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General cognitive ability, or general intelligence (g), is central to cognitive science, yet the processes that constitute it remain
unknown, in good part because most prior work has relied on correlational methods. Large-scale behavioral and neuroanatomical
data from neurologic patients with focal brain lesions can be leveraged to advance our understanding of the key mechanisms of g, as
this approach allows inference on the independence of cognitive processes along with elucidation of their respective neuroanatomical
substrates. We analyzed behavioral and neuroanatomical data from 402 humans (212 males; 190 females) with chronic, focal brain
lesions. Structural equation models (SEMs) demonstrated a psychometric isomorphism between g and working memory in our sample
(which we refer to as g/Gwm), but not between g and other cognitive abilities. Multivariate lesion-behavior mapping analyses indi-
cated that g and working memory localize most critically to a site of converging white matter tracts deep to the left temporo-parietal
junction. Tractography analyses demonstrated that the regions in the lesion-behavior map of g/Gwm were primarily associated with
the arcuate fasciculus. The anatomic findings were validated in an independent cohort of acute stroke patients (n=101) using model-
based predictions of cognitive deficits generated from the Iowa cohort lesion-behavior maps. The neuroanatomical localization of g/
Gwm provided the strongest prediction of observed g in the new cohort (r=0.42, p, 0.001), supporting the anatomic specificity of
our findings. These results provide converging behavioral and anatomic evidence that working memory is a key mechanism contribut-
ing to domain-general cognition.
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Significance Statement

General cognitive ability (g) is thought to play an important role in individual differences in adaptive behavior, yet its core
processes remain unknown, in large part because of difficulties in making causal inferences from correlated data. Using data
from patients with focal brain damage, we demonstrate that there is a strong psychometric correspondence between g and
working memory – the ability to maintain and control mental information, and that the critical neuroanatomical substrates
of g and working memory include the arcuate fasciculus. This work provides converging behavioral and neuroanatomical evi-
dence that working memory is a key mechanism contributing to domain-general cognition.

Introduction
Individual differences in cognitive abilities tend to be posi-
tively correlated: for example, people with strong atten-
tional and perceptual skills also tend to have strong
memory and reasoning skills, on average (compare with
Fig. 1A). Spearman was the first to conceptualize this “posi-
tive manifold” of performance correlations as reflective of a
domain-general cognitive ability, or general intelligence (g;
Spearman, 1904). Over the last century, g has become cen-
tral to cognitive science (Wasserman, 2018). However, de-
spite progress in our understanding of the neural correlates
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Figure 1. Schematic of overall approach. This figure summarizes how we used the Iowa cohort data to generate lesion-behavior maps (A, B), which were then used to assign model-pre-
dicted factor scores to participants in the WU cohort based on lesion locations (C). Diverse cognitive abilities are positively correlated in this sample (expanded section), the basis for Spearman’s
g (A). Performances on individual tests were used to build SEMs, which were used in turn to estimate each latent variable for the subjects in the Iowa cohort. These factor scores were used to
generate a lesion-behavior map (using SCCAN) for each factor, which is represented as a matrix of voxels weighted by their association with the factor in question (B; greater weights denoted
by hotter colors). The lesion masks from the WU cohort were represented as a matrix of binary values [C; red (lesioned) or gray (not lesioned)]. A vector of model-predicted deficit scores was
generated for the WU cohort by multiplying a matrix containing the voxel values from the lesion masks of the WU cohort subjects (M) by the matrix of voxel weights from a lesion-behavior
map (N), and then by an eigenvalue derived from the lesion-behavior map in question (l ).
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of g (Deary et al., 2010; Haier, 2017), a central question
remains: what are the core processes that constitute g?

Working memory emerged as a leading explanation for do-
main-general cognition when Kyllonen and Christal (1990) dem-
onstrated its near-perfect correlation with an estimate of g,
sparking widespread interest into the relationship between these
variables. Whereas some subsequent studies would find correla-
tions of comparable or greater magnitude (Süß et al., 2002;
Mackintosh and Bennett, 2003; Colom, 2004; Chen et al., 2019),
others would find more modest associations between the
two constructs (Ackerman et al., 2002; Conway et al., 2002;
Kane et al., 2004). It is difficult to draw conclusions about
the relationship between g and working memory based on
this literature because of significant heterogeneity in how
working memory has been defined and measured (Kane et
al., 2005; Cowan, 2017) and the frequent use of fluid reason-
ing as a proxy for g in lieu of a large, diverse battery of cogni-
tive tests (Johnson et al., 2004, 2008). Thus, although there is a
general consensus that working memory is strongly associated
with g, there is less agreement about whether working mem-
ory is a core process of g (Conway et al., 2003; Kane et al.,
2005; Oberauer et al., 2005).

A key barrier to progress in elucidating the critical processes
of g has been the reliance, by and large, on correlational data col-
lected from healthy individuals. This approach has inherent limi-
tations in elucidating causal mechanistic relationships, making it
difficult to draw a distinction between necessity and sufficiency,
or between correlated and causal consequences. Studies using
patients with focal brain damage have the potential to overcome
some of these methodological limitations. The lesion method
allows for inference on the independence of cognitive processes,
as abilities that are strongly associated among healthy individuals
can become dissociated following focal brain damage, such as ex-
pressive and receptive language. Thus, a cognitive ability that is
necessary and sufficient for g cannot be psychometrically or neu-
roanatomically dissociable from g – even among patients with
diverse focal brain lesions. Using this approach, one lesion study
highlighted the importance of executive functioning for g
(Barbey et al., 2012). However, it remains unclear which aspects
of executive functioning are primarily responsible for this finding
(Friedman et al., 2006). Moreover, previous lesion studies have
not incorporated advanced analytic techniques, such as multivar-
iate lesion-behavior mapping methods, which are better suited to
localize functions that depend on distributed brain networks
(Glascher et al., 2010; Woolgar et al., 2010; Barbey et al., 2012,
2013).

Here, we aim to shed new light on the processes necessary for
g by applying powerful multivariate methods to neuropsycholog-
ical and neuroimaging data from two large samples of individu-
als with focal brain damage (Table 1). For the primary analysis,
we used structural equation modeling (SEM) to examine the
relationships between g and each the following domain-specific
cognitive abilities: crystalized intelligence (Gc), visuospatial abil-
ity (Gv), learning/memory (Gl), processing speed (Gs), and
working memory (Gwm), including an evaluation of the variance
in g explained by each domain. Next, we used multivariate
lesion-behavior mapping to determine whether g depends on
specific neuroanatomical structures, and whether this localiza-
tion is shared with any specific cognitive ability. To address
generalizability and neuroanatomical specificity, we used lesion-
behavior maps from one cohort (University of Iowa) to predict g
in a second cohort (Washington University) based on lesion
location (Fig. 1).

