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1 Introduction
The celebrated Moser-Trudinger inequality [28] states that for Ω ⊂ R𝑛 with
finite measure |Ω| we have

sup
𝑢∈𝑊 1,𝑛

0 (Ω), ‖∇𝑢‖𝐿𝑛(Ω)≤1

∫︁
Ω

𝑒𝛼𝑛|𝑢|
𝑛

𝑛−1
𝑑𝑥 ≤ 𝐶|Ω|, 𝛼𝑛 := 𝑛𝜔

1
𝑛−1
𝑛−1 , (1)

where 𝜔𝑛−1 is the volume of the unit sphere in R𝑛. The constant 𝛼𝑛 is sharp
in the sense that the supremum in (1) becomes infinite if 𝛼𝑛 is replaced by any
𝛼 > 𝛼𝑛. In the case Ω = R2, B. Ruf [34] proved a similar inequality, using the
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full 𝑊 1,2-norm instead of the 𝐿2-norm of the gradient, then generalized to R𝑛,
𝑛 ≥ 2 by Li-Ruf [20] as

sup
𝑢∈𝑊 1,𝑛(R𝑛), ‖𝑢‖𝑛

𝐿𝑛(R𝑛)+‖∇𝑢‖𝑛
𝐿𝑛(R𝑛)≤1

∫︁
R𝑛

(︁
𝑒𝛼𝑛|𝑢|

𝑛
𝑛−1 − 1

)︁
𝑑𝑥 < ∞. (2)

Higher-order versions of (1) were proven by Adams [2] on the space 𝑊 𝑘, 𝑛
𝑘 (Ω)

for 𝑛 > 𝑘 ∈ N.

In [17] the authors proved the following 1-dimensional fractional extension
of the previous results (for the definition of 𝐻 1

2 ,2(R) and (−Δ) 1
4 see (65) in the

Appendix).

Theorem A. Set 𝐼 := (−1, 1) ⊂ R and 𝐻̃
1
2 ,2(𝐼) := {𝑢 ∈ 𝐻

1
2 ,2(R) : 𝑢 ≡

0 on R ∖ 𝐼}. Then we have

sup
𝑢∈𝐻̃

1
2 ,2(𝐼), ‖(−Δ)

1
4 𝑢‖𝐿2(𝐼)≤1

∫︁
𝐼

(︁
𝑒𝛼𝑢2

− 1
)︁
𝑑𝑥 = 𝐶𝛼 < ∞, for 𝛼 ≤ 𝜋, (3)

and

sup
𝑢∈𝐻

1
2 ,2(R), ‖𝑢‖

𝐻
1
2 ,2(R)

≤1

∫︁
R

(︁
𝑒𝛼𝑢2

− 1
)︁
𝑑𝑥 = 𝐷𝛼 < ∞, for 𝛼 ≤ 𝜋, (4)

where ‖𝑢‖2
𝐻

1
2 ,2(R)

:= ‖(−Δ) 1
4 𝑢‖2

𝐿2(R) +‖𝑢‖2
𝐿2(R). The constant 𝜋 is sharp in (3)

and (4).

More general results have recently appeared, see e.g. [1; 12; 18; 27; 35; 38], in
which both the dimension and the (fractional) order of differentiability have
been generalized. For instance, (3) and (4) can be seen as 1-dimensional cases
of the more general results of [18; 27; 12] that hold in arbitrary dimension 𝑛.

The existence of extremals for this kind of inequalities is a challenging ques-
tion. Existence of extremals for (1) was originally proven by L. Carleson and
A. Chang [5] in the case of the unit ball, a fundamental result later extended
by Struwe [37] and Flucher [11] to the case of general bounded domains in R2

and by K. Lin [22] to the case of bounded domains in R𝑛. In the case of the
Li-Ruf inequality (2), the existence of extremals appears in [20] when 𝑛 ≥ 3 and
was proven by Ishiwata [16] when 𝑛 = 2. For the higher-order Adams inequality
the existence of extremals has been proven in various cases, e.g. by Li-Ndiaye
[21] on a 4 dimensional closed manyfold, by Lu-Yang [23] for a 4 dimensional
bounded domain and by DelaTorre-Mancini [7] for a bounded domain in R2𝑚,
𝑚 ≥ 1 arbitrary.
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On the other hand, the existence of extremals for the fractional Moser-
Trudinger inequality has remained open until now, with the exception of Taka-
hashi [38] considering a subcritical version of (4) of Adachi-Tanaka type [1],
and Li-Liu [19] treating the case of a fractional Moser-Trudinger on 𝐻

1
2 ,2(𝜕𝑀)

with 𝑀 a compact Riemann surface with boundary. The idea of Li and Liu
is that working on the boundary of a compact manifold, one can localize the
𝐻

1
2 ,2-norm.

Applying the same method for an interval 𝐼 ⊂ R creates problems near 𝜕𝐼,
which require additional care in the estimate, and the problem becomes even
more challenging when working on the whole R. The main purpose of this paper
is to handle these two cases and prove that the suprema in (3) and (4) are
attained.

Theorem 1.1. For any 0 < 𝛼 ≤ 𝜋, the inequality (3) has an extremal i.e. there
exists 𝑢𝛼 ∈ 𝐻̃

1
2 ,2(𝐼) such that ‖(−Δ) 1

4 𝑢𝛼‖𝐿2(R) ≤ 1 and∫︁
𝐼

(︁
𝑒𝛼𝑢2

𝛼 − 1
)︁
𝑑𝑥 = 𝐶𝛼.

Theorem 1.1 is rather simple to prove for 𝛼 ∈ (0, 𝜋), while the case 𝛼 = 𝜋 relies
on a delicate blow-up analysis for subcritical extremals.

A similar analysis can be carried out for the Ruf-type inequality (4). How-
ever, working on the whole real line we need to face additional difficulties due to
the lack of compactness of the embedding of 𝐻 = 𝐻

1
2 ,2(R) into 𝐿2(R): vanishing

at infinity might occur for maximizing sequences, even in the sub-critical case
𝛼 ∈ (0, 𝜋). This issue is not merely technical indeed Takahashi [38] proved that
(4) has no extremal when 𝛼 is small enough. Here, in analogy with the results in
dimension 𝑛 ≥ 2, we prove that the supremum in (4) is attained if 𝛼 sufficiently
close to 𝜋.

Theorem 1.2. There exists 𝛼* ∈ (0, 𝜋) such that for 𝛼* ≤ 𝛼 ≤ 𝜋 the inequality
(4) has an extremal, namely, there exists 𝑢̄𝛼 ∈ 𝐻

1
2 ,2(R) such that ‖𝑢̄𝛼‖

𝐻
1
2 ,2(R)

≤
1 and ∫︁

R

(︁
𝑒𝛼𝑢̄2

𝛼 − 1
)︁
𝑑𝑥 = 𝐷𝛼.

As for Theorem 1.1, the proof of Theorem 1.2 for 𝛼 = 𝜋 is based on blow-up
analysis. In fact we need to study the blow-up of a non-local equation on the
whole real line (no boundary conditions), as done in the following theorem.
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Theorem 1.3. Let (𝑢𝑘) ⊂ 𝐻 = 𝐻
1
2 ,2(R) be a sequence of non-negative solu-

tions to
(−Δ)

1
2 𝑢𝑘 + 𝑢𝑘 = 𝜆𝑘𝑢𝑘𝑒

𝛼𝑘𝑢2
𝑘 in R, (5)

where 𝛼𝑘 → 𝜋 and 𝜆𝑘 → 𝜆∞ ≥ 0. Assume 𝑢𝑘 even and decreasing (𝑢𝑘(−𝑥) =
𝑢𝑘(𝑥) ≤ 𝑢𝑘(𝑦) for 𝑥 ≥ 𝑦 ≥ 0) for every 𝑘 and set 𝜇𝑘 := supR 𝑢𝑘 = 𝑢𝑘(0).
Assume also that

Λ := lim sup
𝑘→∞

‖𝑢𝑘‖2
𝐻 < ∞. (6)

Then up to extracting a subsequence we have that either
(i) 𝜇𝑘 ≤ 𝐶, 𝑢𝑘 → 𝑢∞ in 𝐶ℓ

loc(R) for every ℓ ≥ 0, where 𝑢∞ ∈ 𝐶ℓ
loc(R) ∩ 𝐻

solves
(−Δ)

1
2 𝑢∞ + 𝑢∞ = 𝜆∞𝑢∞𝑒𝜋𝑢2

∞ in R, (7)

or
(ii) 𝜇𝑘 → ∞, 𝑢𝑘 → 𝑢∞ weakly in 𝐻 and strongly in 𝐶0

loc(R̄ ∖ {0}) where 𝑢∞ is
a solution to (7). Moreover, setting 𝑟𝑘 such that

𝜆𝑘𝑟𝑘𝜇
2
𝑘𝑒

𝛼𝑘𝜇2
𝑘 = 1

𝛼𝑘
, (8)

and

𝜂𝑘(𝑥) := 2𝛼𝑘𝜇𝑘(𝑢𝑘(𝑟𝑘𝑥) − 𝜇𝑘), 𝜂∞(𝑥) := − log
(︀
1 + |𝑥|2

)︀
, (9)

one has 𝜂𝑘 → 𝜂∞ in 𝐶ℓ
loc(R) for every ℓ ≥ 0, sup𝑘 ‖𝜂𝑘‖𝐿𝑠(R) < ∞ for any

𝑠 > 0 (cfr. (63)), and Λ ≥ ‖𝑢∞‖2
𝐻 + 1.

The proof of Theorem 1.3 is quite delicate because local elliptic estimates of
a nonlocal equation depend on global bounds as we shall prove in Lemma 3.6.
This will be based on sharp commutator estimates (Lemma 3.3), as developed
in [24] for the case of a bounded domain in R𝑛, extending to the fractional case
the approach of [26].

We expect similar existence results to hold for a perturbed version of in-
equalities (3)-(4), as in [25] and [39] (see also the recent results in [15]), but we
will not investigate this issue here.
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2 Proof of Theorem 1.1

2.1 Strategy of the proof

We will focus on the case 𝛼 = 𝜋, since the existence of extremals for (3) with
𝛼 ∈ (0, 𝜋) follows easily by Vitali’s convergence theorem, see e.g. the argument
in [25, Proposition 6].

Let 𝑢𝑘 be an extremal of (3) for 𝛼 = 𝛼𝑘 = 𝜋− 1
𝑘 . By replacing 𝑢𝑘 with |𝑢𝑘|

we can assume that 𝑢𝑘 ≥ 0. Moreover ‖(−Δ) 1
4 𝑢𝑘‖𝐿2(R) = 1, and 𝑢𝑘 satisfies the

Euler-Lagrange equation

(−Δ)
1
2 𝑢𝑘 = 𝜆𝑘𝑢𝑘𝑒

𝛼𝑘𝑢2
𝑘 , (10)

with bounds on the Lagrange multipliers 𝜆𝑘 (see (13)).
Using the monotone convergence theorem we also get

lim
𝑘→∞

∫︁
𝐼

(︁
𝑒𝛼𝑘𝑢2

𝑘 − 1
)︁
𝑑𝑥 = lim

𝑘→∞
𝐶𝛼𝑘 = 𝐶𝜋, (11)

where 𝐶𝛼𝑘 and 𝐶𝜋 are as in (3).
If 𝜇𝑘 := max𝐼 𝑢𝑘 = 𝑂(1) as 𝑘 → ∞, then up to a subsequence 𝑢𝑘 → 𝑢∞

locally uniformly, where by (11) 𝑢∞ maximizes (3) with 𝛼 = 𝜋. Therefore we
will work by contradiction, assuming

lim
𝑘→∞

𝜇𝑘 = ∞. (12)

By studying the blow-up behavior of 𝑢𝑘, see in particular Propositions 2.2 and
2.8, we will show that (12) implies 𝐶𝜋 ≤ 4𝜋 (Proposition 2.9), but with suit-
able test functions we will also prove that 𝐶𝜋 > 4𝜋 (Proposition 2.10), hence
contradicting (12) and completing the proof of Theorem 1.1.

2.2 The blow-up analysis

The following proposition is well known in the local case, and its proof in the
present setting is similar to the local one. We give it for completeness.

Proposition 2.1. We have 𝑢𝑘 ∈ 𝐶∞(𝐼) ∩ 𝐶0, 1
2 (𝐼), 𝑢𝑘 > 0 in 𝐼, and 𝑢𝑘 is

symmetric with respect to 0 and decreasing with respect to |𝑥|. Moreover,

0 < 𝜆𝑘 < 𝜆1(𝐼). (13)
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Up to a subsequence we have 𝜆𝑘 → 𝜆∞ and 𝑢𝑘 → 𝑢∞ weakly in 𝐻̃
1
2 ,2(𝐼) and

strongly in 𝐿2(𝐼), where 𝑢∞ solves

(−Δ)
1
2 𝑢∞ = 𝜆∞𝑢∞𝑒𝜋𝑢2

∞ . (14)

Proof. For the first claim see Remark 1.4 in [24]. The positivity follows from the
maximum principle, and symmetry and monotonicity follow from the moving
point technique, see e.g. [8, Theorem 11].

