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Abstract

In this paper, a computational framework based on the Material Point Method is developed to
study the coupled seepage-deformation process in unsaturated soils. Governing equations are
derived from the balance equations of solid and liquid phases accounting for partial saturation
effects, and the soil is discretized with a single set of material points which move according to
the displacement of the solid phase. The implementation of different types of boundary condi-
tions, such as transient hydraulic head, seepage face, and infiltration/evaporation, is discussed in
detail. The method is applied to simulate levee collapse due to rapid drawdown and rainfall. The
methodology proposed in this paper is a promising tool to advance the current practice, which
customarily evaluates slope safety only by means of small deformation analyses based on FEM
or LEM, while here a large deformation approach is presented.

Keywords: MPM, unsaturated soil, large deformations, dynamic coupled analysis, infiltration,
seepage

1. Introduction

Many natural hazards involve large deformations of unsaturated soils, e.g. rainfall-induced
landslides, embankment collapses due to wetting, seepage-induced instabilities of dams and lev-
ees, etc. The study of these phenomena requires to account for the complex hydromechanical
interactions between solid skeleton and pore fluid and to model large deformations in order to
predict the post-failure behaviour, which poses significant computational challenges. In common
practice, the safety of these slopes is evaluated calculating a factor of safety (FS) with Finite El-
ement Methods (FEMs) implementing hydromechanically coupled formulations or using Limit
Equilibrium Methods (LEMs) [1, 2]. Standard Lagrangian FEMs can be used to derive the de-
formations of the slope under different boundary conditions, but the solution is limited to small
displacements.

FS of a slope can be obtained with the shear strength reduction method in which the strength
parameters are progressively reduced until the convergence to static equilibrium is impossible to
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reach [1]. With this approach, the shape of the failure surface results from the analysis. Differ-
ently, LEMs assume the shape of the sliding surface and compute FS as the ratio between the soil
shear resistance and the mobilized shear stress along the surface. The pore pressure and effec-
tive stress distribution can be evaluated with preliminary FEM analyses. Since soil is assumed
rigid-plastic, LEMs do not provide any information on the deformations.

The results of these analyses allow to evaluate FS at different time instants accounting for
stress changes induced by various types of boundary conditions and the corresponding most
likely failure mechanisms, but the evolution of the collapse cannot be assessed. The knowledge
of failure evolution is important for risk management and planning of attenuation measures.
Hence there is a need to develop solution schemes that are capable of simulating failure initiation
as well as post-failure dynamics. To this end, a numerical method suitable for large deformation
problems is necessary. Several methods have been proposed in the last decades to overcome the
difficulties arising with FEM, e.g. ALE, CEL, PFEM, FEMLIP, SPH, MPM etc. A review of
these methods applied to landslide mass movements can be found in Soga et al. [3]. Among
them, the Material Point Method (MPM) has recently increased its popularity in the geotechnical
community and it has been successfully applied in a number of problems involving multiphase
interactions in soils [4, 5, 6, 7, 8, 9, 10, 11].

MPM was initially formulated for one-phase materials in solid mechanics by Sulsky et al.
[12] and a number of numerical improvements have been developed since then. In MPM, the
body is discretized by a cloud of material points (MPs), which move attached to the material and
carry all the updated information such as velocities, strain, stresses, and state variables. Large
deformations are simulated by MPs moving through a computational grid that covers the full
problem domain. This grid is used to solve the system of equilibrium equations, but does not
deform with the body like in Lagrangian FEM.

A number of mathematical formulations have been proposed in the literature for unsaturated
soils based on different assumptions and using different primary unknown variables. Zienkiewicz
et al. [13] present several formulations for saturated and unsaturated soils referring to FEM im-
plementations and discuss their applicability for different kinds of problems in geomechanical
engineering. These formulations can also be extended for MPM.

Recent developments of MPM for unsaturated soils include the work by Yerro et al. [4],
which proposed a three-phase approach in which the governing equations are derived from the
momentum balance and the mass balance equations of solid, liquid and gas phase assuming non-
zero gas pressure. In this approach the primary unknowns are the absolute accelerations of the
phases (aS − aL − aG formulation). The formulation is Lagrangian for the solid phase; MPs
move with the kinematic of the solid skeleton, but carry the information of all phases (single-
point approach). In contrast, Bandara et al. [7], Wang et al. [10] and Lei et al. [11] used a
simplified approach, which neglects the momentum and the mass balance equations of the gas,
thus reducing the computational cost. Bandara et al. [7] used a formulation derived from Biot’s
phenomenological approach in which the solid skeleton is represented using material coordinates
and fluid motion is represented in terms of average relative velocity with respect to the solid
skeleton (seepage velocity, w). Relative fluid acceleration and its convective terms are assumed
negligible. Acceleration of solid skeleton and seepage velocity are the primary unknowns (aS −w
formulation). In the formulation proposed in Wang et al. [10] the governing equations are derived
from the dynamic equilibrium of the liquid phase and the mixture and the primary unknowns are
the absolute accelerations of the solid and the liquid (aS −aL formulation). The spatial gradient of
liquid volumetric fraction is neglected in the liquid mass balance equation and this is acceptable
when considering problems where the degree of saturation varies in a limited range and the slope
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of the soil-water retention curve (SWRC) is small [14]. Lei et al. [11] extended this approach
to include soil erosion. Governing equations for describing skeleton deformation, liquid flow,
liquefaction of solid fine particles, and convection of liquidised fine particles are formulated for
the explicit dynamic MPM framework, and discretized by the Generalized Interpolation Material
Point (GIMP) method.

