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1 Introduction

The celebrated Moser-Trudinger inequality [28] states that for Q@ C R™ with
finite measure |2| we have
_n_ 1
sup /ea’“’l“‘ "dr <9, an i=nw! T, (1)
ueWy "™ (), IVullzn @) <1

where w;,_1 is the volume of the unit sphere in R™. The constant a,, is sharp
in the sense that the supremum in (1) becomes infinite if v, is replaced by any
a > ay. In the case Q = R?, B. Ruf [34] proved a similar inequality, using the
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full W12-norm instead of the L?-norm of the gradient, then generalized to R,
n > 2 by Li-Ruf [20] as

sup / (ea"lu‘nf1 - 1) dr <oco. (2)
uewl,n(Rn)7 HuHZH(Rn)+HquEn(Rn)SIR"

Higher-order versions of (1) were proven by Adams [2] on the space W* % (Q)
forn >k eN.

In [17] the authors proved the following 1-dimensional fractional extension
of the previous results (for the definition of H2-2(R) and (—A)3 see (65) in the
Appendix).

Theorem A. Set I := (—1,1) C R and H22(I) := {u € H22(R) : u =
0 on R\ I}. Then we have

sup e’ 1) dr =Cy <00, fora<m, (3)
weBE2(1), [(~A) Hull 2y <1
and
sup / (eo‘uz — 1) dx =Dy <0, fora<m, (4)
1
weH2%(R), HUHH%’z(R)SlR
where ||u\|2%12(R) = ”(—A)iuHZLQ(R) + ||u\|%2(R). The constant m is sharp in (3)
and (4).

More general results have recently appeared, see e.g. [1; 12; 18; 27; 35; 38], in
which both the dimension and the (fractional) order of differentiability have
been generalized. For instance, (3) and (4) can be seen as 1-dimensional cases
of the more general results of [18; 27; 12] that hold in arbitrary dimension n.

The existence of extremals for this kind of inequalities is a challenging ques-
tion. Existence of extremals for (1) was originally proven by L. Carleson and
A. Chang [5] in the case of the unit ball, a fundamental result later extended
by Struwe [37] and Flucher [11] to the case of general bounded domains in R?
and by K. Lin [22] to the case of bounded domains in R™. In the case of the
Li-Ruf inequality (2), the existence of extremals appears in [20] when n > 3 and
was proven by Ishiwata [16] when n = 2. For the higher-order Adams inequality
the existence of extremals has been proven in various cases, e.g. by Li-Ndiaye
[21] on a 4 dimensional closed manyfold, by Lu-Yang [23] for a 4 dimensional
bounded domain and by DelaTorre-Mancini [7] for a bounded domain in R?™,
m > 1 arbitrary.
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On the other hand, the existence of extremals for the fractional Moser-
Trudinger inequality has remained open until now, with the exception of Taka-
hashi [38] considering a subcritical version of (4) of Adachi-Tanaka type [1],
and Li-Liu [19] treating the case of a fractional Moser-Trudinger on Hz:2(9M)
with M a compact Riemann surface with boundary. The idea of Li and Liu
is that working on the boundary of a compact manifold, one can localize the
H?%-2-norm.

Applying the same method for an interval I C R creates problems near 91,
which require additional care in the estimate, and the problem becomes even
more challenging when working on the whole R. The main purpose of this paper
is to handle these two cases and prove that the suprema in (3) and (4) are
attained.

Theorem 1.1. For any 0 < a <, the inequality (3) has an extremal i.e. there
exists uq € I:I%’Q(I) such that ||(—A)%ua||L2(R) <1 and

/ (ea“i — 1) dx = C,y.

I

Theorem 1.1 is rather simple to prove for a € (0,7), while the case o = 7 relies
on a delicate blow-up analysis for subcritical extremals.

A similar analysis can be carried out for the Ruf-type inequality (4). How-
ever, working on the whole real line we need to face additional difficulties due to
the lack of compactness of the embedding of H = H%’Q(]R) into L2(R): vanishing
at infinity might occur for maximizing sequences, even in the sub-critical case
a € (0, ). This issue is not merely technical indeed Takahashi [38] proved that
(4) has no extremal when « is small enough. Here, in analogy with the results in
dimension n > 2, we prove that the supremum in (4) is attained if « sufficiently
close to .

Theorem 1.2. There exists o* € (0,7) such that for o < a < 7 the inequality
(4) has an extremal, namely, there exists o € H%’Q(]R) such that ||tq HH

1 and
/ (eaﬂi _ 1) dz = D,

R

52(R) <

As for Theorem 1.1, the proof of Theorem 1.2 for @ = 7 is based on blow-up
analysis. In fact we need to study the blow-up of a non-local equation on the
whole real line (no boundary conditions), as done in the following theorem.
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Theorem 1.3. Let (ug) C H = H%’Q(R) be a sequence of non-negative solu-
tions to
2
(—A)%wC + up = A\puge®t s in R, (5)

where a, — T and A\, = Ao > 0. Assume uy, even and decreasing (up(—z) =
ug(x) < ug(y) for x > y > 0) for every k and set py, := supgur = ug(0).
Assume also that
A = limsup ||Jug||% < oo. (6)
k—o0

Then up to extracting a subsequence we have that either

i) g < C, up = uso in CC (R) for every £ > 0, where us € CL _(R)N H
loc loc
solves
2
(—A)%uoO + Uso = Aol “= in R, (7)
or

(i) px — 00, U — Uoo weakly in H and strongly in CL (R \ {0}) where uso is
a solution to (7). Moreover, setting ry, such that

1
Arpifeshe = —, (8)
o,
and
N (x) = 20 pg (ur (rEx) — pr)s  Noo() 1= —log (1 + |x|2) , 9)

one has Mg — Moo in CL (R) for every £ > 0, supy, |||

s> 0 (cfr. (63)), and A > |Juso % + 1.

L.(R) < o0 for any

The proof of Theorem 1.3 is quite delicate because local elliptic estimates of
a nonlocal equation depend on global bounds as we shall prove in Lemma 3.6.
This will be based on sharp commutator estimates (Lemma 3.3), as developed
in [24] for the case of a bounded domain in R", extending to the fractional case
the approach of [26].

We expect similar existence results to hold for a perturbed version of in-
equalities (3)-(4), as in [25] and [39] (see also the recent results in [15]), but we
will not investigate this issue here.
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2 Proof of Theorem 1.1

2.1 Strategy of the proof

We will focus on the case @ = m, since the existence of extremals for (3) with
a € (0,) follows easily by Vitali’s convergence theorem, see e.g. the argument
in [25, Proposition 6].

Let uy, be an extremal of (3) for « = o, = 7 — % By replacing uy, with |ug|
we can assume that u > 0. Moreover ||(7A)%uk|\L2(R) = 1, and uy satisfies the
Euler-Lagrange equation

(—A) 2wy, = Apuge® U, (10)

with bounds on the Lagrange multipliers A (see (13)).
Using the monotone convergence theorem we also get

lim (eak“i - 1) dz = lim Cy, = Cr, (11)
k—o0 k—o0

I
where Cy,, and C; are as in (3).

If pg := maxyur = O(1) as k — oo, then up to a subsequence ur — oo
locally uniformly, where by (11) uc maximizes (3) with o = m. Therefore we
will work by contradiction, assuming

lim py = co. (12)
k—oo
By studying the blow-up behavior of u, see in particular Propositions 2.2 and
2.8, we will show that (12) implies Cr < 47 (Proposition 2.9), but with suit-
able test functions we will also prove that Cr > 47w (Proposition 2.10), hence
contradicting (12) and completing the proof of Theorem 1.1.

2.2 The blow-up analysis

The following proposition is well known in the local case, and its proof in the
present setting is similar to the local one. We give it for completeness.

Proposition 2.1. We have u, € C*°(I) N CO*%(f), ug > 0 in I, and ug is
symmetric with respect to 0 and decreasing with respect to |x|. Moreover,

0< A <Ai(D). (13)
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Up to a subsequence we have A\ — Ao and up — Uso weakly in fI%’Q(I) and
strongly in L?(I), where uso solves

(—A) 2 Uoo = Aootiooe™ 5. (14)

Proof. For the first claim see Remark 1.4 in [24]. The positivity follows from the
maximum principle, and symmetry and monotonicity follow from the moving
point technique, see e.g. [8, Theorem 11].

