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Abstract
We attempt a characterization of the geotechnical and hydrological properties of hillslope deposits, with the final aim of providing
reliable data to distributed catchment-scale numerical models for shallow landslide initiation. The analysis is based on a dataset
built up by means of both field tests and laboratory experiments over 100 sites across Tuscany (Italy). The first specific goal is to
determine the ranges of variation of the geotechnical and hydrological parameters that control shallow landslide-triggering
mechanisms for the main soil classes. The parameters determined in the deposits are: grain size distribution, Atterberg limits,
porosity, unit weight, in situ saturated hydraulic conductivity and shear strength parameters. In addition, mineral phases recog-
nition via X-ray powder diffraction has been performed on the different soil types. The deposits mainly consist of well-sorted silty
sands with low plastic behavior and extremely variable gravel and clay contents. Statistical analyses carried on these geotechnical
and hydrological parameters highlighted that it is not possible to define a typical range of values only with relation to the main
mapped lithologies, because soil characteristics are not simply dependent on the bedrock type fromwhich the deposits originated.
A second goal is to explore the relationship between soil type (in terms of grain size distribution) and selected morphometric
parameters (slope angle, profile curvature, planar curvature and peak distance). The results show that the highest correlation
between soil grain size classes and morphometric attributes is with slope curvature, both profile and planar.

Keywords Soil geotechnics .Morphometric analysis . Physically basedmodeling . Shallow landslides . Tuscany

Introduction

The use of physically-based landslide prediction models for
rainfall-triggered shallow landslides has recently increased
because reliable landslide hazard maps with time prediction
capability are needed to reduce damage and human losses

(Fanelli et al. 2016), and many models have been presented
in the literature (Pack et al. 2001; Baum et al. 2002; Rosso
et al. 2006; Simoni et al. 2008; Baum et al. 2010; Ren et al.
2010; Arnone et al. 2011; Salciarini et al. 2012; Mercogliano
et al. 2013; Rossi et al. 2013; Reid et al. 2015; Alvioli and
Baum 2016; Salciarini et al. 2017).

One of the crucial factors that controls the accuracy of the
physically-based model predictions is the availability of de-
tailed databases of physical and mechanical properties of
rocks and soils in the selected study areas (e.g., Oreskes
et al. 1994). Furthermore, the poor comprehension of the spa-
tial organization of the geotechnical and hydrological input
parameters interferes with the application of models over large
areas (e.g., Iwashita et al. 2012; Tofani et al. 2017; Salvatici
et al. 2018). The performance of a model can be strongly
influenced by the errors or uncertainties in such input data
(Segoni et al. 2012; Jiang et al. 2013; Nikolopoulos et al.
2014; Marra et al. 2017; Peres et al. 2018). Geotechnical and
hydrological variables are difficult to manage and their mea-
surement is difficult, time-consuming and expensive,
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especially when working on large, geologically complex areas
(Carrara et al. 2008; Godt et al. 2008; Baroni et al. 2010; Park
et al. 2013; Bicocchi et al. 2015; Tofani et al. 2017). Indeed, as
is well known in geotechnical engineering studies that deal
with slope stability (e.g., Phoon and Kulhawy 1999; Akbas
and Kulhawy 2010), soil properties are characterized by nei-
ther uniform nor continuous spatial distributions, with an high
total variability (both vertical and horizontal). That variability
includes the actual soil variability (inherent variability) and
other uncertainties (e.g., measurement and sampling errors).
Despite this, several natural features prove to have a spatial
autocorrelation (e.g., Catani et al. 2013) dependent on the
observation scale that is at the base of geostatistical methods
(e.g., kriging). For this reason, it is common to assign a unique
value to what is being studied according to the scale. Average
values of soil parameters consider the variability in the areas,
leading to their trend and their spatial behavior. Therefore,
they can be fundamental in physically-based models at catch-
ment or regional scale to assess the general risk of shallow
landslides. Then, where needed, a more in-depth analysis
could to be performed using real local parameters for
confirmation.

In order to prepare the input data and feed the physically-
based models different approaches can be used: (1) the adop-
tion, for each parameter, of a unique constant value for the
whole study area as averaged from in situ measurements or
derived from literature data (e.g., Jia et al. 2012; Peres and
Cancelliere 2014), (2) the adoption of a set of constant values
of the parameters for distinct geological, lithological or
lithotecnical units, as derived from direct measurements
(Segoni et al. 2009; Baum et al. 2010; Montrasio et al. 2011;
Zizioli et al. 2013; Bicocchi et al. 2016) or from existing
databases and published data (Lepore et al. 2013; Ren et al.
2014; Tao and Barros 2014), or (3) the definition of cohesion
and friction angle values as random variables using a proba-
bilistic or stochastic approach (e.g., Griffiths et al. 2011; Park
et al. 2013; Chen and Zhang 2014; Raia et al. 2014; Fanelli
et al. 2016; Salciarini et al. 2017). The latter does not consider
any physical process in the spatial distribution of the parame-
ters while the second one assumes that their distribution is
related to lithology of the bedrock or to other morphometric
parameters.

In some countries, such as in the U.S.A. by the NRCS
(Natural Resource Conservation Service), soil maps with
many of the relevant parameters modeling shallow landslide
initiation are already available. Instead, in Italy, complete,
systematically structured and organized geo-databases that
characterize different soil types at large scales providing in-
formation on their spatial distribution are still lacking. To con-
tribute to filling this gap, this work seeks to create a database
of hydrological and geotechnical parameters for physically-
based landslide prediction models, characterizing with espe-
cial regard the materials involved in shallow landsliding.