This paper presents a two-phase dynamic MPM formulation for non-erodible unsaturated
soils based on the aS − aL formulation. Governing equations are derived from the balance equa-
tions of solid and liquid phases and the soil is discretized with a single set of MPs which move
according to the displacement of the solid phase, i.e. a two-phase single-point approach is used.
Unlike previous works, here liquid acceleration and gradients of liquid volumetric fraction are
accounted, which renders the formulation more suitable for dynamic problems where wave prop-
agation is important [15, 16] and cases with large changes in suctions and degree of saturation
[14]. The implementation in the MPM framework of foundamental boundary conditions, such as
transient hydraulic head, seepage face, and infiltration/evaporation, is discussed in detail. These
conditions are necessary to simulate typical geomechanical problems with unsaturated soils, but
they have not been presented before. Indeed [4, 10, 11] simulated rainfall infiltration in a sim-
plified way, considering full soil saturation at the boundary and did not present other types of
hydraulic boundary conditions.

The paper is organized as follows. Section 2 presents the details of the governing equations,
followed by Section 3 where the MPM formulation is derived. The implementation is validated
in Section 4 by comparing MPM results with a commercial FEM code. Finally, its applicability
to real cases is shown in Section 5 by considering two common causes of levee collapse: (i) rapid
drawdown and (ii) seepage combined with heavy rainfall.

The proposed methodology allows to investigate failure and post-failure evolution of slopes
in a unified numerical framework, thus offering a more comprehensive understanding of the
phenomenon compared to the current practice based on LEM or FEM. The study is also relevant
for authorities and practitioner involved in the field of geo-environmental risk assessment as the
methodology can improve the design of efficient and cost-effective mitigation measures.

2. Governing equations

Unsaturated porous media are a mixture of three different phases: solid (S), liquid (L) and
gas (G). The solid phase is made by solid grains that constitutes the solid skeleton of the me-
dia; meanwhile the liquid and the gas phases fill the voids. A comprehensive hydromecanically
coupled formulation for unsaturated soils should consider the balance equations of each phase
and the interaction between them. However, in many cases the presence of the gas phase can be
accounted in a simplified way, thus reducing the computational cost.

In this paper, the following assumptions are adopted:

1. Gas pressure is neglected (pG = 0)
2. Gas density is negligible compared to liquid and solid ones (ρG ≈ 0)
3. Compressibility of solid grains is negligible compared to solid skeleton one (ρS ≈ 0)
4. Isothermal conditions

The formulation is derived considering dynamic momentum balance of the liquid phase, dy-
namic momentum balance of the mixture, and mass balances and constitutive relationships of
both phases involved (i.e. solid and liquid). All dynamic terms are taken into account; acceler-
ation of the solid skeleton aS and acceleration of the pore liquid aL are the primary unknowns.
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Unsaturated conditions are accounted considering that the liquid phase does not fill entirely the
voids. The balance equations of gas phase are neglected, thus the presented formulation can be
considered two-phase and is an extension of the one presented in Jassim et al. [17] and Wang
et al. [10].

The momentum balance of the liquid phase per unit of liquid volume is given in Eq. 1,

ρLaL = ∇pL − fd
L + ρLg (1)

where ρL is the liquid density, fd
L is the drag force which accounts for solid-fluid interaction, pL

is the liquid pressure and g is the gravity vector.
The flow is considered laminar and stationary in the slow velocity regime. Hence, the drag

force is governed by Darcy’s law (Eq. 2),

f d
L =

nLµL

κL
(vL − vS) (2)

where µL is the dynamic viscosity of the liquid, κL is the liquid intrinsic permeability, nL is the
liquid volumetric fraction and vL, vS are the absolute liquid and solid velocities respectively.

The isotropic intrinsic permeability of the liquid κL can also be expressed in terms of Darcy
permeability, or hydraulic conductivity, kL (Eq. 3).

κL = kL
µL

ρLg
(3)

The mixture dynamic momentum conservation can be written as Eq. 4,

nSρSaS + nLρLaL = div(σ) + ρmg (4)

where ρS is the solid grain density, nS is the volumetric concentration ratio of solid, and ρm =

nSρS + nLρL is the density of the mixture. Note that nS = 1 − n and nL = S Ln, where n is
the porosity of the solid skeleton and S L is the degree of saturation. σ is the total stress tensor,
which can be computed with the Bishop’s effective stress equation for unsaturated soils and has
the form of Eq. 5, where χ is an effective stress parameter, here assumed equal to S L, and m is
the unit vector, equal to (1 1 1 0 0 0)T in 3D. In this paper, stresses and pressures are positive for
tension, thus suction is equal to pL.

σ = σ′ + χpLm (5)

The mass conservation of the solid phase is expressed as given in Eq. 6,

∂(nSρS)
∂t

+ div(nSρSvS) = 0 (6)

where vS is the velocity of the solid phase.
Similarly, the conservation of liquid mass can be written as Eq. 7,

∂(nLρL)
∂t

+ div(nLρLvL) = 0 (7)

where vL is the (true) velocity of the liquid phase
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The material derivative with respect to the solid can be expressed as

DS(•)
Dt

=
∂(•)
∂t

+ vS∇(•) (8)

When considering incompressible solid grains and disregarding the spatial variations in den-
sity and porosity, the expressions for the conservation of mass of the solid and the liquid reduce
to Eqs. 9 and 10 respectively.

