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Abstract
The passive and active motion of micron-sized tracer particles in crowded liquids and inside living
biological cells is ubiquitously characterised by ‘viscoelastic’ anomalous diffusion, in which the
increments of the motion feature long-ranged negative and positive correlations. While viscoelastic
anomalous diffusion is typically modelled by a Gaussian process with correlated increments,
so-called fractional Gaussian noise, an increasing number of systems are reported, in which
viscoelastic anomalous diffusion is paired with non-Gaussian displacement distributions.
Following recent advances in Brownian yet non-Gaussian diffusion we here introduce and discuss
several possible versions of random-diffusivity models with long-ranged correlations. While all
these models show a crossover from non-Gaussian to Gaussian distributions beyond some
correlation time, their mean squared displacements exhibit strikingly different behaviours:
depending on the model crossovers from anomalous to normal diffusion are observed, as well as a
priori unexpected dependencies of the effective diffusion coefficient on the correlation exponent.
Our observations of the non-universality of random-diffusivity viscoelastic anomalous diffusion
are important for the analysis of experiments and a better understanding of the physical origins of
‘viscoelastic yet non-Gaussian’ diffusion.

1. Introduction

Gaussianity is so fundamentally engrained in statistics that we almost take it for granted. The law of large
numbers, merging into the central limit theorem (CLT) states that the sum of independent and identically
distributed random variables with finite variance necessarily converges to a Gaussian (‘normal’) limit
distribution. A prime example is the Gaussian probability density function (PDF)
P(x, t) = (4πDt)−1/2exp(−x2/[4Dt]) of Brownian motion that also encodes the mean squared displacement
(MSD) 〈x2(t)〉 = 2Dt with the diffusion coefficient D [1, 2].

The powerful CLT notwithstanding, a growing number of ‘Brownian yet non-Gaussian’ processes are
being reported. The original case was made by the Granick group for colloid motion along nanotubes and
tracer diffusion in gels [3]. Similar behaviour is found for nanoparticle diffusion in nanopost arrays [4],
diffusion of colloidal particles on fluid interfaces [5], and colloid motion on membranes as well as in
suspension [6]. For further examples see [7, 8]. Typically, the shape of the PDF in these cases is exponential
(‘Laplace distribution’), while in some cases a crossover from exponential to Gaussian is observed beyond
some correlation time [3]. 7 An invariant exponential PDF can be explained by ‘superstatistics’ in which the

7 It is quite likely that in the other examples a similar crossover to a Gaussian PDF is simply beyond the measurement window.
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measured PDF is viewed as an ensemble average over the Gaussian PDFs of individual particles, weighted by
a diffusivity distribution p(D) [3, 9]. The physical rationale in superstatistics is that individual particles
move in patchy regions with different D and the ensemble is thus characterised by p(D). The mathematical
concept itself is similar to switching models developed in the theory of stochastic processes [1, 2]. We also
mention similar approaches based on heterogeneity of parameters, such as fluctuating friction [10] and
fluctuating mass [11]. A more advanced modelling approach is associated with the concept of generalised
grey Brownian motion [12] and leads to the underdamped HEBP model which displays anomalous
diffusion at short times and normal diffusion at long times [13]. The crossover to a Gaussian can be
described by the ‘diffusing-diffusivity’ (DD) picture, in which the diffusion coefficient is assumed to be
stochastically varying in time. The inherent correlation time of the stationary diffusivity process then
determines the crossover of the PDF to a Gaussian at long times whose width is determined by an ‘effective’
diffusion coefficient. Different versions of DD models have been discussed, all encoding a short time
non-Gaussian and long time Gaussian PDF [7, 14–20]. Brownian yet non-Gaussian dynamics was also
derived from extreme value arguments [21] and for two models with ongoing tracer multimerisation [22].
Several random-diffusivity models based on Brownian motion were discussed in [23, 24].

Micron-sized tracers in crowded in vitro liquids [25, 26], inside live biological cells [27–30], and lipids
in bilayer membranes [31] perform ‘viscoelastic’ anomalous diffusion with MSD 〈x2(t)〉 � DHt2H and
Hurst exponent 0 < H < 1/2. A hallmark of viscoelastic diffusion is the anticorrelation of the passive tracer
motion [25–32]. 8 Viscoelastic diffusion at equilibrium is described by the fractional Langevin equation, a
special form of the generalised Langevin equation for power-law friction kernel, subject to the Kubo
generalised fluctuation–dissipation theorem [32–34]. Fractional Brownian motion (FBM) [33, 35, 36] in
the subdiffusive regime follows from the FLE in the overdamped limit. However, FBM can also be seen as a
stochastic process fuelled by ‘external’ (i.e., unbalanced by dissipation) noise. In fact, there are two generic
classes of physical systems described in terms of the Langevin approach. For the first class, such as
viscoelastic diffusion in a thermalised system, the fluctuation–dissipation relation between the noise and
the friction term holds. These are systems, which are coupled to a thermostat and thus at equilibrium—or
close to equilibrium when external driving forces are added. The noise in the Langevin equation is then
called ‘intrinsic’ or ‘natural’. The second class of systems are those in which the fluctuation–dissipation
relation does not hold. These are open systems that are far from equilibrium and are driven by ‘external’
noise. The concept of external noise is widely used in the theory of chaos, non-equilibrium phase
transitions, turbulence, active media, etc [37]. Respectively, FBM can be described either by the fractional
Langevin equation with intrinsic fractional Gaussian noise obeying the fluctuation–dissipation relation—or
by the Langevin equation with external fractional Gaussian noise. Biological systems are typically far from
equilibrium, and the fluctuation–dissipation relation does not hold [38, 39]. Especially, in the highly
non-equilibrium environment of living cells the Langevin equation approach with external noise is
meaningful. Active, superdiffusive particle transport in live cells shows positive correlations over appreciable
time ranges [30, 40] and may thus be captured by positively correlated FBM dynamics and Hurst exponent
1/2 < H < 1. Indeed, the amplitude fluctuations of the single-trajectory power spectral density for the
superdiffusive vacuole motion studied in [30, 40] were shown to be consistent with analytical predictions
[41]. FBM by definition is a Gaussian process, that is, the underlying fractional Gaussian noise has a
Gaussian amplitude distribution [35, 36]. Yet in a number of systems characterised by viscoelastic
anomalous diffusion it was shown that the tracer particle PDF is non-Gaussian, including tracer motion in
live bacteria and yeast cells [42], protein diffusion in lipid bilayer membranes [43, 44] as well as in active
vesicle transport in amoeba cells [40]. For invariant non-Gaussian shapes of the PDF ‘viscoelastic yet
non-Gaussian’ diffusion can be modelled by generalised superstatistics [42, 45]. Yet in the above sub- and
superdiffusive systems we expect the PDF to cross over to Gaussian statistics beyond some system-specific
correlation time. The description of this phenomenon is the goal of this paper.