Now testing (10) with ;, the first eigenfunction of (—A)z in H
positive and with eigenvalue A1(I) > 0, we obtain

=

2(I),

Al([)/uksmdw: )\k/ukeakui@ldx > )\k/uk@ldxa
T T 7

hence proving (13). By the theorem of Banach-Alaoglu and the compactness of
the Sobolev embedding of H2:2(I) < L2(I), we obtain the claimed convergence
of ug to Uso. Finally, to show that us solves (14), test with ¢ € C2°(1):

/uoo(—A)%godx: lim /uk(—A)%gpdx
k—00
I I

2
= klgrolo Apug e pdr
T

/ )\oouooe”“ZC pdz,
T

where the convergence of the last integral is justified by splitting I into I; :=
{r el :ug(x) <L} and Iy :={x € I : ux(x) > L}, applying the dominated
convergence on I; and bounding

/)\kukeo"““i@da: < Llpi'ﬂ /Akuieo"“"i dx

I I
_ supy |¢| /Uk(—A)%Uk dx
L
I
supy |¢| 1
o [CVNE AT
and letting L — oo. O

Let @iy, be the harmonic extension of uy to ]R%r given by the Poisson integral, see
(66) in the appendix. Notice that

2
[ e itds = - unlBagey = Vo) =1 (15)
I
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1

ock)\kuie

> and g (x) := 20 (ug (rrz) — pr) be as in (8) and (9),

Let r, = or?

and set
e (2, y) o= 200 e (U (T, TrY) — Hoke)-
Note that 7 is the Poisson integral of 7.

Proposition 2.2. We have ri, — 0 and 7, — Moo in Cfoc(@) for every £ >0,

where
oo (w,y) = —log (1 +9)° +2?)
is the Poisson integral (compare to (66)) of neo := — log (1 + x2), and
(—A)%noo = 2¢"l= /e”“dw =. (16)
R

Proof. According to Lemma 2.2, Theorem 1.5 and Proposition 2.7 in [24], we
have 7, — 0, 7, — oo in Cf,.(R) for every ¢ > 0 and (1) is uniformly bounded
in L1 (R) (see (63)).

To obtain the local convergence of 7, fix R > 0 and split the integral in the
Poisson integral (66) of 7, into an integral over (—R, R) and an integral over
R\ (=R, R), for R large. The former is bounded by the convergence of n locally,
the latter by the boundedness of 7 in L%(R), provided (z,y) € B% NR%. As

a consequence we get that 7 is locally uniformly bounded in @ Since 7, is
harmonic, we conclude by elliptic estimates. O

Corollary 2.3. For R >0 and i =0,1,2, we have

R’r’k R
. , 1
klim / Akuiui_leak“idwzf/e"“’dx. (17)
—»00 ™
—Rry —-R

Moreover, us, = 0, i.e. up to a subsequence uy, — 0 in L2(I), weakly in ﬁ%’Q(I),
and a.e in I.

Proof. With the change of variables § = ;= writing ug(ry-) = px + 201’?% and
using (8) and Proposition 2.2, we see that
Rry, R 9_i
. . n ‘+T’7k
/ )\ku}cuiﬂeak“idx = rk/\k,uiea’“”i / (1 + 5 i 2) e Aok d¢
—_— T
—Rry —_1 -

o

k
R
1
— — [ eldg,
™
—R
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as k — oo, as claimed in (17).
In order to prove the last statement, recalling that ||[(—A)Tug|z2 = 1, we

write
Rry,
1= / )\kuiea’““idm + / )\kuzea’““idm = (D) + (I1).
—Rry, I\(—Rry,Rry)

By (17) and (16) we get

k—oco ™

R
1
lim (I = — / e"dx =1+ o(1),
-R

with o(1) — 0 as R — oo. This in turn implies that

lim lim (1) =0,

R—o00 k—o0

which is possible only if us, = 0, or Ao = 0 (by Fatou’s lemma). But on account
of (14), also in the latter case we have 1y, = 0. O

Lemma 2.4. For A > 1, set u‘,? = min {uk, ”7{“} Then we have

. 1 1
lim sup [|(=A) Tui |72 () < e (18)
k—o0
Proof. We set ﬁ,‘? = min {ﬂk, “7’“} Since ﬁ,? is an extension (in general not
harmonic) of uf', we have
1 _
AVt ey < [ 19l Py (19)

o
Using integration by parts and the harmonicity of @ we get

/|Va£|2dxdy: /Va;j-vakdxdy
R2

2
RJr

— —/u?(x) L]ka(jo) dx

+

R

= /(—A)%ukufd:c. (20)

R
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Proposition 2.2 implies that uf (ryz) = £ for |z| < R and k > ko(R). Then,
with (16) and (17) we obtain

Rry
/(—A)%uku,‘?dxz /x\kukeo"“”iuﬁdl‘
R 7R’I‘k
R
k—oo 1
- — Moo d
TA /e ¢
—R
R—>ool
T

Set now v,? = (uk - “7’“)+ =ug — uﬁ. With similar computations we get

Rry
/(fA)%ukv,?dx > / )\kukvl’:‘eak“idac
R —RTk
R
k—oo 1 1
(1. = Moo
— - ( A) / e'l>d¢
-R
R:);)o A—-1
—
Since
/(—A)%uku%4 dx + /(—A)%ukv,‘?dx = /(—A)%ukukdm‘ =1,
R R R
we get that
1
li —A)Tupu do = —.
o, | (A ki dr =

R
Then, we conclude using (19), and (20). O
Proposition 2.5. We have

=1 . 21
Cn = Jlim Sz 2D

Moreover
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Proof. Fix A > 1 and let uﬁ be defined as in Lemma 2.4. We split

/ (eak“i - 1) da
_ J/ (e — 1) e+ J/ (et = 1) do = (1) + (11),

In{ur <k} In{up>EtE
Using Corollary 2.3 and Vitali’s theorem, we see that
(I) < / (eak(“?)z - 1) dr — 0 ask — oo,
I

since e+ ()" s uniformly bounded in L4 (I) by Lemma 2.4 together with The-
orem A.
By (15) and Corollary 2.3, we now estimate

(IT) < AA: / Apti2 (eawi _ 1) da < AA: (1+ o(1)),
ki "
klﬂ{uk>u7k k

with o(1) — 0 as k — oo.Together with (11), and letting A | 1, this gives

Cr < li .
= kg%o )\ku%

The converse inequality follows from (17) as follows:

Rry
/(eo‘"‘“i — l) dx > / e(”““idx+o(1)
I —RT‘k
R
1 1
= W ;/en“d:c-l-o(l) +0(1),

with o(1) — 0 as k — oo. Letting R — oo and recalling (16) we obtain (21).
Finally, (22) follows at once from (21), because otherwise we would have
Cr = 0, which is clearly impossible. O

Proposition 2.6. Let us set fi := )\kukukeak“i. Then we have

/ﬁw&%ww
I

as k — oo, for any ¢ € C(I). In particular, fr — Jo in the sense of Radon
measures in 1.
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Proof. Take ¢ € C(I). For given R > 0, A > 1, we split

RT‘k
/@fkdx: / o frde + / ofrdr + / ofrdr
I —Rry, {ur>2E I\ (—Rri, Rry) {upn<ZE}
=11+ I, + Is.

On {u, < Bt} we have uy, = u,‘;‘ and Lemma 2.4 and Theorem A imply that
ukea’c“i is uniformly bounded in L' (depending on A). Thus using (22) we get
13 — 0.

With (15) and (17) we also get

I < Allglle / Apud ek da
{ur>EE I\ (—Rry,Rry)

Rry

< AH@”L”(I) 1-— / /\ku%eak“i dx
—Rry
R

1

= AH(pHLoo(I) 1-— p / e~dr + o(1)

“R

with o(1) — 0 as k — oco. Thanks to (16), we conclude that I — 0 as k — o0
and R — oo.
As for I, again with (17) we compute

R
1
I = (¢(0) + o(1)) - / edr+o(1) |,
-“R
so that Iy — ¢(0) as k — oo and R — oo. O

Given z € I, let G : R\ {0} — R be the Green’s function of (—A)% on I with
singularity at x. We recall that we have the explicit formula (see e.g. [3])

1—zy+4/(1—22)(1—y?
;bg( ANVl y>>’ yel.

Ga(y) = (23)
0 yeR\ I
In the following we further denote
1 1
S(z,y) = Galy) - (24)

—log —.
T v =y
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Lemma 2.7. We have pruy — G := Go in LS (I'\ {0}) N LY(I) as k — +o0.