DSnS

Dt
+ nSdiv(vS) = 0 (9)

DS (ρLnL)
Dt

= (vS − vL)∇(nLρL) − nLρLdiv(vL) (10)

Including Eq. 9 into Eq. 10, taking into account the definitions of liquid volumetric concen-
tration ratios in terms of porosity and degree of saturation, nL = S Ln, and rearranging terms give
Eq. 11

n
DS (ρLS L)

Dt
= div

[
ρLnS L(vS − vL)

]
− ρLS Ldiv(vS) (11)

Finally, the material derivative in Eq. 11 is solved assuming liquid pressure as state variable,
which yields to Eq. 12.

n
(
S L

∂ρL

∂pL
+ ρL

∂S L

∂pL

)DS pL

Dt
= div

[
ρLnS L(vS − vL)

]
− ρLS Ldiv(vS) (12)

The derivative of liquid density with respect of pressure is given by the state equation of
liquid; while the derivative of the degree of saturation is given by the soil-water retention curve
(SWRC).

When neglecting the spatial variability of porosity and degree of saturation, i.e∇(ρLnS L) ≈ 0,
Eq. 12 can be simplified in Eq. 13

n
(
S L

∂ρL

∂pL
+ ρL

∂S L

∂pL

)DS pL

Dt
= ρLnS Ldiv(vS − vL) − ρLS Ldiv(vS) (13)

This simplified form has been adopted by Wang et al. [10]. Yerro et al. [18], Ceccato et al.
[14] showed that the use of Eq. 13 gives reasonably good results for applications where the
degree of saturation varies in a limited range and the derivative of the SWRC is small. In this
paper, the more general Eq. 12 is used to update liquid pressure.

Hydraulic and mechanical constitutive equations are used to close the system of governing
equations as explained in the following sections.

2.1. Mechanical constitutive equation
In unsaturated soils, two stress variables can be used to capture the soil behaviour, e.g. net

stress σnet = σ − pG and suction s = pL − pG. The incremental stress-strain equation becomes
Eq. 14,

DSσnet

Dt
= Dep DSε

Dt
+ h′

DSs
Dt

(14)

where Dep is the tangent stiffness matrix, h′ is a constitutive vector. Both are defined by the
constitutive model.
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A great number of constitutive models for unsaturated soils have been presented in the liter-
ature [19, 20, 21, 22, 23, 24], but in this paper a basic elastoplatic model with Mohr-Coulomb
failure criterion is used. More advanced constitutive models for unsaturated soils can be easily
employed in order to capture more accurately the soil behaviour.

2.2. Hydraulic constitutive equation

The relationship between pore liquid pressure and degree of saturation or liquid content is
essential to model the behaviour of unsaturated soil. This is given by the SWRC which can
assume different analytical expressions. In the following, two alternative relationships are used:
(i) a linear relation (Eq. 15) where av is a constant parameter, S min is the residual degree of
saturation and S max is the maximum degree of saturation, and (ii) the Van Genuchten relationship
(Eq. 16) where pre f , λ, are fitting parameters.

S L = S min + (S max − S min)pL
av (15)

S L = S min + (S max − S min)
[
1 +

( pL

pre f

) 1
1−λ

]−λ
(16)

Partial saturation modifies the soil hydraulic conductivity; in general partially saturated soils
are less permeable than fully saturated soils. The ratio between actual hydraulic conductivity
and saturated hydraulic conductivity k/ksat is a function of the degree of saturation as given
by the hydraulic conductivity curve (HCC). A number of relationships has been proposed in
the literature, the functions proposed by Hillel [25] (Eq. 17) and Mualem [26] (Eq. 18) are
implemented in the applied software, in which r and λ are fitting parameters.

k
ksat

= S r
L (17)

k
ksat

=
√

S L

[
1 −

(
1 − S

1
λ

L
)λ]2

(18)

3. MPM formulation

3.1. Discretized equations

The discretized equations (Eqs. 19, 20) are obtained by deriving the weak form of the mo-
mentum balance equations (Eqs. 1 and 4), using the Galerkin procedure, and approximating the
acceleration and velocity fields by means of finite element shape functions N.

M̃LaL = f ext
L − f int

L −QL(vL − vS) (19)

MS aS + MLaL = f ext − f int (20)

aL, aS, vL, and vS are the nodal acceleration and velocity vectors; MS, ML, and M̃L are solid
and liquid lumped mass matrices (Eq. 21-23); f ext

L , f int
L , f ext, f int are internal and external nodal

force vectors of the liquid phase and the mixture (Eqs. 24-27), and QL is the drag force matrix
(Eq. 28).
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M̃L ≈

nMP∑
MP=1

m̃MP
L N (21)

ML ≈

nMP∑
MP=1

mMP
L N (22)

MS ≈

nMP∑
MP=1

mMP
S N (23)

f ext
L ≈

∫
∂Ωp

NTp̂Ld∂Ωp +

nNP∑
MP=1

mMP
L NTg (24)

f ext ≈

∫
∂Ωτ

NTτd∂Ωτ +

nMP∑
MP=1

mMP
m NTg (25)

f int
L ≈

nMP∑
MP=1

BT pMP
L mVMP (26)

f int ≈

nMP∑
MP=1

BTσMPVMP (27)

QL ≈

nMP∑
MP=1

NT nMP
L ρLg

kMP
L

NVMP (28)

Where τ is the prescribed traction vector in the boundary ∂Ωτ, p̂L is the prescribed liquid
pressure in the boundary ∂Ωp, N is the matrix of nodal shape functions and B is the matrix of
the gradients of the nodal shape functions evaluated at local MP positions. The treatment of
boundary conditions for unsaturated soils is described in details in Sec. 3.3.