Materials and Methods
Two cohorts of patients with focal brain lesions were included. The pri-
mary analyses were performed using data from participants in the Iowa
Cognitive Neuroscience Patient Registry (Frank et al., 1997; Tranel,
2007). A “validation” cohort was derived from a previously published
study of stroke patients (n=101) recruited from Washington University
in St. Louis (Corbetta et al., 2015). All participants have previously given
written informed consent to participate in these studies, which were
approved by the Institutional Review Boards of the participating institu-
tions. To supplement our analyses, we also analyzed the correlation ma-
trix of the primary subtests of the fourth edition of the Wechsler Adult
Intelligence Scales (WAIS), which is based on data from 2200 healthy
adults (Wechsler, 2008).

Iowa cohort
The Iowa Registry includes patients with focal brain lesions who com-
pleted a range of standardized neuropsychological tests and neuroimag-
ing in the chronic epoch (more than three months) after lesion onset.
Participants from the Registry were included in this study if they com-
pleted at least 75% of the selected tests (described in the following para-
graph) and had a lesion mask registered to the MNI152 template.
Exclusion criteria included: progressive neurologic disease, major psy-
chiatric illness, developmental intellectual disability, developmental
lesion onset (defined as age at lesion onset,18 years), and developmen-
tal-onset epilepsy. A total of 402 participants (212 males; 190 females) in
the registry met these criteria, and lesion etiologies included: ischemic
stroke (n=238), hemorrhagic stroke (n= 87), benign tumor resection
(n= 64), focal encephalitis (n= 9), focal contusions from head injury
(n= 3), and penetrating head injury (n=1). For patients with benign tu-
mor resection, lesion location was determined using the boundaries of
the tumor resection cavity from the postoperative imaging.

We focused on neuropsychological tests that have been most com-
monly administered to the participants in the Iowa Registry. We
assigned each test to latent variables using the Cattell–Horn–Carroll
(CHC) model of cognitive abilities (Schneider and McGrew, 2018), a
widely used taxonomy of mental abilities that has been shown to
robustly account for the covariance structure of the neuropsychological
tests used in this cohort (Jewsbury et al., 2017). Of note, several of these
tests are subtests of the WAIS, which is the most widely-used instrument
for measuring intelligence and its facets, and which has an extensive psy-
chometric literature supporting its reliability and validity (Wechsler,
2008). All subjects were administered the version of the WAIS that
was the most up-to-date at the time of their assessment. We used admin-
istration A from the Benton Visual Retention Test, which requires
maintenance and immediate reproduction of visuospatial information
(working memory) without repeated exposures or delayed recall
demands. When a test was administered to a patient more than once, we
used the administration that was most contemporaneous with the date
of the patient’s MRI scan, acquired in the chronic epoch threemonths or
more after lesion onset. Test scores were adjusted for age using

Table 1. Demographic characteristics of the Iowa and WU cohorts

Cohort Iowa (n= 402) WU (n= 101)

Age (SD) 58.17 (13.81) 53.14 (11.23)
Gender 212 M/190F 57 M/44F
Education, years (SD) 13.46 (2.72) 13.32 (2.68)
Handedness 360R/15 M/26L 92R/9L
Lesion chronicity at scan, months (SD) 42.17 (57.58) 0.46 (0.16)
Lesion chronicity at neuropsychological
testing, months (SD)

31.83 (0.25) 0.46 (0.17)

Lesion laterality 175L/141R/86B 46L/55R

Age and lesion chronicity were calculated at date of scan; age is in years; Iowa cohort age range: 20–88;
WU cohort age range: 19–83; gender: M = male, F = female; handedness: R = right handed, L = left
handed, M = mixed handedness; one participant was missing data on handedness in the Iowa cohort; units
of lesion chronicity are the number of months between date of lesion onset and date of MRI scan; lesion
chronicity at neuropsychological testing for the Iowa cohort was determined for the administration of the
WAIS tests because of variability in the exact date of testing for the numerous tests; lesion laterality: R =
right sided, L = left sided lesion, B = bilateral lesion.
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normative data from test manuals (Wilkinson and Robertson, 2006;
Wechsler, 2008), meta-normative data (Mitrushina et al., 2005), or nor-
mative data from the Benton Neuropsychology Laboratory. All age-
adjusted scores were then transformed into standard units (i.e., Z-scores)
to place all scores on a similar metric. In those instances where test
scores are omitted, these data were imputed using multiple imputation
by chained equations as implemented in the MICE package (van Buuren
and Groothuis-Oudshoorn, 2011) available in R (R Core Team, 2017). A
total of 5% of the total dataset described above was imputed. We per-
formed the analyses (described below) in both the full dataset (i.e., the
dataset with imputed data) and the restricted dataset (i.e., data from only
those patients with complete data; n= 230).

Lesion location
Lesion borders were defined using lesion masks generated using either
the MAP-3 method, or a manual tracing on a native T1-weighted MRI
scan. The MAP-3 method involves the manual tracing of lesion borders
on a template brain using the lesion depicted in an MRI or CT scan as a
guide, and has been previously described and validated (Damasio and
Frank, 1992; Fiez et al., 2000). With improvements in MRI co-registra-
tion techniques, lesions added after 2006 were manually traced on the
native T1-weighted scans with FSL (Smith et al., 2004) and then trans-
formed into MNI space. Because lesions negatively affect the accuracy of
the transformation to MNI space, transformations were performed using
enantiomorphic normalization, which replaces the lesion volume with
the voxel intensities from its non-damaged homolog to more closely
align the transform with its template. Bilateral lesions were transformed
by applying a cost function mask to the lesion volume (Brett et al.,
2001), which reduces the influence of voxels within the lesion volume on
the transformation process. Native MRIs of the brain and lesion mask
were then co-registered to the MNI152 T1 1 mm atlas using linear and
nonlinear registration available in ANTs (Avants et al., 2008). The ana-
tomic accuracy of the lesion tracing was reviewed both in native and
MNI space and edited as needed by a neurologist (A.D.B.) blinded to
cognitive data.