Now testing (10) with 𝜙1, the first eigenfunction of (−Δ) 1
2 in 𝐻̃

1
2 ,2(𝐼),

positive and with eigenvalue 𝜆1(𝐼) > 0, we obtain

𝜆1(𝐼)
∫︁
𝐼

𝑢𝑘𝜙1𝑑𝑥 = 𝜆𝑘

∫︁
𝐼

𝑢𝑘𝑒
𝛼𝑘𝑢2

𝑘𝜙1𝑑𝑥 > 𝜆𝑘

∫︁
𝐼

𝑢𝑘𝜙1𝑑𝑥,

hence proving (13). By the theorem of Banach-Alaoglu and the compactness of
the Sobolev embedding of 𝐻̃ 1

2 ,2(𝐼) →˓ 𝐿2(𝐼), we obtain the claimed convergence
of 𝑢𝑘 to 𝑢∞. Finally, to show that 𝑢∞ solves (14), test with 𝜙 ∈ 𝐶∞

𝑐 (𝐼):∫︁
𝐼

𝑢∞(−Δ)
1
2𝜙𝑑𝑥 = lim

𝑘→∞

∫︁
𝐼

𝑢𝑘(−Δ)
1
2𝜙𝑑𝑥

= lim
𝑘→∞

∫︁
𝐼

𝜆𝑘𝑢𝑘𝑒
𝛼𝑘𝑢2

𝑘𝜙𝑑𝑥

=
∫︁
𝐼

𝜆∞𝑢∞𝑒𝜋𝑢2
∞𝜙𝑑𝑥,

where the convergence of the last integral is justified by splitting 𝐼 into 𝐼1 :=
{𝑥 ∈ 𝐼 : 𝑢𝑘(𝑥) ≤ 𝐿} and 𝐼2 := {𝑥 ∈ 𝐼 : 𝑢𝑘(𝑥) > 𝐿}, applying the dominated
convergence on 𝐼1 and bounding∫︁

𝐼2

𝜆𝑘𝑢𝑘𝑒
𝛼𝑘𝑢2

𝑘𝜙𝑑𝑥 ≤ sup𝐼 |𝜙|
𝐿

∫︁
𝐼

𝜆𝑘𝑢
2
𝑘𝑒

𝛼𝑘𝑢2
𝑘 𝑑𝑥

= sup𝐼 |𝜙|
𝐿

∫︁
𝐼

𝑢𝑘(−Δ)
1
2 𝑢𝑘 𝑑𝑥

= sup𝐼 |𝜙|
𝐿

‖(−Δ)
1
4 𝑢𝑘‖2

𝐿2(R),

and letting 𝐿 → ∞.

Let 𝑢̃𝑘 be the harmonic extension of 𝑢𝑘 to R2
+ given by the Poisson integral, see

(66) in the appendix. Notice that∫︁
𝐼

𝜆𝑘𝑢
2
𝑘𝑒

𝛼𝑘𝑢2
𝑘𝑑𝑥 = ‖(−Δ)

1
4 𝑢𝑘‖2

𝐿2(R) = ‖∇𝑢̃𝑘‖2
𝐿2(R2

+) = 1. (15)
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Let 𝑟𝑘 = 1
𝛼𝑘𝜆𝑘𝜇2

𝑘
𝑒

𝛼𝑘𝜇2
𝑘

and 𝜂𝑘(𝑥) := 2𝛼𝑘𝜇𝑘(𝑢𝑘(𝑟𝑘𝑥) − 𝜇𝑘) be as in (8) and (9),

and set
𝜂𝑘(𝑥, 𝑦) := 2𝛼𝑘𝜇𝑘(𝑢̃𝑘(𝑟𝑘𝑥, 𝑟𝑘𝑦) − 𝜇𝑘).

Note that 𝜂𝑘 is the Poisson integral of 𝜂𝑘.

Proposition 2.2. We have 𝑟𝑘 → 0 and 𝜂𝑘 → 𝜂∞ in 𝐶ℓ
loc(R2

+) for every ℓ ≥ 0,
where

𝜂∞(𝑥, 𝑦) = − log
(︀
(1 + 𝑦)2 + 𝑥2)︀

is the Poisson integral (compare to (66)) of 𝜂∞ := − log
(︀
1 + 𝑥2)︀, and

(−Δ)
1
2 𝜂∞ = 2𝑒𝜂∞ ,

∫︁
R

𝑒𝜂∞𝑑𝑥 = 𝜋. (16)

Proof. According to Lemma 2.2, Theorem 1.5 and Proposition 2.7 in [24], we
have 𝑟𝑘 → 0, 𝜂𝑘 → 𝜂∞ in 𝐶ℓ

loc(R) for every ℓ ≥ 0 and (𝜂𝑘) is uniformly bounded
in 𝐿 1

2
(R) (see (63)).

To obtain the local convergence of 𝜂𝑘, fix 𝑅 > 0 and split the integral in the
Poisson integral (66) of 𝜂𝑘 into an integral over (−𝑅,𝑅) and an integral over
R∖(−𝑅,𝑅), for 𝑅 large. The former is bounded by the convergence of 𝜂𝑘 locally,
the latter by the boundedness of 𝜂𝑘 in 𝐿 1

2
(R), provided (𝑥, 𝑦) ∈ 𝐵𝑅

2
∩ R2

+. As
a consequence we get that 𝜂𝑘 is locally uniformly bounded in R2

+. Since 𝜂𝑘 is
harmonic, we conclude by elliptic estimates.

Corollary 2.3. For 𝑅 > 0 and 𝑖 = 0, 1, 2, we have

lim
𝑘→∞

𝑅𝑟𝑘∫︁
−𝑅𝑟𝑘

𝜆𝑘𝜇
𝑖
𝑘𝑢

2−𝑖
𝑘 𝑒𝛼𝑘𝑢2

𝑘𝑑𝑥 = 1
𝜋

𝑅∫︁
−𝑅

𝑒𝜂∞𝑑𝑥. (17)

Moreover, 𝑢∞ ≡ 0, i.e. up to a subsequence 𝑢𝑘 → 0 in 𝐿2(𝐼), weakly in 𝐻̃ 1
2 ,2(𝐼),

and a.e in 𝐼.

Proof. With the change of variables 𝜉 = 𝑥
𝑟𝑘

, writing 𝑢𝑘(𝑟𝑘·) = 𝜇𝑘 + 𝜂𝑘

2𝛼𝑘𝜇𝑘
and

using (8) and Proposition 2.2, we see that
𝑅𝑟𝑘∫︁

−𝑅𝑟𝑘

𝜆𝑘𝜇
𝑖
𝑘𝑢

2−𝑖
𝑘 𝑒𝛼𝑘𝑢2

𝑘𝑑𝑥 = 𝑟𝑘𝜆𝑘𝜇
2
𝑘𝑒

𝛼𝑘𝜇2
𝑘⏟  ⏞  

= 1
𝛼𝑘

𝑅∫︁
−𝑅

(︂
1 + 𝜂𝑘

2𝛼𝑘𝜇
2
𝑘

)︂2−𝑖

𝑒
𝜂𝑘+ 𝜂𝑘

4𝛼𝑘𝜇2
𝑘 𝑑𝜉

→ 1
𝜋

𝑅∫︁
−𝑅

𝑒𝜂∞𝑑𝜉,
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as 𝑘 → ∞, as claimed in (17).
In order to prove the last statement, recalling that ‖(−Δ) 1

4 𝑢𝑘‖𝐿2 = 1, we
write

1 =
𝑅𝑟𝑘∫︁

−𝑅𝑟𝑘

𝜆𝑘𝑢
2
𝑘𝑒

𝛼𝑘𝑢2
𝑘𝑑𝑥+

∫︁
𝐼∖(−𝑅𝑟𝑘,𝑅𝑟𝑘)

𝜆𝑘𝑢
2
𝑘𝑒

𝛼𝑘𝑢2
𝑘𝑑𝑥 =: (𝐼)𝑘 + (𝐼𝐼)𝑘.

By (17) and (16) we get

lim
𝑘→∞

(𝐼)𝑘 = 1
𝜋

𝑅∫︁
−𝑅

𝑒𝜂∞𝑑𝑥 = 1 + 𝑜(1),

with 𝑜(1) → 0 as 𝑅 → ∞. This in turn implies that

lim
𝑅→∞

lim
𝑘→∞

(𝐼𝐼)𝑘 = 0,

which is possible only if 𝑢∞ ≡ 0, or 𝜆∞ = 0 (by Fatou’s lemma). But on account
of (14), also in the latter case we have 𝑢∞ ≡ 0.

Lemma 2.4. For 𝐴 > 1, set 𝑢𝐴
𝑘 := min

{︀
𝑢𝑘,

𝜇𝑘

𝐴

}︀
. Then we have

lim sup
𝑘→∞

‖(−Δ)
1
4 𝑢𝐴

𝑘 ‖2
𝐿2(R) ≤ 1

𝐴
. (18)

Proof. We set 𝑢̄𝐴
𝑘 := min

{︀
𝑢̃𝑘,

𝜇𝑘

𝐴

}︀
. Since 𝑢̄𝐴

𝑘 is an extension (in general not
harmonic) of 𝑢𝐴

𝑘 , we have

‖(−Δ)
1
4 𝑢𝐴

𝑘 ‖2
𝐿2(R) ≤

∫︁
R2

+

|∇𝑢̄𝐴
𝑘 |2𝑑𝑥𝑑𝑦. (19)

Using integration by parts and the harmonicity of 𝑢̃𝑘 we get∫︁
R2

+

|∇𝑢̄𝐴
𝑘 |2𝑑𝑥𝑑𝑦 =

∫︁
R2

+

∇𝑢̄𝐴
𝑘 · ∇𝑢̃𝑘𝑑𝑥𝑑𝑦

= −
∫︁
R

𝑢𝐴
𝑘 (𝑥)𝜕𝑢̃𝑘(𝑥, 0)

𝜕𝑦
𝑑𝑥

=
∫︁
R

(−Δ)
1
2 𝑢𝑘𝑢

𝐴
𝑘 𝑑𝑥. (20)
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Proposition 2.2 implies that 𝑢𝐴
𝑘 (𝑟𝑘𝑥) = 𝜇𝑘

𝐴 for |𝑥| ≤ 𝑅 and 𝑘 ≥ 𝑘0(𝑅). Then,
with (16) and (17) we obtain

∫︁
R

(−Δ)
1
2 𝑢𝑘𝑢

𝐴
𝑘 𝑑𝑥 ≥

𝑅𝑟𝑘∫︁
−𝑅𝑟𝑘

𝜆𝑘𝑢𝑘𝑒
𝛼𝑘𝑢2

𝑘𝑢𝐴
𝑘 𝑑𝑥

𝑘→∞→ 1
𝜋𝐴

𝑅∫︁
−𝑅

𝑒𝜂∞𝑑𝜉

𝑅→∞→ 1
𝐴
.

Set now 𝑣𝐴
𝑘 :=

(︀
𝑢𝑘 − 𝜇𝑘

𝐴

)︀+ = 𝑢𝑘 − 𝑢𝐴
𝑘 . With similar computations we get

∫︁
R

(−Δ)
1
2 𝑢𝑘𝑣

𝐴
𝑘 𝑑𝑥 ≥

𝑅𝑟𝑘∫︁
−𝑅𝑟𝑘

𝜆𝑘𝑢𝑘𝑣
𝐴
𝑘 𝑒

𝛼𝑘𝑢2
𝑘𝑑𝑥

𝑘→∞→ 1
𝜋

(︂
1 − 1

𝐴

)︂ 𝑅∫︁
−𝑅

𝑒𝜂∞𝑑𝜉

𝑅→∞→ 𝐴− 1
𝐴

.

Since ∫︁
R

(−Δ)
1
2 𝑢𝑘𝑢

𝐴
𝑘 𝑑𝑥+

∫︁
R

(−Δ)
1
2 𝑢𝑘𝑣

𝐴
𝑘 𝑑𝑥 =

∫︁
R

(−Δ)
1
2 𝑢𝑘𝑢𝑘𝑑𝑥 = 1,

we get that
lim

𝑘→∞

∫︁
R

(−Δ)
1
2 𝑢𝑘𝑢

𝐴
𝑘 𝑑𝑥 = 1

𝐴
.

Then, we conclude using (19), and (20).

Proposition 2.5. We have

𝐶𝜋 = lim
𝑘→∞

1
𝜆𝑘𝜇

2
𝑘

. (21)

Moreover
lim

𝑘→∞
𝜇𝑘𝜆𝑘 = 0. (22)
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Proof. Fix 𝐴 > 1 and let 𝑢𝐴
𝑘 be defined as in Lemma 2.4. We split∫︁

𝐼

(︁
𝑒𝛼𝑘𝑢2

𝑘 − 1
)︁
𝑑𝑥

=
∫︁

𝐼∩{𝑢𝑘≤ 𝜇𝑘
𝐴 }

(︁
𝑒𝛼𝑘(𝑢𝐴

𝑘 )2
− 1
)︁
𝑑𝑥+

∫︁
𝐼∩{𝑢𝑘>

𝜇𝑘
𝐴 }

(︁
𝑒𝛼𝑘𝑢2

𝑘 − 1
)︁
𝑑𝑥 =: (𝐼) + (𝐼𝐼).

Using Corollary 2.3 and Vitali’s theorem, we see that

(𝐼) ≤
∫︁
𝐼

(︁
𝑒𝛼𝑘(𝑢𝐴

𝑘 )2
− 1
)︁
𝑑𝑥 → 0 as 𝑘 → ∞,

since 𝑒𝛼𝑘(𝑢𝐴
𝑘 )2 is uniformly bounded in 𝐿𝐴(𝐼) by Lemma 2.4 together with The-

orem A.
By (15) and Corollary 2.3, we now estimate

(𝐼𝐼) ≤ 𝐴2

𝜆𝑘𝜇
2
𝑘

∫︁
𝐼∩{𝑢𝑘>

𝜇𝑘
𝐴 }

𝜆𝑘𝑢
2
𝑘

(︁
𝑒𝛼𝑘𝑢2

𝑘 − 1
)︁
𝑑𝑥 ≤ 𝐴2

𝜆𝑘𝜇
2
𝑘

(1 + 𝑜(1)),

with 𝑜(1) → 0 as 𝑘 → ∞.Together with (11), and letting 𝐴 ↓ 1, this gives

𝐶𝜋 ≤ lim
𝑘→∞

1
𝜆𝑘𝜇

2
𝑘

.