The phase mass of the MP is calculated as Eqs. 29-32, where VMP is the volume of the MP.

m̃MP
L = ρLVMP (29)

mMP
L = nMP

L ρLVMP (30)

mMP
S = nMP

S ρSVMP (31)

mMP
m = ρmVMP (32)

Eqs. 19 and 20 are integrated in time using the Euler-Cromer explicit method. This time
integration scheme is conditionally stable and the critical time step size is computed as indicated
in Mieremet et al. [27] and later extended in Mieremet [28].

The momentum balances (Eqs. 19 and 20) are discretised and solved at the nodes of the mesh
as in Jassim et al. [17]. Mass balances (Eqs. 9 and 12) and constitutive equations (Eqs. 14) are
posed locally at the MPs to update secondary variables.
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3.2. Numerical algorithm

The formulation presented in previous section is implemented in the open source code Anura3D
(www.anura3d.eu). The numerical algorithm is based on the modified lagrangian algorithm
originally proposed by Sulsky et al. [29] for one-phase material, and successfully extended to
multiphase materials (see e.g. [17, 4]). The MPM solution scheme for each time step can be
summarised as follows.

1. Liquid momentum balance equation (Eq. 19) is assembled and solved for the liquid nodal
acceleration aL .

2. Mixture momentum balance equation (Eq. 20) is assembled and solved to obtain the nodal
acceleration of the solid aS.

3. Velocities and momentum of the MPs are updated from nodal accelerations of each phase.
4. Nodal velocities are calculated from nodal momentum and used to compute the strain

increment at the MP location and the terms on the right-end-side of Eq. 12.
5. Mass balance equation (Eq. 12) and soil stress-strain equation (Eq. 14) give the increment

of pore pressure and effective stress respectively.
6. State variables at MPs are updated. Degree of saturation and hydraulic conductivity are

updated according to SWRC and HCC respectively.
7. Displacement and position of each MP are updated according to the updated velocity of

the solid phase.
8. Nodal values are discarded, the MPs carry all the updated information, and the computa-

tional grid is initialised for the next time step.

Steps 1 and 2 are commonly referred to as Lagrangian phase, while steps 3 to 8 are called
convective or Eulerian phase of the method to emphasize the fact that MPM combines the ad-
vantages of Lagrangian and Eulerian approaches.

3.3. Treatment of boundary conditions

The proposed formulation requires the definition of the following boundary conditions (BC):

1. prescribed liquid displacement or velocity on ∂ΩvL and prescribed pressure on ∂Ωp, where
∂Ω = ∂ΩvL ∪ ∂Ωp and ∂ΩvL ∩ ∂Ωp = 0

2. prescribed solid displacement or velocity on ∂Ωu and prescribed traction on ∂Ωτ, where
∂Ω = ∂ΩvS ∪ ∂Ωτ and ∂ΩvS ∩ ∂Ωτ = 0.

Essential boundary conditions on ∂ΩvL and ∂ΩvS are imposed on the nodes of the computational
grid. Natural boundary conditions on ∂Ωp and ∂Ωτ are included in the weak form of the momen-
tum balance equations.

In typical problems with partially saturated soil in geomechanics, prescribed liquid velocity
can be applied on infiltration boundaries as described in Sec. 3.3.2, and prescribed pressures
can be applied either by defining a pressure load p̂L or by assigning a total hydraulic head Ĥ
as explained in Sec. 3.3.1. Assuming the validity of Bernoulli’s equation and neglecting the
kinematic head, the total hydraulic head can be written as

Ĥ = hg −
p̂L

ρLg
(33)
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Rainfall

Total head BC

Infiltration BC

Potential 
seepage face BC
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𝑣𝑣𝐿𝐿 = 0Impermeable BC

(a)

(b) Traction BCLoad

𝑣𝑣𝑆𝑆 = 0Fixities

Figure 1: Typical boundary conditions for liquid phase (a) and mixture (b).

where hg stands for the potential head or geometric head and p̂L/(ρLg) is the pressure head. The
minus sign in Eq. 33 is introduced because pressure is assumed negative for compression.

Sometimes, the boundary condition is part of the problem solution, i.e. it is not known a
priori if the boundary belongs to ∂ΩvL or ∂Ωp. This is typical of free surface flows across porous
media along the so-called potential seepage face [30, 31]. Moreover, the size of this boundary
condition can evolve along time. This boundary condition can be applied as presented in Sec.
3.3.3. Figure 1 represents schematically how these BCs simulate different hydraulic loading
acting on a levee.

In classical FEM, the application of prescribed boundary conditions is simple as these can
be specified directly on the boundary nodes, which coincide with the boundary of the continuum
body and are well defined throughout the computation. However, the computational mesh in
MPM does not necessarily align with the boundary of the material making the application of the
prescribed boundary conditions more challenging. In the numerical framework proposed here,
zero-traction and zero-pressure boundary conditions are automatically enforced to be satisfied by
the solution of equations of motion, but difficulties arise when dealing with non-zero boundary
conditions. The nodes belonging to the boundary are determined with a procedure similar to the
surface boundary algorithm presented in Bandara and Soga [5], here extended for unstructured
mesh. For each time step, firstly the active elements (i.e. elements containing MPs) adjacent
to an empty element (i.e. element without MPs) are detected (boundary elements); then the
nodes belonging to the element side adjacent to an empty element (boundary side) are marked as
boundary nodes. The MPs next to the boundary side are identified as boundary material points
as shown in Fig. 2. Finally, if the boundary node lies inside the area where a specified condition
has to be applied, e.g. in the infiltration zone or on the potential seepage face, the corresponding
boundary condition is applied.