The study area is the entire Tuscan region, located in cen-
tral Italy, which is heavily affected by landslides (over 90,000,
according to the inventory of the Tuscan regional authority
updated by using remote sensing techniques; Rosi et al.
2017). In Tuscany, surficial hillside materials (i.e., upper
~2 m) are typically comprised of unconsolidated, geologically
recent, mostly granular materials and soils, and are frequently
affected by shallow landslides, i.e., translational slides, soil
slips, and debris flows (D’Amato Avanzi et al. 2004). Such
deposits are generally described as “colluvium” (Goudie
2003), and may originate from different sources and process-
es, depending on the physical agents and/or the chemical pro-
cesses that have acted on them, breaking up and altering the
bedrock.

The main scope of the work is to create a homogenous set
of data concerning the principal geotechnical and hydrological
properties of the materials constituting the deposits by means
of an extensive campaign of in situ and laboratory measure-
ments, with the final aim of providing reliable input data to
physically-based landslide prediction models, at a catchment
scale, for shallow landslide initiation. Toward this purpose, the
specific objectives to be achieved are: (1) to determine the
ranges of variation of the geotechnical and hydrogeological
parameters that control shallow landslide triggering mecha-
nisms, and (2) to investigate a way to spatially describe the
variation in the geotechnical and hydrological data according
to the information contained in the geological maps and of
physical factors such as morphology.

Geomorphological and geological
characteristics of Tuscany

Tuscany (22,987 km2) is a topographically complex region
located in central Italy, with few plains, crossed by major
mountain chains and dominated by hilly country given over
to agriculture. The highest ridges are in the northern and east-
ern part of the region (Fig. 1). The northwestern part is char-
acterized by mountains comprised of metamorphic rocks
(Apuan Alps; Coli 1989) and by steep valleys with thick col-
luvial and alluvial deposits, while the eastern part is charac-
terized by mountains mainly made up of sedimentary rocks
and by intermontane basins filled with alluvial deposits. The
central and southern parts are characterized by hilly (“Colline
Metallifere”) morphology with an isolated volcanic relief (i.e.,
Mt. Amiata) and flat plains (such as that ofMaremma) or wide
valley floors where the main rivers (Arno, Ombrone and
Serchio) flow. Rolling gentle hills cover about two-thirds
(66.5%) of the region’s total area and mountains a further
25.1%, with the highest reliefs reaching 2000 m a.s.l. in ele-
vation. Plains occupy 8.4% of the total area, mainly related to
the Arno river alluvial plain.

G. Bicocchi et al.



The main mountain chain in Tuscany is the Northern
Apennine, a NE-verging fold-and-thrust orogenic belt that
originated from the closure of the Jurassic “Ligure-
Piemontese” Ocean, which began in the Cretaceous, and the
subsequent Oligocene-Miocene collision between the conti-
nental Corso-Sardinian block and the Adria microplate (e.g.,
Boccaletti and Guazzone 1974). From the Oligocene to the
present day, the Northern Apennine was affected by two
stages of deformation that migrated eastward (e.g., Elter
et al. 1975): an early phase characterized by a compressive
stress, with the genesis of eastward-directed thrusts, and a later
phase related to a still active extensional stress in the
Tyrrhenian side. As a consequence of these two tectonic ac-
tivities, several NW–SE trending basins opened (e.g., Bonini
and Sani 2002) and, subsequently, these basins were filled by
the sediments eroded from the sedimentary rocks still consti-
tuting the mountain chain. The deposits have been uplifted
during the Quaternary and then modeled by superficial pro-
cesses and river incisions. Therefore, the resulting hillslope
deposits are nowadays thin to almost lacking on sharp ridges
and steeply sloped terrains and thickest in wider valleys.

For this work, a lithological map of the bedrock was ar-
ranged (Fig. 2) by customizing the lithological map obtained
from the geological map of Italy, 1:500,000 by ISPRA (Italian
National Institute for Environmental Protection and
Research). In most of the study area, the bedrock consists of

arenaceous, calcareous and pelitic flysch units. These units
have been classified within three different classes:
“arenaceous-marly flysch (AMF)”, “calcareous-marly flysch
(CMF)” and “pelitic flysch (PF)”, based on their prevalent
lithological characteristics, as derived from regional geologi-
cal maps. The geological units consisting of sedimentary,
mainly carbonate, rocks originated from chemical precipita-
tion have been classified within the class of “limestones,
dolostones, travertines and evaporitic deposits (LDTE)”.
Poorly consolidated and/or altered sedimentary rocks rich in
the finest fraction (i.e., clay) have been classified as “clay,
claystones and marls (CCM)”. Granular, unconsolidated geo-
logically recent deposits (i.e., Quaternary or younger) have
been assigned to the “granular deposits GD)” class. Lastly,
the class “metamorphic and volcanic rocks (MVR)” combines
a variety of lithological types with a small outcrop area extent.

Sampling
and geotechnical–hydrological–mineralogical
characterization

For this study, a total of 129 samples were collected in 102
different sites (data available from this paper and Pazzi et al.
2016; Tofani et al. 2017; see supplementary materials), in the
period from October 2013 to June 2015 (Figs. 1, 2). The sites

Fig. 1 Physiographic settings and relief distribution of the study area and location of survey points (yellow squares)
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have been selected in order to have a representative sample of
the main soil types producing shallow landslides while trying
to keep a homogenous spatial distribution across the hillslopes
of Tuscany. Consequently, the investigated sites are not evenly
divided with respect to the chosen bedrock lithological clas-
ses. The mean distance between each site of interest was be-
tween 10 and 15 km. Samples were collected at depths rang-
ing from 0.4 to 0.6 m below the ground surface, which is
above the typical depth of shallow landslide failure planes
(e.g., Dietrich et al. 2007).