The converse inequality follows from (17) as follows:∫︁
𝐼

(︁
𝑒𝛼𝑘𝑢2

𝑘 − 1
)︁
𝑑𝑥 ≥

𝑅𝑟𝑘∫︁
−𝑅𝑟𝑘

𝑒𝛼𝑘𝑢2
𝑘𝑑𝑥+ 𝑜(1)

= 1
𝜆𝑘𝜇

2
𝑘

⎛⎝ 1
𝜋

𝑅∫︁
−𝑅

𝑒𝜂∞𝑑𝑥+ 𝑜(1)

⎞⎠+ 𝑜(1),

with 𝑜(1) → 0 as 𝑘 → ∞. Letting 𝑅 → ∞ and recalling (16) we obtain (21).
Finally, (22) follows at once from (21), because otherwise we would have

𝐶𝜋 = 0, which is clearly impossible.

Proposition 2.6. Let us set 𝑓𝑘 := 𝜆𝑘𝜇𝑘𝑢𝑘𝑒
𝛼𝑘𝑢2

𝑘 . Then we have∫︁
𝐼

𝑓𝑘𝜙𝑑𝑥 → 𝜙(0),

as 𝑘 → ∞, for any 𝜙 ∈ 𝐶(𝐼). In particular, 𝑓𝑘 ⇀ 𝛿0 in the sense of Radon
measures in 𝐼.
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Proof. Take 𝜙 ∈ 𝐶(𝐼). For given 𝑅 > 0, 𝐴 > 1, we split

∫︁
𝐼

𝜙𝑓𝑘𝑑𝑥 =
𝑅𝑟𝑘∫︁

−𝑅𝑟𝑘

𝜙𝑓𝑘 𝑑𝑥+
∫︁

{𝑢𝑘>
𝜇𝑘
𝐴 }∖(−𝑅𝑟𝑘,𝑅𝑟𝑘)

𝜙𝑓𝑘 𝑑𝑥+
∫︁

{𝑢𝑘≤ 𝜇𝑘
𝐴 }

𝜙𝑓𝑘 𝑑𝑥

=: 𝐼1 + 𝐼2 + 𝐼3.

On {𝑢𝑘 ≤ 𝜇𝑘

𝐴 } we have 𝑢𝑘 = 𝑢𝐴
𝑘 and Lemma 2.4 and Theorem A imply that

𝑢𝑘𝑒
𝛼𝑘𝑢2

𝑘 is uniformly bounded in 𝐿1 (depending on 𝐴). Thus using (22) we get
𝐼3 → 0.

With (15) and (17) we also get

𝐼2 ≤ 𝐴‖𝜙‖𝐿∞(𝐼)

∫︁
{𝑢𝑘>

𝜇𝑘
𝐴 }∖(−𝑅𝑟𝑘,𝑅𝑟𝑘)

𝜆𝑘𝑢
2
𝑘𝑒

𝛼𝑘𝑢2
𝑘 𝑑𝑥

≤ 𝐴‖𝜙‖𝐿∞(𝐼)

⎛⎝1 −
𝑅𝑟𝑘∫︁

−𝑅𝑟𝑘

𝜆𝑘𝑢
2
𝑘𝑒

𝛼𝑘𝑢2
𝑘 𝑑𝑥

⎞⎠
= 𝐴‖𝜙‖𝐿∞(𝐼)

⎛⎝1 − 1
𝜋

𝑅∫︁
−𝑅

𝑒𝜂∞𝑑𝑥+ 𝑜(1)

⎞⎠
with 𝑜(1) → 0 as 𝑘 → ∞. Thanks to (16), we conclude that 𝐼2 → 0 as 𝑘 → ∞
and 𝑅 → ∞.

As for 𝐼1, again with (17) we compute

𝐼1 = (𝜙(0) + 𝑜(1))

⎛⎝ 1
𝜋

𝑅∫︁
−𝑅

𝑒𝜂∞𝑑𝑥+ 𝑜(1)

⎞⎠ ,

so that 𝐼1 → 𝜙(0) as 𝑘 → ∞ and 𝑅 → ∞.

Given 𝑥 ∈ 𝐼, let 𝐺𝑥 : R ∖ {0} → R be the Green’s function of (−Δ) 1
2 on 𝐼 with

singularity at 𝑥. We recall that we have the explicit formula (see e.g. [3])

𝐺𝑥(𝑦) :=

⎧⎨⎩ 1
𝜋 log

(︂
1−𝑥𝑦+

√
(1−𝑥2)(1−𝑦2)
|𝑥−𝑦|

)︂
, 𝑦 ∈ 𝐼,

0 𝑦 ∈ R ∖ 𝐼.
(23)

In the following we further denote

𝑆(𝑥, 𝑦) := 𝐺𝑥(𝑦) − 1
𝜋

log 1
|𝑥− 𝑦|

. (24)
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Lemma 2.7. We have 𝜇𝑘𝑢𝑘 → 𝐺 := 𝐺0 in 𝐿∞
loc(𝐼 ∖ {0}) ∩ 𝐿1(𝐼) as 𝑘 → +∞.

Proof. Let us set 𝑣𝑘 := 𝜇𝑘𝑢𝑘 −𝐺 and 𝑓𝑘 = 𝜇𝑘𝜆𝑘𝑢𝑘𝑒
𝛼𝑘𝑢2

𝑘 . Arguing as in Proposi-
tion 2.6, we show that ‖𝑓𝑘‖𝐿1(R) → 1 as 𝑘 → ∞. Moreover, since 𝑢𝑘 is decreasing
with respect to |𝑥|, we get that 𝑢𝑘 → 0 and 𝑓𝑘 → 0 locally uniformly in 𝐼 ∖ {0}
as 𝑘 → ∞. By Green’s representation formula, we have

|𝑣𝑘(𝑥)| =

⃒⃒⃒⃒
⃒⃒∫︁

𝐼

𝐺𝑥(𝑦)𝑓𝑘(𝑦) 𝑑𝑦 −𝐺(𝑥)

⃒⃒⃒⃒
⃒⃒

≤
∫︁
𝐼

|𝐺𝑥(𝑦) −𝐺(𝑥)|𝑓𝑘(𝑦) 𝑑𝑦 + |‖𝑓𝑘‖𝐿1(𝐼) − 1| |𝐺(𝑥)|, 𝑥 ∈ 𝐼. (25)

Fix 𝜎 ∈ (0, 1). If we assume |𝑥| ≥ 𝜎, |𝑦| ≤ 𝜎
2 , then we have

|𝐺𝑥(𝑦) −𝐺(𝑥)| ≤ 1
𝜋

⃒⃒⃒⃒
log |𝑥|

|𝑥− 𝑦|

⃒⃒⃒⃒
+ |𝑆(𝑥, 𝑦) − 𝑆(𝑥, 0)|

≤ 1
𝜋

⃒⃒⃒⃒
log
⃒⃒⃒⃒
𝑥

|𝑥|
− 𝑦

|𝑥|

⃒⃒⃒⃒⃒⃒⃒⃒
+ sup

|𝑥|≥𝜎,|𝑦|≤ 𝜎
2

|∇𝑦𝑆(𝑥, 𝑦)||𝑦|

≤ 𝐶|𝑦|, (26)

where 𝐶 is a constant depending only on 𝜎. Then, for any 𝜀 ∈ (0, 𝜎
2 ), we can

write

|𝑣𝑘(𝑥)| ≤
∫︁
𝐼

|𝐺𝑥(𝑦) −𝐺(𝑥)|𝑓𝑘(𝑦) 𝑑𝑦 + 𝑜(1)

=
𝜀∫︁

−𝜀

|𝐺𝑥(𝑦) −𝐺(𝑥)|𝑓𝑘(𝑦) 𝑑𝑦 +
∫︁

𝐼∖(−𝜀,𝜀)

|𝐺𝑥(𝑦) −𝐺(𝑥)|𝑓𝑘(𝑦) 𝑑𝑦 + 𝑜(1)

≤ 𝐶𝜀‖𝑓𝑘‖𝐿1(−𝜀,𝜀) +
(︂

sup
𝑧∈𝐼

‖𝐺𝑧‖𝐿1(𝐼) + |𝐺(𝑥)|
)︂

‖𝑓𝑘‖𝐿∞(𝐼∖(−𝜀,𝜀)) + 𝑜(1)

≤ 𝐶𝜀+ 𝑜(1),
(27)

where 𝑜(1) → 0 uniformly in 𝐼 ∖ (−𝜎, 𝜎) as 𝑘 → ∞. Clearly, (27) implies

lim sup
𝑘→∞

‖𝑣𝑘‖𝐿∞(𝐼∖(−𝜎,𝜎)) ≤ 𝐶𝜀.

Since 𝜀 and 𝜎 can be arbitrarily small, this shows that 𝑣𝑘 → 0 in 𝐿∞
loc(𝐼 ∖ {0}).

With a similar argument, we prove the 𝐿1 convergence. Indeed, integrating (25),
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for 𝜀 ∈ (0, 1) we get

‖𝑣𝑘‖𝐿1(𝐼) ≤
∫︁
𝐼

∫︁
𝐼

|𝐺𝑥(𝑦) −𝐺(𝑥)|𝑓𝑘(𝑦) 𝑑𝑦 𝑑𝑥+ |‖𝑓𝑘‖𝐿1(𝐼) − 1|‖𝐺‖𝐿1(𝐼)

≤
∫︁
𝐼

𝑓𝑘(𝑦)
∫︁
𝐼

|𝐺𝑥(𝑦) −𝐺(𝑥)| 𝑑𝑥 𝑑𝑦 + 𝑜(1)

≤
𝜀∫︁

−𝜀

𝑓𝑘(𝑦)
∫︁
𝐼

|𝐺𝑥(𝑦) −𝐺(𝑥)| 𝑑𝑥 𝑑𝑦

+ 2 sup
𝑧∈𝐼

‖𝐺𝑧‖𝐿1(𝐼)‖𝑓𝑘‖𝐿∞(𝐼∖(−𝜀,𝜀)) + 𝑜(1)

=
𝜀∫︁

−𝜀

𝑓𝑘(𝑦)
∫︁
𝐼

|𝐺𝑥(𝑦) −𝐺(𝑥)| 𝑑𝑥 𝑑𝑦 + 𝑜(1). (28)

Since
sup

𝑦∈(−𝜀,𝜀)
sup
𝑥∈𝐼

|𝑆(𝑥, 𝑦) − 𝑆(𝑥, 0)| = 𝑂(𝜀),

we get
𝜀∫︁

−𝜀

𝑓𝑘(𝑦)
∫︁
𝐼

|𝐺𝑦(𝑥) −𝐺(𝑥)| 𝑑𝑥 𝑑𝑦 = 1
𝜋

𝜀∫︁
−𝜀

𝑓𝑘(𝑦)
∫︁
𝐼

| log |𝑥|
|𝑥− 𝑦|

| 𝑑𝑥 𝑑𝑦 +𝑂(𝜀).

Moreover, using the change of variables 𝑥 = 𝑦𝑧, we obtain

∫︁
𝐼

⃒⃒⃒⃒
log |𝑥|

|𝑥− 𝑦|

⃒⃒⃒⃒
𝑑𝑥 = |𝑦|

1
|𝑦|∫︁

− 1
|𝑦|

⃒⃒⃒⃒
log |𝑧|

|𝑧 − 1|

⃒⃒⃒⃒
𝑑𝑧 = 𝑂

(︂
|𝑦| log 1

|𝑦|

)︂
.

Then, we have
𝜀∫︁

−𝜀

𝑓𝑘(𝑦)
∫︁
𝐼

|𝐺𝑦(𝑥) −𝐺0(𝑥)| 𝑑𝑥 𝑑𝑦 =
𝜀∫︁

−𝜀

𝑓𝑘(𝑦)𝑂
(︂

|𝑦| log 1
|𝑦|

)︂
𝑑𝑦 +𝑂(𝜀)

= 𝑂

(︂
𝜀 log 1

𝜀

)︂
. (29)

Clearly (28) and (29) yield lim sup𝑘→+∞ ‖𝑣𝑘 − 𝐺‖𝐿1(𝐼) = 𝑂(𝜀 log 1
𝜀 ). Since 𝜀

can be arbitrarily small we get the conclusion.

Proposition 2.8. We have 𝜇𝑘𝑢̃𝑘 → 𝐺̃ in 𝐶0
loc(R2

+ ∖ {(0, 0)}) ∩𝐶1
loc(R2

+), where
𝐺̃ is the Poisson extension of 𝐺.
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Proof. As in the proof of Lemma 2.7 we denote 𝑣𝑘 := 𝜇𝑘𝑢𝑘 −𝐺. Let us consider
the Poisson extension ̃︀𝑣𝑘 = 𝜇𝑘̃︀𝑢𝑘 − ̃︀𝐺. For any fixed 𝜀 > 0, we can split

̃︀𝑣𝑘(𝑥, 𝑦) = 1
𝜋

𝜀∫︁
−𝜀

𝑦𝑣𝑘(𝜉)
(𝑥− 𝜉)2 + 𝑦2 𝑑𝜉 + 1

𝜋

∫︁
𝐼∖(−𝜀,𝜀)

𝑦𝑣𝑘(𝜉)
(𝑥− 𝜉)2 + 𝑦2 𝑑𝜉,

By Lemma 2.7, we have⃒⃒⃒⃒
⃒⃒⃒ 1
𝜋

∫︁
𝐼∖(−𝜀,𝜀)

𝑦𝑣𝑘(𝜉)
(𝑥− 𝜉)2 + 𝑦2 𝑑𝜉

⃒⃒⃒⃒
⃒⃒⃒ ≤ 1

𝜋
‖𝑣𝑘‖𝐿∞(𝐼∖(−𝜀,𝜀))

∫︁
R

𝑦𝑣𝑘(𝜉)
(𝑥− 𝜉)2 + 𝑦2 𝑑𝜉

= ‖𝑣𝑘‖𝐿∞(𝐼∖(−𝜀,𝜀)) → 0,

as 𝑘 → ∞. Moreover, assuming (𝑥, 𝑦) ∈ R2
+ ∖𝐵2𝜀(0, 0), we get⃒⃒⃒⃒

⃒⃒ 1𝜋
𝜀∫︁

−𝜀

𝑦𝑣𝑘(𝜉)
(𝑥− 𝜉)2 + 𝑦2 𝑑𝜉

⃒⃒⃒⃒
⃒⃒ ≤ 1

𝜋

𝜀∫︁
−𝜀

𝑦|𝑣𝑘(𝜉)|
|(𝑥, 𝑦) − (𝜉, 0)|2 𝑑𝜉 ≤ 𝑦

𝜋𝜀2 ‖𝑣𝑘‖𝐿1(𝐼) → 0.