Experimental design and statistical analysis
SEMs
SEMs were used to investigate the association between each specific cog-
nitive ability and g using the Iowa data. We used a SEM framework over
an exploratory approach where possible because of the greater hypothe-
sis-testing flexibility afforded by the former, especially as it relates to
bifactor modeling (Bollen and Noble, 2011; Muthukrishna and Henrich,
2019), and because previous work has evaluated how the Iowa neuropsy-
chological tests fit into the architecture of the CHC model (Jewsbury et
al., 2017). These analyses were performed using the lavaan library in R
(Rosseel, 2012). All free parameters were estimated using maximum like-
lihood. Parameters were reported from the completely standardized sol-
utions (i.e., all factor loadings were standardized between values of 0 and
1). Standard errors for all parameters were derived using the bootstrap-
ping procedures (with 1000 draws) available in the SEM function in lav-
aan. For each model, local fit was inspected to identify parameters that
were not statistically significantly different from zero. Overall model fit
to the data were evaluated using the Comparative Fit Index (CFI), the
Root Mean Square Error of Approximation (RMSEA), and the
Standardized Root Mean Square Residual (SRMR). Acceptable model fit
is indicated by CFI of at least 0.90, and RMSEA and SRMR � 0.08 (Hu
and Bentler, 1999). Scores for latent variables were generated using the
lavPredict function in R, which estimates values of latent variables using
a regression based on model parameters.

The following domain-specific cognitive abilities could be modeled
from the observed data: crystallized intelligence (Gc), visuospatial ability
(Gv), learning efficiency (Gl), processing speed (Gs), and working mem-
ory (Gwm). To account for method covariance, the unique variances of
the Complex Figure Test Copy and Recall scores were allowed to covary
in all models, as were the unique variances of parts A and B of the Trail
Making Test, and the indices of the Rey Auditory Verbal Learning Test.
A hierarchical model (Fig. 2A) was used to estimate g and to examine
the variance in g that can be accounted for by each domain-specific

ability. The square of the correlation between each ability and g served
as an index of the variance in g explained by each specific cognitive abil-
ity; this is indicated by the factor loading of each ability on g (Kline,
2016). A confirmatory bifactor model (Fig. 2B) was used to evaluate the
“distinctiveness” of each cognitive ability from g. In this model, all
observed data were first set to load directly onto g, and then onto the

Figure 2. SEMs. A hierarchical model of cognitive abilities (A) was used to estimate g in
the Iowa cohort and examine the correlation between each cognitive ability and g. Using a
bifactor model of cognitive abilities (B), we investigated the extent to which crystalized intel-
ligence (Gc), visuospatial ability (Gv), Gl, processing speed (Gs), and working memory (Gwm)
were distinct from g. This was done by partitioning variance first to g, and then to the do-
main-specific factors. Correlated residuals were omitted to improve clarity. An exploratory
hierarchical factor analysis was used to estimate g in the WU cohort (C; factor loadings were
thresholded at 0.4 for clarity). Tests included: the similarities (sim), information (inf), block
design (bd), digit-symbol coding (cod), digit span (dig), and arithmetic (ari) subtests from
the Weschler Adult Intelligence Scales, the word reading test from the Wide Range
Achievement Test (wrat), the Benton Judgment of Line Orientation Test (jlo), the copy (cftc)
and recall (cftr) trials from the Rey-Osterrieth Complex Figure Test, trial 5 (rey5), delayed
recall (reyr), and delayed recognition hits (reyh) from the Rey Auditory Verbal Learning Test,
trials A (tmta) and B (tmtb) from the Trail Making Test, the number of correct items from
the Benton Visual Retention Test (vrtc), the Word Comprehension test (word), the Complex
Ideational Material test (comp), the Boston Naming Test (bnt) from the Boston Diagnostic
Aphasia Examination, the forward (ssf) and backward (ssb) trials from the Spatial Span test
of the Wechsler Memory Scales, and the immediate total recall (him), delayed recall (hd),
and discrimination index (hdis) scores from the Hopkins Verbal Learning Test–Revised.
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appropriate subfactor. As with all bifactor models, the latent variables
were set to be orthogonal to one another under the assumption that the
covariance among the factors is captured by the general factor. Using
this model, v hierarchical (vh) was calculated for each domain, which
provided an index of the reliable variance associated with each domain-
specific ability after removing the variance associated with g. Higher val-
ues indicate greater distinctiveness from g (i.e., greater reliable variance
remaining after controlling for g).

Healthy cohort SEM
In addition to constructing models using the Iowa cohort with focal
brain lesions, we also constructed analogous models using data from a
large healthy population. This was done to evaluate whether conclusions
from the models differed when derived from subjects with focal brain
lesions versus healthy individuals. For this we used the WAIS-IV stand-
ardization sample correlation matrix, with a sample size of 2200 healthy
adults described in detail elsewhere (Wechsler, 2008). These models
were used to evaluate the correlations between specific domains (e.g.,
verbal comprehension) and g, and the distinctiveness of each domain
from g, as performed with data from the subjects with focal brain lesions.
Subfactors were labeled using the names of the associatedWAIS-IV indi-
ces (e.g., the Verbal Comprehension Index).

Lesion-behavior mapping
Lesion-behavior mapping analyses were performed to identify neuroana-
tomical regions associated with impairment in domain-general and do-
main-specific cognitive abilities as estimated from the SEMs. Sparse
canonical correlation analysis (SCCAN) was used for lesion-behavior
mapping, as implemented in LESYMAP (Pustina et al., 2018), a package
available in R (https://github.com/dorianps/LESYMAP). The SCCAN
method uses an optimization procedure to derive voxel-weights that
maximize the multivariate correlation between voxel values and behav-
ioral scores. The predictive value and sparseness of the resulting maps
were evaluated empirically using a fourfold, within-sample correlation
between model-predicted and actual behavioral scores. LESYMAP
deems a map “valid” if it is associated with a statistically significant pre-
dictive correlation. Thus, this approach tests the predictive value of the
entire map at once and avoids the pitfalls associated with voxel-wise
(i.e., mass univariate) methods, such as inflated rates of false-positive
errors. This previously validated method of lesion-behavior mapping
has been demonstrated to be more accurate than mass univariate
methods and is better able to identify when multiple brain regions are
associated with a behavioral variable (Pustina et al., 2018). Regions
with minimal coverage (fewer than three lesions) were excluded, as
performed previously (Hindman et al., 2018) to reduce processing
time and the influence of outliers on the results while maintaining
sufficient lesion coverage for the analyses. We also tested whether the
spatial configuration of the voxel weights from the map of g was
affected by changes in the sparseness parameter by manually manipu-
lating this parameter to values above and below the final sparseness
value as determined by LESYMAP.

