adopting a site-specific reclassification into
9 classes (urban areas, crops, grasslands, heterogenic rural
areas, broad-leaved forests; conifer forests; shrubs; bare rocks;
humid areas) already used in previous landslide susceptibility
works carried out in the same test site (Segoni et al. 2016;
Segoni et al. 2018). Concerning geology, its use as an explana-
tory variable is more complex and it is explained in detail in
the following section.

Geological information
The basic information on geology is a 1:10,000 scale digital
geological map produced and made available by the Tuscany
Region. In the study area, it encompasses 194 lithostratigraphic
units. Such a detailed information cannot be used in a land-
slide susceptibility assessment based on statistical machine
learning algorithms: the number of classes is too high and
some of the classes have a limited spatial extension, thus
posing problems for an adequate model calibration. This is a
common issue in landslide susceptibility assessments over
large areas, and it is commonly solved by grouping the avail-
able units into broader classes (Bălteanu et al. 2010; Van Den
Eeckhaut et al. 2012; Manzo et al. 2013). In this study, the
lithostratigraphic units were grouped into classes following
six different approaches. Each approach uses a specific criteri-
on related to a single geological characteristic; therefore, two
geological units may be grouped in the same class according to
a criterion and may be separated into different classes accord-
ing to another criterion. All partitioning approaches make
sense from the standpoint of geological reasoning, and some
functional links can be found to relate them to landslide
predisposition (even if their actual connection to landslide
susceptibility is to be objectively and quantitatively assessed
in the following sections):

•Lithologic approach—Geological units were classified accord-
ing to their prevailing lithology. This is probably the criterion that
has been more widely used in LSM and has years of literature
relating different lithologies to different degrees of landslide sus-
ceptibility (Fig. 2a).

•Genetic approach—Geological units were grouped into five
broad classes according to the genetic process that gave them
birth: magmatic rocks, metamorphic rocks, clastic rocks,
organogenic rocks, soils (Fig. 2b).

•Detailed structural approach (Fig. 2c)—The Apennine chain
has a very complex structure, and geologists have subdivided it
into several structural units according to their evolution and
response to tectonic forcing. In the study area, 10 different struc-
tural units outcrop, and they were used in this criterion. To our
knowledge, a similar approach has never been used in LSM.

However, it is worth being tested, as it could relate to landslide
susceptibility since each structural unit through geological times
was subject to a particular tectonic stress-strain history, including
uplifting, folding, faulting, displacement, and thrusting. All these
processes may be responsible of weakening the bedrock and pre-
disposing it to instabilities.

•Broader structural approach (5 classes)—The same as before,
but a broader classification was performed, grouping together
similar units to obtain a number of classes (five) comparable with
the one used for all the other criteria (Fig. 2d).

•Paleogeographic approach (Fig. 2e)—The Apennine has been
traditionally subdivided also in paleogeographic units, according
mainly to the paleogeographic environment where rocks were
originally formed. We therefore used the main paleogeographic
units outcropping in the test area (all recent deposits were
grouped together). To our knowledge, a similar approach has
never been used in LSM. We decided to test it because rocks with
similar lithologies could have different mineralogical or textural
characteristics according to the environment of deposition, thus
potentially providing a slightly different predisposition to
landsliding.

•Chronological approach (Fig. 2f)—In this case, the geological
units were grouped according to the age of deposition. This crite-
rion has been already used in the LSM literature, even if quite
rarely; however it could be regarded as a potential predisposing
factor because broadly speaking, the older a geological unit, the
higher the degree of weathering and the exposition to tectonic
stress, and this can be linked to the reduction in its strength
parameters.

Description of the tests
All data were imported in a GIS, where 15,500 random points were
generated (50% inside landslide polygons, 50% outside landslide
polygons) and used to sample the values of dependent and inde-
pendent variables; 70% of them were used to train the model and
30% were used for test. The random forest model was run several
times, varying the configuration used to account for the geologic
information: a base test in which no information on geology was
used, one test for each of the classification criteria described in the
previous section (six tests), an additional test using all of them
together.

The used model has an internal test procedure that allows for
an objective evaluation of the predictive capacity of each variable
used and of the model itself. Two parameters have been
considered:

– AUC (area under ROC curve)—this parameter estimates the
predictive effectiveness of the regression performed. The near
the AUC value is to 1, the better the regression approximates
the experimental data as an expression of reality. It can be used
to quantitatively compare different model configurations in
terms of their prediction effectiveness.

