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Abstract

We reproduce supra-threshold perception phenomena, specifically visual illusions, by Wilson-
Cowan-type models of neuronal dynamics. Our findings show that the ability to replicate the
illusions considered is related to how well the neural activity equations comply with the efficient
representation principle. Our first contribution consists in showing that the Wilson-Cowan
(WC) equations can reproduce a number of brightness and orientation-dependent illusions.
Then, we formally prove that there can’t be an energy functional that the Wilson-Cowan dy-
namics are minimizing. This leads us to consider an alternative, variational modelling which
has been previously employed for local histogram equalization (LHE) tasks. In order to adapt
our model to the architecture of V1, we perform an extension that has an explicit dependence
on local image orientation. Finally, we report several numerical experiments showing that LHE
provides a better reproduction of visual illusions than the original WC formulation and that its
cortical extension is capable to reproduce also complex orientation-dependent illusions.

New & Noteworthy: We show that the Wilson-Cowan equations can reproduce a number
of brightness and orientation-dependent illusions. Then, we formally prove that there can’t be
an energy functional that the Wilson-Cowan equations are minimizing, making them sub-optimal
with respect to the efficient representation principle. We thus propose a slight modification that is
consistent with such principle and show that this provides a better reproduction of visual illusions
than the original Wilson-Cowan formulation. We also consider the cortical extension of both
models in order to deal with more complex orientation-dependent illusions.
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1 Introduction
The goal of this work is to point out the intimate connections existing between three popular
approaches in vision science: the Wilson-Cowan equations, the study of visual brightness illusions,
and the efficient representation theory.

As other articles in this special issue make abundantly clear, Wilson-Cowan equations have
a long and successful story of modelling cortical low-level dynamics [?]. Nonetheless, the study
of psychophysics by Wilson-Cowan equations ([?, ?, ?, ?, ?, ?, ?, ?]) is a topic that hasn’t been
addressed much in neuroscience, and we are not aware of publications in which Wilson-Cowan
equations are used for predicting brightness illusions. In this work, we aim to fill this gap.

The study of visual illusions has always been key in the vision science community, as the
mismatches between reality and perception provide insights that can be very useful to develop new
models of visual perception [?] or of neural activity [?, ?], and also to validate the existing ones. It
is commonly accepted that visual illusions arise due to neurobiological constraints [?] that modify
the underpinned mechanisms of the visual system.

The efficient representation principle, introduced by Attneave [?] and Barlow [?], states that
neural responses aim to overcome these neurobiological constraints and to optimize the limited
biological resources by being tailored to the statistics of the images that the individual typically
encounters, so that visual information can be encoded in the most efficient way. This principle is
a general strategy observed across mammalian, amphibian and insect species [?] and is embodied
by neural processing according to abundant experimental evidence [?, ?, ?].

Our work aims at pulling together the three approaches just mentioned, providing a more unified
framework to understand vision mechanisms. First, we show that the Wilson-Cowan equations are
able to qualitatively reproduce a number of visual illusions. Secondly, we formally prove that
Wilson-Cowan equations (with constant input) are not variational, in the sense that they are not
minimizing any energy functional. Next, we detail how a simple modification turning the Wilson-
Cowan equations variational yields a local histogram equalisation method that is consistent with
the efficient representation principle. We finally show how this new formulation provides a better
reproduction of visual illusions than the Wilson-Cowan model.

We remark that our model has to be intended as a proof of concept, whose objective is the
reproduction of perceptual phenomena at a macroscopic level with no quantitative assessment on
analogous psychophysical data. There are in fact very important limitations for doing that, since
such comparison would require both a perfect knowledge of how behavioural data were collected,
and a tuning of the model parameters to match with the observed perception. Nonetheless, we
believe that the numerical evidence of our experiments and our theoretical considerations can be
used for future research studies comparing our computational results with the ones corresponding
to experiments coming from psychophysics.

2 Materials and methods
2.1 Visual illusions
Computational models able to reproduce visual illusions represent very effective methods to test
new hypotheses and generate new insights, both for neuroscience and applied disciplines such as
image processing. Illusions can be classified according to the main feature detection mechanisms
involved during the visual process [?]. In this contribution we considered two main groups of visual
illusions to assess the efficacy of our model in reconstructing the perceptual process: brightness
illusions and orientation-dependent illusions.

2.1.1 Brightness illusions

Brightness illusions are a class of phenomena where image regions with the same gray level are
perceived as having different brightness, depending on the shapes, arrangement and gray level of
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the surrounding elements. Fig. ?? shows the nine brightness illusions we have chosen to perform
tests on in this paper. They are all very popular and at the same time they represent a diverse
set, as we can see from the following descriptions.

White’s illusion: the left gray rectangle appears darker than the right one, while both are
identical [?] (Fig. ??(a)).