Proof. Let us set vy := prur—G and f, = ,uk)\kukeak“i. Arguing as in Proposi-
tion 2.6, we show that || fx||z1(r) — 1 as k — oo. Moreover, since uy, is decreasing
with respect to |z|, we get that ug — 0 and fi, — 0 locally uniformly in I\ {0}
as k — oo. By Green’s representation formula, we have

o ()| = /Gz< ) fiuly) dy — G(x)
/|G D) dy + I fellen —11G@), zel  (25)

Fix o0 € (0,1). If we assume |z| > o, |y| < &, then we have

1 || ‘
Gz (y) — G(z)] < = |lo +[S(x,y) — S(x,0
Gutt) — Gl < + flog L+ 15(.0) — 5(.0)
1 Y
<1og_‘+ sup VS, w)ly
™ [l 2] jeialyi<s
< Clyl, (26)

where C' is a constant depending only on ¢. Then, for any € € (0, §), we can

write

o ( m>|</|G G| fily) dy + o(1)

/ 1Ga(y) — C(@) | fuly) dy + / G (y) — C(@)|ful) dy + o(1)
I\(—¢,e)

< Cellfullproeey + (sg; Gl + |G(:c>> il ooe ey + (1)

< Ce+o(1),
(27)

where 0(1) — 0 uniformly in I \ (-0, 0) as k — oo. Clearly, (27) implies

limsup [|vg|[ Lo (1\(~0,0)) < Ce.
k—o0

Since € and o can be arbitrarily small, this shows that vg, — 0 in LS (T'\ {0}).
With a similar argument, we prove the L' convergence. Indeed, integrating (25),



e Extremals for fractional Moser-Trudinger inequalities = 13

for € € (0,1) we get

lollor < / / G ly) — G fi(w) dy e+ || fill sty — Gl

(/f@y)/WG )] dz dy + o(1)
< / f) / Galy) — Gl)| d dy

+2 Sup IGN () 1kl oo (1 (=e,e)) + 0(1)

/fk /|G (4) - Gl@)] dudy + ofL). (28)
Since
sup sup |S(z,y) — S(z,0)| = O(e),
yE(—e,e) xz€l
we get

_/:fk<y>1/|ay<x> o)l dzdy = /fk /|1og ldedy + 0(e),

Moreover, using the change of variables x = yz, we obtain

/ dz=0 <ylog1> .
/ [yl

Then, we have

/fky>/|c Gl |dzdy—/fk (|ylog|1y|> dy +0(e)

1
[yl

dz = Jy| /
1

R

||
|z — y

log log

1
=0 (5 log E) . (29)
Clearly (28) and (29) yield limsupy_, , o [lvx — G|l 111y = O(elog 1). Since &
can be arbitrarily small we get the conclusion. O

Proposition 2.8. We have puiy, — G in C°

loc

(R2\{(0,0)})NCL.(R3), where

G is the Poisson extension of G.
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Proof. As in the proof of Lemma 2.7 we denote vy := upur — G. Let us consider
the Poisson extension vy, = uiuy — G. For any fixed € > 0, we can split

~ 1 Yo (§) 1 yui(§)
gz, y) = - / 7yd€ + g / md§7
—e I\(—¢,¢)

By Lemma 2.7, we have

1 yu(€) 1 sore)
P / m‘“ —?||U’“‘|L°°(’\(‘E’E))/md£

I\(—&.¢) R

A

vkl oo (1\(—e,e)) = 0,

as k — oo. Moreover, assuming (z,y) € R% \ B2(0,0), we get

€
1 Yy ( |Uk Y
w/(x7§)2 /‘ (1) )|2 g < E2”7)k||L1(1) — 0.

—€

~ 0
Hence v, — 0 in C}}

and ¥y, is harmonic in R?, we get v, — 0 in lOC(]R2 \{(0,00H)nCL

loc

(R% \ B2<(0,0)). Finally, since can ¢ be arbitrarily small
®2). ©

2.3 The two main estimates and completion of the proof

We shall now conclude our contradiction argument by showing the incompat-
ibility of (12) with (11) and the the definition of C;. In this final part of the
proof, we will use the precise asymptotic of G near (0,0). Since log|(z,y)| is
the Poisson integral of log|z| (see Proposition A.3), and since S € C(R), (24)
guarantees the existence of the limit

. ~ 1 . 1
So = (z,y%fl(o,m G(z,y) + —log|(z,y)| = lim G(z) + —log|a].
In fact, using (23) we get So = =2=. More precisely, noting that S € C*°(I), we
can write 1 1
G(z,y) = ~log + 80 + h(z,y), (30)
T 7 |(z,y)]

with h € C>°(R2 N B1(0,0)) N C(RZ) and h(0,0) = 0.

Proposition 2.9. If (12) holds, then Cr < 2me™50 = 4.
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Proof. For a fixed large L > 0 and a fixed and small 6 > 0 set

ag = inf @, bg:= sup Ug, Ug:= (ﬂ,k /\ak) V bg.

Bry, MR B5sNR2

Recalling that [|[Vi||3. = 1, we have

15

|Vig|?dedy < 1— / |V |2 dedy — / |Viig |2dady (31)

(Bs\BLr), )NRZ R2\B; R2 NBp,

Clearly the left-hand side bounds

. inf / |Vii|?dedy = / |V®y |2dzdy
Ulg2 noBL,, —9k
LA (Be\in 83
(ar, — bg)?

~ Tlogé —log(Lry)’
where the function @y, is the unique solution to

A®p =0 inR%N(Bs\BLy),
(I)k = ak on R%r N 8Ber7

Py = by on ]R%r N 0Bs,

9% —(0  on IR N (B;\ Brr,),

given explicitly by

ag log d — by log Ly,

&, — by, — ag
F log 6 — log(Lry)

~ logé — log(Lry)

log [(z,y)| +

Using Proposition 2.2 we obtain

1 —1
——logL+O(L™ 1) +o(1)
ap = p + —= ,
k= Kk m

where for fixed L > 0 we have o(1) — 0 as k — oo, and |O(L™1)| < % uniformly

for L and k large. Moreover, using Proposition 2.8 and (30), we obtain

; —1logé + So + O(8) + o(1)
k = )
223

where for fixed 6 > 0 we have o(1) — 0 as k — oo, and |O(d)| < C§ uniformly

for § small and k large.
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Still with Proposition 2.2 we get

. N 1 -
Jim i / Vi |*dedy = — / |Vijoo |*dady

R3 NBLy, R3NBL
1 L log L
= —log = .
—log 3 +O< 7 >
Similarly with Proposition 2.8 we get
likm inf 3 / |V |*dedy > / |VG2dady
—00
RZ\Bs R2\B;
oG - G (z,0)
/ arG o+ / 9y G(z)dz
R2 NOBs (®Rx{0})\Bs
1 1
= / ( + O(l)) (— log 6 + So + 0(6)> do
w6 w
]Rir‘laB(;

1
= log § + So 4+ O(d1og6),

where we used the expansion in (30) and the boundary conditions

é(va)ZG(x)ZO, for z € R\ I,
— G0 — (—A)3G(x) =0, forz e\ {0}

We then get

m(ag — by)? —%10g5+50+0(610g(5)+%log%—l—O(l%L)

logd — log(Lry) — 13

)

or
m(ag — bp)? = mus —2log L4+ O(L™1) + 2logd — 2wSo + O(8) + o(1)
N O(log* L ;— log? 8)
H
< (log § — log L + log(Akpij,) + cptiy + log )
—1logd + 8o+ O(6logd) + L1log & + 0O (#)

1

x| 1-—

L L

log L> O(log?6) + O(log? L) + O(1)
+ 3 .
L Jid

1) 1 20
=log— + log()\kui) + akui + log ap + ay (71- log — — So>

+0(5logd) + O <
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Rearranging gives

1 L
log S < (1 — %) log 3 + (g — ﬁ)u% + (27 — ag)So + Lk log 2 + log oy,
kMg ™ ™

+O(5logé) + O (l"iL) +o(1),

with o(1) — 0 as k — oo. Then, recalling that ay 1 7, letting k — oo first and
then L — 0o, § — 0, we obtain

lim sup log 5
k—oo kMg

< wSp + log(27) = log(4w),

and using Proposition 2.5 we conclude. O

Proposition 2.10. There exists a functionu € H22(I) with H(—A)iUHLQ(R) <
1 such that

/ (e”“2 - 1) dz > 2me™0 = 4.