– OOBE (out of bag error)—this parameter is an estimate of
the relative error that would be committed if the variable to
whom it is referred were not used in the regression. During
each test, it is automatically calculated for all independent
variables and allows quantitative assessment of their explan-
atory power. OOBE can be used to rank the variables ac-
cording to their importance.
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Fig. 2 Reclassification of the geological map according to six different criteria: lithological (a), genetic (b), detailed structural (c), structural (d), paleaogeographic (e),
chronological (f)
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While AUC allows for a comparison among different model
configurations, OOBE allows for a comparison among the vari-
ables used in a specific configuration. These parameters are cal-
culated for each model configuration after running and averaging
20 times, to get stable results and to account for the inherent
chaotic nature of the random forest algorithm.

In addition, a preliminary run of the model was performed
adding to the full configuration a random control variable. This
variable was obtained by applying a random value (from 1 to 5) in
each pixel of the study area, thus simulating a completely random
reclassification of the spatial units used in the susceptibility as-
sessment. The objective of this test is evaluating if the random
reclassification outperforms some of the other approaches used. In
case it happens, an approach with a predictive effectiveness lower
than random values would be deemed inappropriate and
discarded. As shown in Fig. 3, all variables had an OOB higher
than random variable; therefore, all of them were used in the tests
as potentially suitable predictors.

Results
Figure 3 shows the susceptibility maps obtained with the eight
configurations that were tested. Susceptibility values range from
0 to about 0.70, and different spatial distributions of the values can
be observed with a visual inspection. During the tests, the accuracy
of these maps was assessed to understand which one is the most
reliable. The results of the validation are summarized in Table 1,
which shows the mean and the maximum AUC values obtained
with the 20 runs of each configuration. AUC can be used to
estimate the forecasting effectiveness of each configuration and
thus to rank them accordingly.

From Table 1, it can be seen that the worst performance is
obtained with the configuration that neglects geological informa-
tion (base configuration) and that all the reclassification criteria
used in the tests, when used singularly, provide an amelioration
with respect to the base configuration. Among these, the best
forecasting effectiveness is obtained when the geological units
are aggregated following a genetic approach (mean AUC 0.700,

maximum AUC 0.724). However, the configuration that includes
in the modeling of all six reclassification criteria is by far the most
effective, with mean and maximum AUC of 0.752 and 0.774,
respectively. Further insights on these outcomes are provided in
the “Discussion” section. The ranking of the configurations is
identical in case mean AUC or max AUC is taken into account,
thus demonstrating the stability of the results obtained in the tests.
It is worth remembering that the objective of the present work is
not only to produce a susceptibility map of the area but to also
provide a sensitivity analysis of the susceptibility model with
respect to the geological information. The AUC values are lower
than the one obtained in past works on the same test site (Segoni
et al. 2016), because a model configuration using a limited number
of parameters is used here, to better focus the sensitivity analysis
on the impact of geology.

In Fig. 4, the importance of each variable inside each configu-
ration is assessed by means of the OOBE. It can be seen that for the
geological parameters, the importance is always relatively high
(OOBE around 1.40 and geological variables ranked among the
first ones), except when chronological units (and, to a lesser
extent, lithologic units) are taken into account.

Discussion
The examination of the AUC values obtained in our tests (Table 1)
reveals that geology is very important in landslide susceptibility
assessment: the model configuration that does not encompass any
geological information is by far the one providing the worst
prediction. This result was expected; what we consider more im-
portant is to discuss the sensitivity of a landslide susceptibility
model to the different approaches that can be used to parameterize
the geological information. A geological classification based only
on the age of formation of the units is the worst performing one in
our case of study, but, still, it does provide an improvement over
the basic version of the model. In a few words, none of the six
configurations tested is completely unrelated to landslides. This
highlights an important operational and technical consideration:
when working on areas with limited geological information, a
susceptibility assessment may still gain from the inclusion of
geological mapping among the preparatory factors, whatever its
accuracy, scale, or mapped units. Of course, this does not mean
that geological information could be entered in the modeling
carelessly; on the contrary, our tests show that the approach used
to define the geologic units may have a deep impact in the spatial

Fig. 3 Estimation of the relative importance of the predictors, including a control
random variable. Predictors with geological significance are highlighted in orange

Table 1 Ranking of the model configurations according to their effectiveness (a-
ssessed by the AUC values)