Simultaneous brightness contrast: the left gray square appears lighter than the right one,
while both are identical [?] (Fig. ??(b)).

Checkerboard illusion: the mid-gray square in the fifth column appears darker than the one
in the seventh column, while both are identical [?] (Fig. ??(c)).

Chevreul illusion: a pattern of homogeneous bands of increasing intensity from left to right
is presented. However, the bands in the image are perceived as inhomogeneous, i.e. darker and
brighter lines appear at the borders between adjacent bands [?] (Fig. ??(d)).

Chevreul cancellation: when the order of the bands is reversed, now decreasing in intensity
from left to right, the effect is cancelled [?] (Fig. ??(e)).

Dungeon illusion: two gray rectangles are perceived as darker or lighter depending on the gray
intensities of both the background and the grid, see [?]. The left rectangle is perceived as darker
than the one on the right (Fig. ??(f)).

Grating induction: the background grating (which can be tuned to different orientations) in-
duces the appearance of a counter-phase grating in the homogeneous gray horizontal bar [?] (Fig.
??(g)).

Hong-Shevell illusion: the mid-gray half-ring on the left appears darker than the one on the
right, while both are identical [?] (Fig. ??(h)).

Luminance illusion: four identical dots over a background where intensity increases from left
to right, and the dots on the left are perceived being lighter than the ones on the right [?] (Fig.
??(i)).

2.1.2 Orientation-dependent illusions

We also consider orientation-dependent illusions, where the perceptual phenomenon (e.g. in terms
of brightness or contrast) is affected by the orientation of the image elements.

Poggendorff illusion. The Poggendorff illusion, presented in the modified version considered in
this work in Fig. ??(a), is a very well known geometrical optical illusion in which the presence of
a central surface induces a misalignment of the background lines. This illusion depends both on
the orientation of the background lines and the width of the central surface [?], as the more the
angle is close to π/2 the less is the bias, but in this example the perceived bias is also dependent
on the brightness contrast between central surface and background lines.

Tilt illusion. The Tilt illusion is a phenomenon where the perceived orientation of a test line
or grating is altered by the presence of surrounding lines or a grating with a different orientation.
In our case we consider the effect that the orientation of a surround grating pattern has on the
perceived contrast of a grating pattern in the center: the inner circles in Figs. ??(b) and ??(c) are
identical but the latter is perceived as having more contrast than the former.
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(a) White (b) Brightness con-
trast

(c) Checkerboard (d) Chevreul (e) Chevreul cancel-
lation

(f) Dungeon (g) Grating induc-
tion

(h) Hong-Shevell (i) Luminance

Figure 1: From left to right, top to bottom: White’s illusion, Brightness contrast, the Checkerboard
illusion, the Chevreul illusion, Chevreul cancellation, the Dungeon illusion, the Grating induction,
the Hong-Shevell illusion and the Luminance illusion.

(a) Poggendorff illusion. (b) Tilt illusion, same θ. (c) Tilt illusion, different θ.

Figure 2: From left to right: a modified version of the Poggendorff illusion based on Grating In-
duction, a modified Tilt illusion with concentric circles having the same orientation and a modified
Tilt illusion with concentric circles having different orientations.
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2.2 Wilson-Cowan-type models for contrast perception
In this section we introduce four different evolution equations derived from the Wilson-Cowan
formulation, that will be studied in this paper. We recall that, denoting by a(x, t) the state of a
population of neurons with spatial coordinates x ∈ R2 at time t > 0, the Wilson-Cowan equations
proposed in [?, ?] can be written1 as

∂

∂t
a(x, t) = −βa(x, t) + ν

∫
R2

ω(x∥y)σ(a(y, t)) dy + h(x), (2.1)

where β > 0 and ν ∈ R are fixed parameters, σ : R → R is a non-linear sigmoid saturation function,
the kernel ω(x∥y) models interactions at two different spatial locations x and y (we will assume
that the integral of ω is normalised to 1) and h is the input signal.

2.2.1 Wilson-Cowan equations do not fulfill any variational principle

Over the last thirty years, the use of variational methods in imaging has become increasingly
popular as a regularisation strategy for solving general ill-posed imaging problems in the form

find u s.t. f = T(u). (2.2)

Here, f represents a given degraded image and T a (possibly non-linear) operator describing the
degradation (e.g. noise, blur, under-sampling, etc.)