Hence ̃︀𝑣𝑘 → 0 in 𝐶0
loc(R2

+ ∖ 𝐵2𝜀(0, 0)). Finally, since can 𝜀 be arbitrarily small
and 𝑣𝑘 is harmonic in R2

+, we get ̃︀𝑣𝑘 → 0 in 𝐶0
loc(R2

+ ∖ {(0, 0)}) ∩𝐶1
loc(R2

+).

2.3 The two main estimates and completion of the proof

We shall now conclude our contradiction argument by showing the incompat-
ibility of (12) with (11) and the the definition of 𝐶𝜋. In this final part of the
proof, we will use the precise asymptotic of ̃︀𝐺 near (0, 0). Since log |(𝑥, 𝑦)| is
the Poisson integral of log |𝑥| (see Proposition A.3), and since 𝑆 ∈ 𝐶(R), (24)
guarantees the existence of the limit

𝑆0 := lim
(𝑥,𝑦)→(0,0)

𝐺̃(𝑥, 𝑦) + 1
𝜋

log |(𝑥, 𝑦)| = lim
𝑥→0

𝐺(𝑥) + 1
𝜋

log |𝑥|.

In fact, using (23) we get 𝑆0 = log 2
𝜋 . More precisely, noting that 𝑆 ∈ 𝐶∞(𝐼), we

can write
𝐺̃(𝑥, 𝑦) = 1

𝜋
log 1

|(𝑥, 𝑦)| + 𝑆0 + ℎ(𝑥, 𝑦), (30)

with ℎ ∈ 𝐶∞(R2
+ ∩𝐵1(0, 0)) ∩ 𝐶(R2

+) and ℎ(0, 0) = 0.

Proposition 2.9. If (12) holds, then 𝐶𝜋 ≤ 2𝜋𝑒𝜋𝑆0 = 4𝜋.
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Proof. For a fixed large 𝐿 > 0 and a fixed and small 𝛿 > 0 set

𝑎𝑘 := inf
𝐵𝐿𝑟𝑘

∩R2
+

𝑢̃𝑘, 𝑏𝑘 := sup
𝐵𝛿∩R2

+

𝑢̃𝑘, 𝑣𝑘 := (𝑢̃𝑘 ∧ 𝑎𝑘) ∨ 𝑏𝑘.

Recalling that ‖∇𝑢̃𝑘‖2
𝐿2 = 1, we have∫︁

(𝐵𝛿∖𝐵𝐿𝑟𝑘
)∩R2

+

|∇𝑣𝑘|2𝑑𝑥𝑑𝑦 ≤ 1−
∫︁

R2
+∖𝐵𝛿

|∇𝑢̃𝑘|2𝑑𝑥𝑑𝑦−
∫︁

R2
+∩𝐵𝐿𝑟𝑘

|∇𝑢̃𝑘|2𝑑𝑥𝑑𝑦 (31)

Clearly the left-hand side bounds

inf
𝑢̃|R2

+∩𝜕𝐵𝐿𝑟𝑘
=𝑎𝑘

𝑢̃|R2
+∩𝜕𝐵𝛿

=𝑏𝑘

∫︁
(𝐵𝛿∖𝐵𝐿𝑟𝑘

)∩R2
+

|∇𝑢̃|2𝑑𝑥𝑑𝑦 =
∫︁

(𝐵𝛿∖𝐵𝐿𝑟𝑘
)∩R2

+

|∇Φ̃𝑘|2𝑑𝑥𝑑𝑦

= 𝜋
(𝑎𝑘 − 𝑏𝑘)2

log 𝛿 − log(𝐿𝑟𝑘) ,

where the function Φ̃𝑘 is the unique solution to⎧⎪⎪⎪⎨⎪⎪⎪⎩
ΔΦ̃𝑘 = 0 in R2

+ ∩ (𝐵𝛿 ∖𝐵𝐿𝑟𝑘
),

Φ̃𝑘 = 𝑎𝑘 on R2
+ ∩ 𝜕𝐵𝐿𝑟𝑘

,

Φ̃𝑘 = 𝑏𝑘 on R2
+ ∩ 𝜕𝐵𝛿,

𝜕Φ̃𝑘
𝜕𝑦 = 0 on 𝜕R2

+ ∩ (𝐵𝛿 ∖𝐵𝐿𝑟𝑘
),

given explicitly by

Φ̃𝑘 = 𝑏𝑘 − 𝑎𝑘

log 𝛿 − log(𝐿𝑟𝑘) log |(𝑥, 𝑦)| + 𝑎𝑘 log 𝛿 − 𝑏𝑘 log𝐿𝑟𝑘

log 𝛿 − log(𝐿𝑟𝑘) .

Using Proposition 2.2 we obtain

𝑎𝑘 = 𝜇𝑘 +
− 1

𝜋 log𝐿+𝑂(𝐿−1) + 𝑜(1)
𝜇𝑘

,

where for fixed 𝐿 > 0 we have 𝑜(1) → 0 as 𝑘 → ∞, and |𝑂(𝐿−1)| ≤ 𝐶
𝐿 uniformly

for 𝐿 and 𝑘 large. Moreover, using Proposition 2.8 and (30), we obtain

𝑏𝑘 =
− 1

𝜋 log 𝛿 + 𝑆0 +𝑂(𝛿) + 𝑜(1)
𝜇𝑘

,

where for fixed 𝛿 > 0 we have 𝑜(1) → 0 as 𝑘 → ∞, and |𝑂(𝛿)| ≤ 𝐶𝛿 uniformly
for 𝛿 small and 𝑘 large.
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Still with Proposition 2.2 we get

lim
𝑘→∞

𝜇2
𝑘

∫︁
R2

+∩𝐵𝐿𝑟𝑘

|∇𝑢̃𝑘|2𝑑𝑥𝑑𝑦 = 1
4𝜋2

∫︁
R2

+∩𝐵𝐿

|∇𝜂∞|2𝑑𝑥𝑑𝑦

= 1
𝜋

log 𝐿2 +𝑂

(︂
log𝐿
𝐿

)︂
.

Similarly with Proposition 2.8 we get

lim inf
𝑘→∞

𝜇2
𝑘

∫︁
R2

+∖𝐵𝛿

|∇𝑢̃𝑘|2𝑑𝑥𝑑𝑦 ≥
∫︁

R2
+∖𝐵𝛿

|∇𝐺̃|2𝑑𝑥𝑑𝑦

=
∫︁

R2
+∩𝜕𝐵𝛿

−𝜕𝐺̃

𝜕𝑟
𝐺̃𝑑𝜎 +

∫︁
(R×{0})∖𝐵𝛿

−𝜕𝐺̃(𝑥, 0)
𝜕𝑦

𝐺(𝑥)𝑑𝑥

=
∫︁

R2
+∩𝜕𝐵𝛿

(︂
1
𝜋𝛿

+𝑂(1)
)︂(︂

− 1
𝜋

log 𝛿 + 𝑆0 +𝑂(𝛿)
)︂
𝑑𝜎

= − 1
𝜋

log 𝛿 + 𝑆0 +𝑂(𝛿 log 𝛿),

where we used the expansion in (30) and the boundary conditions{︃̃︀𝐺(𝑥, 0) = 𝐺(𝑥) = 0, for 𝑥 ∈ R ∖ 𝐼,
− 𝜕𝐺̃(𝑥,0)

𝜕𝑦 = (−Δ) 1
2𝐺(𝑥) = 0, for 𝑥 ∈ 𝐼 ∖ {0}.

We then get

𝜋(𝑎𝑘 − 𝑏𝑘)2

log 𝛿 − log(𝐿𝑟𝑘) ≤ 1 −
− 1

𝜋 log 𝛿 + 𝑆0 +𝑂(𝛿 log 𝛿) + 1
𝜋 log 𝐿

2 +𝑂
(︁

log 𝐿
𝐿

)︁
𝜇2

𝑘

,

or
𝜋(𝑎𝑘 − 𝑏𝑘)2 = 𝜋𝜇2

𝑘 − 2 log𝐿+𝑂(𝐿−1) + 2 log 𝛿 − 2𝜋𝑆0 +𝑂(𝛿) + 𝑜(1)

+ 𝑂(log2 𝐿+ log2 𝛿)
𝜇2

𝑘

≤ (log 𝛿 − log𝐿+ log(𝜆𝑘𝜇
2
𝑘) + 𝛼𝑘𝜇

2
𝑘 + log𝛼𝑘)

×

⎛⎝1 −
− 1

𝜋 log 𝛿 + 𝑆0 +𝑂(𝛿 log 𝛿) + 1
𝜋 log 𝐿

2 +𝑂
(︁

log 𝐿
𝐿

)︁
𝜇2

𝑘

⎞⎠
= log 𝛿

𝐿
+ log(𝜆𝑘𝜇

2
𝑘) + 𝛼𝑘𝜇

2
𝑘 + log𝛼𝑘 + 𝛼𝑘

(︂
1
𝜋

log 2𝛿
𝐿

− 𝑆0

)︂
+𝑂(𝛿 log 𝛿) +𝑂

(︂
log𝐿
𝐿

)︂
+ 𝑂(log2 𝛿) +𝑂(log2 𝐿) +𝑂(1)

𝜇2
𝑘

.
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Rearranging gives

log 1
𝜆𝑘𝜇

2
𝑘

≤
(︁

1 − 𝛼𝑘

𝜋

)︁
log 𝐿

𝛿
+ (𝛼𝑘 − 𝜋)𝜇2

𝑘 + (2𝜋 − 𝛼𝑘)𝑆0 + 𝛼𝑘

𝜋
log 2 + log𝛼𝑘

+𝑂(𝛿 log 𝛿) +𝑂

(︂
log𝐿
𝐿

)︂
+ 𝑜(1),

with 𝑜(1) → 0 as 𝑘 → ∞. Then, recalling that 𝛼𝑘 ↑ 𝜋, letting 𝑘 → ∞ first and
then 𝐿 → ∞, 𝛿 → 0, we obtain

lim sup
𝑘→∞

log 1
𝜆𝑘𝜇

2
𝑘

≤ 𝜋𝑆0 + log(2𝜋) = log(4𝜋),

and using Proposition 2.5 we conclude.

Proposition 2.10. There exists a function 𝑢 ∈ 𝐻̃
1
2 ,2(𝐼) with ‖(−Δ) 1

4 𝑢‖𝐿2(R) ≤
1 such that ∫︁

𝐼

(︁
𝑒𝜋𝑢2

− 1
)︁
𝑑𝑥 > 2𝜋𝑒𝜋𝑆0 = 4𝜋.

Proof. For 𝜀 > 0 choose 𝐿 = 𝐿(𝜀) > 0 such that as 𝜀 → 0 we have 𝐿 → ∞ and
𝐿𝜀 → 0. Fix

Γ𝐿𝜀 :=

{︃
(𝑥, 𝑦) ∈ R2

+ : 𝐺̃(𝑥, 𝑦) = 𝛾𝐿𝜀 := min
R2

+∩𝜕𝐵𝐿𝜀

𝐺̃

}︃
,

and
Ω𝐿𝜀 :=

{︀
(𝑥, 𝑦) ∈ R2

+ : 𝐺̃(𝑥, 𝑦) > 𝛾𝐿𝜀

}︀
.

By the maximum principle we have R2
+ ∩𝐵𝐿𝜀 ⊂ Ω𝐿𝜀. Indeed, 𝐺̃ is harmonic in

R2
+, 𝐺̃ ≥ 𝛾𝐿𝜀 on 𝜕(R2

+ ∩𝐵𝐿𝜀) ∖ {(0, 0)}, and 𝐺̃ → +∞ as (𝑥, 𝑦) → (0, 0). Notice
also that (30) gives

𝛾𝐿𝜀 = − 1
𝜋

log(𝐿𝜀) + 𝑆0 +𝑂(𝐿𝜀). (32)

For some constants 𝐵 and 𝑐 to be fixed we set

𝑈𝜀(𝑥, 𝑦) :=

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

𝑐−
log
(︁

𝑥2

𝜀2 + (1 + 𝑦
𝜀 )2
)︁

+ 2𝐵

2𝜋𝑐 for (𝑥, 𝑦) ∈ R2
+ ∩𝐵𝐿𝜀(0,−𝜀)

𝛾𝐿𝜀

𝑐
for (𝑥, 𝑦) ∈ Ω𝐿𝜀 ∖𝐵𝐿𝜀(0,−𝜀)

𝐺̃(𝑥, 𝑦)
𝑐

for (𝑥, 𝑦) ∈ R2
+ ∖ Ω𝐿𝜀.
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Observe that R2
+ ∩ 𝐵𝐿𝜀(0,−𝜀) ⊆ R2

+ ∩ 𝐵𝐿𝜀 ⊆ Ω𝐿𝜀. To have continuity on
R2

+ ∩ 𝜕𝐵𝐿𝜀(0,−𝜀) we impose

− log𝐿2 − 2𝐵
2𝜋𝑐 + 𝑐 = 𝛾𝐿𝜀

𝑐

which, together with (32), gives the relation

𝐵 = 𝜋𝑐2 + log 𝜀− 𝜋𝑆0 +𝑂(𝐿𝜀). (33)