The geotechnical and hydrological parameters for charac-
terizing the soils were determined from in situ and laboratory
tests. In particular, the in situ tests are: the Borehole Shear Test
(BST; Luttenegger and Hallberg 1981; Dapporto et al. 2000)
for measuring the soil shear strength parameters, a constant
head permeameter test performed with the Amoozemeter in-
strument (Amoozegar 1989) andmatric suctionmeasurements
with a tensiometer.

The BST instrumentation allows for the estimation of the
shear strength parameters under natural conditions without

disturbing the soil samples and is performed on soils in unsat-
urated conditions, which means that they are subject to pore
water pressure (uw) conditions lower than that of air pressures
(ua). At the same depth as the BST, matric suction values (u-

a−uw) were measured with tensiometers during field testing.
BSTs for this work were performed within an interval of σ
values of 20–80 kPa (Bicocchi et al. 2015). For further infor-
mation about the BST test in shallow deposits and the inter-
pretation of the results, refer to Rinaldi and Casagli (1999),
Casagli et al. (2006), and Tofani et al. (2006, 2017). The test
allows to directly measure in situ the friction angle (φ′) and
total cohesion (c) that is the sum of the effective cohesion (c’)
and the apparent cohesion due to the matric suction. Effective
cohesion should be measured by mean of direct shear tests,
which are not currently available for this study; indeed, labo-
ratory shear tests are time consuming and to be performed in
artificially reconstructed (i.e., “disturbed”) samples, so that it
is difficult to rearrange the sample to reproduce the other fac-
tors controlling the in situ conditions (such as the soil textures,
soil aggregates and roots) and to compare laboratory data and

Fig. 2 A 7-class lithological map of Tuscany and the location of survey
points (yellow squares); AMF arenaceous-marly flysch, CMF calcareous-
marly flysch, PF pelitic flysch, CCM clay, claystones and marls, GD

granular deposits, LDTE limestones, dolomites, travertines and evaporitic
deposits,MVRmetamorphic and volcanic rocks

G. Bicocchi et al.



field tests. In addition, a detailed analysis of the repartition of
the total cohesion between apparent cohesion and effective
cohesion is beyond the scope of this paper. However, the
BSTs were performed at shallow depths on mostly granular,
normal consolidated materials, so that c′ could be reasonably
assumed to be equal to 0 kPa (Tofani et al. 2017). The error in
the measurement of φ′ was calculated considering the sensi-
tivity of the BSTmanometer (2 kPa) and the goodness of fit of
the regression line (R2 values spanning from 0.92 to 0.99)
used to retrieve the effective internal friction angle by interpo-
lating the couples of σ − τ values measured. Overall, the error
span was from 1.5° to 3.5° with a mean value of 2.0°.

The Amoozemeter or Compact Constant Head
Permeameter has allowed the measurement of the saturated
hydraulic conductivity (ks). The results have interpreted ac-
cording to the Glover solution (Philip 1985; Casagli et al.
2006; Tofani et al. 2006).

To complete the characterization of the soils, laboratory
tests were conducted at the Department of Earth Sciences,
University of Florence, to determinate grain size distributions,
Atterberg limits and soil phase relationships (bulk porosity n;
saturated, natural and dry unit weight, γsat, γ and γd, respec-
tively). Tests were performed following the ASTM (American
Society for Testing and Materials) recommendations (ASTM
D422–63 2007, ASTM D2217–85 1998 and ASTM D-4318
2010). Furthermore, on selected samples, representative of the
different soils and bedrock lithologies of Tuscany, the

mineralogical content was analyzed by means of XRPD (X-
ray powder diffraction). To this end, the bulk samples of soils
were dried at 110 °C for 24 h in an oven to remove moisture,
then crushed and sieved down to <64 μm, producing powder
to be analyzed. The instrument employed at the Department of
Earth Sciences, University of Florence, for XRPD analyses
was a PHILIPS PW 3710, equipped with an X-Rays Cu
anticathode tube with graphite filter. The analysis of the
phyllosilicates in the clay fraction was carried out according
to the method proposed by Cipriani (1958) and Banchelli et al.
(1997).

Results

Soil classification, grain size distributions, phase
relations and Atterberg limits

Due to their grain size distributions (Fig. 3), the analyzed
deposits are to be mostly classified as well-sorted silty–
clayey sands, i.e., SW, SM, SC and SM-SC classes with re-
spect to the Unified Soil Classification System (USCS;
Wagner 1957). However, a non-negligible part of the samples
(Fig. 4) is characterized by higher contents of silt and clay
(ML, CL, CH and OL classes in the USCS), whilst an isolated
sample is classified as GW.

Fig. 3 Ternary diagram of gravel,
sand, silt and clay fraction in the
analyzed samples; the lithology of
the bedrock underlying the soils is
taken from the lithological map
(Fig. 2) and shown by differentg
colors; AMF arenaceous-marly
flysch, CMF calcareous-marly
flysch, PF pelitic flysch, CCM
clay, claystones and marls, GD
granular deposits, LDTE
limestones, dolomites, travertines
and evaporitic deposits, MVR
metamorphic and volcanic rocks
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The dry unit weight (γd) ranges between 10.7 and 20.8
kN m−3, but the majority of the values lie in a narrower
interval between 15 and 17 kN m−3, with a mean value of
15.5 kN m−3 (Fig. 5a; Table 1). The bulk porosity values
span a wide interval: from 19.9% to 58.8% with a median
value of 38.8% (Fig. 5b; Table 1). These results are in line
with the prevalent soil type of silty–clayey sands (e.g.,
Rawls et al. 1982).