With experimental techniques such as in vivo single-particle tracking, experimentalists routinely obtain
ever more precise insights into molecular processes in biological cells, e.g., how single proteins are produced
and diffusive to their target [46, 47], how cargo such as messenger RNA molecules or vesicles are
transported [30, 40, 48–50], or how viruses reach the nucleus of an infected cell [51]. Such data allow us to
extend models for gene regulation [52] or motor-based transport [53] and ultimately allow more accurate
predictions for viral infectious pathways, drug delivery, or gene silencing techniques in live cells or in other
complex liquids.

We here address the immanent question for a minimal model of non-Gaussian viscoelastic diffusion
with finite correlation time. Analysing different extensions of Brownian DD models, now fuelled by

8 We use the term ‘viscoelastic’ to distinguish the long-range correlated anomalous diffusion considered here from other anomalous
diffusion processes such as continuous time random walks or scaled Brownian motion [33].
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correlated Gaussian noise, we demonstrate that the similarity of these models in the Brownian case
disappears in the anomalous diffusion case. We present detailed results for this non-universality in the
viscoelastic anomalous diffusion case in terms of the time evolution of the MSDs, the effective diffusivities,
and the PDFs of these processes. Specifically, we show that in some cases anomalous diffusion persists
beyond the correlation time while in others normal diffusion emerges. Comparing our theoretical
predictions with experiments will allow us to pinpoint more precisely the exact mechanisms of viscoelastic
yet non-Gaussian diffusion with its high relevance to crowded liquids and live cells.

2. FBM-generalisation of the minimal diffusing-diffusivity model

We first analyse the FBM-generalisation of our minimal DD model [7], whose Langevin equation for the
particle position reads

dx/dt =
√

2D(t)ξH(t) (1)

in dimensionless form (see appendix A). The dynamics of D(t) is assumed to follow the square of an
auxiliary Ornstein–Uhlenbeck process Y(t) [7],

D(t) = Y2(t), dY/dt = −Y + η(t). (2)

In the above ξH(t) represents fractional Gaussian noise, understood as the derivative of smoothed FBM with
zero mean and autocovariance 〈ξ2

H〉τ ≡ 〈ξH(t)ξH(t + τ)〉 [35, 36]

〈
ξ2

H

〉
τ
= (2δ2)−1

(
|τ + δ|2H − 2|τ |2H + |τ − δ|2H

)
, (3)

decaying as 〈ξ2
H〉τ ∼ H(2H − 1)τ 2H−2 for τ longer than the physically infinitesimal (smoothening) time

scale δ [35]. η(t) is a zero-mean white Gaussian noise of unit variance. We assume equilibrium initial
conditions for Y(t), i.e., Y(0) is taken randomly from the equilibrium distribution feq(Y) = π−1/2 exp(−Y2)
[7, 17]. Thus the process Y(t) is stationary with variance 〈Y2〉 = 〈D〉 = 1/2. The autocorrelation is
〈Y(t)Y(t + τ )〉 = exp(−|τ |)/2 with unit correlation time in our dimensionless units. From equation (1) we
obtain the MSD (see appendix B)

〈x2(t)〉 = 4

∫ t

0
(t − τ)K(τ)〈ξ2

H〉τdτ (4)

with kernel K(τ) = 〈
√

D(t1)D(t2)〉 = (1/π)[b(τ) + a(τ) arctan(a(τ)/b(τ))], where τ = |t1 − t2|,
a(τ ) = e−τ , and b(τ) =

√
1 − a2(τ).

We first demonstrate how to get the main results for the MSD from simple estimates at short and long
times compared to the correlation time of the D(t) dynamics. As the diffusion coefficient does not change
considerably at times shorter than the correlation time, K(0) ≈ 〈

√
D(t)D(t)〉 = 〈D〉 = 1/2, equation (4)

yields

〈x2(t)〉 ∼ 4〈D〉
∫ t

0
(t − τ)〈ξ2

H〉τdτ = t2H . (5)

For long times t 	 1, more care is needed: as we will see, the long-time limit is different for the persistent
and anti-persistent cases. For the persistent case H > 1/2 we assume that the main contribution to the
integral in equation (4) at long times comes from large τ , since the noise autocorrelation decays very slowly.
We thus approximate K(τ ) ≈ 〈|Y(t)|〉〈|Y(t + τ )|〉 = 〈|Y(t)|〉2 = 1/π. Then,

〈x2(t)〉 ∼ 4〈|Y(t)|〉2

∫ t

0
(t − τ)〈ξ2

H〉τ = (2/π)t2H . (6)

In the anti-persistent case H < 1/2 we split equation (4) into two integrals, 4t
∫ t

0 K(τ)〈ξ2
H〉τdτ and

−4
∫ t

0 τK(τ)〈ξ2
H〉τdτ . In the first integral at long times it is eligible to replace the upper limit of the integral

by infinity, since it converges9. The second integral produces a subleading term, since it is bounded from
above by Ct2H, C being a constant. We therefore have the following asymptotic result for the MSD in the
anti-persistent case at long times,

〈x2(t)〉 ∼ 2Defft, (7)

with Deff = limδ→0 2
∫ +∞

0 K(τ)〈ξ2
H〉τdτ . Thus, the FBM–DD model demonstrates surprising crossovers in

the behaviour of the MSD. In the persistent case the MSD scales as t2H at both short and long times, but

9 If the diffusivity is constant, then K(τ) is constant as well, and this approximation cannot be used, since necessarily
∫ ∞

0 〈ξ2
H〉τ dτ = 0

in the antipersistent case.
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Figure 1. Dynamics of the FBM–DD model. Left: comparison between simulations of equation (1) and the exact MSD (C.13)
for H = 1 as well as numerical integration of (4) for different H. The MSD approaches the limits (dashed lines) t2H at short times
and, at long times, anomalous [(2/π)tx2H] or normal [2Deff t] scaling for super- and subdiffusion, respectively. Middle: effective
diffusion coefficient as function of H. The theoretical curve [equation (D.10) for H < 1/2 and 1/π for H > 1/2] shows a distinct
discontinuity at the Brownian value H = 1/2. Results from numerical evaluation of equations (D.1), (4), and simulations are
shown to gradually approach the theoretical values (see text and appendix D). Right: crossover of the PDF from short-time
non-Gaussian form with exponential tails to long-time Gaussian. The crossover is described in terms of the kurtosis (see
figure E1).

with different diffusion coefficients. This is in a sharp contrast with the Brownian yet non-Gaussian
diffusion characterised by the same, invariant diffusivity at all times. In the antipersistent case the situation
is even more counterintuitive: the subdiffusive scaling of the MSD at short times crosses over to normal
diffusion at long times.