A mass-univariate voxel-wise approach to lesion-behavior mapping
was also employed to provide evidence for the robustness of our neuroa-
natomical results to different lesion-behavior mapping methodologies.
This analysis was performed using the regresfast option in LESYMAP,
which performs a voxel-wise regression of behavioral scores on voxel
values. Multiple comparison correction was performed using permuta-
tion-based family-wise error correction as implemented by the
FWERperm option for the lesymap command (https://github.com/
dorianps/LESYMAP).

To evaluate the relative contribution of the regional clusters of the
lesion-behavior map of g, the map was first separated into clusters using
FSL’s cluster function. For each cluster, the identified region was
removed from each patient’s lesion mask and the lesion-behavior map
was re-calculated. The importance of each cluster was then evaluated
using the difference in the within-sample predictive correlation value
associated with these analyses, with a greater reduction in predictive ac-
curacy indicating greater relative importance of the associated cluster.

Fiber tractography
We used the LEAD Connectome pipeline to explore the white matter
tracts associated with regions identified in the lesion-behavior map of g
(https://www.lead-dbs.org/about/lead-connectome/; Horn et al., 2014).
As performed previously (Horn et al., 2017), this software uses norma-
tive diffusion-weighted MRI from 32 subjects from the Human
Connectome Project dataset to perform deterministic fiber tractography
and illustrate the course of white matter streamlines associated with a
seed region-of-interest. Seed regions-of-interest were generated by clus-
tering the map of g into spatial clusters using FSL’s cluster tool. The
resulting tracts were reviewed individually on applying a threshold to
retain the top 5% of voxel values, and the unthresholded individual tracts
derived from each cluster were combined to display white matter regions
common among the clusters. The Human Connectome Project (Van
Essen et al., 2013) white matter atlas was used to compare the results to
normative white matter tracts.

Validation analysis
WU cohort
Patients in the WU cohort also completed multiple neuropsychological
tests. Test scores were normed as described previously (Corbetta et al.,
2015). We converted these data to Z-scores. Participants were selected
for inclusion in this study if they completed at least 75% of the selected
tests and had lesion masks derived from structural neuroimaging. Test
scores and neuroimaging data were collected within the first three
months following the stroke. A total of 101 stroke patients met these
inclusion criteria and were included in this study. There were no missing
data in this dataset.

Lesion segmentation
MRI and lesion mask acquisition for the WU cohort were described in
the original study (Corbetta et al., 2015). For consistency with the Iowa
cohort, the final lesion masks from the WU cohort were transformed to
the MNI152 template using linear registration techniques in FSL.

Hierarchical factor analysis
Because most of the tests available in the WU dataset have not been pre-
viously evaluated in the context of the CHC model, we used an explora-
tory hierarchical factor analysis to estimate g in the WU cohort.
Although the extraction of g was the primary goal of this analysis, for
consistency with the Iowa cohort, we labeled the subfactors using a no-
menclature similar to the CHC model by comparing the test groupings
to descriptions of CHC domains (Schneider and McGrew, 2018). This
analysis was performed using the psych package available in R (Revelle,
2015). We used maximum likelihood to estimate parameters, and an
oblimin rotation to extract correlated factors for the first level of latent
variables. The number of subfactors to retain at the first level was deter-
mined by comparing the fit of models with successively higher numbers
of factors until an improvement in model fit was not found. The factor
scores for these domains were then submitted to an exploratory factor
analysis to extract a single hierarchical g factor. As with the Iowa cohort,
an estimate of g was derived for each subject using regression methods.
A bifactor model was not evaluated for this sample because of low sam-
ple size.

Predicting g from lesion location
The sparse canonical correlation models used to derive lesion-behavior
maps from the Iowa Cohort were used to generate predictions of cogni-
tive deficits based on lesion location in the WU Cohort (Fig. 1).
Specifically, a three-dimensional matrix of the voxel-wise weights from a
lesion-behavior map was multiplied by a three-dimensional binary ma-
trix representing the lesion volumes from the WU cohort, and then by
the eigenvalue from the lesion-behavior map to generate a vector of
model-predicted scores. This was repeated for each lesion-behavior map
derived from the Iowa cohort. Model-predicted scores were then corre-
lated with observed g to provide an index of predictive accuracy.
Additionally, semi-partial correlations were used to test whether these
associations would hold after controlling for the effects of lesion volume.
The statistical significance of the correlation between each predicted and
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observed score was determined using permutation testing. Specifically,
the order of the data was randomly generated, and the absolute value of
the observed correlation strength was compared with that of randomly
generated correlations derived from the same data across 10,000 permu-
tations. The proportion of randomly generated correlations greater than
the observed correlation served as the p value. Finally, a lesion-behavior
map of g was also generated de novo for the WU cohort, and we calcu-
lated its spatial correlation with the lesion-behavior maps from the Iowa
cohort by converting all of the lesion-behavior maps into vectors using
ANTsR tools and then deriving the correlations among the vectors.

Data availability
The data that support the findings of this study are available from the
corresponding author, on reasonable request.

Results
Iowa cohort SEM
The final SEMs converged normally, provided adequate fit to the
data, and were without Heywood cases or negative estimated var-
iances (Fig. 2A,B).

The initial hierarchical model failed to converge; inspection
of the factor loadings suggested that this was because of an
extremely high raw loading parameter that was associated with a
perfect correlation (standardized factor loading= 1.00) between
g and working memory. The model converged successfully when
this raw estimate was constrained to a lower value, but where the
standardized loading was still reported as one by the lavaan out-
put (x 2 = 384.55, CFI = 0.90, RMSEA=0.09, SRMR=0.07). To
further investigate the reason for the failed convergence of the
initial hierarchical model, we constructed (1) a hierarchical
model in which the working memory tests loaded directly onto g
rather than onto a Gwm factor, and (2) a correlated factors
model in which the first-order latent variables (e.g., Gc, Gv, etc.)
were allowed to covary without loading onto a superordinate g
factor. Both of these models converged successfully, suggesting
that there may have been a model misspecification occurring at
the loading of Gwm onto g. Together, these analyses provided
initial evidence that there is not a Gwm factor that is reliably sep-
arate from g in the Iowa cohort.