Due to the lack of fundamental properties such as existence, uniqueness and stability of the
solution of the problem (??), the idea of regularisation consists of incorporating a priori information
on the desired image u⋆ and on its closeness to the data f by means of suitable variational terms.
This gives rise, in particular, to variational methods where one looks for an approximation u⋆ of
the real solution u by solving

u⋆ = argminE(u), (2.3)

where E is the energy functional combining regularisation and data fit, depending also on the given
image f . A popular way to solve the variational problem consists in finding u⋆ as the steady-state
solution of the evolution equation given by the gradient descent of the energy functional

∂

∂t
u = −∇E(u), u|t=0 = f, (2.4)

under appropriate conditions on the boundary of the image domain.
In the context of vision science, evolution equations have been originally used as a tool to

describe the physical transmission, diffusion and interaction phenomena of stimuli in the visual
cortex [?, ?, ?]. Variational methods are the main tool of ecological approaches, that pose the
efficient coding problem [?] as an optimisation problem to be solved with evolution equations that
minimise an energy functional [?] involving natural image statistics and biological constraints. The
resulting solution is optimal because it has minimal redundancy.

However, we must remark that, while considering the gradient descent of an energy functional
gives always an evolution equation, the reverse is not true: not every evolution equation is min-
imising an energy functional. In fact, this is the case for the Wilson-Cowan equations, which
do not fulfil any variational principle, as we prove in Appendix ??. As a consequence, they are
sub-optimal in reducing the redundancy.

We remark that it is possible to define an energy that decreases along trajectories of (??), as
done in [?]. This ensures in particular that even though the evolution is not variational, its steady
states (i.e., solutions of (??) that are constant in time) can indeed be obtained as critical points
of this energy.

1In [?] the sigmoid function is applied outside of the integral term and not only on the activity a(y, t) as in (??).
This corresponds to an “activity-based” model of neuron activation, while (??) corresponds to a “voltage-based”
one. See [?], where the two models are shown to be equivalent.
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2.2.2 A modification of the Wilson-Cowan equations complying with efficient repre-
sentation

Remarkably, the efficient representation principle has correctly predicted a number of neural pro-
cessing aspects and phenomena like the photoreceptor response performing histogram equalisation,
the dominant features of the receptive fields of retinal ganglion cells (lateral inhibition, the switch
from bandpass to lowpass filtering when the illumination decreases, and, remarkably, colour oppo-
nency, with photoreceptor signals being highly correlated but color opponent signals having quite
low correlation), or the receptive fields of cortical cells having a Gabor function form [?, ?, ?].
Efficient representation is the only framework able to predict the functional properties of neurons
from a simple principle, and given how simple the assumptions are it’s really surprising that this
approach works so well [?].

In [?] it is shown how a slight modification of the Wilson-Cowan formulation leads to a varia-
tional model, as we now present. Assuming that the activity signal a is in the range [0, 1], we can
re-write equation (??) in terms of a sigmoid σ̂ shifted by 1

2 (which we take as the average signal
value) and inverted in sign, thus getting:

∂

∂t
a(x, t) = −βa(x, t)− ν

∫
R2

ω(x∥y)σ̂
(
a(y, t)− 1

2

)
dy + h(x). (2.5)

Note that this is just a re-writing of equation (??), so it is still not associated to any variational
method. However, if we now assume σ̂ to be odd and replace the 1

2 term by a(x, t), we obtain

∂

∂t
a(x, t) = −βa(x, t) + ν

∫
R2

ω(x∥y)σ̂(a(x, t)− a(y, t)) dy + h(x), (2.6)

and this equation is now a gradient descent equation, as it does fulfil a variational principle.
Furthermore, under the proper choice of parameters β, ν and input signal h, this evolution

equation performs local histogram equalisation (LHE) [?]. This is key for our purposes, since,
as Atick points out [?], one of the main types of redundancy or inefficiency in an information
system like the visual system happens when some neural response levels are used more frequently
than others, and for this type of redundancy the optimal code is the one that performs histogram
equalisation.

It is therefore expected that the modification of the Wilson-Cowan equations in (??), which
better complies with the efficient representation principle, should be more effective in reducing
redundancy than the original Wilson-Cowan model of equation (??).

2.2.3 Accounting for orientation

Models (??) and (??) ignore orientation and as such they are not well-suited to explain a number of
visual phenomena. For this reason, following [?], we extend them to a third dimension, representing
local image orientation, as follows. We let La : Q × [0, π) → R be the cortical activation in V1
associated with the signal a, so that La(x, θ) encodes the response of the neuron with spatial
preference x and orientation preference θ to a. Mathematically, such activation is obtained via a
suitable convolution with the receptive profiles of V1 neurons, as explained in Appendix ??, see
also [?, ?, ?, ?, ?]. Then, denoting by A(x, θ, t) the cortical response at time t for any t > 0, the
natural extension of equations (??) and (??) to the orientation dependent case is given by the two
models:

∂

∂t
A(x, θ, t) = −βA(x, θ, t) + ν

∫ π

0

∫
Q
ω(x, θ∥y, ϕ)σ

(
A(y, ϕ, t)

)
dy dϕ+ Lh(x, θ), (2.7)

∂

∂t
A(x, θ, t) = −βA(x, θ, t) + ν

∫ π

0

∫
Q
ω(x, θ∥y, ϕ)σ̂

(
A(x, θ, t)−A(y, ϕ, t)