The behaviour of the MSD is shown in figure 1. For superdiffusion, the change of the diffusivity
between the short and long time superdiffusive scaling � t2H is distinct. Excellent agreement is observed
between the exact and numerical evaluation for H = 1 and H = 0.7, 0.8, respectively. The exact analytical
expression for H = 1 is derived in appendix C. In the subdiffusive case simulations and numerical
evaluation nicely coincide and show the crossover from subdiffusion to normal diffusion. Figure 1 also
shows the effective long time diffusivity. For superdiffusion the constant value 2/π ≈ 0.63 [see
equation (6)] is distinct from the H-dependency for subdiffusion [H < 1/2, see equation (D.10)]. For the
Brownian case, Deff = 1/2, leading to a distinct discontinuity at H = 1/2. Note the slow convergence to the
theory of simulations results and numerical evaluation of the respective integrals (see appendix D for
details).

Given the above arguments that at short times (t � 1) the diffusivity is approximately constant, we
expect that in this regime the PDF corresponds to the superstatistical average of a single Gaussian over the
stationary diffusivity distribution of the Ornstein–Uhlenbeck process,

P (x, t) =
(
π〈x2 (t)〉1/2

ST

)−1
K0

(
x/〈x2 (t)〉1/2

ST

)
, (8)

where 〈x2(t)〉ST = t2H and K0 is the modified Bessel function of the second kind [7]. In the relevant large
value limit of the scaling variable z = xt−H the Bessel function has the expansion K0(z) ∼

√
π/(2z) exp(−z)

and thus represents the desired exponential tails, with a power-law correction [7]. 10 For long times (t 	 1)
the diffusivity correlations decay and the Gaussian limit P(x, t) = G(〈x2(t)〉LT) is recovered, where we
introduce the general definition

G(〈x2(t)〉) = (2π〈x2(t)〉)−1/2 exp
(
−x2/[2〈x2(t)〉]

)
. (9)

For H > 1/2, the long-time MSD is 〈x2(t)〉LT = (2/π)t2H while for H < 1/2, 〈x2(t)〉LT = 2Defft. The
crossover behaviour of P(x, t) is indeed corroborated in figure 1 for different values of H.

How do these observations compare to generalisations of other established random-diffusivity models?
While in the normal-diffusive regime these models encode very similar behaviour, we show now that
striking differences in the dynamics emerge when the motion is governed by long-range correlations.

3. FBM-generalisation of the Tyagi–Cherayil (TC) model

The generalisation of the Tyagi–Cherayil (TC) model [16] in dimensionless units reads

dx/dt =
√

2Z(t)ξH(t), dZ/dt = −Z(t) + η(t). (10)

10 Such sub-dominant power-law corrections may indeed account for the deviations from the pure exponential shape of the
PDF reported in [3]. However, many experimental data sets may not have sufficient resolution for smaller z values to pin down
sub-dominant corrections.
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Figure 2. Dynamics of the FBM–TC model. Left: crossover dynamics of the MSD, showing simulations (symbols) and the
solution (E.10). For both sub- and superdiffusion the long-time scaling is Brownian. Middle: continuous variation of the effective
diffusion coefficient with H. The exact result (E.14) gradually converges to the theoretical curve for different δ and t. Right:
crossover of the PDF from short-time non-Gaussian shape with exponential tails to a long-time Gaussian. The crossover is
described in terms of the kurtosis in appendix E.

This expression is obtained from the original equations (appendix E) via the transformations t → t/τ c and

x → x/(σ1σ2τ
H+1/2
c ). Using the same notation as before, η represents zero-mean white Gaussian noise and

ξH(t) is fractional Gaussian noise with Hurst exponent H.
The TC model looks quite similar to the minimal DD model as stochastically modulated Brownian

motion, however, there exists a decisive difference: in equations (10) the OU-process Z(t) enters without the
absolute value used in the minimal DD model (1). In expression (10) the prefactor Z(t) is therefore not a
diffusion coefficient (by definition, a non-negative quantity). In the case H = 1/2, the analysis in [16]
shows that on the level of the diffusion equation the quantity Z2(t) (in our notation here) takes on the role
of the diffusion coefficient, and in this sense is thus well defined. The extension to fractional Gaussian noise
therefore appears justified, yet we stress that the process (10) is intrinsically different from the FBM–DD
model (1). As our discussion shows, the close similarity between the TS and DD models in the case
H = 1/2 is replaced by a distinct dissimilarity in the emerging dynamics for H = 1/2.

The MSD of the FBM–TC model reads

〈x2(t)〉 = 4

∫ t

0
(t − τ)K(τ)〈ξ2

H〉τdτ , (11)

where the kernel K(τ) is defined as

K(τ) = 〈Z(t1)Z(t2)〉 = exp(−τ)/2. (12)

It is shown in figure B1 along with the corresponding Langevin simulations.
Before presenting the exact solution, let us apply an analogous reasoning for the behaviour of the MSD

as developed for the FBM–DD model above. Namely, at short times we approximate K(τ ) ≈ 〈Z2〉 = 1/2.
Then equation (11) becomes 〈x2(t)〉 ≈ 4〈D〉

∫ t
0 (t − τ)〈ξ2

H〉τdτ ∝ t2H . At long times the MSD can be

composed of the two parts 〈x2(t)〉 = 4t
∫ t

0 K(τ)〈ξ2
H〉τdτ − 4

∫ t
0 τK(τ)〈ξ2

H〉τdτ . The upper limit of the first
integral can be replaced by infinity because the first integral converges in both persistent and anti-persistent
cases at long times [K(τ ) decays to 0 exponentially, different from the FBM–DD model]. The second term
is subleading in comparison to the first term. As a result the MSD at long times scales linearly in time,
〈x2(t)〉 ∼ 2Deff t, for both sub- and superdiffusion, where Deff = limδ→0 2

∫∞
0 K(τ)〈ξ2

H〉τdτ .
Indeed, from the exact form of the MSD in appendix E we obtain the limiting behaviours

〈x2(t)〉 ∼

⎧⎨
⎩

t2H , t → 0

Γ(2H + 1)t, t →∞
. (13)

Thus for both sub- and superdiffusion this model shows a crossover from anomalous to normal diffusion,
as demonstrated in figure 2. The effective long-time diffusion coefficient in this model varies continuously
as Deff = Γ(2H + 1)/2 for all H. In particular, this means that for H = 1/2, Deff = 1/2. Figure 2 shows the
exact match of the simulations results and the numerical evaluation at finite integration step.

The PDF at short times coincides with the superstatistical limit in expression (8) above, as shown
explicitly in equation (E.15). At long times we recover the Gaussian P(x, t) = G(Γ(2H + 1)t). Note that for
H = 1 the noise is equal to unity at all times and the dynamics of x(t) is completely determined by the
superstatistic encoded by the OU-process Z(t). The tails of the PDF are thus always exponential, reflected by
the fact that the kurtosis has the invariant value 9 (see appendix E).