As far as it concerns the values of the Atterberg limits, we
found that the highest plastic (PL) and liquid (LL) limits, as well
as the highest plasticity index (PI)—respectively, 58, 40 and
33—are related to clay-rich samples (CH and MH in USCS
classification). However, overall PL, LL and PI cluster around
(median values) 36, 27 and 10, respectively, i.e., the soils most-
ly show a low plastic behavior as indicated from the position of
the samples in the Casagrande Plasticity Chart (Fig. 6).

Fig. 4 USCS classes occurrence
in the analyzed samples. USCS
acronyms are explained in the
Appendix

Fig. 5 (a)γd (dry unit weight), (b)
n (bulk porosity), (c) φ′(internal
effective friction angle), (d) log-ks
(saturated hydraulic conductivity)
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Mineralogical composition of the samples

In the 25 analyzed samples (data available from this paper and
Masi 2016), six main mineralogical phases were recognized:
quartz (in 96% of the samples), k-feldspars (44% of the sam-
ples), plagioclase (100% of the samples, as albite), mica (bio-
tite and muscovite, 92% of the samples), calcite (52% of the
samples) and a mixture of various clay minerals (92% of the
samples). In addition, the presence of gypsum, hematite, am-
phiboles and chrysotile were detected in a few cases. On 15
clay-rich samples of soils, specific analyses were aimed at
recognizing the different clay minerals that were not clearly
distinguished in the former analyses on the bulk samples pow-
der. These phases were: illite, kaolinite, chlorite, vermiculite
and, in some cases, layers of I-M (Illite and Montmorillonite,
also known as “smectite”) and C-V (Chlorite-Vermiculite).

A compositional statistical analysis of grain size
distributions

To provide a more detailed insight into the grain size distribu-
tion, a quantitative assessment through compositional statis-
tics has been carried out. Theory and practice of such a

compositional statistical approach in the Earth Sciences can
be found in Thomas and Aitchison (2005), Buccianti (2013),
and, in particular, when treating grain size distributions, in von
Eynatten (2004). When quantitatively assessing composition-
al data, such as chemical composition of fluids and rocks, or,
as in this work, grain size distribution, an appropriate measure
of central tendency may be represented by the closed (i.e., a
vector normalized to a fixed sum k) geometric mean gc. The
latter, for a compositional dataset of D variables or parts
(which in this study are represented by the values of the four
grain size fractions, i.e., gravel, sand, silt, and clay), abun-
dances (expressed as % by weight) and dimension n (i.e.,
number of data or samples) is called “center” and is defined
as follows:

gc ¼ C g1; g2;…; gDð Þ ð1Þ
where C stands for the closure operation, which is defined
for any vector of D real positive components z = [z1, z2,
…, zD] as:

C zð Þ ¼ k � z1
∑D

i¼1zi
;
k � z2
∑D

i¼1zi
;…;

k � zD
∑D

i¼1zi

" #
ð2Þ

and g (the geometric mean) is calculated as follows:

gi ¼ ∏
n

J¼1
xi j

� �1
n

; i ¼ 1; 2;…;D: ð3Þ

For the dataset presented in this work, the center of the 4-
part composition investigated (i.e., the grain size distribution)
is the following: GR = 12.5%, SA = 45.9%, SI = 32.8% and
CL = 8.8%, where GR = gravel, SA = sand, SI = silt and
CL = clay. The center values are consistent with the occur-
rence of the majority of the analyzed samples within SW and
SM USCS classes (Fig. 4), but center lack in giving informa-
tion about the variability in the analyzed dataset. Thus, in a
further step, we focus on the relationship between parts of the
composition, which are the real matter of interest when
treating compositional data (e.g., Aitchison 2003). To give
information about both the mean values of log-ratios between
all parts (representing the barycenter of the data) and the var-
iances of the same log-ratios (which give a measure of disper-
sion of the values around the barycenter), the “variation array”
(Table 2) is used. At the end of each row of the variation array
(Table 2), the clr (centered log-ratio) variance for each part is
also added (i.e., the variance evaluated for each grain size
fraction after a centered log ratio transformation). The cen-
tered log-ratio transformation (Aitchison 2003) is defined as:

clr xð Þ ¼ y ¼ y1; y2;…; yD½ � ð4ÞFig. 6 Casagrande Plasticity Chart of the analyzed soils; PI plasticity
index, LL liquid limit

Table 1 Main statistical properties of relevant geotechnical parameters

ɣd (kN m−3) n (%) φ' (°) ks (m s−1)

Min 10.7 19.9% 15 4.E-08

Max 20.8 58.8% 45 8.E-05

Arithmetic mean 15.5 40.2% 32 3.E-06

Geometric mean 15.4 39.3% 31 1.E-06

Median 15.9 38.8% 32 1.E-06

γd dry unit weight, n bulk porosity,φ' internal effective friction angle, ks
saturated hydraulic conductivity
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where

yi ¼ ln
x1
g xð Þ; ln

x2
g xð Þ;…; ln

xD
g xð Þ

� �
ð5Þ

and g(x) is the geometric mean of the components of the
compositional vector x.

In the dataset, the higher variance is contained in the gravel/
clay log-ratio (3.19), while the lower variances are associated
with the sand/silt and silt/clay log-ratios (0.66–0.70). The
values of the single component clr-variances highlight that
the gravel and clay fractions explain most of the total variance
(more than the 70%), while sand and silt are associated to
~25% of the total variance.