)
dy dϕ+ Lh(x, θ), (2.8)

where Lh(x, θ) denotes the cortical activation in V1 corresponding to the visual input h at spatial
location x and orientation preference θ. We remark that these models describe the dynamic
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behaviour of activations in the 3D space of positions and orientation. As explained in Appendix ??,
once a stationary solution is found, the two-dimensional perceived image can be found by simply
applying the formula

a(x) =
1

π

∫ π

0
A(x, θ) dθ. (2.9)

2.2.4 Models under consideration

We summarise here the four models we are going to test in the following sections. The orientation-
independent WC and LHE models are:

∂

∂t
a(x, t) = −(1 + λ)a(x, t) +

1

2M

∫
Q
ω(x, y)σ (a(y, t)) dy + λf0(x) + µ(x) (WC-2D)

∂

∂t
a(x, t) = −(1 + λ)a(x, t) +

1

2M

∫
Q
ω(x, y)σ̂ (a(x, t)− a(y, t)) dy + λf0(x) + µ(x), (LHE-2D)

which relate to (??) and (??) by simply choosing parameters as β = 1 + λ and ν = 1/2M where
M > 0 is a normalisation constant, and input signal h(x) = λf0(x) + µ(x), where λ > 0, f0(x)
is the local intensity at x ∈ Q of given image f0 and µ(x) denotes a local average of the initial
stimulus f0 around x (a choice motivated by the averaging behaviour of cells in the magnocellular
pathway [?] and already considered in similar models e.g. [?, ?]).

The orientation-dependent WC and LHE models can be similarly written as:

∂

∂t
A(x, θ, t) =− (1 + λ)A(x, θ, t) +

1

2M

∫ π

0

∫
Q
ω(x, θ||y, ϕ)σ (A(y, ϕ, t)) dy dϕ

+ λLf0(x, θ) + Lµ(x, θ), (WC-3D)
∂

∂t
A(x, θ, t) =− (1 + λ)A(x, θ, t) +

1

2M

∫ π

0

∫
Q
ω(x, θ||y, ϕ)σ̂ (A(x, θ, t)−A(y, ϕ, t)) dy dϕ

+ λLf0(x, θ) + Lµ(x, θ), (LHE-3D)

which can analogously be related to (??) and (??) by choosing the very same parameters as
above and by now taking as cortical activation in V1 corresponding to h the quantity Lh(x, θ) =
λLf0(x, θ) + Lµ(x, θ).

2.2.5 Numerical implementation

All four relevant equations (??), (??), (??), and (??) are numerically implemented via a forward
Euler time-discretisation, as presented in [?]. For a given image a, the cortical activation La is
recovered via standard wavelet transform methods, as presented in [?] (see also [?]). The codes,
written in Julia [?], are available at the following link: http://www.github.com/dprn/WCvsLHE.

All the considered images are of size 200×200 pixels, and take values in the interval [.15, .85] in
order to avoid out-of-range issues. We always consider K = 30 discretised orientations, as done in
[?] for instance. As presented in Appendix ??, the receptive profiles associated to the discretised
orientations selected are obtained via cake wavelets [?], for which the frequency band bw is set to
bw= 5. The interaction kernel is taken to be a 2D or 3D Gaussian with standard deviation σω,
the local mean average µ is obtained via Gaussian filtering with standard deviation σµ. In our
experiments we used the following two piece-wise linear functions as sigmoids:

σ̂(ρ) := min{1,max{αρ,−1}}, σ(ρ) := −σ̂
(
x− 1

2

)
, (2.10)

with α = 5, see Figure ??. Note that σ̂, which will be used for LHE models, is odd and centered in
zero while σ, which will be used for WC models, is shifted in 1/2 and shows a reversed behaviour.
This in fact corresponds to a change of sign in the integral terms of LHE models w.r.t. the WC
ones, as discussed in Section ??.
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(a) σ̂ and the line y = x (b) σ and the line y = −x+ 1
2

Figure 3: Sigmoid functions in the form (??), with α = 5, as considered in our experiments.

Finally, the evolution stops when the L2 relative distance between two successive iterations
is smaller than a tolerance τ = 10−2, which identifies convergence of the iterates to a stationary
state.

3 Results
In this section, we present the results obtained by applying the four models described above to
the visual illusions described in Section ??. Our objective is to understand the capability of these
models to replicate the visual illusions under consideration. That is, we are interested in whether the
output produced by the models qualitatively agrees with the human perception of the phenomena.
We stress that our study is purely qualitative as it has to be intended as a proof of concept showing
how Wilson-Cowan-type dynamics can be effectively used to replicate the perceptual effects due
to the observation of visual illusions. We do not address here the match with empirical data
since those depend on several experimental conditions for which a correspondence with the model
parameters is not clear. A dedicated study on experiments motivated by psychophysics, addressing
the validation of our models and, possibly, allowing for the creation of ground-truth references for
a quantitative assessment is left for future research.