5
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Despite the strong similarity between the DD and TC models in the Brownian case, for correlated
driving noise their detailed behaviour is strikingly dissimilar, due to the different asymptotic forms of the
kernel K(τ ) (figure B1).

4. FBM-generalisation of the switching (S) model

The third case model we consider here is the S-model with generalised noise [19],

dx/dt =
√

2θ(t)ξH(t), θ(t) =
[

D1/2
2 − D1/2

1

]
n(t) + D1/2

1 , (14)

where n(t) is a two-state Markov chain switching between the values {0, 1} and ξH(t) represents again
fractional Gaussian noise. The constants Di are the diffusivities in the two states. The switching rates are k12

and k21, such that the correlation time is τ c = 1/(k12 + k21). Note that the S-model (14) for white Gaussian
noise with H = 1/2 is well known in the theory of stochastic processes [1, 2]. In nuclear magnetic
resonance literature it is known as the Kärger model [20, 54].

From the first and second moments of the process θ(t), equations (F.5) and (F.6), we calculate the MSD
of the process. In the Brownian limit H = 1/2 the MSD has a linear dependence at all times,

〈x2(t)〉 = 2(k21D1 + k12D2)τct. (15)

This result was also obtained in [20]. For the general case with the correlation function based on fractional
Gaussian noise, we have

〈x2(t)〉 = 4

∫ t

0
(t − τ) K (τ) 〈ξ2

H〉τdτ

= 2a1 e−t/τc t2H + 2a2t2H + 4Ha1τ
2H−1
c γ

(
2H, t/τc

)
t + 2 (1 − 2H) a1τ

2H
c γ

(
2H + 1, t/τc

)

− 2a1 (t + 1) δ2H

(H + 1) (2H + 1)
− 2a2δ

2H

(H + 1) (2H + 1)
+ o

(
δ2H

)
, (16)

where K(τ) = 〈θ(t1)θ(t2)〉, a1 = (D1/2
2 − D1/2

1 )2k12k21τ
2
c , and a2 = (k21D1/2

1 + k12D1/2
2 )2τ 2

c . At short times
t � τ c we find the scaling behaviour

〈x2(t)〉ST ∼ 2(a1 + a2)t2H = 2(k21D1 + k12D2)τct2H . (17)

At long times t 	 τ c the same scaling law is obtained, but with a different prefactor for the persistent case
(H > 1/2), 〈

x2(t)
〉

LT
∼ 2a2t2H = 2

[
k21D1/2

1 + k12D1/2
2

]2
τ 2

c t2H . (18)

In contrast, for the anti-persistent case (H < 1/2), we derive a crossover to normal diffusion,

〈
x2(t)

〉
LT

� 2Defft〈x2(t)〉 ∼ 2
[
Γ(2H + 1)τ 2H−1a1

]
t. (19)

From equations (15), (18), and (19), the long-time effective diffusivity can be obtained as

Deff =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(
k21D1/2

1 + k12D1/2
2

)2
τ 2

c , 1/2 < H � 1

(k21D1 + k12D2) τc, H = 1/2

Γ (2H + 1)
(

D1/2
2 − D1/2

1

)2
k12k21τ

2H+1
c , 0 < H < 1/2

. (20)

The crossover behaviours of the MSD in the persistent and anti-persistent cases, analogous to the
difference in the long-time scalings of the FBM–DD model, are displayed in figure 3. We also see some
similarities between the FBM–S and FBM–DD models for the effective diffusivity. For the FBM–S model an
H-dependent behaviour for H < 1/2 is followed by a discontinuity at H = 1/2 and then a constant value
for H > 1/2. The results of the MSD for finite values δ and t are given in appendix F.

Next we discuss the PDF and kurtosis. At short times the continuous superstatistic of the previous cases
is reduced to the discrete case of two superimposed Gaussians, producing the non-exponential form

P (x, t) = P
(

x, t|θ (t) = D1/2
1

)
× Pr

{
θ (t) = D1/2

1

}
+ P

(
x, t|θ (t) = D1/2

2

)
× Pr

{
θ (t) = D1/2

2

}

=
[
k21G

(
2D1t2H

)
+ k12G

(
2D2t2H

)]
τc. (21)
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Figure 3. Dynamics of the FBM–S model. Left: crossover dynamics of the MSD showing simulations (symbols) and result (16).
For sub- and superdiffusion, respectively, the long-time scaling is t2H and 2Deff t. Middle: Deff as function of H. The theoretical
behaviour (20) shows a distinct discontinuity around the Brownian case H = 1/2. The gradual convergence of simulations and
results (F.7) and (F.8) for different t and δ are shown. Right: initially (t = 0.1, main panel) the non-Gaussian shape is composed
of two Gaussians with different diffusivity. At long times (t = 100, inset) a single Gaussian emerges. The crossover is described in
terms of the kurtosis in appendix F.

At long times a single Gaussian dominates,

P(x, t) ∼ G
(
〈x2(t)〉LT

)
, (22)

where 〈x2(t)〉LT is given by equations (18) and (19) for the super- and subdiffusive cases, respectively.
Figure 3 shows the superimposed two Gaussians at short times and the single Gaussian at long times.

5. Conclusions

Viscoelastic anomalous diffusion with long-ranged correlations is a non-Markovian, natively Gaussian
process widely observed in complex liquids and the cytoplasm of biological cells. Most data analyses have
concentrated on the MSD and the displacement autocorrelation function. Yet, once probed, the PDF in
many of these systems turns out to be non-Gaussian, a phenomenon ascribed to the heterogeneity of the
systems. Building on recent results for Brownian yet non-Gaussian diffusion, in which the non-Gaussian
ensemble behaviour is understood as a consequence of a heterogeneous diffusivity coefficient, we here
analysed three different random-diffusivity models driven by correlated Gaussian noise.

Despite the simplicity of these models we observed surprising behaviours. Thus, while in the Brownian
case all models display a linear MSD with invariant diffusion coefficient, in the correlated case a crossover
occurs from short to long-time behaviours, with respect to the intrinsic correlation times. In particular,
whether the long-time scaling of the MSD is anomalous or normal, depends on the specific model.
Moreover, the effective diffusivity exhibits unexpectedly complex behaviours with discontinuities in the
FBM–DD and FBM–S models. We note here that an additional crossover may come into play when a cutoff
time scale of the fractional Gaussian noise becomes relevant [55].

In all cases a crossover from an initial non-Gaussian to a Gaussian PDF occurs. We showed that the
FBM–S model is different from the other models in that it encodes an initial superposition of two
Gaussians, turning into a single Gaussian at long times. We note that while the short-time exponential
shape may point towards a universal, extreme-value jump-dominated dynamics [21], data also show
stretched-Gaussian shapes [43], as well as long(er)-time convergence towards an exponential [8]. Clearly,
the phenomenology of heterogeneous environments is rich and needs further investigation.