Moreover∫︁
R2

+∩𝐵𝐿𝜀(0,−𝜀)

|∇𝑈𝜀|2𝑑𝑥𝑑𝑦 = 1
4𝜋2𝑐2

∫︁
R2

+∩𝐵𝐿(0,−1)

|∇ log(𝑥2 + (1 + 𝑦)2)|2𝑑𝑥𝑑𝑦

=
1
𝜋 log

(︀
𝐿
2
)︀

+𝑂
(︁

log 𝐿
𝐿

)︁
𝑐2 ,

and ∫︁
R2

+∖Ω𝐿𝜀

|∇𝑈𝜀|2𝑑𝑥𝑑𝑦 = 1
𝑐2

∫︁
R2

+∖Ω𝐿𝜀

|∇𝐺̃|2𝑑𝑥𝑑𝑦

= 1
𝑐2

∫︁
R2

+∩𝜕Ω𝐿𝜀

𝜕𝐺̃

𝜕𝜈
𝐺̃𝑑𝜎 − 1

𝑐2

∫︁
(R×{0})∖Ω̄𝐿𝜀

𝜕𝐺̃

𝜕𝑦
𝐺̃𝑑𝑥

⏟  ⏞  
=0

=
1
𝜋 log

(︀ 1
𝐿𝜀

)︀
+ 𝑆0 +𝑂(𝐿𝜀 log(𝐿𝜀))

𝑐2 ,

where the last equality follows from (30). We now impose ‖∇𝑈𝜀‖𝐿2(R2
+) = 1,

obtaining

− log 𝜀− log 2 + 𝜋𝑆0 +𝑂(𝐿𝜀 log(𝐿𝜀)) +𝑂

(︂
log𝐿
𝐿

)︂
= 𝜋𝑐2, (34)

which, together with (33), implies

𝐵 = − log 2 +𝑂(𝐿𝜀 log(𝐿𝜀)) +𝑂

(︂
log𝐿
𝐿

)︂
. (35)

Let now 𝐼1
𝐿,𝜀 = (−𝜀

√
𝐿2 − 1, 𝜀

√
𝐿2 − 1) and 𝐼2

𝐿𝜀 be the disjoint sub-intervals of
𝐼 obtained by intersecting 𝐼 × {0} respectively with 𝐵𝐿𝜀(0,−𝜀) and R2

+ ∖ Ω𝐿𝜀.
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Then, for 𝑢𝜀(𝑥) := 𝑈𝜀(𝑥, 0), using a change of variables and (34)-(35) we get

∫︁
𝐼1

𝐿,𝜀

𝑒𝜋𝑢2
𝜀𝑑𝑥 = 𝜀

√
𝐿2−1∫︁

−
√

𝐿2−1

exp

(︃
𝜋

(︂
𝑐− log(1 + 𝑥2) + 2𝐵

2𝜋𝑐

)︂2
)︃
𝑑𝑥

> 𝜀𝑒𝜋𝑐2−2𝐵

√
𝐿2−1∫︁

−
√

𝐿2−1

1
1 + 𝑥2 𝑑𝑥

= 2𝑒𝜋𝑆0+𝑂(𝐿𝜀 log(𝐿𝜀))+𝑂( log 𝐿
𝐿 )𝜋

(︂
1 +𝑂

(︂
1
𝐿

)︂)︂
= 2𝜋𝑒𝜋𝑆0 +𝑂(𝐿𝜀 log(𝐿𝜀)) +𝑂

(︂
log𝐿
𝐿

)︂
.

Moreover ∫︁
𝐼2

𝐿𝜀

(︁
𝑒𝜋𝑢2

𝜀 − 1
)︁
𝑑𝑥 ≥

∫︁
𝐼2

𝐿𝜀

𝜋𝑢2
𝜀𝑑𝑥 = 1

𝑐2

∫︁
𝐼2

𝐿𝜀

𝜋𝐺2𝑑𝑥 =: 𝜈𝐿𝜀

𝑐2 ,

with
𝜈𝐿𝜀 > 𝜈 1

2
> 0, for 𝐿𝜀 < 1

2 .

Now observe that 𝑐2 = − log 𝜀
𝜋 +𝑂(1) by (34), and choose 𝐿 = log2 𝜀 to obtain

𝑂(𝐿𝜀 log(𝐿𝜀)) +𝑂

(︂
log𝐿
𝐿

)︂
= 𝑂

(︂
log log 𝜀
log2 𝜀

)︂
= 𝑜

(︂
1
𝑐2

)︂
,

so that ∫︁
𝐼

(︁
𝑒𝜋𝑢2

𝜀 − 1
)︁
𝑑𝑥 ≥ 2𝜋𝑒𝜋𝑆0 +

𝜈 1
2

𝑐2 + 𝑜

(︂
1
𝑐2

)︂
> 2𝜋𝑒𝜋𝑆0

for 𝜀 small enough.
Finally notice that

‖(−Δ)
1
4 𝑢𝜀‖2

𝐿2(R) =
∫︁
R2

+

|∇𝑢̃𝜀|2𝑑𝑥𝑑𝑦 ≤
∫︁
R2

+

|∇𝑈𝜀|2𝑑𝑥𝑑𝑦 ≤ 1,

since the Poisson extension 𝑢̃𝜀 minimizes the Dirichlet energy among extensions
with finite energy.
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3 Proof of Theorem 1.3
Let 𝑢𝑘 ∈ 𝐻 ∩𝐶∞(R) be a sequence of positive even and decreasing solutions to
(5) satisfying the energy bound (6) and with 𝜆𝑘 → 𝜆∞ ≥ 0 as 𝑘 → ∞.

First we show that case (i) holds when 𝜇𝑘 ≤ 𝐶.

Lemma 3.1. If 𝜇𝑘 ≤ 𝐶 then (i) holds.

Proof. By assumption we know that 𝑢𝑘 and 𝑓𝑘 := (−Δ) 1
2 𝑢𝑘 = 𝜆𝑘𝑢𝑘𝑒

𝛼𝑘𝑢2
𝑘 − 𝑢𝑘

are uniformly bounded in 𝐿∞(R). Then, by elliptic estimates and a bootstrap
argument, we can find 𝑢∞ ∈ 𝐶∞(R) such that up to a subsequence 𝑢𝑘 → 𝑢∞ in
𝐶ℓ

loc(R) for every ℓ ≥ 0. To prove that 𝑢∞ satisfies (7), note that 𝑓𝑘 → 𝑓∞ :=
𝜆∞𝑢∞𝑒𝜋𝑢2

∞ − 𝑢∞ locally uniformly on R and set 𝑀 = sup𝑘(‖𝑓𝑘‖𝐿∞(R) + 𝜇𝑘).
For any 𝜙 ∈ 𝒮(R) (the Schwarz space of rapidly decreasing functions) and any
𝑅 > 0, we have that

∫︁
R

|𝑓𝑘 − 𝑓∞||𝜙|𝑑𝑥 ≤ ‖𝑓𝑘 − 𝑓∞‖𝐿∞((−𝑅,𝑅))

𝑅∫︁
−𝑅

|𝜙| + 2𝑀‖𝜙‖𝐿1((−𝑅,𝑅)𝑐)

𝑘→+∞→ 𝑀‖𝜙‖𝐿1((−𝑅,𝑅)𝑐)
𝑅→+∞→ 0.

Similarly, recalling that (−Δ) 1
2𝜙 has quadratic decay at infinity (see e.g. [14,

Prop. 2.1]), we get∫︁
R

|𝑢𝑘 − 𝑢∞||(−Δ)
1
2𝜙|𝑑𝑥 ≤ ‖(−Δ)

1
2𝜙‖𝐿∞((−𝑅,𝑅))‖𝑢𝑘 − 𝑢∞‖𝐿1((−𝑅,𝑅))

+ 𝐶

∫︁
(−𝑅,𝑅)𝑐

|𝑢𝑘(𝑥) − 𝑢∞(𝑥)|
|𝑥|2

𝑑𝑥

≤ ‖(−Δ)
1
2𝜙‖𝐿∞((−𝑅,𝑅))‖𝑢𝑘 − 𝑢∞‖𝐿1((−𝑅,𝑅))

+ 2𝐶𝑀
∫︁

(−𝑅,𝑅)𝑐

𝑑𝑥

𝑥2 𝑑𝑥

𝑘,𝑅→+∞→ 0.

Hence 𝑢 is a weak solution of (7).

From now on we will assume that 𝜇𝑘 → +∞ and prove that (ii) of Theorem 1.3
holds.
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Lemma 3.2. Let 𝜂𝑘 be defined as in Theorem 1.3. Then 𝜂𝑘 is bounded in
𝐶0,𝛼

loc (R) for 𝛼 ∈ (0, 1).

Proof. Note that

𝑟𝑘𝜇
2
𝑘 = 1

𝛼𝑘𝜆𝑘𝑒
𝛼𝑘𝜇2

𝑘

= 1
𝛼𝑘‖𝑢𝑘‖2

𝐻𝑒
𝛼𝑘𝜇2

𝑘

∫︁
R

𝑢2
𝑘𝑒

𝛼𝑘𝑢2
𝑘𝑑𝑥

≤ 𝐶
1

𝛼𝑘‖𝑢𝑘‖2
𝐻𝑒

𝛼𝑘
2 𝜇2

𝑘

∫︁
R

𝑢2
𝑘𝑒

𝛼𝑘
2 𝑢2

𝑘𝑑𝑥

≤ 𝐶
‖𝑢𝑘‖2

𝐿4

√︀
𝐷𝛼𝑘

𝛼𝑘‖𝑢𝑘‖2
𝐻𝑒

𝛼𝑘
2 𝜇2

𝑘

≤ 𝐶

√
𝐷𝜋

𝛼𝑘𝑒
𝛼𝑘
2 𝜇2

𝑘

→ 0.

Moreover we have that

(−Δ)
1
2 𝜂𝑘 = 2𝑢𝑘(𝑟𝑘·)

𝜇𝑘
𝑒𝛼𝑘𝑢2

𝑘(𝑟𝑘·)−𝛼𝑘𝜇2
𝑘 − 2𝛼𝑘𝑟𝑘𝜇

2
𝑘

𝑢𝑘(𝑟𝑘·)
𝜇𝑘

is bounded in 𝐿∞. Since 𝜂𝑘 ≤ 0, and 𝜂𝑘(0) = 0 this implies that 𝜂𝑘 is bounded
in 𝐿∞

loc(R) and then in 𝐶𝛼
loc(R) for any 𝛼 ∈ (0, 1).

The bound of Lemma 3.2 implies that, up to a subsequence 𝜂𝑘 → 𝜂∞ in 𝐶0,𝛼
loc (R)

for some function 𝜂∞. However, it does not provide a limit equation for 𝜂∞. In
order to prove that 𝜂∞ solves

(−Δ)
1
2 𝜂∞ = 2𝑒𝜂∞

we will prove that that 𝜂𝑘 is bounded in 𝐿𝑠(R) for any 𝑠 > 0. This bound can
be obtained thanks to the commutator estimates proved in [24]. Part of the
argument must be modified since the 𝑢𝑘

′𝑠 are not compactly supported. We
start by recalling the following technical lemma, which is a consequence of the
estimates in [24].

Lemma 3.3. For any 𝑠 ∈ (0, 1), there exists a constant 𝐶 = 𝐶(𝑠) such that,
for any 𝜙,𝜓 ∈ 𝐶∞

𝑐 (R𝑛), 𝜌 ∈ R+, we have

‖𝜙(−Δ)
𝑠
2𝜓‖

𝐿( 1
𝑠

,∞)((−𝜌,𝜌))
≤ 𝐶 (𝐸1(𝜙,𝜓) + 𝐸2,2𝜌(𝜙,𝜓)) ,

where

𝐸1(𝜙,𝜓) = ‖(−Δ)
1
4𝜙‖𝐿2(R)‖(−Δ)

1
4𝜓‖𝐿2(R)

𝐸2,𝜌(𝜙,𝜓) = ‖(−Δ)
1
4𝜙‖𝐿2(R)‖(−Δ)

1
2𝜓‖

𝐿 log
1
2 𝐿(−𝜌,𝜌)

,
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Proof. Let 𝜃 ∈ 𝐶∞
𝑐 ((−2, 2)) be a cut-off function such that 𝜃 ≡ 1 on (−1, 1) and

0 ≤ 𝜃 ≤ 1. Let us denote 𝜃𝜌 = 𝜃( ·
𝜌 ). Let us also introduce the Riesz operators

𝐼1−𝑠𝑢 := 𝜅𝑠| · |−𝑠 * 𝑢 for 𝑠 ∈ (0, 1),

where the constant 𝜅𝑠 is defined by the identity ̂𝜅𝑠| · |−𝑠 = | · |𝑠−1. With this
definition 𝐼1−𝑠 is the inverse of (−Δ)

1−𝑠
2 . Then we can split

𝜙(−Δ)
𝑠
2𝜓 = 𝜙𝐼1−𝑠(−Δ)

1
2𝜓

= 𝜙𝐼1−𝑠

(︁
𝜃2𝜌(−Δ)

1
2𝜓
)︁

+ 𝜙𝐼1−𝑠

(︁
(1 − 𝜃2𝜌)(−Δ)

1
2𝜓
)︁

= 𝜙𝐼1−𝑠

(︁
𝜃2𝜌(−Δ)

1
2𝜓
)︁

+ [𝜙, 𝐼1−𝑠]
(︁

(1 − 𝜃2𝜌)(−Δ)
1
2𝜓
)︁

+ 𝐼1−𝑠

(︁
(1 − 𝜃2𝜌)𝜙(−Δ)

1
2𝜓
)︁

=: 𝐽1 + 𝐽2 + 𝐽3,

where we use the commutator notation [𝑢, 𝐼1−𝑠](𝑣) = 𝑢𝐼1−𝑠𝑣 − 𝐼1−𝑠(𝑢𝑣) for
any 𝑢, 𝑣 ∈ 𝐶∞

𝑐 (R). Applying respectively Proposition 3.2, Proposition 3.4 and
Proposition A.3. in [24], we get that

‖𝐽1‖
𝐿( 1

𝑠
,∞)(−𝜌,𝜌)

= ‖𝐼 1
2

(︁
(−Δ)

1
4𝜙
)︁
𝐼1−𝑠

(︁
𝜃2𝜌(−Δ)

1
2𝜓
)︁

‖
𝐿( 1

𝑠
,∞)(−𝜌,𝜌)

≤ 𝐶‖(−Δ)
1
4𝜙‖𝐿2(R)‖(−Δ)

1
2𝜓‖

𝐿 log
1
2 𝐿(−2𝜌,2𝜌)

= 𝐶𝐸2,2𝜌(𝜙,𝜓),

that

‖𝐽2‖
𝐿( 1

𝑠
,∞)(−𝜌,𝜌)

= ‖[𝜙, 𝐼1−𝑠]
(︁

(1 − 𝜃2𝜌)(−Δ)
1
4 (−Δ)

1
4𝜓
)︁

‖
𝐿( 1

𝑠
,∞)(−𝜌,𝜌)

≤ 𝐶‖(−Δ)
1
4𝜙‖𝐿2(R)‖(−Δ)

1
𝑠𝜓‖𝐿2(R)

= 𝐶𝐸1(𝜙,𝜓),

and that

‖𝐽3‖
𝐿( 1

𝑠
,∞)(−𝜌,𝜌)

≤ ‖𝐼1−𝑠

(︁
𝜙(−Δ)

1
2𝜓
)︁

‖
𝐿( 1

𝑠
,∞)(R)

≤ 𝐶‖𝜙(−Δ)
1
2𝜓‖𝐿1(R)

= 𝐶‖(−Δ)
1
4𝜙(−Δ)

1
4𝜓‖𝐿1(R)

≤ 𝐶𝐸1(𝜙,𝜓).