Test Mean AUC Max AUC

BASE configuration (no geology) 0.606 0.630

BASE + chronological units 0.635 0.656

BASE + structural (detailed) 0.640 0.652

BASE + paleogeographic units 0.648 0.665

BASE + structural units (broad) 0.657 0.676

BASE + lithologic units 0.661 0.682

BASE + genetic units 0.700 0.724

Full configuration (base + all criteria) 0.752 0.774
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Fig. 4 Susceptibility maps obtained with the different configurations tested: base configuration (a), full configuration using all geological information (b), using
paleogeographic units (c), using detailed structural units (d), using genetic units (e), using broad structural units (f), using lithological units (g), using chronological units
(h)
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distribution of susceptibility values and in the effectiveness of the
modeling. Therefore, during the data collection phase, the inves-
tigators should be aware of the geological meaning of the units
defined in their maps. In our case study, the best outcomes are
obtained when using genetic units, which reclassified the original
lithostratigraphic units into broad classes according to the pro-
cesses leading to the formation of rocks and soils. The most widely
used lithologic approach is ranked only as the second-best ap-
proach, with performance indicators close to those obtained by the
broad structural approach. The distinction between the detailed
and the broad structural approaches deserves attention in our
opinion. All the criteria used in this work have a very similar
number of classes (5 or 6); this characteristic ensures that the
sensitivity analysis is not influenced by different degrees of detail
in the classification schemes pursued. The only exception is the
structural criterion, in which originally, 10 classes were present,
and which was reclassified into 5 classes (broad structural criteri-
on) to be consistent with the other criteria. However, we kept in a
separate configuration also the detailed structural criterion (based
on 10 classes), to test how the degree of detail in the classification
affects the results. The use of broader structural units provides
better results than using the detailed ones (higher AUC and OOBE
values) (Fig. 5); this result can have two interpretations: either the
regression model performs a better regression with a “simple” and
more generic level of classification, or in the detailed classification,
some units are defined that are scarcely significant in describing
the predisposition to landsliding.

One of the most significant outcomes of this work is that the
validation results show that the susceptibility map with the highest
forecasting effectiveness is obtained when all the geological clas-
sification schemes are used together: the AUC is markedly higher
than the AUCs obtained with any other model configurations
relying on a single geological parameter. We explain this outcome
observing that geological information may be faceted and very
difficult to encompass into susceptibility models, because there are
many features related to geology that may influence the spatial
distribution of landslides; therefore, more features related to ge-
ology should be taken into account with different classification
schemes; conversely, if only one approach is used, only a partial
information is entered into the modeling. For instance, most of the
works found in the literature use a lithological classification, with a
strong supporting reason: landslide activity is clearly related to the
shear strength parameters of the hillslope material, and broadly
speaking, different lithologies have different ranges of strength
parameters values. However, one may argue that two different
units with the same prevailing lithology may have very different
weathering degree and thus different mechanical characteristics:
from this point of view, the age of the formation could also be
related to landslide susceptibility. However, our tests showed that
a chronological classification alone is of little use (it is the worst
aggregation criterion among all the tested ones), probably because
in similar ages very different rocks or terrains could have been
formed. This corroborates the hypothesis that the joint use of
lithological and chronological information in the parameterization
of geology should not be regarded as a redundant information.
Rather, the two information are complimentary. The same exam-
ple could be extended to other classification approaches: geolog-
ical units with the same lithology could have been originated in
very different depositional environment, e.g. clays could have been

formed in lacustrine or sea environment, providing slightly differ-
ent responses to the geomorphological processes acting on the
hillslopes. The same applies for structural units that could differ-
entiate similar rocks, even if formed in similar geologic times,
according to their different tectonic histories. Following this rea-
soning, different assumptions could be considered not mutually
exclusive and could be used jointly, to better encompass the
complex geological characteristics of a given test site. The separa-
tion of different characteristics of geological units into different
independent variables may also have the additional advantage of
providing the statistical engine with an orderly set of data to
classify from, avoiding complex, multi-component variables. The
drawback is that different parameters related to geology would be
used in the modeling at the same time, thus bringing problems of
collinearity and interdependence among the variables. However, it
should be noted that many advanced machine learning algorithms
(such as the random forest) are widely credited for not being
negatively influenced in similar cases. In addition, we observe that
in the international literature, the use of more than one parameter
describing morphology is widely accepted (and the same can be
said for hydrology). Moreover, also, the use of morphological or
hydrological variables that are strongly correlated is a common
practice, e.g., topographic wetness index and drainage area, or
stream power index and slope gradient, or different definitions
of curvature, may be used simultaneously.