Due to the lack of a universal metric adapted to the task of assessing the replication of visual
illusions, we will evaluate replication or lack thereof by presenting relevant line profiles, i.e., plots of
brightness levels along a single row (line), of images produced by the four models in consideration
(a common tool used by several brightness/lightness/color models before [?, ?]). These lines are
chosen as to cross a section of the image called target: A gray region in the image (or set of regions
in the case of the Chevreul illusion), where the brightness illusion appears.

In all the results shown in this section, the original visual stimulus profile is represented as a
blue dashed line. The line profiles of the output models are represented as solid red (??), green
(??), magenta (??), and cyan (??) lines.

The parameters appearing in the models have been chosen independently for each illusion and
each model, in order to obtain the best possible replication of the visual illusion. Here, by best-
replication we mean that the extracted line-profiles correctly mimic the perceptual outcome from
a qualitative point of view.The chosen parameters are presented in Table ??.
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WC-2D LHE-2D WC-3D LHE-3D
Illusion σµ σω λ M σµ σω λ M σµ σω λ M σµ σω λ M

White 10 20 .7 1.4 10 50 .7 1 20 30 .7 1.4 2 50 .7 1
Brightness 2 10 .7 1.4 2 10 .7 1 2 10 .7 1.4 2 10 .7 1
Checkerboard 10 70 .7 1.4 10 70 .7 1 10 70 .7 1.4 10 70 .7 1
Chevreul 2 5 .7 1 2 10 .7 1 2 40 .5 1 5 7 .7 1
Chevreul canc. 2 2 .9 1 5 3 .9 1 2 20 .5 1.4 5 3 .9 1
Dungeon 6 10 .7 1.4 5 40 .7 1 2 50 .7 1.4 5 50 .7 1
Gratings 2 6 .7 1 2 6 .7 1 2 6 .7 1 2 6 .7 1
Hong-Shevell 5 20 .7 1 5 .5 .7 1 10 30 .7 1 10 30 .7 1
Luminance 2 6 .7 1 2 6 .7 1 2 6 .7 1 2 6 .7 1
Poggendorff 7 7 7 7 7 7 7 7 7 7 7 7 3 10 .5 1
Tilt 7 7 7 7 7 7 7 7 7 7 7 7 15 20 .7 1

Table 1: Parameters used in the tests.

3.1 Orientation-independent brightness illusions
Table ?? summarises the replication results obtained for the illusions described in Section ??:
if the model replicates the illusion we indicate in the table the used parameters, otherwise a
cross (7) denotes no replication, i.e. the failure of the model to reproduce computational results
corresponding to the visual perception of the considered illusion.

White’s illusion. The chosen line profile for the plots in Fig. ?? corresponds to the central
horizontal line of the image, which crosses both gray patches. As both plots show, all four models
correctly predict the left target to be darker than the right one.

0 100 200
0.1

0.5

0.9

Visual stimulus LHE-2D WC-2D LHE-3D WC-3D

Predicted brightness 2D models

0 100 200

Predicted brightness 3D models

visual

stimulus

Figure 4: Predicted brightness in White illusion

Simultaneous brightness contrast. The plots in Fig. ?? show the line profiles of the central
horizontal line of the image, which crosses the two gray squares. We see that our four models
replicate this illusion (left square lighter than the right square). In both the 2D and the 3D case,
we observe that LHE methods result in an enhanced contrast effect w.r.t. WC methods.

Checkerboard illusion. The chosen line profiles for this illusion are the two horizontal lines
crossing, respectively, the left gray target and the right one. In Fig. ??, we chose to plot the first
half of the line profile corresponding to the left target and the second half of the one corresponding
to the right target. The profiles of all the four models show replication of this illusion, by which
the left target is perceived darker than the right one.
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0.1

0.5

0.9

0 100 200 0 100 200

Visual stimulus LHE-2D WC-2D LHE-3D WC-3D

visual

stimulus

Predicted brightness 2D models Predicted brightness 3D models

Figure 5: Predicted brightness in simultaneous brightness contrast

0.1

0.5

0.9

40 100 160 40 100 160

visual

stimulus

Visual stimulus LHE-2D WC-2D LHE-3D WC-3D

Predicted brightness 2D models Predicted brightness 3D models

Figure 6: Predicted brightness in Checkerboard illusion

Chevreul illusion. Fig. ?? presents the line profiles for the central horizontal line.All four
models correctly replicate the perceived changes within each band.

0.3

0.5

0.7

Visual stimulus LHE-2D WC-2D LHE-3D WC-3D

100 16040 100 16040

visual

stimulus

Predicted brightness 2D models Predicted brightness 3D models

Figure 7: Predicted brightness in Chevreul illusion
.