Another difficulty with moving boundaries appears when prescribed velocity or traction
(pressure) do not have a constant direction, but it is normal to the boundary. This means that
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𝒏𝒏

Material point (MP)

Boundary material point (BMP)

Boundary node (BN)

Non-active node

Active node Empty 
elementActive 

element

Boundary 
side

Figure 2: Definition of boundary nodes and boundary material points

if the shape of the contour changes, the direction of the applied condition has to be updated dur-
ing the calculation. The normal direction at the node is determined by means of the gradient of
mass as Eq. 34

n ≈
∑nMP

MP=1 mMP
m B

‖
∑nMP

MP=1 mMP
m B‖

(34)

3.3.1. Hydraulic head BC
Examples in which hydraulic head BC can be used are the seasonal fluctuations of groundwa-

ter tables [32], impoundement or drawdown of a water reservoir [33], the sudden increase of river
levels due to an extreme flood event, the rupture of buried water pipes altering the surrounding
water table distribution in a urban environment, or the effect of introducing a drainage system to
stabilize a slope.

The hydraulic head BC is converted to an imposed pressure condition p̂L, using Eq. (33)
solved for the liquid pressure. This means that a hydrostatic approximation is adopted, neglecting
local turbulence induced by the river flow or by the potential collapse of the internal bank. The
element’s nodes affected by this condition are detected with the algorithm introduced in the
previous section (Fig. 2).

A series of hydraulic head values in time, like the ones provided by water gauges readings,
is assigned with an input file, and at each time step the current hydraulic head Hcurr is computed
by linear interpolation. The resulting nodal vector is part of the vector of external forces in the
liquid momentum equation (fext

L in Eq. 19) and in the mixture momentum equation (fext in Eq.
20) to account also for water weight.

Concerning the boundary nodes included in the hydraulic head BC but lying above Hcurr, two
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approaches are proposed: (i) constant pressure and (ii) linear pressure distribution (in suction),
following the same hydrostatic gradient given by γW . In the case of a homogeneous slope in
stationary flow regimes, it is common to introduce the unsaturated condition above the water table
[34, 35], which reflects in the pore pressure distribution. Close to the phreatic surface, a linear
increase of suction can be explained by the capillary rise controlled by the SWRC. The upper
portion, closer to the interface with the atmosphere, is governed by climate conditions and suction
depends on the water mass balance at the soil surface [35, 36]. The constant approximation
reproduces this last effect, while the linear approximation simulates better the capillary effect.
The drawback of the later approach is the overestimation of suction at higher locations. In the
literature, the BC above the river level has been reproduced in different ways. In some cases, an
infiltration/evaporation BC is applied [35, 36] or a zero nodal flux is imposed [37], in other cases
the condition has been approximated with the use of a potential seepage face [30, 38].

3.3.2. Infiltration BC
This boundary condition is necessary to simulate rainfall or evaporation boundary condition.

It consists in applying a prescribed specific discharge q = ŵ · n along the boundary, where n is
the outward normal unit vector (Eq. 34) and the seepage velocity ŵ is defined as Eq. 35

ŵ = nL(vL − vS ) (35)

The application of this boundary condition is based on a predictor-corrector scheme: liquid
and solid velocity are first predicted assuming zero-pressure boundary conditions at the infil-
tration boundary and then (eventually) corrected to ensure the prescribed infiltration rate. The
procedure can be summarized in the following steps, also shown in Fig. 3:

1. at
L and at

S are computed by solving Eqs. 19 and 20 assuming p̂L = 0 at the infiltration
boundary

2. Nodal velocities are predicted as ṽt+∆t
L = vt

L + aL∆t and ṽt+∆t
S = vt

S + aS∆t
3. Infiltration condition is checked. If the net infiltration discharge qnet (Eq. 36) is positive,

ponding conditions occur and if fluid accumulation above the boundary is not allowed (it
must remain at zero pressure) no correction is necessary. If the net infiltration discharge
is negative, or liquid ponding is allowed above the surface, then liquid velocity must be
corrected to ensure the correct infiltration rate.

qnet = (nL(ṽt+∆t
L − ṽt+∆t

S ) − ŵ) · n (36)

4. If necessary, the liquid nodal velocity is corrected by Eq. 37

vt+∆t
L = ṽt+∆t

L + ∆vL (37)

where ∆vL is derived by imposing qnet = 0 (Eq. 38) and it is given by Eq. 39.

(nL(ṽt+∆t
L + ∆vL − ṽt+∆t

S ) − ŵ) · n = 0 (38)

∆vL = ((nL(ṽt+∆t
L − ṽt+∆t

S ) − ŵ) · n)n (39)

5. The corrected liquid acceleration is computed as at
L = (vt+∆t

L − vt
L)/∆t

6. The MPM solution scheme can proceed with the convective phase as explained in steps
3-8 of Sec. 3.2.
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Solve momentum balance equations 
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Figure 3: Flow chart of the infiltration boundary condition

Note that this boundary condition is applied at nodal level, thus nodal liquid volumetric
fraction is necessary. This can be computed by mapping nL = nS L from the MPs to the nodes of
the mesh.