From an experimental point of view, the behaviours unveiled here may be used to explore further the
relevance of the different possible stochastic formulations of random-diffusivity processes. For instance, in
artificially crowded media one may vary the Hurst exponent by changing the volume fraction of crowders
or the tracer sizes, or add drugs to change the system from super- to subdiffusive [30]. Comparison of the
resulting scaling behaviours of MSD and associated effective diffusivity may then yield decisive clues.

The results found here will also be of interest in mathematical finance. In fact, the original DD model is
equivalent to the Heston model [56] used to describe return dynamics of financial markets. Fractional
Gaussian noise in mathematical finance is used to include an increased ‘roughness’ to the emerging
dynamics [57]. The different models studied here could thus enrich market models.

The CLT is a central dogma in statistical physics, based on the fact that the entry variables are identically
distributed. For inhomogeneous environments, ubiquitous in many complex systems, new concepts
generalising the CLT will have to be developed. While random-diffusivity models are a start in this direction
and provide relevant strategies for data analyses [58], ultimately more fundamental models including the
quenched nature of the disordered environment [23, 59] and extensions of models for non-equilibrium
situations [60] need to be conceived.
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Appendix A. Dimensionless units for the FBM–DD model

In dimensional form the starting equations governing the evolution of the position x(t) of the diffusing
particle in the fractional version of the minimal DD-model read

d

dt
x(t) =

√
2D(t)σ1ξH(t), D(t) = Y2(t),

d

dt
Y(t) = − Y

τc
+ σ2η(t). (A.1)

Here D(t) is the diffusion coefficient of dimension [D] = cm2 s−1, ξH represents fractional Gaussian noise
with the Hurst index H ∈ (0, 1] whose dimension is [ξH] = sH−1 and whose correlation function reads [35]

〈ξH (t) ξH (t + τ)〉 ≡ 〈ξ2
H〉τ =

(
2δ2

)−1 (
(τ + δ)2H − 2τ 2H + |τ − δ|2H

)
. (A.2)

Moreover, σ1 in equation (A.1) is the noise amplitude of dimension [σ1] = s1/2−H. Y(t) is an auxiliary
Ornstein–Uhlenbeck process with correlation time τ c, η(t) is a white Gaussian noise with zero mean and
unit variance. σ2 of units [σ2] = cm s−1 is the noise amplitude associated with η(t). To simplify the
calculations and to obtain a more elegant formulation we introduce dimensionless variables according to
t′ = t/t0 and x′ = x/x0. Equations (A.1) then become

dx′

dt′
=

√
2D(t0t′)

t0σ1

x0
ξH (t0t′), D(t0t′) = Y2(t0t′),

dY

dt′
= − Y

τc/t0
+ σ2t0η(t0t′).

Noting that for the Gaussian noise sources we have ξH(t0t′) = tH−1
0 ξH(t′) and η(t0t′) = t−1/2

0 η(t′) we rewrite
equations (A.1) as

dx′

dt′
=

√
2D(t′)ξH(t′), D(t′) = Y2(t′),

dY

dt′
= − Y

τ c
+ σ2η(t′),

where

D =
σ2

1 t2H
0

x2
0

D, Y =
σ1tH

0

x0
Y , τ c =

τc

t0
, σ2 =

σ1t1/2+H
0

x0
σ2.

Now, we choose the temporal and spatial scales such that τ c = σ2 = 1, to find

t0 = τc, x0 = σ1σ2τ
1/2+H
c .

With this choice of units, the stochastic equations of our minimal FBM–DD model are then given by
equations (1) and (2) of the main text.

Appendix B. Calculation of the integral kernel K(τ )

Introducing a(τ ) = e−τ and b(τ) =
√

1 − a2(τ) we write K(τ) in equation (4) of the main text as

K(τ ) = 〈|Y(t1)‖Y(t2)|〉τ=|t2−t1|

=

∫ ∞

−∞
dY1

∫ ∞

−∞
dY2|Y1‖Y2|

exp
(
−[Y 2

1 − 2aY1Y2 + Y 2
2 ]/b2

)
πb

=
2

πb

∫ ∞

0
dY1

∫ ∞

0
dY2Y1Y2 exp

(
−Y 2

1 − 2aY1Y2 + Y 2
2

b2

)

+
2

πb

∫ ∞

0
dY1

∫ ∞

0
dY2Y1Y2 exp

(
−Y 2

1 + 2aY1Y2 + Y 2
2

b2

)

=
b

π

∫ ∞

0
dY1

∂

∂a

[∫ ∞

0
dY2 exp

(
−Y 2

1 + Y 2
2

b2
+

2a

b2
Y1Y2

)]

− b

π

∫ ∞

0
dY1

∂

∂a

[∫ ∞

0
dY2 exp

(
−Y 2

1 + Y 2
2

b2
− 2a

b2
Y1Y2

)]

= B1 − B2. (B.1)
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Figure B1. Comparison between simulations of the respective stochastic equations (circles, triangles, and squares) and the exact
autocorrelation function K(τ) (solid curves) of the three diffusing-diffusivity models: FBM–DD [blue, equation (B.4)],
FBM–TC [red, equation (12)], and FBM–S [green, equation (F.6)]. The parameters of the FBM–S model are D1 = 1, D2 = 0.01,
k12 = 3/4, and k21 = 1/4.

Using the integral ∫ ∞

0
exp

(
−px2 − qx

)
dx =

1

2

√
π

p
exp

(
q2

4p

)
erfc

(
q

2
√

p

)
,

where erfc(z) = 1 − erf(z) = 2π−1/2
∫ +∞

z e−t2
dt is the complementary error function, we rewrite B1 and B2

as

B1 =
b

π

∫ ∞

0
dY1 exp

(
−Y2

1

b2

)
∂

∂a

[√
πb

2
exp

(
a2Y2

1

b2

)
erfc

(
−a

b
Y1

)]

=
b2

2
√
π

∫ ∞

0
dY1 exp

(
−Y2

1

b2

)
∂

∂a

[
exp

(
a2Y2

1

b2

)(
1 + erf

(a

b
Y1

))]
, (B.2)

and

B2 =
b

π

∫ ∞

0
dY1 exp

(
−Y2

1

b2

)
∂

∂a

[√
πb

2
exp

(
a2Y2

1

b2

)
erfc

(a

b
Y1

)]

=
b2

2
√
π

∫ ∞

0
dY1 exp

(
−Y2

1

b2

)
∂

∂a

[
exp

(
a2Y2

1

b2

)(
1 − erf

(a

b
Y1

))]
. (B.3)

Plugging equations (B.2) and (B.3) into (B.1) and after some transformations, we get

K(τ) =
b2

√
π

∫ ∞

0
dY exp

(
−Y2

b2

)
∂

∂a

[
exp

(
a2Y2

b2

)
erf

(a

b
Y
)]

=
2a√
π

∫ ∞

0
dYY2 e−Y2

erf
(a

b
Y
)
+

2b

π

∫ ∞

0
dY Y exp

(
−Y2

b2

)