1

Proof. For € > 0 choose L = L(g) > 0 such that as ¢ — 0 we have L — oo and
Le — 0. Fix

Ire =< (z,y) e R2 : G(z,y) = == min G,
Le {( y) € RL: G(a,y) = YLe RinaBM}

and
Qre = {(m,y) € ]Ri : Gz, y) > ’YL5}~

By the maximum principle we have ]Rf_ N Bre C Qre. Indeed, G is harmonic in
R%, G > . on O(R2 N By.)\ {(0,0)}, and G — 400 as (z,y) — (0,0). Notice
also that (30) gives

1
Ve =~ log(Le) + So + O(Le). (32)

For some constants B and ¢ to be fixed we set

log (§+(1+§)2) +2B )
c— 5a for (z,y) € RL. N Br.(0, —¢)
Ud(z,y) == % for (z,y) € Qe \ Bre(0, —¢)
Gz,
(2,9) for (z,y) € R% \ Q..

C
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Observe that ]RQ‘ N Br:(0,—¢) C Ri N Bre € Qp.. To have continuity on
R2 N OB (0, ) we impose

—logL? — 2B YLe
- + c= —
2me c

which, together with (32), gives the relation

B =nc® 4 loge — 1Sy + O(Le). (33)

Moreover
1
/ |VU.|2dzdy = P / |V log(z? + (1 + y)?)|?dzdy
R3 NBre(0,—¢) R3.NBL(0,—1)
1 log( ) +0 <1°gL)
= = ,
and

1 -
/ \VU€|2dxdy:c—2 / |VG|?dxdy

Ri\QLE Ri\QLs
1 oG ~ 1 oG ~
= 072 / ngU 02 / Fdem
R2NOQ L. Rx {0\ QL
=0
Llog (£) + So + O(Lelog(Le))

c2 ’

where the last equality follows from (30). We now impose |[VU¢||2 ®R2) = 1,
obtaining

log L
—loge —log2 + wSp + O(Lelog(Le)) + O < Oi ) =mc?, (34)

which, together with (33), implies

B = —log2+ O(Lelog(Le)) + O <10§L> . (35)

Let now Ii’g = (—eVL? —1,eV/L? — 1) and I?_ be the disjoint sub-intervals of
I obtained by intersecting I x {0} respectively with By (0, —¢) and Rf_ \ Qre.
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Then, for u.(z) := Ug(x,0), using a change of variables and (34)-(35) we get

VLTI

log(1+22) + 2B\ >
/ g / o (,T (C_ 0g(+x>+> ) da
2me
I};,E —ViL2-1
VIZT=T
nc?—2B 1
d
> ee T+ 222
VD=1
_ 9emSo+0(Le log(Le)+0(42) - (1 +0 (1>)
L
s log L
= 27re™”0 + O(LE log(LE)) + 0 I .
Moreover
1
/ (emg B 1) de > /mgdx - = /7rG2d:L’ = e
c C
2, Ii. Ii.
with

1
Ve >V% >0, for Le< 2

Now observe that ¢? = —10$ 4+ O(1) by (34), and choose L = log? ¢ to obtain

log L logloge 1
Lelog(L = —ol| =
O(Lelog( s))—i—O( 7 ) O( o < ) 0<c2>’

1% 1
/ (em‘g — 1) dx > 2me™50 4 07; +o0 <02> > 2me™50

1

so that

for € small enough.
Finally notice that

-8 el = [ 1Vaasdy < [ 190 Pdody <1
R2 R%

since the Poisson extension #. minimizes the Dirichlet energy among extensions
with finite energy. O
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3 Proof of Theorem 1.3

Let ur, € HNC(R) be a sequence of positive even and decreasing solutions to
(5) satisfying the energy bound (6) and with A\ — Ao > 0 as k — oo.
First we show that case (i) holds when py < C.

Lemma 3.1. If p < C then (i) holds.

Proof. By assumption we know that u; and fj := (fA)%uk = )\kukeo‘k“i — U
are uniformly bounded in L°°(R). Then, by elliptic estimates and a bootstrap
argument, we can find uo, € C*°(R) such that up to a subsequence ug — oo in
C’fOC(R) fo2r every ¢ > 0. To prove that u, satisfies (7), note that fr — foo =
Aoolloo€™ o0 — Usg locally uniformly on R and set M = supy (| fx || o ) + 1r)-
For any ¢ € S(R) (the Schwarz space of rapidly decreasing functions) and any

R > 0, we have that

R
/ i — Foollldz < 1o — fooll o rm) / el + 2M ol .y
R —R
k (o'
3% Mlloll L r.r)e)

R
21,

1
2

Similarly, recalling that (—A)z¢ has quadratic decay at infinity (see e.g. [14,

Prop. 2.1]), we get

1 1
/ e — el [(~A) il < [[(—A) | eyl — oo 2 (.Y
R

vo [ lub ),
o

1
< [(=A) 2ol Lo ((—r,r)) luk — tooll L1 (= R,R))

+2CM / d—gdx
x

Hence u is a weak solution of (7). O

From now on we will assume that p;, — 400 and prove that (ii) of Theorem 1.3
holds.
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Lemma 3.2. Let 0, be defined as in Theorem 1.3. Then ny is bounded in
CYY(R) for a € (0,1).

loc

Proof. Note that

1 1 2

2 _ _ 2 _apu

TEUL = oz = T o2 up e e dx
ap e e ag||ugl| e e J

1 .
>~ Cw/u%e%“idx
aug [[ukl[re= 4 J

o Il /Do,

ok 2
o ||ug |3 e He

VDr

Sk 2
akeT'“’lc

<C — 0.

Moreover we have that

(7A)%nk _ 2uk(rk')€o¢kui(7‘k-)—ak#i - 20%7%#% uk(rk-)
Kk
is bounded in L. Since n; < 0, and 75 (0) = 0 this implies that 7 is bounded
in L (R) and then in C¢_(R) for any « € (0,1). O

loc loc
The bound of Lemma 3.2 implies that, up to a subsequence 7 — 1 in CIOO’CO‘(R)

for some function 7.,. However, it does not provide a limit equation for 7. In
order to prove that 7., solves

-

(_A)Enoo = 2¢7Tee

we will prove that that ny is bounded in Ls(R) for any s > 0. This bound can
be obtained thanks to the commutator estimates proved in [24]. Part of the
argument must be modified since the u;’s are not compactly supported. We
start by recalling the following technical lemma, which is a consequence of the
estimates in [24].

Lemma 3.3. For any s € (0,1), there exists a constant C = C(s) such that,
for any o, € C°(R™), p € RT, we have

I =B)F0, 3 < C(Brlpr ) + Bagl, ),

where
1 1
E1(0,9) = [(=A) 10 L2 [[(=A) 19| L2 (w)

1 1
Eaplen) = =D ellea -9l gy
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Proof. Let 0 € C2°((—2,2)) be a cut-off function such that § =1 on (—1,1) and
0 <60 < 1. Let us denote 0, = 9(;). Let us also introduce the Riesz operators

I_su:=kg|- 7% xu forse(0,1),

where the constant ks is defined by the identity rs|-|=5 = |- [*~1. With this
definition I;_; is the inverse of (fA)%. Then we can split

p(~A)5 = ol _o(~8) ¢
= el (020(~2)40) + ol (L= 02,)(-2) )
= el (020 (=8)30) + [, 1] (1= B2) (- ) F0)
+ s (1= 3)0(-2)F0)
=:J1 + Ja2 + J3,

where we use the commutator notation [u, I1_s](v) = uli—sv — I1_s(uv) for
any u,v € C°(R). Applying respectively Proposition 3.2, Proposition 3.4 and
Proposition A.3. in [24], we get that

1 l
1l = g (8)F0) By (02 (=8030) |3,
1 1
< OI=A) ol =22l by
= CE2,29(507 1/})7
that
1 L
el tor .y = Mo Tims] (1= 020~ (=203} 3,
1 l
< CO(=A)3pllL2m)[(=A)5 Yl L2(w)
= CE1(¢,¥),
and that

WMallaor < I1ms (2=2)30) 2o
< Cllp(-2) 29| 1z
= Cll(=A)Fp(=8) 79| 1)
< CEi(p, ).

I

As a consequence of Lemma 3.3 we obtain the following crucial estimate.
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Lemma 3.4. For any s € (0,1) there exists a constant C' = C(s) such that

/ u(—=A) 3 uldz < Cp'~*(B1(u,u) + Fa2,(u,u))
(=p:p)
forany p >0, andu € HNC*®(R). Here Ey and Es 3, are defined as in Lemma
3.3.