As a consequence of Lemma 3.3 we obtain the following crucial estimate.
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Lemma 3.4. For any 𝑠 ∈ (0, 1) there exists a constant 𝐶 = 𝐶(𝑠) such that∫︁
(−𝜌,𝜌)

|𝑢(−Δ)
𝑠
2 𝑢|𝑑𝑥 ≤ 𝐶𝜌1−𝑠(𝐸1(𝑢, 𝑢) + 𝐸2,2𝜌(𝑢, 𝑢))

for any 𝜌 > 0, and 𝑢 ∈ 𝐻∩𝐶∞(R). Here 𝐸1 and 𝐸2,2𝜌 are defined as in Lemma
3.3.

Proof. By the Hölder inequality for Lorentz spaces (see e.g. [31, Theorem 3.5]),
we have

‖𝑢(−Δ)
𝑠
2 𝑢‖𝐿1(−𝜌,𝜌) ≤ ‖𝜒(−𝜌,𝜌)‖

𝐿
( 1

1−𝑠
,1)(R)

‖𝑢(−Δ)
𝑠
2 𝑢‖

𝐿( 1
𝑠

,∞)(−𝜌,𝜌)

≤ 𝐶𝜌1−𝑠‖𝑢(−Δ)
𝑠
2 𝑢‖

𝐿( 1
𝑠

,∞)(−𝜌,𝜌)
. (36)

We shall bound the RHS of (36) by approximating 𝑢 with compactly supported
functions and applying Lemma 3.3. To this purpose, we take a sequence of cut-
off function (𝜏𝑗)𝑗∈N ⊆ 𝐶∞

𝑐 (R) such that 𝜏𝑗(𝑥) = 1 for |𝑥| ≤ 𝑗, 𝜏𝑗(𝑥) = 0 for
|𝑥| ≥ 𝑗 + 1, 0 ≤ 𝜏𝑗 ≤ 1 and |𝜏 ′

𝑗 | ≤ 2. We define 𝑢𝑗 := 𝜏𝑗𝑢. We claim that

𝑢𝑗 → 𝑢 in 𝐻
1
2 ,2(R) ∩ 𝐿𝑞(R), 𝑞 ∈ (2,∞) (37)

and
(−Δ)

𝑠
2 𝑢𝑗 → (−Δ)

𝑠
2 𝑢 in 𝐿∞

loc(R). (38)

The first claim is proved in [10, Lemma 12]. We shall prove the second claim.
Set 𝑣𝑗 = 𝑢𝑗 − 𝑢. Then, for any fixed 𝑅0 > 0 and 𝑥 ∈ (−𝑅0, 𝑅0), if 𝑗 > 2𝑅0 we
have

|(−Δ)
𝑠
2 𝑣𝑗 | ≤ 𝐾𝑠

∫︁
R∖(−𝑗,𝑗)

|𝑣𝑗(𝑦)|
|𝑥− 𝑦|1+𝑠

𝑑𝑦 ≤ 21+𝑠𝐾𝑠

∫︁
R∖(−𝑗,𝑗)

|𝑢(𝑦)|
|𝑦|1+𝑠

𝑑𝑦 ≤
𝐶‖𝑢‖𝐿2(R)
𝑗1+2𝑠

.

with 𝐶 depending only on 𝑠. As 𝑗 → ∞, we get (38).
Now, By Lemma 3.3, we know that, for any 𝑗,

‖𝑢𝑗(−Δ)
𝑠
2 𝑢𝑗‖

𝐿( 1
𝑠

,∞)(−𝜌,𝜌)
≤ 𝐶(𝐸1(𝑢𝑗 , 𝑢𝑗) + 𝐸2,𝜌(𝑢𝑗 , 𝑢𝑗)), (39)

where 𝐶 depends only on 𝑠. Clearly, (37) yields

𝐸1(𝑢𝑗 , 𝑢𝑗) → 𝐸1(𝑢, 𝑢).

Moreover
𝐸2,2𝜌(𝑢𝑗 , 𝑢𝑗) = 𝐸2,2𝜌(𝑢, 𝑢), for 𝑗 ≥ 2𝜌.
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Finally, (37) and (38) imply that 𝑢𝑗(−Δ) 𝑠
2 𝑢𝑗 → 𝑢(−Δ) 𝑠

2 𝑢 in 𝐿𝑞
loc(R) for every

𝑞 ∈ [1,∞), and therefore in 𝐿( 1
𝑠 ,∞)(−𝜌, 𝜌). Then, passing to the limit in (39) we

get
‖𝑢(−Δ)

𝑠
2 𝑢‖

𝐿( 1
𝑠

,∞)(−𝜌,𝜌)
≤ 𝐶(𝐸1(𝑢, 𝑢) + 𝐸2,2𝜌(𝑢, 𝑢)),

and together with (36) we conclude.

We can now apply Lemma 3.4 to 𝑢𝑘. After scaling, we get the following bound
on 𝜂𝑘.

Lemma 3.5. For any 𝑠 ∈ (0, 1), there exists a constant 𝐶 = 𝐶(𝑠) > 0 such
that

𝑅∫︁
−𝑅

|(−Δ)
𝑠
2 𝜂𝑘|𝑑𝑥 ≤ 𝐶𝑅1−𝑠, for any 𝑅 > 0 and 𝑘 ≥ 𝑘0(𝑅).

Proof. First we observe that 𝑓𝑘 := (−Δ) 1
2 𝑢𝑘 = 𝜆𝑘𝑢𝑘𝑒

𝛼𝑘𝑢2
𝑘 − 𝑢𝑘 is bounded in

𝐿 log
1
2 𝐿loc(R). Indeed, we have

log
1
2 (2 + |𝑓𝑘|) ≤ 𝐶(1 + 𝑢𝑘),

so that
|𝑓𝑘| log

1
2 (2 + |𝑓𝑘|) ≤ 𝐶|𝑓𝑘| (1 + 𝑢𝑘) = 𝑂(|𝑓𝑘|𝑢𝑘 + 1).

Since |𝑓𝑘|𝑢𝑘 is bounded in 𝐿1(R) by (5) and (6), we get that 𝑓𝑘 is bounded in
𝐿 log

1
2 𝐿loc(R).

Then Lemma 3.4 and (6) imply the existence of 𝐶 = 𝐶(𝑠) such that

𝜌∫︁
−𝜌

|𝑢𝑘(−Δ)
𝑠
2 𝑢𝑘|𝑑𝑥 ≤ 𝐶𝜌1−𝑠, 𝜌 ∈ (0, 1).

For any 𝑅 > 0, we can apply this with 𝜌 = 𝑅𝑟𝑘 and rewrite it in terms of 𝜂𝑘.
Then, we obtain

𝑅∫︁
−𝑅

(︂
1 + 𝜂𝑘

𝜇2
𝑘

)︂
|(−Δ)

𝑠
2 𝜂𝑘| ≤ 𝐶𝑅1−𝑠.

Since, by Lemma 3.2, 𝜂𝑘 is locally bounded, if 𝑘 is sufficiently large we get
1 + 𝜂𝑘

𝜇2
𝑘

≥ 1
2 and the proof is complete.

Lemma 3.6. The sequence (𝜂𝑘) is bounded in 𝐿𝑠(R) for any 𝑠 > 0.
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Proof. It is sufficient to prove the statement for 𝑠 ∈ (0, 1/2). Since 𝜂𝑘 ≤ 0,
Lemma 3.5 gives

𝐶 ≥ 1
𝐾𝑠

1∫︁
−1

|(−Δ)𝑠𝜂𝑘|𝑑𝑥

≥

⃒⃒⃒⃒
⃒⃒

1∫︁
−1

∫︁
R

𝜂𝑘(𝑥) − 𝜂𝑘(𝑦)
|𝑥− 𝑦|1+2𝑠

𝑑𝑦𝑑𝑥

⃒⃒⃒⃒
⃒⃒

≥
1∫︁

−1

2∫︁
−2

𝜂𝑘(𝑥) − 𝜂𝑘(𝑦)
|𝑥− 𝑦|1+2𝑠

𝑑𝑦𝑑𝑥

⏟  ⏞  
=:𝐼1

+
1∫︁

−1

∫︁
(−2,2)𝑐

𝜂𝑘(𝑥)𝑑𝑦𝑑𝑥
|𝑥− 𝑦|1+2𝑠

⏟  ⏞  
=:𝐼2

+
1∫︁

−1

∫︁
(−2,2)𝑐

−𝜂𝑘(𝑦)𝑑𝑦𝑑𝑥
|𝑥− 𝑦|1+2𝑠

⏟  ⏞  
=:𝐼3

.

Take 2𝑠 < 𝛼 < 1. Since 𝜂𝑘 is bounded in 𝐶𝛼
loc(R) by Lemma 3.2, we have that

|𝐼1| ≤ 𝐶

1∫︁
−1

2∫︁
−2

𝑑𝑦𝑑𝑥

|𝑥− 𝑦|1+2𝑠−𝛼
≤ 𝐶

3∫︁
−3

𝑑𝑧

|𝑧|1+2𝑠−𝛼
= 𝐶.

Similarly

|𝐼2| ≤
1∫︁

−1

|𝜂𝑘(𝑥)|
∫︁

(𝑥−1,𝑥+1)𝑐

1
|𝑥− 𝑦|1+2𝑠

𝑑𝑦𝑑𝑥 ≤ 𝐶.

Therefore, we obtain that

𝐼3 =
1∫︁

−1

∫︁
(−2,2)𝑐

|𝜂𝑘(𝑦)|
|𝑥− 𝑦|1+2𝑠

𝑑𝑦𝑑𝑥 ≤ 𝐶.

But for 𝑥 ∈ (−1, 1) and 𝑦 /∈ (−2, 2) we have |𝑥 − 𝑦| ≤ |𝑦| + |𝑥| ≤ 2|𝑦| ≤
2(1 + |𝑦|1+2𝑠)

1
1+2𝑠 . Hence

𝐼3 =
1∫︁

−1

∫︁
(−2,2)𝑐

|𝜂𝑘(𝑦)|
|𝑥− 𝑦|1+2𝑠

𝑑𝑦𝑑𝑥 ≥ 1
22𝑠

∫︁
(−2,2)𝑐

|𝜂𝑘(𝑦)|
1 + |𝑦|1+2𝑠

𝑑𝑦.

This and Lemma 3.2 imply that 𝜂𝑘 is bounded in 𝐿𝑠(R).

Proof of Theorem 1.3 (completed). By Lemma 3.2, up to a subsequence we can
assume that 𝜂𝑘 → 𝜂∞ in 𝐶𝛼

loc(R) for any 𝛼 ∈ (0, 1), with 𝜂∞ ∈ 𝐶𝛼
loc(R). Let us

denote

𝑓𝑘 := (−Δ)
1
2 𝜂𝑘 = 2

(︂
1 + 𝜂𝑘

2𝛼𝑘𝜇
2
𝑘

)︂
𝑒

𝜂𝑘+
𝜂2

𝑘
4𝛼𝑘𝜇2

𝑘 − 2𝑟𝑘𝛼𝑘𝜇
2
𝑘

(︂
1 + 𝜂𝑘

2𝛼𝑘𝜇
2
𝑘

)︂
.
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As observed in the proof of Lemma 3.2, we have 𝑟𝑘𝜇
2
𝑘 → 0 as 𝑘 → ∞ and thus

𝑓𝑘 → 2𝑒𝜂∞ locally uniformly on R. Moreover 𝑓𝑘 is bounded in 𝐿∞(R). Then,
for any Schwarz function 𝜙 ∈ 𝒮(R) we have∫︁
R

|𝑓𝑘−2𝑒𝜂∞ ||𝜙|𝑑𝑥 ≤ 𝑜(1)
∫︁

(−𝑅,𝑅)

|𝜙| 𝑑𝑥+ (‖𝑓𝑘‖𝐿∞(R)+‖2𝑒𝜂∞‖𝐿∞(R))
∫︁

(−𝑅,𝑅)𝑐

|𝜙|𝑑𝑥 → 0

as 𝑘,𝑅 → +∞. On the other hand, we know by Lemma 3.6 that 𝜂𝑘 is bounded
in 𝐿𝑠(R) and, consequently, 𝜂∞ ∈ 𝐿𝑠(R), 𝑠 > 0. In particular, for 𝑠 ∈ (0, 1

2 ),
letting 𝑘 → ∞ first, and then 𝑅 → ∞ we get∫︁
R

|𝜂𝑘 − 𝜂∞||(−Δ)
1
2𝜙|𝑑𝑥

≤ ‖(−Δ)
1
2𝜙‖𝐿∞(−𝑅,𝑅)‖𝜂𝑘 − 𝜂∞‖𝐿1(−𝑅,𝑅) + 𝐶

∫︁
(−𝑅,𝑅)𝑐

|𝜂𝑘(𝑥) − 𝜂∞(𝑥)|
|𝑥|2

𝑑𝑥

≤ 𝐶‖𝜂𝑘 − 𝜂∞‖𝐿1(−𝑅,𝑅) + 𝐶𝑅2𝑠−1(‖𝜂𝑘‖𝐿𝑠(R) + ‖𝜂∞‖𝐿𝑠(R)) → 0.