=
1

π

[
b(τ) + a(τ) arctan

(
a(τ)

b(τ)

)]
, (B.4)

which is equation (4) in the main text. This result is verified by simulation of the Ornstein–Uhlenbeck
process in figure B1. We immediately obtain the first-order and second-order derivatives of K(τ ) with
respect to τ ,

K ′(τ) = − 1

π
a(τ) arctan

(
a(τ)

b(τ)

)
, (B.5)

and

K ′′(τ) =
1

π
a(τ)

[
arctan

(
a(τ)

b(τ)

)
+

a(τ)

b(τ)

]
. (B.6)

K(τ), K′(τ) and K′′(τ ) are all monotonic and have the following limits

9
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lim
τ→0

K(τ) =
1

2
, lim

τ→+∞
K(τ) =

1

π
,

lim
τ→0

K ′(τ) = −1

2
, lim

τ→+∞
K ′(τ) = 0,

lim
τ→0

K ′′(τ) = +∞, lim
τ→+∞

K ′′(τ) = 0. (B.7)

Appendix C. Exact MSD for H = 1 in the FBM–DD model

Here we derive the formula for the MSD of the FBM–DD model in the fully persistent limit H = 1. To this
end we use equation (4) of the main text and thus 〈ξ2

H〉 = 1. As result we get

〈x2(t)〉 = 4

π

∫ t

0
dτ(t − τ)

[
b(τ) + a(τ) arctan

(
a(τ)

b(τ)

)]
=

4

π
(tI1 − I2), (C.1)

where

I1 =

∫ t

0
dτ

[
b(τ) + a(τ) arctan

(
a(τ)

b(τ)

)]
(C.2)

and

I2 =

∫ t

0
dττ

[
b(τ) + a(τ) arctan

(
a(τ)

b(τ)

)]
. (C.3)

We first concentrate on I1. Introducing the new variable ϕ such that a(τ) = exp(−τ) = sin ϕ and
b(τ) = cos ϕ, we see that τ = 0 corresponds to ϕ = π/2, while τ = ∞ corresponds to ϕ = 0. With
dτ = −cos ϕ dϕ/sin ϕ we find

I1 =

∫ π/2

ϕt

dϕ
cos ϕ

sin ϕ
[cos ϕ+ sin ϕ arctan (tan ϕ)] =

∫ π/2

ϕt

dϕ

[
cos2 ϕ

sin ϕ
+ ϕ cos ϕ

]
, (C.4)

where ϕt = arcsin(exp(−τ )) with ϕt ∈ (0,π/2). By using formula 1.5.6.15 from [61] we finally obtain

I1 =
π

2
− 2 cos ϕt − ln

(
tan

ϕt

2

)
− ϕt sin ϕt . (C.5)

Now we turn to the integral I2 in equation (C.3). Introducing the indefinite integral

F(τ) =

∫
dτ

[
b(τ) + a(τ) arctan

(
a(τ)

b(τ)

)]

=

∫
dϕ

[
cos2 ϕ

sin ϕ
+ ϕ cos ϕ

]

= −2 cos ϕ− ln
∣∣∣tan

ϕ

2

∣∣∣− ϕ sin ϕ

and integrating I2 by parts yields

I2 = τF(τ)|τ=t
τ=0 −

∫ t

0
F(τ)dτ = −t

(
2 cos ϕt + ln

(
tan

ϕt

2

)
+ ϕt sin ϕt

)
+ I21 + I22 + I23, (C.6)

where

I21 = 2

∫ π/2

ϕt

cos2 ϕ

sin ϕ
= −2 cos ϕt − 2 ln

(
tan

ϕt

2

)
, (C.7)

I22 =

∫ π/2

ϕt

ϕ cos ϕdϕ =
π

2
− cos ϕt − ϕt sin ϕt , (C.8)

and

I23 =

∫ π/2

ϕt

dϕ
cos ϕ

sin ϕ
ln
(

tan
ϕ

2

)
. (C.9)

Introducing the new variables y = tan ϕ
2 and z = tan2 ϕ

2 , our integral I23 becomes

I23 =

∫ 1

tan(ϕt/2)

1 − y2

(1 + y2)y
ln ydy =

∫ 1

tan(ϕt/2)

ln y

y
dy −

∫ 1

tan(ϕt/2)

2y ln y

1 + y2
dy

= −1

2
ln2

(
tan

ϕt

2

)
− 1

2

∫ 1

tan2(ϕt/2)

ln z

1 + z
dz. (C.10)
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Taking into account formula 1.6.3.8 from [61] for the indefinite integral,

∫
ln x

x + a
dx = ln x ln

x + a

a
+ Li2

(
−x

a

)
,

where the polylogarithm is defined as

Lis(z) =
∞∑

k=1

zk

ks
, |z| < 1.

For the integral I23 in equation (C.8) we obtain

I23 = −1

2
Li2(−1) − 1

2
ln2

(
tan

ϕt

2

)
+ ln

(
tan

ϕt

2

)
ln
(

1 + tan2 ϕt

2

)
+

1

2
Li2

(
−tan2 ϕt

2

)
. (C.11)

After replacing Li2(−1) = −π2/12 and plugging equations (C.7), (C.8), and (C.11) into (C.6) we get

I2 = −t
(

2 cos ϕt + ln
(

tan
ϕt

2

)
+ ϕt sin ϕt

)
− 3 cos ϕt − 2 ln

(
tan

ϕt

2

)
+

π

2
− ϕt sin ϕt

+
π2

24
− 1

2
ln2

(
tan

ϕt

2

)
+ ln

(
tan

ϕt

2

)
ln
(

1 + tan2 ϕt

2

)
+

1

2
Li2

(
−tan2 ϕt

2

)
. (C.12)

Now, with ϕt = arcsin(exp(−t)) = arcsin a(t), ϕt ∈ (0,π/2), cos ϕt = b(t), and
tan(ϕt/2) = sin ϕt/(1 + cos ϕt) = a(t)/(1 + b(t)), equation (C.12) along with (C.5) yields the MSD,
equation (C.1) in the form

〈x2(t)〉 = 2

π

[
t2 + (π − 4 + 2 ln 2)t + 6b(t) + 2a(t) arctan

(
a(t)

b(t)

)
− ln2 (1 + b(t))

+ 2(ln 2 − 2) ln (1 + b(t)) − Li2

(
−1 − b(t)

1 + b(t)

)
− π

(
1 +

π

12

)]
. (C.13)

Appendix D. Effective long time diffusivity Deff for H ∈ (0, 1/2] in the FBM–DD
model

Consider the integral

W(0, t, δ) = 2

∫ t

0
K(τ)

〈
ξ2

H

〉
τ
dτ (D.1)

with t 	 1 	 δ. Then the effective long-time diffusivity of the main text, equation (7), reads

Deff(H � 1/2) = lim
δ→0,t→∞

W(0, t, δ). (D.2)

For H = 1/2 the correlation function 〈ξ2
H〉τ is reduced to a piece-wise function, and the efficient diffusivity

becomes

Deff(H = 1/2) = lim
δ→0

2

∫ δ

0
K(τ)

δ − τ

δ2
dτ = lim

δ→0

∫ δ

0
(1 − τ)

δ − τ

δ2
dτ =

1

2
, (D.3)

where we approximate K(τ) in equation (B.4) by the first-order term when τ � 1, i.e.,
K(τ) = (1 − τ )/2 + o(τ ).