In the initial bifactor model (x 2 = 312.79, CFI = 0.92,
RMSEA=0.08, SRMR=0.06), the factor loadings of two tests of
working memory (the digit span subtest from the WAIS and the
Benton Visuospatial Retention Test) on the Gwm latent variable
were not significantly different from zero, indicating that the co-
variance among the working memory tests was captured entirely
by g. The hierarchical and bifactor models both implied a perfect
correspondence between g and working memory, and thus indi-
cated the use of a bifactor S-1 model, a variant of the bifactor
model that should be used in situations in which anomalous (e.
g., non-significant or negative) loadings are detected in the pres-
ence of a perfect or near-perfect equivalence between a subfactor
and a general factor (Burns et al., 2020). In a bifactor S-1 model,
the loadings of the indicators on the subfactor in question are
omitted to achieve a final result that is free from anomalous load-
ings. The bifactor S-1 model for the Iowa cohort converged nor-
mally (x 2 = 340.06, CFI = 0.91, RMSEA=0.08, SRMR=0.07). Of
note, the bifactor-S1 model also provided a significantly better fit
to the data than the hierarchical model (x 2 difference= 44.49,
p, 0.001).

In the hierarchical model, Gwm accounted for more variance
in g (100%) than did Gc (51%), Gv (65%), Gl (15%), or Gs (71%;
Fig. 1A). Model-based reliabilities for each domain-specific fac-
tor were estimated using v hierarchical (vh). The values of vh

from the bifactor-S1 model associated with Gc (0.39), Gv (0.27),

Gl (0.63), and Gs (0.39) were greater than that associated with
Gwm, which was 0 by definition, such that there was no reliable
variance in the latent Gwm factor beyond g. Even in the initial
bifactor model, which contained two non-significant loadings of
Gwm tests on the latent Gwm factor, the remaining variance of
the Gwm factor was virtually zero (vh = 0.02), and might be best
characterized as the remaining reliable variance in the arithmetic
subtest from the WAIS working memory index rather than the
remaining variance in broad Gwm factor.

Healthy cohort SEM
To evaluate whether this pattern of findings generalized to a
healthy sample, we performed analogous analyses on the correla-
tion matrix of the WAIS-IV primary subtests (Wechsler, 2008).
Overall, we obtained a similar pattern of results. A hierarchical
model demonstrated that working memory shared more var-
iance with g (88%) relative to verbal comprehension (68%), per-
ceptual reasoning (76%), or processing speed (48%; x 2 = 339.59,
CFI= 0.97, RMSEA=0.07, SRMR=0.03). An initial bifactor
model constructed from the WAIS correlation matrix did not
successfully converge because of the variance-covariance matrix
not being positive definite, indicating a problem with model
specification. As was the case with the Iowa cohort, a bifactor S-1
model was applied to the WAIS data where the working memory
factor was omitted. The bifactor S-1 model allowed this analysis
to converge successfully (x 2 = 223.64, CFI= 0.98, RMSEA=0.06,
SRMR=0.02), suggesting that working memory (vh = 0.00) was
not distinct from g. In contrast, this was not the case for the
other cognitive abilities: verbal comprehension (vh = 0.27), per-
ceptual reasoning (vh = 0.20), and processing speed (vh = 0.41).
Even in the initial bifactor model for the WAIS data, which did
not converge, the remaining variance of the Gwm factor was the
lowest among all cognitive abilities (vh = 0.10). Finally, as was
the case in the Iowa cohort, the bifactor-S1 model provided a sig-
nificantly better fit to the data than did the hierarchical model
(x 2 difference = 115.95, p, 0.001).

Together, the psychometric results from the Iowa cohort and
the WAIS-IV data all demonstrate an exceptionally strong to
perfect correspondence between g and working memory. We
refer to the psychometric isomorphism between g and Gwm in
the Iowa sample’s hierarchical model as g/Gwm.

Iowa cohort lesion-behavior mapping
We next investigated whether the neuroanatomical regions asso-
ciated with g/Gwm were similar to those associated with the do-
main-specific cognitive abilities. The distribution of lesion
coverage used for these analyses is shown in Figure 3A. We used
the hierarchical model because hierarchical models have tradi-
tionally been used to represent g (of note, the hierarchical and
bifactor model estimates of g were virtually identical; r= 0.99,
p, 0.001). The lesion-behavior map of g/Gwm was associated
with a statistically significant within-sample predictive correla-
tion (r=0.27, p, 0.001, optimal sparseness = 0.17; Fig. 3B). This
analysis demonstrated that g/Gwm depends on the integrity of
left temporo-parietal white matter, left parieto-occipital white
matter, left frontal lobe white matter, the right subinsula/claus-
trum, the left posterior middle/inferior temporal gyrus, and the
right posterior middle temporal gyrus. Regressing out the effects
of sex and lesion chronicity did not change the lesion-behavior
mapping results, and neither gender (r=0.06, p= 0.16) nor lesion
chronicity (r= 0.08, p= 0.10) was correlated significantly with g/
Gwm.
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Figure 3. Lesion-behavior maps of general and domain-specific cognitive ability. A, Distribution of the 402 lesions included in the lesion-behavior mapping, with the color scale representing
the number of overlapping lesions at each voxel. Axial slices from the lesion-behavior maps derived from the hierarchical SEM are shown in panel B, illustrating the brain regions associated
with general cognitive ability/working memory (g/Gwm; r= 0.27, p, 0.001), visuospatial ability (Gv; r= 0.30, p, 0.001, optimal sparseness = �0.20), Gl (r= 0.30, p, 0.001, optimal
sparseness = 0.13), and processing speed (Gs; r= 0.28, p, 0.001, optimal sparseness = 0.19). The map for crystalized intelligence was not statistically significant (Gc; r= 0.10, p= 0.05, opti-
mal sparseness = �0.15). All lesion-behavior maps are shown at the same four axial slices of the MNI152 T1 1-mm template. Voxels weights were derived from the optimized SCCAN and
were scaled to values between 0 and 1, with greater values indicating greater importance for the variable in question. LESYMAP’s sparseness search routine generated negative sparseness val-
ues when there was a possibility for bidirectional voxel weights (for more information on sparseness values, see https://github.com/dorianps/LESYMAP/wiki/SCCAN-questions).
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An evaluation of the importance of
the individual clusters from this map
showed that the cluster located in the
left temporo-parietal white matter was
the most important to the final solution
(Dr = �0.05). This cluster also con-
tained the voxel with the strongest asso-
ciation with g/Gwm in the entire map
(MNI coordinate: �35, �50, 12). By
comparison, the clusters located in the
left temporal lobe white matter (Dr =
�0.02), the left occipital lobe white matter
(Dr=0.02), the right posterior middle
temporal gyrus (Dr =�0.03), the right pa-
rietal white matter (Dr=0.00), the right
subinsula/claustrum (Dr = �0.03), and
the left frontal white matter and anterior
insula (Dr = �0.03) were associated with
lower changes in the within-sample pre-
dictive correlation. The left temporo-
parietal white matter region was also
implicated when: using a mass-univariate,
voxel-wise approach to lesion-behavior
mapping (Fig. 4A), restricting our analyses
to the subsample of patients with com-
plete data (Fig. 4B), controlling for age
and education (Fig. 4C), and altering the
sparseness parameter of the model (Fig.
4D,E). Examples of select individual sub-
jects with relatively circumscribed damage
to this region are shown in Figure 5.