Chevreul cancellation. The line profiles for the central horizontal line are presented in Fig. ??.
In this case all models are able to correctly replicate the effect, although in the case of (??) and
(??) the perceptual response is not perfect, due to the presence of some oscillations. We also
remark that the correct replication of this illusion is extremely sensitive to the chosen parameters.

Dungeon illusion. Profiles of the central section (3 middle squares) of each target are shown
in Fig. ??. The first part of the plot (left to right) represents the profile of the rectangle on black
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40 100 160

visual

stimulus

Predicted brightness 2D models Predicted brightness 3D models

Visual stimulus LHE-2D WC-2D LHE-3D WC-3D

0.3

0.7

0.5

40 100 160

Figure 8: Predicted brightness in Chevreul cancellation

background. The second plot shows the target on white background. As these profiles show,
our four proposed models replicate human perception (first target is predicted as darker than
the second). Nevertheless, the assimilation effect (target intensity goes towards surrounding) is
stronger in the 3D models.

50 80 50 80 50 80

Visual stimulus LHE-2D WC-2D LHE-3D WC-3D

0.2

0.5

0.9

50 80

Predicted brightness 2D models Predicted brightness 3D models

visual

stimulus

Figure 9: Predicted brightness in Dungeon illusion

Grating induction. In Fig. ?? the continuous and dashed blue lines respectively show the profile
of the grating and of the central horizontal line row of the visual stimulus. Then, the line profiles
of the central horizontal line of the outputs have been plotted. We observe that for both 2D and
3D models a counter-phase grating appears in the middle row, which successfully coincides with
human perception. Notice that LHE methods have a higher amplitude in both cases.

Hong-Shevell illusion. Fig. ?? shows the line profiles of the central horizontal line around the
target (gray ring) neighbourhood rings in the first half of the image. As in the case of the Dungeon
illusion, we present in the first half of the plot (left to right) the output of the first stimulus (light
background) and in the second half the output of the second (dark background). We see how our
four proposed models replicate the assimilation effect. Hence, the gray ring in the first image is
predicted as brighter than the gray ring in the second visual stimulus.
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0.1

0.5

0.9

Predicted brightness 2D models Predicted brightness 3D models

0 100 200 0 100 200

visual

stimulus

Visual stimulus LHE-2D WC-2D LHE-3D WC-3D
Visual stimulus
grating stripe

Figure 10: Predicted brightness in grating induction

visual

stimulus
6030 6030

Visual stimulus LHE-2D WC-2D LHE-3D WC-3D

Predicted brightness 2D models Predicted brightness 3D models

0.1

0.5

0.9

6030 6030

Figure 11: Predicted brightness in Hong-Shevell illusion

Luminance illusion. Horizontal profiles crossing top left and right targets (gray circles) are
depicted in Fig. ??. For each target our four models reconstruct the left target as brighter than
the right one. Hence, all models correctly predict this contrast effect. In this case, LHE presents
a higher contrast response in both responses (2D and 3D).
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Figure 12: Predicted brightness in luminance gradient illusion

We observe that in all the considered brightness illusions both the 3D methods present neighbourhood-
dependent oscillations.
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3.2 Orientation-dependent illusions
Poggendorff illusion. The output images and a zoom of the target gray middle area are pre-
sented in Fig. ??. In this case (??), (??), and (??) are not able to completely replicate the illusion,
since induced white lines on the gray area are not connected. On the other hand, (??) successfully
replicates the perceptual completion over the gray middle stripe.

LHE-2D WC-2D LHE-3D WC-3D

Figure 13: Zoom of the predicted completion for Poggendorff illusion

Tilt illusion. In Fig. ?? we present line profiles, for both visual stimuli, for a diagonal line
starting at the bottom left corner of the image and ending at the top right one. In order to be able
to correctly compare the two images, the line profile of the second image (from top to bottom) has
been extracted after flipping the outer circle along the vertical axis, so that the responses to both
stimulus have the same background. Although there is a noticeable effect, such as a reduction in
contrast for the (??), the difference between the responses to the two stimuli is very mild for all
models with the exception of (??).

The fact that indeed this model is replicating the effect can be better appreciated looking at
Fig. ??, which shows a composite of the inner circle for the responses to the two visual stimuli of the
two orientation-dependent models. It is then evident that the (??) model yields a stronger result
than the (??) one. In fact, the former shows increased visibility (measured here as the contrast)
for the half of the circle corresponding to the second stimulus than the one corresponding to the
first stimulus. On the other hand, in the case of the (??) model (or of 2D models, not depicted
here), the circle shows no difference among its two halves. This justifies our claim that the (??)
model can increase the visibility of the inner circle (replicate the illusion) based on the orientation
of the outer circle.
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Figure 14: Predicted brightness in Tilt illusion

13



Figure 15: Detail in predicted brightness in Tilt illusion

4 Discussion
The results presented in the previous section show that the four models are able to reproduce several
brightness illusions. Concerning orientation-dependent illusions we observe that, as expected, 2D
models cannot reproduce them, while the only 3D model that correctly reproduces the perceptual
outcome is the (??). However we stress that determining replication or lack thereof in the Tilt
illusion is subtle, as the observed effects are very mild.