Next we consider the efficient diffusivity for H ∈ (0, 1/2). Introducing the short-time scale Δ, which
satisfies

δ � Δ � 1, (D.4)

we split equation (D.1) into two parts,

W(0, t, δ) = W(0,Δ, δ) + W(Δ, t, δ). (D.5)

Noting that the integral variable satisfies τ � Δ � 1 in the first part, we use the first-order approximate
K(τ) = (1 − τ )/2 + o(τ ), such that

W (0,Δ, δ) = HΔ2H−1 −
(

H − 1

2

)
Δ2H − δ2H

(2H + 1) (2H + 2)
+ o

(
δ2H

)
. (D.6)
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In the second part the integral variable satisfies τ � Δ 	 δ, and we use 〈ξ2
H〉τ = H(2H − 1)τ 2H−2, yielding

W(Δ, t, δ) = 2HK(τ)τ 2H−1|tΔ − K ′(τ)τ 2H |tΔ +

∫ t

Δ

τ 2H K ′(τ)dτ

=
2H

π
t2H−1 − H(1 −Δ)Δ2H−1 + K ′(Δ)Δ2H +

∫ t

Δ

τ 2H K ′′(τ)dτ + o(Δ2H), (D.7)

where K(Δ) = (1 −Δ)/2 + o(Δ) and K′(t) ∼ exp(−t) for t 	 1. After plugging equations (D.6) and (D.7)
into (D.5), we have

W (0, t, δ)=

(
1

2
+ K ′ (Δ)

)
Δ2H +

∫ t

Δ

τ 2H K ′′ (τ) dτ − δ2H

(2H + 1) (2H + 2)
+

2H

π
t2H−1+o

(
Δ2H

)
+o

(
δ2H

)
.

(D.8)
From the properties of K(τ) in equation (B.7), limτ→0 K ′′(τ) ∼ τ−1/2 and thus limΔ→0

∫ t
Δ τ 2H K ′′(τ)dτ

converges. We then have

W(0, t, δ) ∼
∫ t

0
τ 2H K ′′(τ)dτ − δ2H

(2H + 1)(2H + 2)
+

2H

π
t2H−1. (D.9)

Considering the definition of the effective diffusivity, equation (D.2), and combining with the case H = 1/2
we get

Deff(H � 1/2) =

⎧⎨
⎩
∫ ∞

0
τ 2H K ′′(τ)dτ , 0 < H < 1/2

1/2, H = 1/2
. (D.10)

The long-time effective diffusivity approaches 1/2 when H → 0 as limH→0

∫∞
0 K ′′(τ)dτ = 1/2 and is

discontinuous at H = 1/2 because limH→1/2

∫∞
0 τ 2H K ′′(τ)dτ = 1/2 − 1/π.

Appendix E. FBM-generalisation of the Tyagi–Cherayil model

We now consider the fractional TC model

dx

dt
=

√
2Z(t)σ1ξH(t), (E.1)

dZ

dt
= −Z(t)

τc
+ σ2η(t). (E.2)

Here ξH(t) represents fractional Gaussian noise, η(t) is a white Gaussian noise, and the respective
correlation functions are the same as in equation (A.1). Z(t) has dimension [Z(t)] = cm s−1/2 and
[σ1] = s1/2−H, [σ2] = cm sec−1.

Equation (11) can be solved analytically,

〈x2(t)〉 = tM1 − M2 + M3, (E.3)

where

M1=
1

δ2

(
eδ γ(2H + 1, t + δ) − 2γ(2H + 1, t) + e−δγ(2H + 1, t − δ) − eδγ(2H + 1, δ)+ e−δ

∫ δ

0
exx2H dx

)
,

(E.4)

M2=
1

δ2

(
eδγ(2H+2, t+δ) − 2γ(2H + 2, t) + e−δγ(2H+2, t−δ) − eδγ(2H + 2, δ)− e−δ

∫ δ

0
exx2H+1dx

)
,

(E.5)
and

M3 =
1

δ

(
eδγ(2H + 1, t + δ) − e−δγ(2H + 1, t − δ) − eδγ(2H + 1, δ) − e−δ

∫ δ

0
exx2Hdx

)
. (E.6)

Considering the leading term of the Taylor expansion in terms of δ we get

M1 = 2H(e−tt2H−1 + γ(2H, t)) − δ2H

(2H + 1)(H + 1)
+ o(δ2H), (E.7)

M2 = (2H + 1)
(
e−t t2H + γ(2H + 1, t)

)
− δ2H

H + 1
+ o(δ2H), (E.8)

12
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and

M3 = 2
(
e−t t2H + γ(2H + 1, t)

)
− 2δ2H

2H + 1
+ o(δ2H). (E.9)

After plugging equation (E.7) into (E.3) we get

〈x2(t)〉 = e−t t2H + 2Hγ(2H, t)t + (1 − 2H)γ(2H + 1, t) − (t + 1)δ2H

(H + 1)(2H + 1)
+ o(δ2H). (E.10)

At short times t with δ � t � 1, γ(a, t) =
∫ t

0 e−xxa−1dx ∼
∫ t

0 (1 − x)xa−1dx ∼ ta, such that we have

〈x2(t)〉 � t2H . (E.11)

At long times t satisfying δ � 1 � t we have

〈x2(t)〉 ∼ 2Defft. (E.12)

Here Deff can be calculated as

Deff = lim
δ→0,t→∞

〈x2(t)〉
2t

=
Γ(2H + 1)

2
. (E.13)

For both persistence and anti-persistence cases, a crossover from anomalous diffusion to normal diffusion
emerges. The simple discussion of the FBM–DD model in the main text can be applied to the FBM–TC
model and we come to the same results (E.10) and (E.11). The definition of the long-time effective
diffusivity (15) of the main text coincides with equation (E.13). For finite, small values of δ and large values
of t,

〈x2(t)〉
2t

=
e−t t2H−1

2
+ Hγ(2H + 1) +

(1 − 2H)γ(2H + 1, t)

2t
− δ2H

(2H + 1)(2H + 2)

∼ Γ(2H + 1)

2
− δ2H

(2H + 1)(2H + 2)
+

(1 − 2H)Γ(2H + 1)

2t
. (E.14)

The second term on the right hand side contributes to the discrepancies near H → 0 in figure 2(b) of the
main text.