Next, we performed two follow-up
lesion-behavior mapping analyses to
further evaluate the importance of this
left temporo-parietal white matter region
for domain-general cognition. First, if this
region was important for cognition across
multiple domains, a similar neuroanatom-
ical localization for g would be expected
when estimating g from a SEM that does
not include tests of working memory,
as variance related to g should still be
included in the estimates of each spe-
cific domain of cognition. Second, if we
remove the influence of g from the
domain-specific abilities (using the
bifactor model), the regions most
associated with domain-general cog-
nition should no longer be present in
the domain-specific lesion-behavior
maps. In both cases, our results sup-
port the importance of the left tem-
poro-parietal white matter region.

First, we created a lesion-behavior
map of g estimated without tests of
working memory. This showed a strong
peak in the same left temporo-parietal
white matter region, and was highly
similar to the map of g/Gwm in which
working memory tests were included
(spatial correlation r= 0.91). Moreover,
the left temporo-parietal white matter
region was also present in lesion-

Figure 4. Additional lesion-behavior mapping analyses. We performed additional lesion-behavior mapping analyses (blue)
to explore the aspects of the neuroanatomical localization of g (red) that were most robust to the analytic approach. The region
of left posterior white matter deep to the temporo-parietal junction was still implicated when (A) using a voxel-wise (“mass
univariate”) approach to lesion-behavior mapping, (B) restricting analyses to only subjects with complete data (n= 230), (C)
controlling for the effects of age and education, and decreasing (D) and increasing (E) the sparseness parameter of the final
lesion-behavior map.
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behavior maps of the domain-specific cognitive abilities, but
was absent after the influence of g was removed from these
abilities in the bifactor model, which can be seen by com-
paring the maps in Figures 3B, 6, and through an examina-
tion of the spatial correlations between each hierarchical
model’s lesion-behavior map and its bifactor analog: Gv
(0.60), Gl (0.48), and Gs (0.11). The spatial correlations
between the map of g/Gwm and the maps of the other do-
main-specific cognitive abilities estimated from the bifactor
model were low (spatial correlation r range: 0.04–0.16).

Finally, in light of the observation that estimates of g and
Gwm were perfectly correlated in the hierarchical model from
this sample, we conducted an additional follow-up analysis to
explore whether g and working memory indeed share neuroana-
tomical correlates. We evaluated whether Gwm estimated from a
correlated factors model (i.e., a model without a superordinate g
factor) produced a similar lesion-behavior map to that of g/
Gwm. This analysis produced a highly similar result (spatial cor-
relation r= 0.99), with a peak in the same left temporo-parietal
white matter region. Together, these analyses demonstrate evi-
dence that working memory and g can be localized to this same
white matter region outside of the data from the full Iowa hier-
archical model.

Iowa cohort tractography
The map for g was separated into spatial clusters and each cluster
served as a seed region-of-interest for a tractography analysis,
allowing us to infer which white matter tracts are associated with
these regions in healthy adults. The clusters, including the cluster
of temporo-parietal white matter that was most strongly associ-
ated with g, were most prominently and consistently associated
with the arcuate fasciculus (Fig. 7), a large white matter tract that
interconnects the frontal, temporal, and parietal cortices (Catani
and Thiebaut de Schotten, 2008).

Using the Iowa-derived lesion-behavior maps to predict g in
the WU cohort
Next, we evaluated whether the lesion-behavior maps from the
Iowa cohort could be used to predict observed deficits in g in the
independent WU cohort based exclusively on lesion location.
The exploratory factor analysis demonstrated that a three-factor
solution fit the cognitive data the best, which converged normally
and was without Heywood cases (x 2 = 3.95, CFI. 0.99,
RMSEA, 0.01, SRMR, 0.01; Fig. 2C). The three subfactors
corresponded most closely to Gc, visuospatial working memory
(Gvwm), and Gl. We evaluated the validity of estimating g from
this more limited set of domain-specific variables by also

Figure 5. Representative individual cases with lesions involving the peak cluster associated with general cognitive ability. Lesion mask (red) and neuropsychological data
are presented from three representative subjects with relatively focal lesions that involved the location of the peak cluster of the lesion-behavior map of general cognitive
ability/working memory (g/Gwm). Neuropsychological test performances were broadly low and/or impaired across multiple domains for each subject, as represented by neg-
ative Z-scores relative to other subjects with focal brain lesions in the registry. The peak cluster from the lesion-behavior mapping analysis of g/Gwm is depicted in light
blue. Abbreviations for individual tests are found in the legend of Figure 2.
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estimating g in the Iowa data, but restricting the analysis
to these three domain-specific variables. The correlation
between g estimated with all the data versus with the re-
stricted domain-specific variables was 0.90, demonstrating
that g can be estimated accurately with fewer domain-spe-
cific variables, as were available in the WU dataset (Johnson
et al., 2004, 2008).

A matrix of lesion masks from the WU cohort (Fig. 1C) was
used in conjunction with the three-dimensional weighted voxels
derived from the hierarchical lesion-behavior maps from Iowa
(Fig. 1B) in an effort to predict g in the WU cohort. To evaluate
the anatomic specificity of these predictions, we compared the
accuracy of the predictions from the g/Gwmmap to the accuracy
of the predictions from the other domain-specific lesion-behav-
ior maps. A caveat to this cross-cohort prediction analysis is that
the Iowa cohort had more extensive coverage in the brain
whereas the coverage in the WU cohort was predominantly,
although not exclusively, in the distribution of the middle

cerebral artery, which resulted in limited coverage of the
left temporo-parietal white matter region identified in the
Iowa lesion-behavior g map. Many of the lesions in the WU
cohort did not intersect with the lesion-behavior maps of
the Iowa cohort. To account for this, we also evaluated the
accuracy of the model-based predictions for only those WU
subjects with lesions that overlapped with each of the Iowa
lesion-behavior maps.