Proof. By the Holder inequality for Lorentz spaces (see e.g. [31, Theorem 3.5]),
we have

Hu(_A)%uHLl(—p,p) < HX(—p,p)H 115,1)(R)|‘U’(_A)§UH

(1=
< Cp'°|lu(=2) % u|

L) (—p.p)
LG (—pp)’ (36)
We shall bound the RHS of (36) by approximating u with compactly supported
functions and applying Lemma 3.3. To this purpose, we take a sequence of cut-
off function (7;)jen € C°(R) such that 7;(x) = 1 for |z| < j, 7;(x) = 0 for
] >7+1,0< 75 <1and \T]’\ < 2. We define u; := 7ju. We claim that

u; —u in H22(R)N LY(R), g € (2,00) (37)

and
(=A)2uj — (=A)2u  in LS, (R). (38)

The first claim is proved in [10, Lemma 12]. We shall prove the second claim.
Set vj; = uj — u. Then, for any fixed Rg > 0 and = € (—Ry, Ro), if j > 2Ry we
have

) |v J(y 14 |u y)l < Cllull 2
[(=A)2v;| < K / ‘1+Sd y<27°K |1+s =i
R\ (—4,4) R\(—4,4)
with C' depending only on s. As j — oo, we get (38).
Now, By Lemma 3.3, we know that, for any j,
g (=2) 2wl 2y, ) < OB, 05) + Bap(uj, ), (39)

where C' depends only on s. Clearly, (37) yields
E1 (Uj, Uj) — El(u, u)

Moreover
Eso0p(uj,uj) = B2 2p(u,u), forj > 2p.
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Finally, (37) and (38) imply that uj(—A)2u; — u(—A)2u in L]

loc

q € [1,00), and therefore in L(%“X’)(—,o7 p). Then, passing to the limit in (39) we

(R) for every

get

lu(=8)%ul < C(BL(ww) + Bazp(u, ),

LG (—p.p)
and together with (36) we conclude. O

We can now apply Lemma 3.4 to ug. After scaling, we get the following bound
on 7.

Lemma 3.5. For any s € (0,1), there exists a constant C = C(s) > 0 such
that

/ [(=A)2ng|de < ORY™*,  for any R > 0 and k > ko(R).
“R

Proof. First we observe that fj := (—A)%uk = )\kukeak“i — uy, is bounded in
Llog% Lioe(R). Indeed, we have

log? (2 + |fx]) < C(1 + uy),

so that
|fellog2 (2 + [ fi]) < Ol fi] (1 +ug) = O(| fi|ug + 1).

Since |fx|uy is bounded in L'(R) by (5) and (6), we get that fj is bounded in
Llog? Ligc(R).
Then Lemma 3.4 and (6) imply the existence of C' = C(s) such that

P
/ lup(—A)Zug|de < Cp*=%, pe(0,1).
—p

For any R > 0, we can apply this with p = Rr; and rewrite it in terms of 7.

R
/ (1 . "’“) (=AYb < CRI™.
R /’Lk:

Then, we obtain

Since, by Lemma 3.2, 7 is locally bounded, if k is sufficiently large we get
1+ Z—E > % and the proof is complete. O

Lemma 3.6. The sequence (ny) is bounded in Ls(R) for any s > 0.
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Proof. 1t is sufficient to prove the statement for s € (0,1/2). Since n; < 0,
Lemma 3.5 gives

1
1
> / (—A) )z
1

1 2 1
k(@) — k(y) nk(w)dydx —nk(y)dydz
= | [ e fo— g7 To -yl
1-2

—1- —1(-2,2)¢ —1(-2,2)¢

=0 =:1s =:13

Take 25 < a < 1. Since 7y, is bounded in C{_(R) by Lemma 3.2, we have that

dydx
L|<C =C.
11| //|x y[iH2s—a = /|Z|1+2s a

Similarly

1
1
-1 (z—1,z4+1)°

Therefore, we obtain that

1
|le( )|

—1(=2,2)¢

But for z € (— 1) and y ¢ (—2,2) we have |z —y| < |y| + |z] < 2Jy|] <

2(1 + [y[1+2) % . Hence
1 me(v) (o)
- e (y 1 (Y
_/ / y|1+25d ydr 2 o35 / I+ |y|1+25dy
“1 (~2,2)¢
This and Lemma 3.2 imply that 7 is bounded in Ls(R). O

Proof of Theorem 1.3 (completed). By Lemma 3.2, up to a subsequence we can
assume that 7 — ne in C_(R) for any o € (0,1), with ns € C(R). Let us

loc
denote

2
Nk+—"%
fr = (fA)%nk‘ =2 <1 + [Tk 2) i 4a’f“k — 2rpap s (1+ [Tk )

20 iy QOékMk
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As observed in the proof of Lemma 3.2, we have rku% — 0 as kK — oo and thus
fx — 2€">= locally uniformly on R. Moreover fj is bounded in L®(R). Then,
for any Schwarz function ¢ € S(R) we have

/ o2t < o(1) [ ol (1fulle oy 267 1wy [ I =0
(=R,R) (—R,R)°
as k, R — +00. On the other hand, we know by Lemma 3.6 that 7 is bounded

in L¢(R) and, consequently, 1o € Ls(R), s > 0. In particular, for s € (0, %),
letting k — oo first, and then R — oo we get

1
[ = nelit-8) gl
®
1 ) — Moo (T
< [(=A) 29l Lo (—r,m) Mk — Mool L1 (= R,R) + C / M—|g()|dm
(=R,R)°

< Climk = nooll L1 (- r,m) + CR=TH(| ) = 0.

Then 7. is a weak solution (—A)%noo = 2e">° and 7. € Ls(R) for any s.
Moreover, repeating the argument of Corollary 2.3 and using (6), we get

R Rrk
1
= / e"*d¢ = lim / )\kuzeo‘kuidw < limsup |lug|% = A, (40)
™ k—o0 k—00
—-R —Rry

which implies "> € L'(R). Then 7o () = —log(1 + x2), see e.g. [6, Theorem
1.8].

To complete the proof, we shall study the properties of the weak limit uqo
of ug in H. First, we show that u is a weak solution of (7). Let us denote

k= Apuge oo i= AoolUosoe™ oo

Take any function ¢ € S(R). On the one hand, since (—A)2¢ € L2(R) and
Up — Uso weakly in L?(R), we have

J LR Ny (R P

R R

as k — o0o. On the other hand, for any large ¢t > 0 we get

H<P||LOCR
/\gk ~ goollipldz < / \gk—goouwdw—”/uk(gwgw)dm
R R

t
{ur<t}
=o(l)+ 0t ) =0
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as k,t — 0o, where we used that go, € L?(R) by Theorem A (see e.g. Lemma

2.3 of [17]) together with the dominated convergence theorem and the bounds

lurgrllormy < A and [lugl|L2m) < A. Then, uy is a weak solution of (7).
Now, observe that

RTk
k|3 :/!Jkukdﬂvz / grugdT + / grukdx
—Rry, R\(—Rr,Rry)
with
R7’k R
1
lim / upgr dr = — / el>dr — 1
k—o0 s
—Rry —R

as R — oo, and

lim inf / grugdr = /goouoodx = ||too |37

k—o0
R\(—Rrk,Rry) R

for any R > 1, by Fatou’s lemma. Thus we conclude that
2 2
llurllzr = lJusollEr + 1.

Finally, to prove that u, — us in Cf (R \ {0}) for every ¢ > 0, we use the
monotonicity of ug, which implies that uy, is locally bounded away from 0, hence

we can conclude by elliptic estimates, as in Lemma 3.1.

4 Proof of Theorem 1.2

Let us denote

E,(u) = /(ea”2 —1)dz, D, := sup Eq(u).
5 u€H:||lul| g <1

The proof of Theorem 1.2 is organized as follows. First, we prove that D, is
attained for a € (0,7) sufficiently close to 7. Then, we fix a sequence (ag)renN
such that o, /' 7 as k — +o0o, and for any large k we take a positive extremal
ug € H for D, . With a contradiction argument similar to the one of Section 2,
we show that i, := supg uy < C. Finally, we show that uj — us in LS (R) N
L?(R), where un, is a maximizer for D.
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4.1 Subcritical extremals: Ruling out vanishing

The following lemma describes the effect of the lack of compactness of the em-
bedding H C L?(R) on E,, and holds uniformly for o € [0, 7].

Lemma 4.1. Let (o) C [0, 7] and (ug) C H be two sequences such that:

1. ar — ax €10,7] as k — oco.

2. Nukllg <1, up = uso weakly in H, up, — uoo a.e. in R, and eOKUR

AeetZe iy Ll (R) as k — oo.

3. The ug’s are even and monotone decreasing i.e. ug(—x) = uk(r) > ur(y)
for0 <z <y.

Then we have

(&

Eay (k) = Ea. (uoo) + oo ([lusll3z(z) = el 3eqg) ) +o(1),
as k — oo.