3.3.3. Potential seepage face BC
A potential seepage face can be defined as an interface between soil and atmosphere where

the fluid is free to exit at zero pressure when the soil is saturated, but it cannot enter when the
soil is partially saturated. An example of potential seepage face is the downstream surface of a
river embankment (Fig. 1a), or it can also arise in after a rapid drawdown of the river level. This
boundary condition is necessary where it is unknown if the boundary is an essential or a natural
boundary condition.

The implementation can be considered as a special case of the infiltration boundary condition
described in Sec. 3.3.2, where ŵ = 0. Liquid and solid nodal velocities are predicted assuming
zero-pressure at the potential seepage face (natural boundary condition). If (nL(ṽt+∆t

L −ṽt+∆t
S ))·n >

0 it means that fluid is flowing out of the soil at zero pressure and no correction is required. If
(nL(ṽt+∆t

L − ṽt+∆t
S )) · n < 0, then fluid is flowing into the soil at zero pressure, thus liquid velocity

must be corrected with Eqs. 37 and 39 in which ŵ = 0 (switch to essential boundary condition).
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4. Validation

Validating the presented formulation is not straightforward because no analytical solution
is available for coupled soil deformation-fluid flow in unsaturated conditions. For this reason,
the fluid-flow problem is validated in this section considering two simple benchmarks: (i) a 1D
column infiltration (Sec. 4.1) and (ii) a 2D seepage flow (Sec. 4.2), by comparing the results ob-
tained by MPM and the well-established FEM software SEEP/W by Geostudio. In FEM seepage
analyses the deformation of the solid skeleton is neglected, analogously solid velocity is assumed
to be zero in MPM.

4.1. 1D infiltration

A 1m-high soil column is considered with the material parameters listed in Tab. 1. For
simplicity, the intrinsic permeability is assumed constant and equal to κL = 1 · 10−11m2/s, corre-
sponding to an hydraulic conductivity of k = 1.0 · 10−4m/s. Van Genuchten SWRC is accounted
(Eq. 16), with parameters pre f = 3kPa, λ = 0.7, S min = 0.125, S max = 1.

Solid density [kg/m3] ρS 2700
Liquid density [kg/m3] ρL 1000
Porosity [-] n 0.4
Liquid bulk modulus [kPa] KL 80000
Liquid dynamic viscosity [1/kPa] µL 1 · 10−6

Table 1: Material parameters for 1D infiltration example and 2D seepage flow.

The column is discretized with 20 rows of 2 square triangular elements filled with 3 MPs
each (Fig. 4a). The bottom and lateral boundaries are impervious, while a vertical infiltration
rate ŵy = 1.0 · 10−4 m/s is applied at the top boundary. An initial suction of 2kPa is assigned at
t = 0s along the column, which corresponds to an initial degree of saturation S L0 = 0.87.

The liquid infiltrates from the top and flows down though the column accumulating at the
impervious bottom. Here suction starts decreasing and the soil saturates increasing S L to 1. Fig.
4 plots the evolution of pore pressure and degree of saturation distribution along the column
at different time instants. MPM results are in very good agreement with FEM. As expected, it
can be noted that at long time (t = 600s) soil is saturated at the top boundary, i.e. pL = 0,
thus the infiltration BC switches from essential, i.e. applied infiltration velocity, to natural, i.e.
zero-pressure, and the pore pressure does not increase further.

4.2. 2D seepage flow

The hydraulic head BC and the seepage BC are applied in a simple case of a river levee
affected by seepage flow from the river side. A 1m-high river embankment is considered, with
slopes 2/3 on the river side and 1/2 on the land side, as reported in Fig 5. The material parameters
are summarized in Tab. 1. A linear SWRC (Eq. 15), with slope coefficient av = 4.0 · 10−4 1/kPa
is accounted, while the intrinsic permeability is constant and equals to κL = 4 · 10−11m2/s,
corresponding to an hydraulic conductivity of k = 3.92 · 10−4 m/s.

The initial phreatic level is at 0.0m, corresponding to the ground level at both levee’s sides,
visible in Fig.6a. Above the initial water table, the pore pressure is linearly approximated. The
seepage face and the hydraulic head BCs are applied, respectively on the land and on the river
side. The river level increases linearly during 180s, till its maximum value of 0.6m. Then, it
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Figure 4: Geometry of the problem (a). Evolution of liquid pressure (b) and degree of saturation (c) along the column.
Comparison between MPM and FEM.

Figure 5: Geometry and mesh of the MPM model. Positions of sections S1 and S2.
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remains constant until the end of the simulated time, equal to 200s. The mesh is unstructured,
made of 3-nodes triangular elements of average size 0.05m. The FEM model mesh counts 2934
elements while, due to a wider covered domain, the MPM model counts 5660 elements; a number
of 3 MPs is assigned to the elements belonging to the earth embankment.

Fig. 6 compares FEM and MPM results in terms of pore pressure distribution in the levee
body at four increasing time instants (0s, 60s, 120s, and 200s). Furthermore, the phreatic line
is highlighted with blue dots in MPM (corresponding to MPs with a pressure between -0.2 and
0.2kPa) and dashed blue lines in FEM, visualizing the progression of the saturated front in both
models, according to the water level rise.