Shear strength parameters, matric suction
and saturated hydraulic conductivity

The shear strength is measured in situ so that it is assessed
in the context of their saturation state, which can be in-
ferred by the matric suction measures (e.g., Fredlund et al.
1978; Fredlund and Rahardjo 1993). With respect to the
matric suction values, we can split in two subsets the
samples: those with values from 1.4 to 5 kPa, thus asso-
ciated to saturated to slightly unsaturated soils, and those
characterized by matric suction from 5 to over 80 kPa,
which are in a state of undersaturation. While the internal
effective friction angles (φ′), whose measured values span
from 15° to 45° with an average value of 32° (Fig. 5c;
Table 1), is not directly controlled by water content and
saturation, the total cohesion (c) depends on the degree of
saturation and matric suction. Indeed, values of c span
from 23 kPa for highly unsaturated soils with high matric

suctions (up to 90 kPa) to 0 kPa for saturated soils. The
hydraulic conductivity (ks) is measured after reaching the
saturation of the soils so that, as for the φ′, it is performed
at standard conditions and does not depend on the water
content and saturation of the soils. The values of ks range
in a wide interval from 4 10−8 m s−1 to 8 10−5 m s−1, but
cluster between 10−7 m s−1 and 3 10−6 m s−1 (Fig. 5d).

Discussion

Processes governing the grain size distribution
of soils

The main processes governing the production of the reg-
olith from bedrocks are physical and chemical weathering
(e.g., Goudie 2003; Goudie and Viles 2008; Calcaterra
and Parise 2010 and references therein). Moreover, soils
contained in the hillslope deposits (i.e., the colluvium) are
frequently affected by erosion, transport and deposition
promoted by water runoff that controls the relative de-
posits enrichment or depletion with respect to the different
granulometric fractions (Taylor and Eggleton 2001) and
the shape of the hillslopes (e.g., Heimsath et al. 1997).
In addition to these kinds of processes, mass movements
may interest and modify the shape of hillslope deposits.
Indeed, colluvium on the hillslopes may become mechan-
ically unstable at the depth of ~1.5 m triggering shallow
landsliding as debris flows, which ultimately leads to soil
transport along the hillslopes (Benda and Dunne 1997).

The statistical analysis of grain size distribution
(Section 4.3) highlights that the sand/silt and silt/clay
log-ratio are those characterized by the lowest variance
in the deposits (upper-right half matrix of the variation
array, Table 2). Low variances in these ratios indicate that
the proportions between the sand, silt, and clay grain size
fractions, independently from their relative abundances, is
preserved in the deposits. As a consequence, sand to silt
and silt to clay transformation should be constrained to
relatively constant values (i.e., the mean values of log-
ratios, lower-left half matrix of the variation array,
Table 2) by processes, acting extensively in all the de-
posits investigated, which maintain a similar proportion
between the grain size fractions. Physical alteration of
colluvium and runoff-driven transport of soils are gener-
ally addressed as responsible for sand to silt transforma-
tion (Moss and Green 1975; Wright et al. 1998). These
two processes are widespread, strongly control the hill-
slope dynamics and could be responsible for the observed,
fairly constant, proportion between sand and silt fractions.
Instead, we can explain the higher variability of the gravel
to sand ratio by considering that gravel is derived from
local bedrock weathering (i.e., the breakdown of parent

Table 2 Variation array of hillslope material grain size distributions

Variance ln(Xi/Xj)

Xi/Xj Gravel Sand Silt Clay clr variances

Gravel - 1.69 1.99 3.19
a

1.09

Sand 1.30 - 0.70
b

1.80 0.42

Silt 0.97 -0.33 - 0.66
b

0.21

Clay -0.34 -1.64 -1.31 - 0.78

Mean ln(Xi/Xj) 2.50
c

The variation array was computed with Codapack v.2.01.15 (Comas-Cufí
and Thió-Henestrosa 2011). In the upper-right half of the matrix are
reported the log-ratio variances, while in the lower half are reported the
arithmetic means of the log-ratios. At the end of each row, the clr-
variances (centered-log-ratio variances) for each part are shown
aHighest log-ratio variance value
b Lowest log-ratio variance values
c Total variance
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rock into smaller gravel, sand and silt size fractions). Indeed,
gravel abundance in the deposit overlying the bedrock is more
likely dependent on the alteration of the bedrock itself, which
is in its turn quite variable because it is also extremely depen-
dent upon the type of bedrock. Moreover, the gravel fraction
can be more efficiently transported alongside relatively less
frequent heavy rainfall or isolated, local debris-flow events
than by everyday runoff.

The bulk mineralogical composition of soils (mainly
consisting of chemical alteration-resilient tectosilicates
such as quartz and feldspars) confirms that most parts of
mineral phases are inherited from the bedrock after it is
physically altered (e.g., Certini et al. 2003). In that per-
spective, we can also explain the unusual presence of gyp-
sum and chrysotile because of the uncommon mineralogi-
cal composition of some types of bedrock, such as evapo-
ritic layers for gypsum or metamorphic rocks for chryso-
tile. Instead, silt to clay clast transformation is more likely
to be related to chemical alteration, with the formation of
secondary minerals, such as the authigenic phyllosilicates
we found in the clay fraction of the deposits (e.g.,
Churchman and Lowe 2012). This could explain the fairly
low variance associated to silt/clay log-ratio.

Relationship between geotechnical and hydrological
parameters and bedrock lithology

In this section, the relationship between parameters of soil
deposits and bedrock lithology is examined. The outcropping
extension, the number of survey points and the soil classifica-
tion based on USCS for each lithological class are reported in
Table 3.