As already mentioned, the parameters of the presented results are chosen independently from
one illusion to the other in order to qualitatively optimise the perceptual replication in terms of
suitable line profiles. Empirical observations show that the value of the model parameters in-
volved are indeed related with the size of the target and the spatial frequency of the background.
Nevertheless, if one settles for milder replications, it would be possible to choose more uniform pa-
rameters. For instance, this happens for the (??) model in the Chevreul and Chevreul cancellation
illusions, which can be reproduced simultaneously with parameters σµ = 3 and σω = 30, although
with less striking results.

Regarding the 3D models, we want to point out that we have chosen to use K = 30 orientations
whereas this number commonly takes values in the 12-18 range in the literature (e.g. [?, ?, ?]). Our
selection of 30 orientations is motivated by some preliminary tests (which we are not presenting
here) showing that a coarser orientation discretisation seems not to be sufficient to reproduce most
of the orientation-dependent illusions. As future research we will test whether or not a different
selection of parameters allows to reproduce those illusions with less orientations, but we should also
mention that some works in the literature actually use a high number of orientations in cortical
models (e.g. 64 orientations in [?]).

Finally, we notice that the output of 3D models often shows oscillations. For some illusions
(white and dungeon), the (??) model produces more oscillatory solutions than (??), and for others
(Chevreul brightness, grating induction, and luminace gradient), the (??) have stronger oscillations
than (??). The relation between the model parameters and possible dependence of the target
surrounding is a matter of future research.
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5 Conclusions and future work
We consider Wilson-Cowan-type models describing neuronal dynamics and apply them to the study
of replication of brightness visual illusions.

We show that Wilson-Cowan equations are able to replicate a number of brightness illusions and
that their variational modification, accounting for changes in the local contrast and performing local
histogram equalisation, outperforms them. We consider also extensions of both models accounting
for explicit local orientation dependence, in agreement with the architecture of V1. Although
in the case of pure brightness illusions we found no real advantage in considering models taking
into account orientations, these turned out to be necessary for the replication of two exemplary
orientation-dependent illusions, which only the 3D LHE variational model is able to reproduce.

In order to understand and fully exploit the potential of the orientation-dependent LHE model,
further research should be done. In particular, a more accurate modelling reflecting the actual
structure of V1 should be addressed. This concerns first the lift operation, where the cake wavelet
should be replaced by the more physiologically plausible Gabor filters, as well as the interaction
weight ω which could be taken to be the anisotropic heat kernel of [?, ?, ?]. The design of
appropriate psychophysics experiments testing the visual illusions considered in this work and their
match with our models’ outputs is clearly a further important research direction, which would turn
our qualitative study into a quantitative one. The problem of matching computational models of
perception with psychophysical data is in fact not trivial, but necessary to provide insights about
how visual perception works and to identify the computational parameters able to reproduce the
perceptual bias induced by these phenomena.
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A Non-variational nature of Wilson-Cowan equation
In this section we show that, for non-trivial choices of weight and sigmoid functions, Wilson-Cowan
equations do not admit a variational formulation.

For the sake of simplicity, we will consider only a finite dimensional variant of Wilson-Cowan
equations, with constant input. Namely, for a : R → Rn, we consider

d

dt
a(t) = −µa(t) +Wσ(a(t)) + h. (A.1)

Here, h ∈ Rn is the input, µ > 0 is a parameter, σ ∈ C1(R) is any function (we denoted σ(v) =
(σ(vi))i for v ∈ Rn), and W ∈ Rn×n is a symmetric interaction kernel. For a proof in the infinite-
dimensional setting we refer to [?]

Equation (??) admits a variational formulation if it can be written as the steepest descent
associated with a functional J : Rn → R, i.e.,

d

dt
a(t) = −∇J(a(t)). (A.2)

We have the following.

Theorem. The Wilson-Cowan equation (??) admits the variational formulation (??) only if either
W is a diagonal matrix, or σ is an affine function, i.e., σ(x) = αx+ β for some α, β ∈ R.

Proof. Writing (??) and (??) componentwise, we find the following relation for J :

∂iJ(v) = µvi −
∑
k

Wℓ,kσ(vℓ)− hi, v = (v1, . . . , vn) ∈ Rn, i = 1, . . . , n.