We expect the same behaviour of the PDF as for the DD model of reference [7] but with the rules of
FBM. In particular, at short times we expect the superstatistical behaviour to hold and the PDF should be
given by the weighted average of a single Gaussian over the stationary diffusivity distribution of the OU
process. Therefore the expected PDF reads

P(x, t) =

∫ +∞

−∞
pZ(Z)G(2Z2t2H)dZ

=

∫ ∞

−∞

1√
π

exp
(
−Z2

) 1√
4πZ2t2H

exp

(
− x2

4Z2t2H

)
dZ

=
1

2πtH

∫ ∞

0

1

s
exp

(
−s − x2

4st2H

)
ds =

1

πtH
K0

( x

tH

)
, (E.15)

where G(σ2) = (2πσ2)−1/2 exp(−x2/(2σ2)) is the Gaussian distribution, pZ(Z) is the PDF of the
dimensionless OU-process, and K0 is the modified Bessel function of the second kind. At longer times the
Gaussian limit will be reached,

P(x, t) = G(Γ(2H + 1)t). (E.16)

In particular, for H = 1, the PDF is always exponential at both short and long times.
This can be seen from examination of the kurtosis, namely, the fourth order moment of the

displacement reads

〈x4(t)〉 =
∫ t

0
ds1

∫ t

0
ds2

∫ t

0
ds3

∫ t

0
ds4〈D(s1)D(s2)D(s3)D(s4)〉〈ξH (s1)ξH(s2)ξH(s3)ξH(s4)〉

= 3

∫ t

0
ds1

∫ t

0
ds2

∫ t

0
ds3

∫ t

0
ds4〈D(s1)D(s2)D(s3)D(s4)〉〈ξH (s1)ξH(s2)〉〈ξH (s3)ξH(s4)〉. (E.17)

For H = 1, 〈ξ2
H〉τ = 1 and the forth moment becomes
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Figure E1. Langevin simulations of the kurtosis for the three random-diffusivity models: (a) FBM–DD, (b) FBM–TC, (c)
FBM–S. Parameters of the FBM–S model: D1 = 1, D2 = 0.01, k12 = 3/4, and k21 = 1/4.

〈x4(t)〉 = 3

∫ t

0
ds1

∫ t

0
ds2

∫ t

0
ds3

∫ t

0
ds4〈D(s1)D(s2)D(s3)D(s4)〉

= 9

∫ t

0
ds1

∫ t

0
ds2〈D(s1)D(s2)〉

∫ t

0
ds3

∫ t

0
ds4〈D(s3)D(s4)〉

= 9〈x2(t)〉2. (E.18)

Thus the kurtosis for H = 1 reads

k =
〈x4(t)〉
〈x2(t)〉2

= 9. (E.19)

This means that for H = 1, the crossover to the Gaussian will never emerge at any time. This is a
fundamental distinction from the FBM–DD model. The behaviour of the kurtosis is shown in figure E1.

Appendix F. FBM–switching model

Due to the Markovian nature of the S-model (14), the matrix of the transition probabilities of n(t) is (Pr
denotes probability)

Pr {n(t) = i|n(0) = j} = τc

(
k21 + k12e−t/τc k21(1 − e−t/τc)
k12(1 − e−t/τc ) k12 + k21e−t/τc

)
, i, j = 0, 1. (F.1)

The stationary probability of n(t) is

Pr {n(t) = 0} = k21τc, Pr {n(t) = 1} = k12τc. (F.2)

The mean of n(t) with stationary initial condition will be

〈n(t)〉 = k12τc, (F.3)

and the correlation function becomes

〈n(t)n(t′)〉 = Pr {n(t) = 1, n(t′) = 1} = Pr {n(t′) = 1|n(t) = 1} × Pr {n(t) = 1}

= (k12 + k21 e−τ/τc )k12τ
2
c . (F.4)

Using equation (14) we obtain the first and second moments of θ,

〈θ(t)〉 = (D1/2
2 − D1/2

1 )〈n(t)〉+ D1/2
1 = (k21D1/2

1 + k12D1/2
2 )τc (F.5)

and

〈θ(t)θ(t′)〉 = (D1/2
2 − D1/2

1 )2〈n(t)n(t′)〉+ 2D1/2
1 (D1/2

2 − D1/2
1 )〈n(t)〉+ D1 = a1 e−τ/τc + a2. (F.6)

Here, τ = |t − t′|, a1 = (D1/2
2 − D1/2

1 )2k12k21τ
2
c , and a2 = (k21D1/2

1 + k12D1/2
2 )2τ 2

c . The correlation (shown in
figure B1 in comparison to Langevin simulations) approaches a2 + a2 at short times and a2 at long times.

For finite values δ and t in the persistent case (H > 1/2), we find the MDS

14
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〈x2(t)〉
2t2H

= a1 e−t/τc + a2 +

[
2Ha1τ

2H−1
c γ(2H, t/τc) −

a1δ
2H

(H + 1)(2H + 1)

]
t1−2H

+ (1 − 2H)a1τ
2H
c γ(2H + 1, t/τc)t−2H

∼ a2 + Γ(2H + 1)a1τ
2H−1
c t1−2H , (F.7)

while in the anti-persistent case (H < 1/2),

〈x2(t)〉
2t

= a1 e−t/τc t2H−1 + a2t2H−1 + 2Ha1τ
2H−1
c γ(2H, t/τc)

+ (1 − 2H)a1τ
2H
c γ(2H + 1, t/τc)t−1 − a1δ

2H

(H + 1)(2H + 1)

∼ Γ(2H + 1)a1τ
2H−1
c + a2t2H−1 − a1δ

2H

(H + 1)(2H + 1)
. (F.8)

The fourth order moment of the displacement reads

〈x4(t)〉 = 4

∫ t

0
ds1

∫ t

0
ds2

∫ t

0
ds3

∫ t

0
ds4〈θ(s1)θ(s2)θ(s3)θ(s4)〉〈ξH(s1)ξH(s2)ξH(s3)ξH(s4)〉

= 12

∫ t

0
ds1

∫ t

0
ds2

∫ t

0
ds3

∫ t

0
ds4〈θ(s1)θ(s2)θ(s3)θ(s4)〉〈ξH (s1)ξH(s2)〉〈ξH(s3)ξH(s4)〉. (F.9)

At short times, 〈θ(s1)θ(s2)θ(s3)θ(s4)〉 ≈ 〈θ4(t)〉 = 〈θ4(t)〉 = (k21D2
1 + k12D2

2)τc. With equation (F.9) the
kurtosis reads

k =
〈x4(t)〉
〈x2(t)〉2

=
3(k21D2

1 + k12D2
2)

(k21D1 + k12D2)2τc
. (F.10)

The behaviours of the kurtosis of the three different random-diffusivity models are shown in figure E1.
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