This work explores only a few approaches (namely, six) to
parameterize the geological information and proposes a procedure
to select the optimal ones. Of course, in other study areas, other
approaches could be defined according to the test site character-
istics and to the information available. In addition, it should be
stressed that even when using the same approaches used here,
different results could be obtained in other locations. Thus, we
recommend implementing the susceptibility assessment with a
forward selection of parameters: using this technique, the pejora-
tive or redundant parameters would be automatically identified
and filtered off.

The examination of the results in terms of OOBE provided
interpretations consistent with the findings in the earlier
discussion (Fig. 5). Considering OOBE to rank the importance of
the variables used inside each model configuration, it can be
observed that geology is one of the most important parameters,
generally the 2nd or 3rd among 7 parameters. It is important to
highlight some exceptions: when geology is the 1st parameter, the
configuration provides the highest AUC (configuration based on
genetic units), thus confirming that when geology is parameterized
for the best, its explanatory power is fully exploited by the regres-
sion algorithm to get to optimal results. Conversely, when the
importance of geology is lower (4th rank), a reduction in the
model performance can be observed (as in the case of the use of
chronological units). This highlights the importance of a correct
parameterization of the geological information to get a reliable
susceptibility assessment.

When coming to observe the OOBE values in the configuration
using all geological classification schemes together, the values and
the ranking of the geological variables may seem exceptionally low.
This is not in contrast with the conclusion that this is the best
model configuration: the geological information provided to the
model is more complete than in other configurations, thus pro-
viding the highest AUC value, the low OOBE values of geological
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Fig. 5 Out of bag error (OOBE) of the variables used in every test. Predictors with geological significance are highlighted in orange
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factors become because the importance of geology is shared
among six different factors. If the OOBE values of the geological
factors are summed up, a weight of 2.9 is obtained that is similar to
the weight obtained summing up the contribution of the factors
with a morphological (slope, elevation) and a hydrological (aspect,
planar curvature and flow accumulation) meaning (2.7 and 3.0,
respectively), thus confirming that the geological information is
among the most important ones in a susceptibility assessment and
that the task of providing such information can be shared among
different parameters.

Conclusion
Since there is no agreement on how geological information should
be included in LSM activities, we performed a sensitivity analysis
and a series of tests in a study area with a complex geological
setting to (i) ascertain the sensitivity of the results to different
approaches used to reclassify geological units and (ii) to get some
insights on the best approaches to pursue in future susceptibility
assessments.

The study area is located in northern Tuscany (Italy) and a
regional 1:10000 map, when clipped on the area of interests,
encompassing 194 different lithostratigraphic units. Such a de-
tailed information was reclassified into broader units according
to six different criteria; all of them somehow are potentially con-
nected with landslide susceptibility: lithology, age, paleogeograph-
ic environment of formation, genetic process; tectonic history
(according to two different degree of detail).

Using the well-established random forest technique, we per-
formed several landslide susceptibility assessments, varying the
approach to use the geological information. The resulting maps
were validated, and the different configurations were evaluated
with a series of internal tests. The comparison of the results
supported the following conclusions:

– Geology is one of the most important parameters in LSM.
– Geological maps provide a very complex and multifaceted

information, in wide and complex areas this information can-
not be effectively represented by a single parameter.

– Different parameters can be derived from a detailed geological
map by aggregating the mapped elements into broader units
(in our study: lithologic, chronological, paleogeographic, struc-
tural, and genetic units).

– The results of the susceptibility assessment are very sensitive to
these geology-derived parameters; thus, it is of paramount
importance to understand properly the nature and the mean-
ing of the information provided by geology-related maps be-
fore using them in susceptibility assessment.

– Regarding the configurations making use of only one parame-
ter, the best results were obtained using the genetic approach,
while lithology, which is commonly used in the current litera-
ture, was ranked only second.

– However, in our case of study, the best prediction was obtained
when all the geological parameters were used together.

– Different geology-based parameters can perform better than
only a geological parameter, because each of them can account
for specific settings connected to landslide predisposition. In
our case of study, the use of six different geological parameters
allowed to account for lithology, tectonic stress, age and envi-
ronment of formation, and subsequent degree of weathering,

thus providing an advanced and complete information to the
susceptibility model that, in turn, provided a better prediction.
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