Across these analyses, the lesion-behavior map of g/Gwm
from the Iowa sample provided consistent significant predictions
of observed g in the WU sample, even after controlling for lesion
volume. Table 2 lists the correlations (r) and semi-partial correla-
tions (sr), the latter of which control for lesion volume, between
the model-predicted domain scores and observed g in the WU
sample. Importantly, the unique aspects of the other domain-
specific maps (i.e., predictions made from the bifactor maps)
were not able to significantly predict g in the WU cohort, sup-
porting the anatomic specificity of these results.

Figure 6. Bifactor model lesion-behavior mapping. Axial slices from the lesion-behavior maps estimated from the bifactor S-1 model illustrate the brain regions uniquely associated with
each domain-specific cognitive ability after removing the variance attributable to general cognitive ability (g; see Fig. 2B). This included: visuospatial ability (Gv; r= 0.34, p, 0.001, optimal
sparseness = �0.20), learning/memory (GI; r= 0.32, p, 0.001, optimal sparseness = �0.01), and processing speed (Gs; r= 0.19, p, 0.001, optimal sparseness = 0.08). The map for crys-
talized intelligence (Gc; r= 0.19, p, 0.001, optimal sparseness = 0.77) did not return any regions associated with impairment in this domain. Working memory (Gwm) demonstrated no
remaining reliable variance after accounting for g and so was not depicted. For each map, the left hemisphere temporo-parietal white matter region implicated as important for g/Gwm (com-
pare with Fig. 3) was no longer present in any of these maps. Voxel weights were derived from the optimized SCCAN and were scaled to values between 0 and 1.
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Separately, a lesion-behavior map of g derived de novo from
the WU cohort data was generated and produced results similar
to those observed from the Iowa cohort: fronto-parietal and tem-
poro-parietal white matter regions (including the arcuate fascicu-
lus) were implicated bilaterally with stronger associations found
in the left hemisphere. Additionally, the map of g from the WU
cohort was the most similar to the map of g/Gwm (spatial corre-
lation r= 0.17) from the Iowa cohort relative to the other
domain-specific maps derived from the bifactor model: Gv
(r=0.12), Gl (r=0.04), and Gs (r=0.07). Together, the findings
in the WU sample provide evidence corroborating the anatomic
findings from the Iowa sample.

Discussion
In this study, we asked the question: what is the relation between
general cognitive ability (g) and its subordinate factors? This
question cannot be fully addressed in healthy individuals, as g is
defined by the shared variance across these factors. However, it
can be further elucidated in subjects with focal brain lesions since
it is possible to discover dissociations between g and its subordi-
nate factors that are not seen in healthy individuals. SEMs indi-
cated that there is a strong correspondence between g and
working memory; because these two variables could not be

reliably separated in the primary sample, we refer to them collec-
tively here as g/Gwm. Lesion-behavior mapping demonstrated
that g and working memory depend on the integrity of a poste-
rior region of left hemisphere white matter located in the arcuate
fasciculus, a white matter bundle connecting the frontal, parietal,
and temporal cortices that has also variably been referred to as
the superior longitudinal fasciculus (Catani and Thiebaut de
Schotten, 2008; Dick and Tremblay, 2012). The anatomic local-
ization of g/Gwm was validated in an independent sample of
patients with focal brain damage (the WU cohort), where a
lesion-behavior map of g/Gwm from the Iowa cohort signifi-
cantly predicted g in the WU cohort based on lesion location,
demonstrating that our findings generalize robustly from chronic
lesions to acute lesions. This finding is notable given that the re-
covery of cognitive functions is variable in the early months fol-
lowing stroke and this variability would likely make it more
difficult to predict cognition across cohorts. We elaborate on our
behavioral and neuroanatomical findings below and their rela-
tionship to the existing literature.

Converging perspectives from cognitive and systems neuro-
science suggest that the core processes of working memory
include the maintenance and control of representational infor-
mation encoded in neuronal ensembles (D’Esposito and Postle,
2015; Eriksson et al., 2015; Miller et al., 2018). The strong associ-
ation that we observed between g and working memory is com-
parable to what has been reported by previous research on this
topic (Kyllonen and Christal, 1990; Süß et al., 2002; Mackintosh
and Bennett, 2003; Colom, 2004; Chen et al., 2019). However, it
is difficult to make direct comparisons between previous work
and the present study. Here, we estimated g using the covariance
among a large and diverse battery of cognitive tests (Johnson et
al., 2004, 2008). In contrast, many previous studies used fluid
reasoning as a proxy for g. There is also significant heterogeneity
in how previous studies have measured working memory,
reflecting the expansive proliferation of different working mem-
ory theories over the last century (Engle, 2002; Unsworth and
Engle, 2007; Baddeley, 2012; Cowan, 2017; Oberauer, 2019).
Here, we modeled working memory using diverse, widely used
clinical tests, which can capture the prominent covariance
among working memory tests that exists regardless of their theo-
retical assumptions (Wilhelm et al., 2013; Chen et al., 2019) or
their canonical status as “clinical” or “laboratory” tests (Shelton
et al., 2009). Many previous studies have relied on tests from a
specific measurement paradigm.