Proof. Since uy, is even and decreasing, we know that

9 Hukuiz(]g) 1

2|z| = (41)

e 2l

for any « € R\ {0}. In particular, there exists a constant C' > 0, such that
eonui(®) _ 1 _ apui(z) < Clz|™,

for |z| > 1. Applying the dominated convergence theorem for |z| > 1, using
the assumption that e %k — @=U% in Ll (R), and recalling that (uy) is

precompact in L] (R), we find that

loc

/(ea’““i —1— agui)de — /(eo‘°°“io — 1 — agou?,)dz,
R R

and the Lemma follows. O

Lemma 4.2. Take o € (0,7). If Dy > «, then Dy is attained by an even an
decreasing function, i.e. there exists uq € H even and decreasing s.t. ||uq|g =1
and Eq(ug) = Dg.

Proof. Let (ur) C H be a maximizing sequence for E,. W.l.o.g. we can assume
Ul — Uso € H weakly in H and a.e. on R. Moreover, up to replacing uj with
its symmetric decreasing rearrangement, we can assume that wug is even and
decreasing (see [30]). Since a € (0,7) the sequence €@ — 1 is bounded in
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L% (R), with Z > 1. Then, by Vitali’s theorem, we get Ui —y U3 in L1 (R),

loc

and Lemma 4.1 yields
Bo(u) = Ba(use) + o (Jlunl 32 = lusolfem ) +o(L).  (42)

This implies that us Z 0, since otherwise we have F,(ug) = a||uk||%2(R) +
o(1) < a+ o(1), which contradicts the assumption Dy > «. Let us denote

2
_ HU<>0||L2(R)'

L := lim sup ||ug|? T
o R 2R L

Observe that L, 7 € (0,1]. Let us consider the sequence vy (z) = ug(7z). Clearly,
we have vy — v weakly in H, where voo(x) := wuoo(72). Moreover, since
[tool|22 = L and

1 2 . . 1 2 . . 1 2
(-2)F o3 < im i (~A) by [0 = T inf [(~2) g 30 <1 L,
we get ||voo||lg < 1. By (42) we have
Do < Eq(tuoo) +aL(1—7) =TEq(veo) + @L(1 —7) < 7Dg + aL(1 — 7). (43)

If 7 < 1, this implies D, < alL < «, contradicting the assumptions. Hence
7 =1 and (43) gives D, = FEq4(us). Finally we have ||ug||z = 1, otherwise
Ey(7755—) > Eo(uso) = Dq. O

u
llweo 1

Lemma 4.3. There exists a* € (0,m) such that Dy > a for any o € (a*, 7).
In particular Dy is attained by an even and decreasing function uo for any
a € (a*,m) by Lemma 4.2.

Proof. This follows from Proposition 4.14 by continuity. Indeed Proposition 4.14
gives D, > 2we™7 > 7. O

4.2 The critical case

Next, we take a sequence oy, such that ay 7 7 as k — oo. For any large k,
Lemma 4.3 yields the existence up € H even and decreasing such that D,, =
E,, (ug). Each uy, satisfies

(—A) By, + up, = Muge™ s,
and ||ug||g = 1. Note that uy € C°°(R) by elliptic estimates. Multiplying the

equation by u; and using the basic inequality tet > et — 1, for t > 0, we infer

1 2 1 1
)\—k = /uiea"'“kdw > a—kEak (ug) = a—kDak.
R
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Since D, — Dr > 0, we get that Ay is uniformly bounded.

Then the sequence uy satisfies the alternative of Theorem 1.3. If case (i)
holds, then we can argue as in Lemma 4.2 and Lemma 4.3 and prove that D,
is attained. Therefore, we shall assume by contradiction that case (ii) occurs.

Let r; and n; be as in Theorem 1.3. Let 75 denote the Poisson integral of

Nk -

Proposition 4.4. We have T, — fjoo in Cfoc(@) for every £ > 0, where
oo (2, y) = —log (1 +y)* + 2°)

is the Poisson integral (compare to (66)) of neo := — log (1 + 302).

Proof. By Theorem 1.3 we know that ny — 7)o in Cfoc(]R) and that n is

bounded in L 1 Then, we can repeat the argument of the proof of Proposition
2.2. O
Remark 4.5. As in (17), the convergence N — Neo in L (R) implies

loc

r.R T
. Lo 2 1
lim Neprhu?~te e = — [ el dy
k—o0 kTk ™ ’
—rxR -

for1=0,1,2 and for any R > 0.
Lemma 4.6. We have uy — 0 in L?(R).

Proof. Indeed, otherwise up to a subsequence we would have ||(—A) % uy|| L2Rr) <
% for some A > 1. Consider, the function vy = (up — ug(1))T. Then, vy €
E[%’Q(I) and ||(*A)%Uk“L2(R) < %. The Moser-Trudinger inequality (3) gives

that e®:?# is bounded in LA(R). Since
2 2 1 2
uip < (1+e)vg + g(uk — k)

and |vg — ug| < uk(l) = 0 as k — oo, we get that UL ig uniformly bounded
in LP(R) for every 1 < p < A. Therefore, we have

(eo"““i —1)dz — 0
(-1,1)

as k — oo. But then, by Lemma 4.1 we find D7 <, which contradicts Lemma
4.3. O
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Lemma 4.7. For A > 1, set u‘,? := min {uk, “7’“} Then we have
. 1 1
lim sup ||(—A)4uj?\|%2(R) < T (44)

k—o0

Proof. The proof is similar to the one of Lemma 2.4. We set ﬂ? := min {ﬂk, Bk 1.
Since ﬂ? is an extension of u?, using integration by parts and the harmonicity

of @y, we get
-8 ooy < [ (Vi Pdsdy = [ i - Fandsdy

2 2
R2 R%

- [utw

R
= /(—A)%ukufdm. (45)
R

Proposition 4.4 implies that ug (rpz) = 4 for |z| < R and k > ko(R).
Noting that u? < ug and using Lemma 4.6, and Remark 4.5, we get

R’Fk,
/(—A)%uku? dx > / /\kukeo‘kuiu?daz—/uku?dm
R —Rry, R
Rry
1 2
=7 / Nettupe™ Fugtde + O(||uk||%2(]R))
—RTk
R
k—oo 1
= — Moo
TA ¢ ¢
—R
Rj)oo l
T

Set now v,‘? = (uk — %)+. With similar computations we get

erc
/(—A)%ukv,‘?dx > / Akukv,’?eak“idx—}— O(||uk||%2(R))
R 7R’I”k
R
k—oo 1 1
“(1-= Moo
— - < A) /e 3
R— o0 A-1
= —.

A
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Since

/(fA)%ukuﬁ dx + /(7A)%ukv?dx = /(—A)%ukukda@ =1- HukHQLg(R

R R

=

as k — oo, we get that

Then, we conclude using (45).

Proposition 4.8. We have

D, =1 .
T kingo /\kui

Moreover

lim ppA =0.
k—o0
Proof. Fix A > 1 and write

/ (eawi - 1) dx = (I) + (II) + (I11),

R

(46)

(47)

where (I), (II) and (I1I) denote respectively the integrals over the regions
{ur < B3N (=1,1), {ur < B3N (—1,1)¢ and {uy > £} }. Using Lemmas 4.11

and 4.7 together with Theorem A we see that

1
(I)S/(eak(“£)2—1> —0 ask— o0

-1

since e (ui)* — 1 is uniformly bounded in LP, for any 1 < p < A. By (41) and

Lemma 4.6, we find

(II) < / (alwi—l)deC’/ude%O as k — oo.
(—=1,1)° R

We now estimate

A2 2 A2
1IN < —— ApuZ e U dy < 1 1
( )— )‘k/iz / kUR€ T = )‘k,ui( +0( ))7
{uk>“7k}




e Extremals for fractional Moser-Trudinger inequalities = 33

with o(1) — 0 as k — 0o, where we used that

/\kuieo"““idx < JugllF = 1.
[ﬁ{uk>“7k

Letting A | 1, this gives

sup F; < lim
p k—r o0 Akﬂk

The converse inequality follows from Remark 4.5:

R'I"k
/ (eo“k“z — 1) dx > / R dy + o (1) = / e~dr+o +o(1).
Akﬂk
R —Rry,

with o(1) — 0 as k — oo. Letting R — co we obtain (46).
Finally, (47) follows at once from (46), because otherwise we would have
Dy = 0, which is clearly impossible. O