The progression along time is also shown in Fig. 7, where the pore water pressure distribution
along two vertical sections (S1 and S2) is plotted at three different instants: 30s, 90s, and 180s.
The fitting of the MPM values with FEM shows an overall good agreement, both in terms of
entity and slope of the plotted curves. In the transient phase of the seepage flow, we observe
a minor discrepancy between the trends, more evident along section S2, yet never greater than
1kPa.

Given that, these small gaps may be attributed to underpin diversities in the formulations.
Indeed, MPM solves the dynamic momentum balance of the liquid, considering the liquid accel-
eration as primary unknown. The pressure increment is a secondary variable updated solving the
mass balance equation. On the contrary, the FEM approach solves directly for the nodal pres-
sure (or hydraulic head), without considering the liquid acceleration terms as in the MPM. In
addition, solid skeleton and water compressibility may be the source of some minor differences.
Nonetheless, the seepage flow is in agreement between the two numerical techniques, both in its
spatial and temporal connotations.

5. Application examples

In this section, the formulation presented in Sec. 3 is applied to study the stability of a
levee. Failure of dams and levees can be caused by several mechanisms, e.g. macro-instability,
overtopping, erosion (internal and external) [39, 40, 41]. Here we focus on the macro-instabilities
due to changes in the pore pressure regime induced by two typical phenomena schematically
represented in Fig. 8a: (i) a rapid drawdown of the water level on the river side (Sec. 5.1) and
(ii) infiltration due to heavy rainfall on the land side (Sec. 5.2). MPM results are compared with
the ones obtained by FEM seepage analysis coupled with LEM analysis to evaluate FS.

The considered levee is 3m-high with a slope inclination of 2/3. A low-permeability layer is
assumed to lie at a depth of 0.5m, here simulated with an impermeable boundary. The levee is
assumed to be symmetric, thus the same geometry and discretization is used in both the draw-
down and the rainfall case. The geometry and mesh discretization is shown in Fig. 8b. For
computational efficiency, only half of the levee section is discretized. The model counts a total
of 1669 linear triangular elements and 897 nodes. The average element size on the slope is 0.2m.
3 MPs are placed inside each initially active element. For the seepage analysis, a mesh of the
same average size and type is used in the FEM model, for a total of 1158 elements. LEM analysis
applies Bishop method.

A linear SWRC, with slope coefficient av = 4.0 · 10−4 1/kPa is used, and the hydraulic
conductivity is assumed constant. This permeability is higher than commonly found in these
structures, and allows to reduce the simulated time and computational cost. An elastic-perfectly
plastic Mohr Coulomb constitutive model is adopted to model the soil behavior, with the material
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Figure 6: Evolution of liquid pressure in the levee body. Comparison between MPM (left) and FEM (right).
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Figure 7: Pore pressure along vertical sections S1 (a) and S2 (b) for MPM (dots) and FEM (dashed line).

parameters listed in Tab. 2. Cohesion and friction angle in unsaturated soils are function of
suction, but this effect is assumed negligible in this example. Although the constitutive model is
simple, it can provide a realistic representation of the levee response; more advanced constitutive
models will be used in further development of this research.

5.1. Levee failure for rapid drawdown

The initial stress distribution is generated with gravity loading assuming a river level at 2.0m.
Then, the applied total head is rapidly decreased to the low water level of 0.5m (Fig. 9).

As introduced in Sec. 3.3.1, the present study imposes the pore pressure at the boundary
above the river level in two different manners, constant or linear. Two simulations starting from
an identical state, are used to compare the effects of both approximations when the slope is
subjected to a drawdown (Fig. 10). The linear approximation generates high suction values in
the top portion of the river bank, preventing the slope instability (bottom panels in Fig. 10). In
the constant approximation, a pressure of 5kPa is applied at the points above water level. This
lower value of suction leads to the failure of the embankment during drawdown (top panels in
Fig. 10). Note that, if measurements of suction data collected on river levee along time are
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Figure 8: (a) Simplified representation of the levee example. (b) Geometry and discretization of the MPM model.

Solid density [kg/m3] ρS 2700
Liquid density [kg/m3] ρL 1000
Porosity [-] n 0.4
Liquid bulk modulus [kPa] KL 80000
Liquid dynamic viscosity [1/kPa] µL 1 · 10−6

Intrinsic permeability [m2/s] κL 4 · 10−11m2/s
Young modulus [kPa] E 50000
Poisson ratio [-] ν 0.30
Friction angle [◦] φ 27
Cohesion [kPa] c′ 2

Table 2: Material parameters for levee collapse example.

Total head BC

2.0m

Initial water level

Final water level 0.5m

River side

Figure 9: Geometry and boundary condition of the model simulating drawdown on a levee.
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Figure 10: Evolution of liquid pore pressure at 0, 3, and 60s considering different pore pressure distributions (hydraulic
head BC) above the current river level, related to (a) constant, (b) linear approximations.

available for a real case study, it is possible to set the constant approximated value based on the
real initial condition. The constant approximation is compared with the FEM-LEM results.