For each bedrock lithological class, we have analyzed the
soil classification, according to USCS classification (Table 3;
Fig. 7). AMF, CMF, LDTE, and PF have mainly silty sands
and clayey sands soil deposits. CCM and GD show silty soils
with low and high plasticity. MVR are overlain mainly by
well-sorted sands, but as the MVR class consist of only three

observations, this should be considered statistically poorly
significant.

The variability of the main geotechnical and hydrological
parameters (φ′, γd and ks) is inspected by using box plots,
where the parameters are aggregated by using the bedrock
lithological classes (excluded MVR class which lacks data;
Fig. 8a–c) and then for USCS classes (Fig. 9a–c). The boxes
consist of a central line representing the median (50th percen-
tile or second quartile), the circle stands for the arithmetic
mean and the top and bottom of the boxplot are aligned with
the 25th and 75th percentiles (or first and third quartiles) while
the whiskers extend to the maximum and minimum data.

Starting from the aggregation based on bedrock lithology, it
is possible to see that the boxes of effective friction angle (Fig.
8a) are quite symmetric, as the median is very similar to the
arithmetic mean. Indeed, as shown by a normality test
(Table 4), for all the bedrock classes we can assume
(p > 0.05) the use of a gaussian model for the frequency dis-
tribution. However, we should note that, for small-sized clas-
ses (<20 samples), normality tests have little power to reject
the null hypothesis and therefore small samples most often
pass normality tests even if their frequency distribution shape
does not resemble that of a gaussian curve.

Concerning the dry unit weight, box plots (Fig. 8b) are sym-
metric in their shape, apart for the GD and LDTE classes, with
median and arithmetic mean values very close and the space
between the quartiles homogeneously distributed. Normality
tests, performed on AMF and CMF, attest that a gaussian distri-
bution can be used to describe the frequency distribution.

Eventually, concerning the ks values (Fig. 8c), they were
log-transformed prior to box-plotting and normality tests,
since the significance of these kinds of measurements resides
in the order of magnitude of the measured values, rather than
in the whole value. Conductivity values show some distinctive
asymmetric distribution with respect to the arithmetic mean
values, which are located far above the median and often
above the 3rd quartile (i.e., the upper box limits). In most of
the cases (CMF, LDTE and GD) a log-normal gaussian model

Table 3 Number of survey points
for each lithological class and soil
classification according to USCS

bedrock
lithological class

outcrop extent
in Tuscany (km2)

n° of surveys SW SM+ SC ML+MH CL+CH+OL

AMF 6036 57 18 27 9 3

CMF 2235 21 0 11 5 5

CCM 3269 9 0 3 4 2

GD 7234 11 1 3 4 3

LDTE 1674 11 2 6 2 1

MVR 797 3 2 1 0 0

PF 1718 8 1 5 2 0

AMF arenaceous-marly flysch, CMF calcareous-marly flysch, PF pelitic flysch, CCM clay, claystones and marls,
GD granular deposits, LDTE limestones, dolomites, travertines and evaporitic deposits, MVRmetamorphic and
volcanic rocks
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can be adopted for the frequency distribution. The most pop-
ulated bedrock lithological class (AMF) fails the normality
test (p < 0.05), possibly because of the presence of a subset
of data with relatively high values between 10−5 and 10−4 m
s−1. Conceivably, this subset represents a population of high
permeable soils that was impossible to characterize properly
through the available data.

An interesting finding of this study is that, in the study area,
a reliable extrapolation of soil parameters is quite difficult to
achieve based on the simple observation of the underneath
bedrock lithology. As a matter of fact, despite most of the
samples in this study being classified within the field of
AMF, important differences have been found concerning their
grain size distribution, especially regarding the gravel and clay
fractions (Fig. 7). The main reasons for such decoupling be-
tween the bedrock type and the deposit and regolith
granulometry could be that: (1) the deposits may have origi-
nated from a different bedrock with respect to what they over-
lie at present, and especially (2) most of the geological units of
the Northern Apennine are quite heterogeneous and intrinsi-
cally complex flysch (e.g., Martini and Vai 2001), often

characterized by repeated lithological changes (e.g., sandstone
to claystone and/or to limestone) in a few tens of meters, so
that the characteristics of the regolith, from which the deposits
formed, may vary as the bedrock lithological changes occurs.

If we look at the distribution of values aggregating the
data on the base of USCS classes, the box plots for the
friction angle (Fig. 9a) show that the distribution of
values is quite symmetric, especially for SM-SC and
SW classes, although the range of the values covers over
20°. Conversely, the ML +MH box plot is asymmetric,
because of the short distances between the box upper
limit and the maximum values while the distance be-
tween the lower limit and minimum values is quite high
(over 10°).

Dry unit weight box plots (Fig. 9b) are symmetric in their
shape, apart from SWand secondarily for CL + CH +OL, but
the values are extremely dispersed (e.g., SM + SC class values
range up to 100%, from less than 11 to more than 20 kNm−3).