Then 𝜂∞ is a weak solution (−Δ) 1
2 𝜂∞ = 2𝑒𝜂∞ and 𝜂∞ ∈ 𝐿𝑠(R) for any 𝑠.

Moreover, repeating the argument of Corollary 2.3 and using (6), we get

1
𝜋

𝑅∫︁
−𝑅

𝑒𝜂∞𝑑𝜉 = lim
𝑘→∞

𝑅𝑟𝑘∫︁
−𝑅𝑟𝑘

𝜆𝑘𝑢
2
𝑘𝑒

𝛼𝑘𝑢2
𝑘𝑑𝑥 ≤ lim sup

𝑘→∞
‖𝑢𝑘‖2

𝐻 = Λ, (40)

which implies 𝑒𝜂∞ ∈ 𝐿1(R). Then 𝜂∞(𝑥) = − log(1 + 𝑥2), see e.g. [6, Theorem
1.8].

To complete the proof, we shall study the properties of the weak limit 𝑢∞
of 𝑢𝑘 in 𝐻. First, we show that 𝑢∞ is a weak solution of (7). Let us denote

𝑔𝑘 := 𝜆𝑘𝑢𝑘𝑒
𝛼𝑘𝑢2

𝑘 , 𝑔∞ := 𝜆∞𝑢∞𝑒𝜋𝑢2
∞ .

Take any function 𝜙 ∈ 𝒮(R). On the one hand, since (−Δ) 1
2𝜙 ∈ 𝐿2(R) and

𝑢𝑘 ⇀ 𝑢∞ weakly in 𝐿2(R), we have∫︁
R

(𝑢𝑘 − 𝑢∞)(−Δ)
1
2𝜙𝑑𝑥+

∫︁
R

(𝑢𝑘 − 𝑢∞)𝜙𝑑𝑥 → 0,

as 𝑘 → ∞. On the other hand, for any large 𝑡 > 0 we get∫︁
R

|𝑔𝑘 − 𝑔∞||𝜙|𝑑𝑥 ≤
∫︁

{𝑢𝑘≤𝑡}

|𝑔𝑘 − 𝑔∞||𝜙|𝑑𝑥+
‖𝜙‖𝐿∞(R)

𝑡

∫︁
R

𝑢𝑘(𝑔𝑘 + 𝑔∞)𝑑𝑥

= 𝑜(1) +𝑂(𝑡−1) → 0
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as 𝑘, 𝑡 → ∞, where we used that 𝑔∞ ∈ 𝐿2(R) by Theorem A (see e.g. Lemma
2.3 of [17]) together with the dominated convergence theorem and the bounds
‖𝑢𝑘𝑔𝑘‖𝐿1(R) ≤ Λ and ‖𝑢𝑘‖𝐿2(R) ≤ Λ. Then, 𝑢∞ is a weak solution of (7).

Now, observe that

‖𝑢𝑘‖2
𝐻 =

∫︁
R

𝑔𝑘𝑢𝑘𝑑𝑥 =
𝑅𝑟𝑘∫︁

−𝑅𝑟𝑘

𝑔𝑘𝑢𝑘𝑑𝑥+
∫︁

R∖(−𝑅𝑟𝑘,𝑅𝑟𝑘)

𝑔𝑘𝑢𝑘𝑑𝑥

with

lim
𝑘→∞

𝑅𝑟𝑘∫︁
−𝑅𝑟𝑘

𝑢𝑘𝑔𝑘 𝑑𝑥 = 1
𝜋

𝑅∫︁
−𝑅

𝑒𝜂∞𝑑𝑥 → 1

as 𝑅 → ∞, and

lim inf
𝑘→∞

∫︁
R∖(−𝑅𝑟𝑘,𝑅𝑟𝑘)

𝑔𝑘𝑢𝑘𝑑𝑥 =
∫︁
R

𝑔∞𝑢∞𝑑𝑥 = ‖𝑢∞‖2
𝐻 ,

for any 𝑅 > 1, by Fatou’s lemma. Thus we conclude that

‖𝑢𝑘‖2
𝐻 ≥ ‖𝑢∞‖2

𝐻 + 1.

Finally, to prove that 𝑢𝑘 → 𝑢∞ in 𝐶ℓ
loc(R ∖ {0}) for every ℓ ≥ 0, we use the

monotonicity of 𝑢𝑘, which implies that 𝑢𝑘 is locally bounded away from 0, hence
we can conclude by elliptic estimates, as in Lemma 3.1.

4 Proof of Theorem 1.2
Let us denote

𝐸𝛼(𝑢) =
∫︁
R

(𝑒𝛼𝑢2
− 1)𝑑𝑥, 𝐷𝛼 := sup

𝑢∈𝐻:‖𝑢‖𝐻 ≤1
𝐸𝛼(𝑢).

The proof of Theorem 1.2 is organized as follows. First, we prove that 𝐷𝛼 is
attained for 𝛼 ∈ (0, 𝜋) sufficiently close to 𝜋. Then, we fix a sequence (𝛼𝑘)𝑘∈𝑁

such that 𝛼𝑘 ↗ 𝜋 as 𝑘 → +∞, and for any large 𝑘 we take a positive extremal
𝑢𝑘 ∈ 𝐻 for 𝐷𝛼𝑘 . With a contradiction argument similar to the one of Section 2,
we show that 𝜇𝑘 := supR 𝑢𝑘 ≤ 𝐶. Finally, we show that 𝑢𝑘 → 𝑢∞ in 𝐿∞

loc(R) ∩
𝐿2(R), where 𝑢∞ is a maximizer for 𝐷𝜋.
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4.1 Subcritical extremals: Ruling out vanishing

The following lemma describes the effect of the lack of compactness of the em-
bedding 𝐻 ⊆ 𝐿2(R) on 𝐸𝛼, and holds uniformly for 𝛼 ∈ [0, 𝜋].

Lemma 4.1. Let (𝛼𝑘) ⊆ [0, 𝜋] and (𝑢𝑘) ⊆ 𝐻 be two sequences such that:
1. 𝛼𝑘 → 𝛼∞ ∈ [0, 𝜋] as 𝑘 → ∞.
2. ‖𝑢𝑘‖𝐻 ≤ 1, 𝑢𝑘 ⇀ 𝑢∞ weakly in 𝐻, 𝑢𝑘 → 𝑢∞ a.e. in R, and 𝑒𝛼𝑘𝑢2

𝑘 →
𝑒𝛼∞𝑢2

∞ in 𝐿1
loc(R) as 𝑘 → ∞.

3. The 𝑢𝑘’s are even and monotone decreasing i.e. 𝑢𝑘(−𝑥) = 𝑢𝑘(𝑥) ≥ 𝑢𝑘(𝑦)
for 0 ≤ 𝑥 ≤ 𝑦.

Then we have

𝐸𝛼𝑘 (𝑢𝑘) = 𝐸𝛼∞(𝑢∞) + 𝛼∞

(︁
‖𝑢𝑘‖2

𝐿2(R) − ‖𝑢∞‖2
𝐿2(R)

)︁
+ 𝑜(1),

as 𝑘 → ∞.

Proof. Since 𝑢𝑘 is even and decreasing, we know that

𝑢𝑘(𝑥)2 ≤
‖𝑢𝑘‖2

𝐿2(R)
2|𝑥|

≤ 1
2|𝑥|

, (41)

for any 𝑥 ∈ R ∖ {0}. In particular, there exists a constant 𝐶 > 0, such that

𝑒𝛼𝑘𝑢2
𝑘(𝑥) − 1 − 𝛼𝑘𝑢

2
𝑘(𝑥) ≤ 𝐶|𝑥|−4,

for |𝑥| ≥ 1. Applying the dominated convergence theorem for |𝑥| ≥ 1, using
the assumption that 𝑒𝛼𝑘𝑢2

𝑘 → 𝑒𝛼∞𝑢2
∞ in 𝐿1

loc(R), and recalling that (𝑢𝑘) is
precompact in 𝐿1

loc(R), we find that∫︁
R

(𝑒𝛼𝑘𝑢2
𝑘 − 1 − 𝛼𝑘𝑢

2
𝑘)𝑑𝑥 →

∫︁
R

(𝑒𝛼∞𝑢2
∞ − 1 − 𝛼∞𝑢2

∞)𝑑𝑥,

and the Lemma follows.

Lemma 4.2. Take 𝛼 ∈ (0, 𝜋). If 𝐷𝛼 > 𝛼, then 𝐷𝛼 is attained by an even an
decreasing function, i.e. there exists 𝑢𝛼 ∈ 𝐻 even and decreasing s.t. ‖𝑢𝛼‖𝐻 = 1
and 𝐸𝛼(𝑢𝛼) = 𝐷𝛼.

Proof. Let (𝑢𝑘) ⊂ 𝐻 be a maximizing sequence for 𝐸𝛼. W.l.o.g. we can assume
𝑢𝑘 → 𝑢∞ ∈ 𝐻 weakly in 𝐻 and a.e. on R. Moreover, up to replacing 𝑢𝑘 with
its symmetric decreasing rearrangement, we can assume that 𝑢𝑘 is even and
decreasing (see [30]). Since 𝛼 ∈ (0, 𝜋) the sequence 𝑒𝛼𝑢2

𝑘 − 1 is bounded in
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𝐿
𝜋
𝛼 (R), with 𝜋

𝛼 > 1. Then, by Vitali’s theorem, we get 𝑒𝛼𝑢2
𝑘 → 𝑒𝛼𝑢2

∞ in 𝐿1
loc(R),

and Lemma 4.1 yields

𝐸𝛼(𝑢𝑘) = 𝐸𝛼(𝑢∞) + 𝛼
(︁

‖𝑢𝑘‖2
𝐿2(R) − ‖𝑢∞‖2

𝐿2(R)

)︁
+ 𝑜(1). (42)

This implies that 𝑢∞ ̸≡ 0, since otherwise we have 𝐸𝛼(𝑢𝑘) = 𝛼‖𝑢𝑘‖2
𝐿2(R) +

𝑜(1) ≤ 𝛼+ 𝑜(1), which contradicts the assumption 𝐷𝛼 > 𝛼. Let us denote

𝐿 := lim sup
𝑘→∞

‖𝑢𝑘‖2
𝐿2(R), 𝜏 :=

‖𝑢∞‖2
𝐿2(R)
𝐿

.

Observe that 𝐿, 𝜏 ∈ (0, 1]. Let us consider the sequence 𝑣𝑘(𝑥) = 𝑢𝑘(𝜏𝑥). Clearly,
we have 𝑣𝑘 ⇀ 𝑣∞ weakly in 𝐻, where 𝑣∞(𝑥) := 𝑢∞(𝜏𝑥). Moreover, since
‖𝑢∞‖2

𝐿2 = 𝐿 and

‖(−Δ)
1
4 𝑣∞‖2

𝐿2 ≤ lim inf
𝑘→∞

‖(−Δ)
1
4 𝑣𝑘‖2

𝐿2 = lim inf
𝑘→∞

‖(−Δ)
1
4 𝑢𝑘‖2

𝐿2 ≤ 1 − 𝐿,

we get ‖𝑣∞‖𝐻 ≤ 1. By (42) we have

𝐷𝛼 ≤ 𝐸𝛼(𝑢∞) + 𝛼𝐿(1 − 𝜏) = 𝜏𝐸𝛼(𝑣∞) + 𝛼𝐿(1 − 𝜏) ≤ 𝜏𝐷𝛼 + 𝛼𝐿(1 − 𝜏). (43)

If 𝜏 < 1, this implies 𝐷𝛼 ≤ 𝛼𝐿 ≤ 𝛼, contradicting the assumptions. Hence
𝜏 = 1 and (43) gives 𝐷𝛼 = 𝐸𝛼(𝑢∞). Finally we have ‖𝑢0‖𝐻 = 1, otherwise
𝐸𝛼( 𝑢∞

‖𝑢∞‖𝐻
) > 𝐸𝛼(𝑢∞) = 𝐷𝛼.

Lemma 4.3. There exists 𝛼* ∈ (0, 𝜋) such that 𝐷𝛼 > 𝛼 for any 𝛼 ∈ (𝛼*, 𝜋].
In particular 𝐷𝛼 is attained by an even and decreasing function 𝑢𝛼 for any
𝛼 ∈ (𝛼*, 𝜋) by Lemma 4.2.

Proof. This follows from Proposition 4.14 by continuity. Indeed Proposition 4.14
gives 𝐷𝜋 > 2𝜋𝑒−𝛾 > 𝜋.