Lemma 4.9. We have
i o= Apguge® U = 6
as k — oo, in the sense of Radon measures in R.
Proof. The proof follows step by step the one Proposition 2.6, with (4), Proposi-

tion 4.4, Remark 4.5 Lemma 4.6 and Lemma 4.7 used in place of (3), Proposition
2, (17), Lemma 2.3 and Lemma 2.4. We omit the details. O

For z € R, let G be the Green function of (—A)% + Id on R with singularity
at x. In the following we denote G := Gg. By translation invariance, we get
G.(y) = G(y — x) for any z,y € R, & # y. Moreover, the inversion formula for
the Fourier-transform implies that

G(z) = g sinla] — = sin((e])Si(le]) — ~ cos(lz)Ci(la]), (48)

/smtdt and / COStdt

We recall that the 1dent1ty

where

xT
cost —1

Ci(z) =logz + v+ / fdt (49)
0

holds for any = € R\ {0}, where v denotes the Euler-Mascheroni constant see
g. [13, Chapter 12.2].
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Proposition 4.10. The function G satisfies the following properties.
1. We have G € C*(R\ {0}) and

1 1
G(z) = - log |z| — % +0(z]), G'(z)= - +0(1), asz— 0. (50)

2. We have G(z) = O(|z|72) and G'(x) = O(|z|~3) as || — oo.

3. Let G be the Poisson extension of G. There exists a function f € Cl(@)
such that f(0,0) =0 and

1
Gla,y) = = In(wy)] =+ arctan g — o log(a®+y?)+ fla,y) i RE.
(51)

Proof. Property 1. follows directly by formula (48) and the identity in (49).
Similarly, since

. m™ cost sint _3 . sint  cost _3
si) = 7SI o), i = Ty 069,
as t — 400, we get 2.
Given R > 0, let ¢ € C°(R) be a cut-off function with ¢ =1 on (—R, R).

Let us denote gg := —% log|-|-2, 91 := %Hw, g2 := G—go—g1. By Proposition
A.3, we have
N 1 2l 2
go(z,y) = ——log|(z,y)| — —, (z,y) € R"
T ™
Denoting 6(z,y) := arctan% the angle between the y-axis and the segment

connecting the origin to (z,y), the function
. 1 1 9 9
h(z,y) = gu1(@,y) — —28(z,y) + 5-ylog(a” +y7)

is harmonic in Rﬁ_, continuous on @i, and identically 0 on (—R, R) x R. By [33,
Theorem C], we get that h € C*°(R% N Bg(0,0)). Finally, note that formula
(48) implies g2 € C%(R) and g2(0) = 0. Hence, standard elliptic regularity yields
g2 € Cl’a(@ﬂ Br(0,0)), for any « € (0,1). In particular g2(0,0) = g2(0) =
0. O

Lemma 4.11. We have ppur — G in L2 (R) N L®(R\ (—¢,¢)), for any e > 0,

Proof. Let us set v := ppur — G and fr = uk)\kukeak“i. By Lemma 4.9 we
have || fxllz1(ry — 1 as k — 400, I = (=1,1). Then, arguing as in Lemma 2.8,
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R
< / Gla — ) — @) fe(y) dy + el — 1] (@)
I =o(1)

+ / Gz —y) fr(y)dy. (52)

R\

=:wy (z)

Using (41), Lemma 4.6 and (47), we get that fx — 0 in L2(R\ I). In particular

lwg ()] < || fell2@\0) Gl L2 (m) — O

Fix o0 € (0,1) and assume |z| > o. If we further take |y| < Z, then Proposition
4.10 implies

Gz —y) — G(x)] < Clyl,

where C' is a constant depending only on o. Thus, for any € € (0, §), setting
I. =R\ (—¢,¢) we can write

ok ()] < / G — y) — C@)|fuly) dy + o) G = @ oy +0(1)
I

<c / I fuly) dy + / G — o)l fily) dy + G() / Felw) dy + o1)

< Cellfellerry + IfellLee .y (IGH Ly + 1G] Lo (R (—0,0))) + 0(1)
< Ce+o(1),
(53)
where o(1) = 0 as k — oo (depending on ¢ and o). Here, we used that fr — 0
in LR\ (—¢,¢)) by (41) and (47). Since ¢ is arbitrarily small, (53) shows that
vg — 0 in L2®(R\ (—0,0)).
Next, we prove the L? convergence. First, Holder’s inequality and Fubini’s

theorem give

2

lunlioe = [ | [ 6o =ity | do <161 @l =0
R \R\J
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as k — oo. With a similar argument, after integrating (52) and using the trian-
gular inequality in L2, we find

lvkll2®) < |G(z —y) — G(z)|fe(y)dy | da
I\

+ H|kaL1(I) = UGl 2w + lwellL2r)

[\]
¥

E/n@ ‘/ﬁ; / —y)— G@)Pdzdy | +o(1)

—1+o(1)

=

Since G € L*(R), the function ¢(y) := [, |G(z —y) — G(z)[*dz is continuous
on R and ¢(0) = 0. Let p € C(R) be a compactly supported function such that
¢ = on I. Then, Lemma 4.9 implies

[ [166 -0 -6 me—/n y)dy + o(1) = 0,
I R

as k — oo, and the conclusion follows. O

Repeating the argument of Proposition 2.8, we get the following;:

Lemma 4.12. We have puyiy, — G in C&C(@\ {(0,00H)NCL

loc

(R2), where G
is the Poisson extension of G.

With Proposition 4.4 and Lemma 4.12 we can give an upper bound on D .

Proposition 4.13. Under the assumption that pur — oo as k — 0o, we have
D, <2we™7.

Proof. For a fixed and small § > 0 set

ap:= inf g, by:= sup dg, O:= (g Aag)V bg.
BL"’k ﬂRi Bs NR2

Recalling that HVﬂkHzLQ(R) = H(—A)%ukH%Q(R) =1- HukH%Q(R), we have
Vg Pdady <1 — [lug||?> — / |Vig|*de — / Vi, |* d

(Bs\BLy,)NR2 R%\Bs R2NBLy,
(54)
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Clearly the left-hand side bounds

(ar — by)?

inf Viadedy = m—2——
- / Vaf-dady 7rlogé—log(er)

U2 nop =ak

+ Lrg Bs\B 2
~ s L NR
ez oy e (P \BEm IR

Using Proposition 4.4, Proposition 4.10 and Lemma 4.12 we obtain

—Llog L+O(L71) +0(1)
ak = p + ;
HE

—<logd — 2+ O(3|log 8]) + o(1

. _ ~41o80 = 2+ 0(]logd) + o(1) )
Kk

where o(1) — 0 as k — oo for fixed L > 0, § > 0, and |O(L™1)| < CL7 !,
|O(d|log d|)| < Cd|log d|, uniformly for § small, and L, k large. Still with Propo-

sition 4.4 we get

. ~ 1 _
Jim i / Vi |*dwdy = — / |Viloo| 2y
+

Lo B
L log L

:71 —
g 5 +O( 7 )

Similarly Lemma 4.12 and Proposition 4.10 yield

lim inf 2 / |V |2 dedy > / |VG|2dxdy
k—o0

R2\B; R2\B;
with
- oG ~ G (x,0)
2 _ _ - _ b)
/ VG |“dzdy = / 5 Gdo + / oy G(z)dx
Ri\B(s Riﬁ8B5 (RX{O})\Bg
- L 0(10g6)) (=L1ogs— 2 + 0(5]10g6]) ) d
= - og —logd — — og o
RiﬁaBg
- G(x)%dx
R\(—4,6)
= Logs = L G2 + O 1082 )
T ™ L2(R) ’

where we used that

G (z,0) B 1 B
= (—A)2G(z) = —G(z), for z € R\ {0}.
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From Lemma 4.11 we get that ppup — G in L2(R), hence

1G1Z2 g +0(1)

2 @) =
L*(R) 2
as k — 400. We then get
w(ay, — by)? Llog &5 — 2+ 0310 8) + 0 ("5 ) +o(1)
log é —log(Lry) — 2 .

Using (55) and rearranging as in the proof of Proposition 2.9, we find

1 « L o «
log)\ 5 < (1 - l) log = + (ag — )i + (f]C —2)y + L log2 + log ok
kI T é ™ 0

+O(8log28) + O <M§L> +o(l),

with o(1) = 0 as k — oo. Then, recalling that ay 1 7, letting k& — oo first and
then L — oo, § — 0, we obtain

1
lim sup log o2 < —v + log(2m),

k— o0 kM

and using Proposition 4.8 we conclude. O

Proposition 4.14. There exists a function u € H22(R) such that ||ullg < 1
and Er(u) > 2me™ 7.