Lastly, ks values (Fig. 9c), as for the data aggregated by
bedrock class, were log-transformed prior to making up the
box plots. Once again, the conductivity values are

Fig. 7 Pie charts showing the
distribution of soil types
(aggregated USCS classification)
for different lithologies; AMF
arenaceous-marly flysch, CMF
calcareous-marly flysch, PF
pelitic flysch, CCM clay,
claystones and marls, GD
granular deposits, LDTE
limestones, dolomites, travertines
and evaporitic deposits, MVR
metamorphic and volcanic rocks
Note that a single sample
classified as GWis not considered
in these statistics. USCS
acronyms are explained in the
Appendix
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asymmetrically distributed with respect to the arithmetic mean
values, which are located far above the median and often
above the 3rd quartile (i.e., the upper box limits). Those of
SW and of the fine-sized classes (CL + CH+OL) are the two

boxes with the smaller difference between the 1st and 3rd
quartiles, that is, 50% of the values definitely span a lower
range (7–9 10−5 and 6–8 10−6 m s−1) with respect to the other
classes. When aggregating the data by using USC classes, it is
shown by the normality tests (Table 5) that the parameters for
sandy soils (SM, SC and SW) are generally more suitable to

Fig. 8 Box plots of (a) φ′(internal effective friction angle), (b) γd (dry
unit weight), and (c) ks (saturated hydraulic conductivity) for different
bedrock lithologies; AMF arenaceous-marly flysch, CMF calcareous-
marly flysch, PF pelitic flysch, CCM clay, claystones and marls, GD
granular deposits, LDTE limestones, dolomites, travertines and evaporitic
deposits,MVRmetamorphic and volcanic rocks. The dot is the arithmetic
mean value

Fig. 9 Box plots of internal effective friction angle (a), dry unit weight (b)
and saturated hydraulic conductivity (c) for aggregated USCS
classesAMF arenaceous-marly flysch, CMF calcareous-marly flysch,
PF pelitic flysch, CCM clay, claystones and marls, GD granular deposits,
LDTE limestones, dolomites, travertines and evaporitic deposits, MVR
metamorphic and volcanic rocks. The dot is the arithmetic mean value.
USCS acronyms are explained in the Appendix
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be described by a (log)-normal frequency model with respect
to the clay-rich soils (CL, CH, OL). However, it is worth
noting that for the saturated conductivity we can accept the
hypothesis of (log)-normality only for SW while we have to
refuse this hypothesis for the SC + SM. In the latter category,
the presence of fine silty-clay matrix probably exerts some
type of control on the hydraulic properties so that the frequen-
cy distribution of ks values of SC + SM classes is no longer
describable with a log-normal probability density function.

Compared to the analysis performed by aggregating the
values by bedrock lithology, the use of USCS classes, espe-
cially looking at SW and CL + CH +OL for the φ′ and ks,
appear to be more suitable for producing a symmetric distri-
bution and a homogeneous division of the values, while both
approaches substantially fail in finding an appropriate way to
describe the distribution of dry unit weight box plots. Indeed,
this parameter is probably the most sensitive, among the three
analyzed here, to soil structure and vegetation cover controls,
which have so far not been taken into account.

Relationship of parameters with morphometric
attributes

In this section, we investigate the relationship between the soil
type, in terms of USCS classification, and morphometric at-
tributes with particular reference to slope gradient, profile cur-
vature, planar curvature and peak distance (Fig. 10). We have
computed these parameters using a 10-m resolution DEM

through a set of GIS-based standard operations. Profile curva-
ture is parallel to the direction of steepest descent and affects
the acceleration or deceleration of flow across the hillslope
surface. Planar curvature is perpendicular to the direction of
steepest descent and relates to the convergence and divergence
of flow across a surface. After the application of a 5 × 5 mov-
ing window median filter computed according to Tucker et al.
(2001), a five-class classification was adopted, as reported in
Fig. 10 for both curvature types. A moving window of 3 × 3
has also been used to apply a median filter to smooth the slope
angles and to avoid local effects. Moreover, to estimate the
actual distribution of the soil classes the frequency of occur-
rence within each morphometric class and to avoid problems
related to sample size, we have normalized to 100% the num-
ber of samples of each morphometric class.

Even though the number of samples is limited and most of
the samples are composed of silty sand (SM, Fig. 4), we can
observe some typical behavior in the distribution of soil types
for each morphometric parameter (Fig. 10).

In Fig. 10a, the distribution of the soil types with regard to the
slope gradient is shown. In general, at low slope angles, granular
soils (SW+GW, SM+ SC) are predominant, while with the
increase of slope angle, the presence of cohesive soils (ML +
MH, CL +CH+OL) increases proportionally. This behavior
can be related to the predominance of cohesive forces with
respect to frictional ones from low to high slope gradients.

Concerning profile curvature (Fig. 10b), it is worth noting
that in convex areas granular soils (SW+GW, SM+SC) are

Table 4 Number of
measurements of internal
effective friction angle, saturated
hydraulic conductivity and dry
unit weight with respect to
lithological classes, including a
normality test (Shapiro-Wilk test,
Shapiro and Wilk 1965)

Parameters Bedrock lithological class AMF CMF PF CCM GD LDTE MVR

φ’ (°) Sample size 51 21 8 8 10 9 3

p (normal) 0.23 0.60 n.d. n.d. 0.48 n.d. n.d.

γd (kN m−3) Sample size 43 11 6 8 7 4 3

p (normal) 0.57 0.61 n.d. n.d. n.d. n.d. n.d.

ks (m s−1) Sample size 58 20 9 8 10 11 3

p (normal) on
log-transformed data

0.02 0.38 n.d. n.d. 0.30 0.37 n.d.

n.d. not determined

Table 5 Number of
measurements of internal
effective friction angle, saturated
hydraulic conductivity and dry
unit weight with respect to USCS
aggregated classes, including a
normality test (Shapiro-Wilk test,
Shapiro and Wilk 1965)

Parameters USCS classes CL + CH +OL ML+MH SM+ SC SW

φ’ (°) Sample size 14 22 47 17

p (normal) 0.88 0.05 0.29 0.37

γd (kN m−3) Sample size 6 16 35 17

p (normal) n.d. 0.87 0.26 0.04

ks (m s−1) Sample size 14 22 50 24

p (normal) on log-transformed data 0.07 0.34 <0.01 0.61

USCS acronyms are explained in the Appendix

n.d. not determined
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prevalent while in concave areas the distribution of soil classes is
more heterogeneous and all the soil classes are roughly equally
represented. This result is mainly due to the fact that in convex
areas fine materials are more easily remodeled and transported
due to several processes of surface runoff, such as rainwash and
sheetwash. The very concave class is constituted by only one
sample and for this reason is not statistically representative.