Our findings suggest that working memory is constitutive of
g and that we can build on our understanding of the mechanisms
of domain-general cognition by reframing individual differences
in g as being largely driven by individual differences in working
memory. Although working memory is a complex cognitive abil-
ity associated with the interactions among widely distributed
brain regions (Christophel et al., 2017), our data, and data from
others (Pineda-Pardo et al., 2016), highlight the importance of
efficient, direct connectivity between the prefrontal and posterior
cortices in particular. This is consistent with the emphasis of the
fronto-parietal integration theory on the arcuate fasciculus and
fronto-parietal connectivity (Jung and Haier, 2007). This may be
the case for at least two reasons: First, direct projections from the
prefrontal cortex to posterior brain regions allow goals and task
demands represented in the former to efficiently modulate men-
tal representations encoded in the latter (Miller et al., 2018).
Second, because the prefrontal and posterior cortices both
encode stimulus information during working memory tasks
(Ester et al., 2015), the direct connections between them might

Table 2. Association between model-predicted factors and observed g in the
WU cohort

Model-
predicted
factor score

Correlation
(r)

Hierarchical
regression
(sr)

Correlation
(r) in
subsample

Hierarchical
regression
(sr) in
subsample

g/Gwm 0.42*** 0.26** 0.50*** 0.23*
Gv 0.24* 0.06 0.20* �0.03
Gv-bifactor 0.15 �0.01 0.12 �0.11
Gl 0.31** 0.21* 0.51*** 0.23*
Gl-bifactor �0.06 0.01 �0.05 0.04
Gs 0.41*** 0.25* 0.47*** 0.19
Gs-bifactor 0.15 �0.02 0.14 �0.07

Subsamples in columns 4 and 5 were determined by removing subjects whose lesion masks did not intersect
with the lesion-behavior map in question. The sample sizes for these more restricted subsample analyses
were: g/Gwm (n= 67), Gv (n= 50), Gv-bifactor (n= 62), Gl (n= 34), Gl-bifactor (n= 49), Gs (n= 74), Gs-
bifactor (n= 66). Statistical significance was determined using permutation tests; *p, 0.05, **p, 0.01,
***p, 0.001.

Figure 7. Seed-based fiber tractography. The white matter regions of the lesion behavior
map of general cognitive ability/working memory (g/Gwm) were segmented into clusters
and then each cluster was submitted as a seed region-of-interest in a deterministic fiber trac-
tography analysis. This analysis produced voxel-wise maps indicating the number of white
matter streamlines passing through each voxel that originated from the seed region-of-inter-
est. The tractography maps were summed into a single map (depicted in a red-yellow pal-
ette, where more yellow colors indicate a higher number of streamlines), thresholded at 200
streamlines, and compared with the Human Connectome Project White Matter Atlas. There
was a prominent involvement of the arcuate fasciculus (light blue).
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facilitate the protection of representations from disruption by
ongoing sensory processing (Jacob and Nieder, 2014). The region
of the brain with the highest density of these fronto-posterior
projections is located in the left temporo-parietal white matter
region highlighted by the present study (Owen et al., 2015),
which may be why this region is important for working memory.

Our results suggest that g is a “left hemisphere dominant”
ability. This could reflect the relative importance of sequential
and/or logical information processing, for which the left hemi-
sphere is specialized (Gazzaniga et al., 2014), for domain-general
cognition. Alternatively, it may be the case that our neuropsy-
chological tests rely heavily on verbal processing, including the
comprehension of test instructions. It remains unclear whether
the present results demonstrate a true left hemisphere domi-
nance for g, or whether this finding is derivative to the way tasks
are typically instructed to persons.

Our results highlight the importance of white matter to a
greater extent than gray matter (Li et al., 2009; Tang et al., 2010).
Our lesion-behavior mapping analyses were sufficiently powered
to detect findings over much of the cerebral cortex, yet identified
deep white matter regions as the most strongly associated with g.
Although white matter sites are difficult to relate to specific func-
tional brain networks using normative data, white matter lesions
have been observed to disrupt functional networks, a mechanism
which might have contributed to the current findings (Griffis et
al., 2019). Prior work has shown that the functional connectivity
between frontal and parietal brain regions is associated with
diverse cognitive tasks (Duncan, 2010), cognitive control (Yeo et
al., 2011), and g (Vakhtin et al., 2014; Santarnecchi et al., 2017;
Dubois et al., 2018), possibly reflecting the involvement of execu-
tive functions, including working memory, in multiple forms of
cognition (Camilleri et al., 2018). Consistent with the results we
report here, previous lesion studies of g have also implicated left
fronto-parietal white matter; however, previous studies have also
implicated larger clusters of voxels, potentially because of the use
of mass-univariate approaches (Glascher et al., 2010; Woolgar et
al., 2010; Barbey et al., 2012, 2013). The current findings sharpen
previous work by showing a particular emphasis on the arcuate
fasciculus.

This study highlights the need for process specificity in study-
ing brain-behavior relationships. We show that the domain-gen-
eral influence of working memory contributes to individual
differences in other mental functions. Without correcting for the
influence of working memory, research that aims to focus on a
specific cognitive process may be unintentionally studying the
confluence of working memory and the intended domain of
study, rather than the unique aspects of the targeted process. We
believe this concept has been borne out in several language stud-
ies highlighting the importance of the same left temporo-parietal
white matter region that we identified here (Dronkers et al.,
2004; Geva et al., 2012; Baldo et al., 2013; Butler et al., 2014;
Henseler et al., 2014; Harvey and Schnur, 2015; Yourganov et al.,
2016; Griffis et al., 2017; Diachek et al., 2020). Although language
tasks in our sample also implicate this left temporo-parietal
region, this region is absent upon regressing out the influence of
g. The integration of quantitative cognitive models into cognitive
neuroscience may become increasingly important in elucidating
domain-specific brain-behavior relationships.

There are important caveats to our conclusions. Our latent
variable for working memory was estimated by collapsing across
verbal and visuospatial modalities. Although a meta-analysis of
fMRI studies has shown that this conjunction into “supramodal”
working memory is associated with fronto-parietal activity

(Rottschy et al., 2012), verbal and Gvwm can also constitute their
own subdomains of working memory. There was only one test of
Gvwm widely available in the Iowa sample, and so we were not
able to estimate separate latent variables for each domain.
Relatedly, working memory is a multifaceted construct and fur-
ther research would be required to evaluate whether a specific as-
pect of working memory drives its association with g. Additional
research will be needed to further evaluate the contribution of
working memory to g relative to other aspects of executive func-
tioning (Friedman et al., 2006), and to explore potential sex
(Haier et al., 2005) and lesion-mechanism differences in the rela-
tionships among g, working memory, and neuroanatomy.
Moreover, future research could seek to clarify the causal direc-
tion of the association between g and lesions to the posterior
white matter region identified (Modig Wennerstad et al., 2010).
Finally, we wish to emphasize the possibility that future studies
with larger samples or different tests, or case-studies with very
focal lesions, might find some degree of dissociation between g
and working memory.

In summary, the present study provides evidence that work-
ing memory is constitutive of general cognitive ability (g). We
present the largest lesion-behavior mapping analysis of g to date
that combines SEM and multivariate lesion-behavior mapping,
and where further support is garnered by predicting g from
lesion location in an independent cohort. These results inform
the study of domain-general cognition.
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