Proof. For € > 0 choose L = L(eg) > 0 such that as € — 0 we have L — oo and
Le — 0. Fix

[pe = {(x,y) €ERZ : G(z,y) = VLe = Rirfl‘l%%Ls G} )

and

Qe = {(z,y) € RY : G(a,y) > Y} -
By the maximum principle we have Rﬁ_ N Bre C Qpe. Notice also that Proposi-
tion 4.10 gives

1
Yoe = —= log(Le) — % + O(Lellog(Le)|).
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and Q7. C Ri N Byr,. . For suitable constants B, c € R to be fixed we set

log (fg—i +(1+ g)Q) +2B
2
c— e for (x,y) € Br:(0,—¢) NR%
Ue(z,y) = Vf for (z,y) € Qpe \ Bre(0, —¢)
Gy for (z,y) € RE \ Q.
C

Observe that R%r NBr.(0,—¢) CR2NBr. C Qr.. We choose B in order to have
continuity on Ri NIBL:(0,—¢), i.e. we impose

—logL? — 2B
%74_0:7[’87
2me c

which gives the relation
B = nc? +1loge + v + O(Le|log(Le)|). (56)

This choice of B also implies that the function cU. does not depend on the value
of ¢. Then we can choose ¢ by imposing

HVUauiz(Ri) + HU6H%2(R) =1, (57)

where we set us(z) = Us(2,0). Since the harmonic extension @, minimizes the
Dirichlet energy among extensions with finite energy, we have

(-8l = [ 1VaPasay < [ (90 Pasay,
R2 R2

and (57) implies ||ug|? <1
(57) implies [ue]2, , <
In order to obtain a more precise expansion of B and ¢ we compute

1
/ |VU.|?dzdy = ey / |V log(x2 + (1 4+ y)?)|*dzdy
Bre(0,—¢)NR% Br(0,—1)NR%.

Log (§) +0 (42)

c? ’
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and
1 -
/ \VU€|2d:z:dy:c—2 / |VG|?dxdy
Ri\QLs Ri\QLa

1 G ~ 1 G ~

- / 00— = / oy ©
R2 NOQL: (Rx {0\ QL

=(I)+ (II)

By the divergence theorem we have for 7 < Le and letting 7 — 0,

__TLe @ _ JLe @
() = c2 / v do c2 / Ov do

(Rx{0})N(QL:\B,) R2NOB-,

= ’YL; / Gdo + 1

C

Rx{0})NQL.

VCL; (14 O(Lelog(Le)))
_ 2log(£z) — I +O(Lelog?(Le))

- , (59)

where in the third identity we used that Q. C Bar. for Le small enough.
Observe also that

2
1 / C2d + O(Lelog®(Le))

9 O(Lelog?(Le))
loelZeqry = % Ollelog (Le))

= —(I)+ ===

(Rx {0\ QL.

Together with (57)-(59) this gives

log L
—loge —log2 — v + O(Lelog?(Le)) + O ( Oi > =7c?,

which, together with (56), implies

log L
B = —log2 + O(Lelog?(Le)) + O ( Oi ) .
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Now, observe that By.(0,—¢) N (R x {0}) = (—eV/L? — 1,ev/L? — 1) and that

eV IL?2-1 VIL2-1

log(1 + 22) + 2B\ *
/ 0 — / exp <ﬂ(0_0g<+fﬂ>+> )dm
2me
—eVIZ-1 —VIL2—1
VI
nc?—2B 1

d

> ce / 1—|—:L'2 X

—/L2-1

— 26*’Y+O(L5logQ(Le))+O(loiL)ﬂ_ (1 +0 (i))

log L
=2me” " + O(Lelog?(Le)) + O (()g) .

L
Moreover
1
/ (e’mg — 1) dx > / rudr = - / 1Gldx =: V—LQE,
c c
(Rx{0})\ Qe Rx{0})\ Qe (Rx {0\ Qe
with

1
VLe > V1 >0, for LE<5.

Now choose L = log? & to obtain

log L logloge 1
Lelog?(L = —of =
O(Eog(a))+0( 7 ) O(log25> o<02>,

so that
2 vi 1
Er(us) = / (e““s - 1) dz >2me™ 7 + 3 +o (2> > 2me™
c c
R

for € small enough. O

Proof of Theorem 1.2 (completed). By Propositions 2.10 and 4.14, we know that
i < C. Then, by dominated convergence theorem we have eORUE 3 MU i
L! (R). Then, by Lemma 4.2, we infer

loc
Boy, (ur) = Ex(uoo) + m([[urll72(my = [luoo |72 (y) + o(1). (60)

This implies that use # 0, otherwise we would have Eq, (ug) < 7r|\uk|\%2(R) +
o(1) < 7+ o(1), which contradicts the strict inequality D, > 2me~7 > 7, since
E,, (ur) = Do, — Dy as k — oo.
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oo 122
L

Let us denote L := limsupy_, ||ukl3, 7 = and observe that

L,7 € (0,1]. Let us consider the sequence v (z) = ug(rx). Clearly, we have
UV — Voo In H, where voo () := oo (72). Since ||voo\|L2 =L, and

1 o 1 o 1
(-A)FomelZs < liaminf [(~A) gl 2 = laninf (~A) g3 <1 L,
we get ||UOOHH%,2 < 1. By (60) we have
Dr=Er(uco)+7L(1 —7) =TE;(Voo) + 7L(1 —7) < 7Dp + wL(1 — 7).

If 7 < 1, this implies D, < 7L, which is not possible. Hence, we must have
7=1and Er(us) = Dy. O

A Appendix: The half-Laplacian on R

For u € § (the Schwarz space of rapidly decaying functions) we set

(CAFu(E) = (o) / Fl)e (61)
One can prove that it holds (see e.g.)
u(z) — u(y)
(=A)°u(z) = K PV/ lz— |1+29 y =K hm / |1+29dy’ (62)
R\[—E ]

from which it follows that

sup |(1 4+ 21 T2%)(=A)*p(z)| < oo, for every p € S.
z€R

Then one can set

|u(@)|
Ls(R):={u€ L (R) : ||lullz, := / W(im < o0y, (63)
R

and for every u € L4(R) one defines the tempered distribution (—A)%u as

((=A)°u, @) = /u(—A)Sgodx = /u}'_l(|§|@(§))dx, for every ¢ € S.

R R
(64)

Moreover we will define for p > 1 and s € (0,1)

H*P(R) := {u € LP(R) : (~A)3u € LP(R)}. (65)
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In the case s = % we have K% = % in (62) and a simple alternative definition of

(=A)2 can be given via the Poisson integral. For u € L 1(R) define the Poisson
integral

i 1 yu(§)
W(z,y) == | ——F—=5-d¢, y>0, 66

S Rreares 09
which is harmonic in Ri = R X (0,00) and satisfies the boundary condition
i|rx {0} = u in the following sense:

Proposition A.1. Ifu € L%(R), then a(-,y) € LL.(R) for y € (0,00) and
a(-,y) — u in the sense of distributions asy — 0F. If u € L%(R) N C((a,b))
for some interval (a,b) C R, then @ extends continuously to (a,b) x {0} and
i(z,0) = u(z) for any x € (a,b). If u € Hz(R), then @ € HY(R2), the identity

HV'I]”LZ(Ri) = H(—A)%uHLz(R) holds, and i|gy {0y = u in the sense of traces.

Then we have (see e.g [4])

; (67)

where the identity is pointwise if u is regular enough (for instance C’llo’g (R)), and
has to be read in the sense of tempered distributions in general, with

ot > < 0@
- a P )= \U 5
< ay y=0 ay

More precisely:

>7 p €S, ¢asin (66). (68)
y=0

Proposition A.2. If u € L%(R) N Cll.gg((a,b)) for some interval (a,b) C R
and some o € (0,1), then the tempered distribution (—A)%u defined in (64)
coincides on the interval (a,b) with the functions given by (62) and (67). For
general v € L1 (R) the definitions (64) and (67) are equivalent, where the right-

hand side of (67) is defined by (68).

It is known that the Poisson integral of a function u € L%(R) is the unique
harmonic extension of v under some growth constraints at infinity. In fact, com-
bining [36, Theorem 2.1 and Corollary 3.1] and [33, Theorem C] we get:

Proposition A.3. For any u € L%(R), the Poisson extension @ satisfies
i(z,y) = oy~ (2% + v?)) as |(z,y)| — oo. Moreover, if U is a harmonic
function in R% which satisfies U(z,y) = oy~ (2 + ¢?)) as |(z,y)| — oo and
U(-,y) = u as y — 0T in the sense of distributions, then U = @ in R?ﬁ-'
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