By differentiating again the above, and letting δij denote the Kroenecker delta symbol, we have

∂ijJ(v) = µδij −
∑
k

Wℓ,kσ
′(vℓ)δjℓ = µδij −Wijσ

′(vj), i, j = 1, . . . , n. (A.3)

Namely, Hess J(v) = (µδij −Wijσ
′(vj))ij . Assume that W is not a diagonal matrix. Then, since

both the Hessian matrix and W are symmetric, by choosing i ̸= j such that Wij ̸= 0 we get

σ′(vi) = σ′(vj) ∀v ∈ Rn. (A.4)

This clearly implies that σ′ is constant, thus showing that σ must be an affine function.

We observe that the above reasoning does not apply to the LHE algorithm. Indeed, the discrete
form of the latter is

d

dt
a(t) = −µa(t) +

∑
ℓ

Wiℓσ
(
ai(t)− aℓ(t)

)
+ h. (LHE)

Then, the corresponding variational equation (for µ = 0 and h = 0) is

∂iJ(v) = −
∑
ℓ ̸=i

Wiℓσ(vi − vℓ), v ∈ Rn. (A.5)

This yields
∂jiJ(v) =Wijσ

′(vi − vj), for v ∈ Rn, i ̸= j. (A.6)
This does not contradict the symmetry of the Hessian, as σ was chosen to be odd an thus σ′ is
even. Indeed, we know by [?] that we can let

J(v) :=
∑
k,ℓ

WkℓΣ(vk − vℓ), (A.7)

where Σ is such that Σ′ = σ.
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B Encoding orientation-dependence via cortical-inspired models
Orientation dependence of the visual stimulus is encoded via cortical inspired techniques, following
e.g., [?, ?, ?, ?, ?]. The main idea at the base of these works goes back to the 1959 paper [?] by Hubel
and Wiesel (Nobel prize in 1981) who discovered the so-called hypercolumn functional architecture
of the visual cortex V1. Following [?], each neuron ξ in V1 detects couples (x, θ) where x ∈ R2

is a retinal position and θ is a direction at x. Orientation preferences θ are then organised in
hypercolumns over the retinal position x, see [?, Section 2].

Let Q ⊂ R2 be the visual plane. To a visual stimulus f : Q → [0, 1] is associated a cortical
activation Lf : Q × [0, π) → R such that Lf(ξ) encodes the response of the neuron ξ = (x, θ).
Letting ψξ ∈ L2(R2) be the receptive profile (RP) of the neuron ξ, such response is assumed to be
given by

Lf(ξ) = ⟨ψξ, f⟩L2(R2) =

∫
Q
ψξ(x)f(x) dx. (B.1)

Motivated by neuro-phyisiological evidence, we assume that RPs of different neurons are “de-
ducible” one from the other via a linear transformation. As detailed in [?, ?], see also [?, Sec-
tion 3.1], this amounts to the fact that the linear operator L : L2(Q) → L2(Q × [0, π)) is a
continuous wavelet transform (also called invertible orientation score transform). That is, there
exists a mother wavelet Ψ ∈ L2(R2) such that Lf(x, θ) =

[
f ∗ (Ψ∗ ◦R−θ)

]
(x). Here, f ∗ g denotes

the standard convolution on L2(R2) and R−θ is the counter-clock-wise rotation of angle θ. Notice
that, although images are functions of L2(R2) with values in [0, 1], it is in general not true that
Lf(x, θ) ∈ [0, 1].

Concerning the choice of the mother wavelet, we remark that neuro-physiological evidence
suggests that a good fit for the RPs is given by Gabor filters, whose Fourier transform is the
product of a Gaussian with an oriented plane wave [?]. However, these filters are quite challenging
to invert, and are parametrised on a bigger space than M, which takes into account also the
frequency of the plane wave and not only its orientation. For this reason, in this work we instead
considered cake wavelets, introduced in [?, ?]. These are obtained via a mother wavelet Ψcake

whose support in the Fourier domain is concentrated on a fixed slice, depending on the number of
orientations one aims to consider in the numerical implementation. For the sake of integrability,
the Fourier transform of this mother wavelet is then smoothly cut off via a low-pass filtering, see
[?, Section 2.3] for details. Observe, however, that, since we are considering orientations on [0, π)
and not directions on [0, 2π), we choose a non-oriented version of the mother wavelet, given by
ψ̃cake(ω) + ψ̃cake(eiπω), in the notations of [?].

An important feature of cake wavelets is that, in order to recover the original stimulus from
its cortical activation, it suffices to simply “project” the cortical activations along hypercolumns.
This yields

f(x) :=
1

π

∫ π

0
Lf(x, θ) dθ. (B.2)

This justify the assumption, implicit in equation (??), that the projection of a cortical activation
F (not necessarily given by a visual stimulus) to the visual plane is given by

PF (x) =
1

π

∫ π

0
F (x, θ) dθ. (B.3)
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