The distribution of soil classes for planar curvature
(Fig. 10c) shows that in very divergent areas (crests) coarse
granular soils (SW + GW) prevail over fine granular
(SM + SC) and cohesive ones (ML + MH, CL + CH +
OL). This is in line with the results coming from the profile
curvature: in convex and divergent areas, rainwash and
sheetwash processes produce residual soils composed of
mainly coarse material. In the other classes of planar cur-
vature, silty sands prevail. Nothing can be said about very
convergent areas, where no samples have been collected
since they usually represent incised channel bottoms or
stream thalwegs.

The distribution of soil classes related to the peak distance
shows the influence of increasing physical and chemical
weathering from low peak distances to high peak distances.
In fact, generally it is possible to see that near the peak (up to
~150m) the prevailing soil materials are coarse and silty sands
(SW-GW, SM-SC), whilst at greater distances (~200 m) silty
sand and clay prevails.

Conclusions

In this work, a database of geotechnical (shear strength, unit
weight, index properties) and hydrological (saturated hydrau-
lic conductivity) parameters for soil cover in the hillslope de-
posits in Tuscany (Italy) has been created, with the final aim of
improving the way the maps of input parameters are prepared
for regional physically-based landslide prediction models. In
detail, the specific objectives are: (1) to determine the ranges
of variation of the geotechnical and hydrogeological parame-
ters that control shallow landslide triggering mechanisms, and
(2) to investigate a way to spatialize the geotechnical and
hydrological data according to the information contained in
the geological maps and physical factors such as morphology.

The grain size distributions show that the analyzed deposits
are generally well sorted and mainly composed of sand and
silt, with extremely variable gravel and clay contents. This
granulometric composition, however, is not simply dependent
on the bedrock typology from which the deposits originated,
as the shear strength and hydraulic conductivity are also dif-
ficult to predict on the basis of just the geo-lithological maps.
In such a framework, direct measurements are the unique pos-
sible way to obtain a reliable initial assessment of the values of
these properties. The Northern Apennine (the main Tuscany
mountain chain) is constituted of extremely complex sedimen-
tary rocks (calcareous, arenaceous and marly flysch)

Fig. 10 Occurrence of USCS aggregated soil types with respect to the (a) slope, (b) profile curvature, (c) planar curvature and (d) peak distance in the
hillslopes surveyed. USCS acronyms are explained in the Appendix
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sequences, so that geotechnical and hydrological properties of
bedrock soil covers are quite difficult to predict without direct
measurements. On the other hand, the arrangement of a dense
net of survey points and laboratory tests is time- and cost-
expensive and soil properties are extremely variable and not
predictable on the basis of bedrock type. However, we have
found that linkages exist between the different USCS soil
types with morphometric parameters such as the profile of
curvature of the hillslopes. This approach seems promising,
as further development and a better inspection of the relation-
ship between the hillslopes curvature and USCS soil type
would possibly allow, at least, the ability to predict the distri-
bution of USCS soil types of the deposits in the area of study
(i.e., Tuscany) departing from DEMs.

Some parameters, such as the internal friction angle, were
found to be well represented by using normal probability dis-
tribution functions. Given an appropriate measure of the
barycenter and the variance (e.g., arithmetic mean and stan-
dard deviation) derived from the analyzed data, these kinds of
parameters could be easily reproduced and simulated by de-
terministic models, as well as interpolated after studying au-
tocorrelation properties by geostatistical tools, thus improving
the efficiency with respect to the adoption of constant values
and/or equiprobable distributions.

The data presented and discussed in this paper definitely
provide a useful experimental set of measures that are expect-
ed to (1) improve the performance of numerical models aimed
at simulating the stability of hillslopes and assessing the trig-
gering mechanisms for shallow landslides in Tuscany and (2)
to provide a way to spatially describe the variation of the
geotechnical and hydrological input data for physical numer-
ical models applied to catchment-scale. Indeed, even if in
some areas field tests were performed on a large scale (i.e.,
at a distance of a few dozen meters), the mean distance of test
sites and the spatial aggregation criteria we adopted to perform
statistical analyses on the dataset make our database suitable
not only but mainly for models aimed to provide catchment-
scale analyses.
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Appendix

USCS acronyms

GW Well-graded gravel, fine to coarse gravel
GP Poorly graded gravel

SW Well-graded sand, fine to coarse sand
SM Silty sand
SC Clayey sand
ML Silt
MH High plasticity silt
CL Low plasticity clay, lean clay
CH High plasticity clay
OL Organic silt and clay

Geotechnical and hydrological parameters

LL (Atterberg) Liquid Limit.
PL (Atterberg) Plastic Limit
PI Plasticity Index
Wn Natural water content of soils
ɣd Dry unit weight
ɣ Natural unit weight
ɣsat Saturated unit weight
n Bulk porosity
φ′ Effective internal friction angle
c Total cohesion
ks Saturated hydraulic conductivity

Statistical acronyms

clr Centered log ratio
g Geometric mean
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