In order to emphasise the hydromechanical character of the depicted process, the onset of
failure and the concurrent pore pressure distribution for MPM and FEM-LEM analyses are pre-
sented in Fig.11. For MPM, the norm of solid displacement is used to show the development
of the slip surface, while in the LEM the circular surface is automatically generated, just by im-
posing ranges of entry and exit, and the relative FS is obtained. The failure onset is identified in
LEM by the FS passage to a value lower than one, while in MPM it is here identified when the
deviatoric strain assumes a value equal to 0.05 and at the same time vertical displacements of the
cm-order can be detected at the MPs on the levee crest. The shape of the slip surface is consistent
among the two models. The occurrence time of the failure onset differs for a few seconds, which
can be explained by looking at the pore pressure distribution above the current river level, as
visible in Fig. 11. This difference can be explained because in the MPM simulation, a constant
pressure is imposed along the boundary portion above the river height, while in FEM a potential
seepage BC is applied instead [37].

Only for MPM it is possible to track the river bank collapse progression along time, likewise
the pore pressure dissipation process. The post-failure behavior is captured in Fig. 12 by plotting
the horizontal solid displacements at three time instants, together with the initial soil surface
elevation reference. The phenomenon is clearly characterized by large displacements, at the end
exceeding 1m (Fig. 12c); thus the irreversible collapse of the internal bank is determined. Three
MPs nearby the slip surface (MP1, MP2, MP3) are tracked during the slope motion in Fig. 12
and used to analyze the evolution of liquid pressure (Fig. 13a) and deviatoric strain (Fig. 13b)
along time.

In the first 3 seconds, all the MPs experience a sudden reduction of liquid pressure as a result
of the dynamics induced by the rapid drawdown. It is followed by a gentle pressure increase
till 20s, and a subsequent interval of pressure oscillations. In general, the pore pressure values
reflect the overall state of slow desaturation of the slope, antithetic to the rapid kinematic process
of slope instability. Concerning this last, the deviatoric strain curves which represent the progres-
sive increase of MPs undergoing plastification around the slip surface area, follow a continuous
increase till maximum values is reached at 60s. In addition, the graph shows that from the slope
crest towards the toe, the MPs deformation magnitude coherently increases.
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5.2. Levee failure for rainfall infiltration

Enduring high water level on the river side and heavy rainfall can sometimes concur leading
to rapid saturation of the levee and potential instability. The geometry and boundary condition of
the numerical model are shown in Fig. 14. At the right-end, a liquid pressure linearly increasing
with depth (hydrostatic pressure distribution) is applied to reproduce in a simplified way a water
level of 2.0m on the river side. The levee surface is a potential seepage face during the initializa-
tion phase, and then an infiltration rate ŵy = 1 · 10−4m/s is applied to simulate a heavy rainfall
in the following steps. Horizontal fixities are applied to the solid phase at the lateral boundaries
and the bottom is fully fixed.

To generate the initial stress distribution, liquid pressure, seepage face and gravity load are
applied assuming an initially high material cohesion (20kPa). Then, cohesion is reduced to 2kPa
and the slope is stable with a stress distribution in equilibrium with the applied initial loads.
The initial pore pressure distribution obtained with MPM and FEM is in very good agreement
(Fig. 15). FS evaluated with Bishop method is higher than 1, and indeed the slope is stable and
deformations are very small.

After stress initialization, rainfall infiltration is applied at the top surface, soil suction de-
creases and the slope fails. LEM analyses give FS < 1 for a time t = 15s, which means that the
failure surface is fully developed at this moment. Fig. 16 plots the evolution of shear strain at
significant time instants, showing that a circular failure surface develops rapidly from the bottom
of the slope and propagates upward. The shape of the failure surface is in agreement with LEM;
however, in MPM it is a result of the calculation, while in LEM it is an hypothesis of the analysis.

A small decrease of suction is sufficient to trigger the failure as shown in Fig. 17. During
soil movement, pressure oscillations are observed. Displacements increase suddenly between 5
and 20s (Fig. 18). At t=20s the slope finds a new equilibrium configuration measuring 17cm
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Figure 13: Liquid pore pressure (a) and deviatoric strain (b) along time for three selected MPs nearby the slip surface.
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Figure 14: Geometry and boundary condition of the model simulating rainfall infiltration on a levee.
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Figure 15: Initial pore pressure distribution with (a) FEM and (b) MPM. Safety factor with LEM.

of displacement of the toe and 25cm at the crest. At about 100s there is a further increase of
displacement of 2cm due to enduring rainfall infiltration. The crest of the levee moves downward
approximately 22cm, which means that the levee in its deformed configuration is probably still
able to fulfill its retaining function. This consideration, impossible to get with FEM or LEM, can
have significant practical consequences for planning of cost-effective remedial measures.

6. Conclusions

This paper presents a two-phase single point formulation of MPM for unsaturated materials
and discusses in detail the application of hydraulic boundary conditions for the simulation of
common geotechnical problems such as transient total head, infiltration/evaporation, and poten-
tial seepage face. The method is validated with a 1D infiltration test and a 2D seepage problem
and applied to study a levee collapse due to rapid drawdown and heavy rainfall.

This method allows to investigate the consequences of slope instabilities, thanks to the possi-
bility of simulating large deformations, thus overtaking the concept of safety factor customarily
estimated by LEMs or FEMs. In contrast to these methods, MPM allows to get a realistic esti-
mate of soil movements. The levee example shows that, depending on the boundary conditions,
similar values of FS, slightly lower than one, can lead to different displacement evolution after
failure initiation and thus different consequences in terms of risk assessment. Different scenarios
could be investigated modifying the geometry and mechanical behavior of the soil. Taking into
account these aspects is important to implement safe and cost effective mitigation measures.
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Figure 16: Deviatoric strain contour at different time instant.
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