4.2 The critical case

Next, we take a sequence 𝛼𝑘 such that 𝛼𝑘 ↗ 𝜋 as 𝑘 → ∞. For any large 𝑘,
Lemma 4.3 yields the existence 𝑢𝑘 ∈ 𝐻 even and decreasing such that 𝐷𝛼𝑘 =
𝐸𝛼𝑘 (𝑢𝑘). Each 𝑢𝑘 satisfies

(−Δ)
1
2 𝑢𝑘 + 𝑢𝑘 = 𝜆𝑘𝑢𝑘𝑒

𝛼𝑘𝑢2
𝑘 ,

and ‖𝑢𝑘‖𝐻 = 1. Note that 𝑢𝑘 ∈ 𝐶∞(R) by elliptic estimates. Multiplying the
equation by 𝑢𝑘 and using the basic inequality 𝑡𝑒𝑡 ≥ 𝑒𝑡 − 1, for 𝑡 ≥ 0, we infer

1
𝜆𝑘

=
∫︁
R

𝑢2
𝑘𝑒

𝛼𝑘𝑢2
𝑘𝑑𝑥 ≥ 1

𝛼𝑘
𝐸𝛼𝑘 (𝑢𝑘) = 1

𝛼𝑘
𝐷𝛼𝑘 .
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Since 𝐷𝛼𝑘 → 𝐷𝜋 > 0, we get that 𝜆𝑘 is uniformly bounded.
Then the sequence 𝑢𝑘 satisfies the alternative of Theorem 1.3. If case (i)

holds, then we can argue as in Lemma 4.2 and Lemma 4.3 and prove that 𝐷𝜋

is attained. Therefore, we shall assume by contradiction that case (ii) occurs.
Let 𝑟𝑘 and 𝜂𝑘 be as in Theorem 1.3. Let 𝜂𝑘 denote the Poisson integral of

𝜂𝑘.

Proposition 4.4. We have 𝜂𝑘 → 𝜂∞ in 𝐶ℓ
loc(R2

+) for every ℓ ≥ 0, where

𝜂∞(𝑥, 𝑦) = − log
(︀
(1 + 𝑦)2 + 𝑥2)︀

is the Poisson integral (compare to (66)) of 𝜂∞ := − log
(︀
1 + 𝑥2)︀.

Proof. By Theorem 1.3 we know that 𝜂𝑘 → 𝜂∞ in 𝐶ℓ
loc(R) and that 𝜂𝑘 is

bounded in 𝐿 1
2
. Then, we can repeat the argument of the proof of Proposition

2.2.

Remark 4.5. As in (17), the convergence 𝜂𝑘 → 𝜂∞ in 𝐿∞
loc(R) implies

lim
𝑘→∞

𝑟𝑘𝑅∫︁
−𝑟𝑘𝑅

𝜆𝑘𝜇
𝑖
𝑘𝑢

2−𝑖
𝑘 𝑒𝛼𝑘𝑢2

𝑘 = 1
𝜋

𝜋∫︁
−𝜋

𝑒𝜂∞𝑑𝑥,

for 𝑖 = 0, 1, 2 and for any 𝑅 > 0.

Lemma 4.6. We have 𝑢𝑘 → 0 in 𝐿2(R).

Proof. Indeed, otherwise up to a subsequence we would have ‖(−Δ) 1
4 𝑢𝑘‖𝐿2(R) ≤

1
𝐴 for some 𝐴 > 1. Consider, the function 𝑣𝑘 = (𝑢𝑘 − 𝑢𝑘(1))+. Then, 𝑣𝑘 ∈
𝐻̃

1
2 ,2(𝐼) and ‖(−Δ) 1

4 𝑣𝑘‖𝐿2(R) ≤ 1
𝐴 . The Moser-Trudinger inequality (3) gives

that 𝑒𝛼𝑘𝑣2
𝑘 is bounded in 𝐿𝐴(R). Since

𝑢2
𝑘 ≤ (1 + 𝜀)𝑣2

𝑘 + 1
𝜀

(𝑢𝑘 − 𝑣𝑘)2

and |𝑣𝑘 − 𝑢𝑘| ≤ 𝑢𝑘(1) → 0 as 𝑘 → ∞, we get that 𝑒𝛼𝑘𝑢2
𝑘 is uniformly bounded

in 𝐿𝑝(R) for every 1 < 𝑝 < 𝐴. Therefore, we have∫︁
(−1,1)

(𝑒𝛼𝑘𝑢2
𝑘 − 1)𝑑𝑥 → 0

as 𝑘 → ∞. But then, by Lemma 4.1 we find 𝐷𝜋
𝑔 ≤ 𝜋, which contradicts Lemma

4.3.
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Lemma 4.7. For 𝐴 > 1, set 𝑢𝐴
𝑘 := min

{︀
𝑢𝑘,

𝜇𝑘

𝐴

}︀
. Then we have

lim sup
𝑘→∞

‖(−Δ)
1
4 𝑢𝐴

𝑘 ‖2
𝐿2(R) ≤ 1

𝐴
. (44)

Proof. The proof is similar to the one of Lemma 2.4. We set 𝑢̄𝐴
𝑘 := min

{︀
𝑢̃𝑘,

𝜇𝑘

𝐴

}︀
.

Since 𝑢̄𝐴
𝑘 is an extension of 𝑢𝐴

𝑘 , using integration by parts and the harmonicity
of 𝑢̃𝑘 we get

‖(−Δ)
1
4 𝑢𝐴

𝑘 ‖2
𝐿2(R) ≤

∫︁
R2

+

|∇𝑢̄𝐴
𝑘 |2𝑑𝑥𝑑𝑦 =

∫︁
R2

+

∇𝑢̄𝐴
𝑘 · ∇𝑢̃𝑘𝑑𝑥𝑑𝑦

= −
∫︁
R

𝑢𝐴
𝑘 (𝑥)𝜕𝑢̃(𝑥, 0)

𝜕𝑦
𝑑𝑥

=
∫︁
R

(−Δ)
1
2 𝑢𝑘𝑢

𝐴
𝑘 𝑑𝑥. (45)

Proposition 4.4 implies that 𝑢𝐴
𝑘 (𝑟𝑘𝑥) = 𝜇𝑘

𝐴 for |𝑥| ≤ 𝑅 and 𝑘 ≥ 𝑘0(𝑅).
Noting that 𝑢𝐴

𝑘 ≤ 𝑢𝑘 and using Lemma 4.6, and Remark 4.5, we get

∫︁
R

(−Δ)
1
2 𝑢𝑘𝑢

𝐴
𝑘 𝑑𝑥 ≥

𝑅𝑟𝑘∫︁
−𝑅𝑟𝑘

𝜆𝑘𝑢𝑘𝑒
𝛼𝑘𝑢2

𝑘𝑢𝐴
𝑘 𝑑𝑥−

∫︁
R

𝑢𝑘𝑢
𝐴
𝑘 𝑑𝑥

= 1
𝐴

𝑅𝑟𝑘∫︁
−𝑅𝑟𝑘

𝜆𝑘𝜇𝑘𝑢𝑘𝑒
𝛼𝑘𝑢2

𝑘𝑢𝐴
𝑘 𝑑𝑥+𝑂(‖𝑢𝑘‖2

𝐿2(R))

𝑘→∞→ 1
𝜋𝐴

𝑅∫︁
−𝑅

𝑒𝜂∞𝑑𝜉

𝑅→∞→ 1
𝐴
.

Set now 𝑣𝐴
𝑘 :=

(︀
𝑢𝑘 − 𝜇𝑘

𝐴

)︀+. With similar computations we get

∫︁
R

(−Δ)
1
2 𝑢𝑘𝑣

𝐴
𝑘 𝑑𝑥 ≥

𝑅𝑟𝑘∫︁
−𝑅𝑟𝑘

𝜆𝑘𝑢𝑘𝑣
𝐴
𝑘 𝑒

𝛼𝑘𝑢2
𝑘𝑑𝑥+𝑂(‖𝑢𝑘‖2

𝐿2(R))

𝑘→∞→ 1
𝜋

(︂
1 − 1

𝐴

)︂ 𝑅∫︁
−𝑅

𝑒𝜂∞𝑑𝜉

𝑅→∞→ 𝐴− 1
𝐴

.
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Since∫︁
R

(−Δ)
1
2 𝑢𝑘𝑢

𝐴
𝑘 𝑑𝑥+

∫︁
R

(−Δ)
1
2 𝑢𝑘𝑣

𝐴
𝑘 𝑑𝑥 =

∫︁
R

(−Δ)
1
2 𝑢𝑘𝑢𝑘𝑑𝑥 = 1 − ‖𝑢𝑘‖2

𝐿2(R) → 1

as 𝑘 → ∞, we get that

lim
𝑛→∞

∫︁
R

(−Δ)
1
2 𝑢𝑘𝑢

𝐴
𝑘 𝑑𝑥 = 1

𝐴
.

Then, we conclude using (45).

Proposition 4.8. We have

𝐷𝜋 = lim
𝑘→∞

1
𝜆𝑘𝜇

2
𝑘

. (46)

Moreover
lim

𝑘→∞
𝜇𝑘𝜆𝑘 = 0. (47)

Proof. Fix 𝐴 > 1 and write∫︁
R

(︁
𝑒𝛼𝑘𝑢2

𝑘 − 1
)︁
𝑑𝑥 = (𝐼) + (𝐼𝐼) + (𝐼𝐼𝐼),

where (𝐼), (𝐼𝐼) and (𝐼𝐼𝐼) denote respectively the integrals over the regions
{𝑢𝑘 ≤ 𝜇𝑘

𝐴 } ∩ (−1, 1), {𝑢𝑘 ≤ 𝜇𝑘

𝐴 } ∩ (−1, 1)𝑐 and {𝑢𝑘 >
𝜇𝑘

𝐴 }. Using Lemmas 4.11
and 4.7 together with Theorem A we see that

(𝐼) ≤
1∫︁

−1

(︁
𝑒𝛼𝑘(𝑢𝐴

𝑘 )2
− 1
)︁

→ 0 as 𝑘 → ∞

since 𝑒𝛼𝑘(𝑢𝐴
𝑘 )2 − 1 is uniformly bounded in 𝐿𝑝, for any 1 ≤ 𝑝 < 𝐴. By (41) and

Lemma 4.6, we find

(𝐼𝐼) ≤
∫︁

(−1,1)𝑐

(︁
𝑒𝛼𝑘𝑢2

𝑘 − 1
)︁
𝑑𝑥 ≤ 𝐶

∫︁
R

𝑢2
𝑘𝑑𝑥 → 0 as 𝑘 → ∞.

We now estimate

(𝐼𝐼𝐼) ≤ 𝐴2

𝜆𝑘𝜇
2
𝑘

∫︁
{𝑢𝑘>

𝜇𝑘
𝐴 }

𝜆𝑘𝑢
2
𝑘𝑒

𝛼𝑘𝑢2
𝑘𝑑𝑥 ≤ 𝐴2

𝜆𝑘𝜇
2
𝑘

(1 + 𝑜(1)),
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with 𝑜(1) → 0 as 𝑘 → ∞, where we used that∫︁
𝐼∩{𝑢𝑘>

𝜇𝑘
𝐴 }

𝜆𝑘𝑢
2
𝑘𝑒

𝛼𝑘𝑢2
𝑘𝑑𝑥 ≤ ‖𝑢𝑘‖2

𝐻 = 1.

Letting 𝐴 ↓ 1, this gives
sup
𝐻
𝐸𝜋 ≤ lim

𝑘→∞

1
𝜆𝑘𝜇

2
𝑘

.

The converse inequality follows from Remark 4.5:∫︁
R

(︁
𝑒𝛼𝑘𝑢2

𝑘 − 1
)︁
𝑑𝑥 ≥

𝑅𝑟𝑘∫︁
−𝑅𝑟𝑘

𝑒𝛼𝑘𝑢2
𝑘𝑑𝑥+ 𝑜(1) = 1

𝜆𝑘𝜇
2
𝑘

⎛⎝ 𝑅∫︁
−𝑅

𝑒𝜂∞𝑑𝑥+ 𝑜(1)

⎞⎠+ 𝑜(1).

with 𝑜(1) → 0 as 𝑘 → ∞. Letting 𝑅 → ∞ we obtain (46).
Finally, (47) follows at once from (46), because otherwise we would have

𝐷𝜋 = 0, which is clearly impossible.

Lemma 4.9. We have

𝑓𝑘 := 𝜆𝑘𝜇𝑘𝑢𝑘𝑒
𝛼𝑘𝑢2

𝑘 ⇀ 𝛿0

as 𝑘 → ∞, in the sense of Radon measures in R.

Proof. The proof follows step by step the one Proposition 2.6, with (4), Proposi-
tion 4.4, Remark 4.5 Lemma 4.6 and Lemma 4.7 used in place of (3), Proposition
2.2, (17), Lemma 2.3 and Lemma 2.4. We omit the details.

For 𝑥 ∈ R, let 𝐺𝑥 be the Green function of (−Δ) 1
2 + 𝐼𝑑 on R with singularity

at 𝑥. In the following we denote 𝐺 := 𝐺0. By translation invariance, we get
𝐺𝑥(𝑦) = 𝐺(𝑦 − 𝑥) for any 𝑥, 𝑦 ∈ R, 𝑥 ̸= 𝑦. Moreover, the inversion formula for
the Fourier-transform implies that

𝐺(𝑥) = 1
2 sin |𝑥| − 1

𝜋
sin(|𝑥|)Si(|𝑥|) − 1

𝜋
cos(|𝑥|)Ci(|𝑥|), (48)

where

Si(𝑥) =
𝑥∫︁

0

sin 𝑡
𝑡
𝑑𝑡 and Ci(𝑥) = −

+∞∫︁
𝑥

cos 𝑡
𝑡
𝑑𝑡.

We recall that the identity

Ci(𝑥) = log 𝑥+ 𝛾 +
𝑥∫︁

0

cos 𝑡− 1
𝑡

𝑑𝑡 (49)

holds for any 𝑥 ∈ R ∖ {0}, where 𝛾 denotes the Euler-Mascheroni constant see
e.g. [13, Chapter 12.2].
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Proposition 4.10. The function 𝐺 satisfies the following properties.
1. We have 𝐺 ∈ 𝐶∞(R ∖ {0}) and

𝐺(𝑥) = − 1
𝜋

log |𝑥| − 𝛾

𝜋
+𝑂(|𝑥|), 𝐺′(𝑥) = − 1

𝜋𝑥
+𝑂(1), as 𝑥 → 0. (50)

2. We have 𝐺(𝑥) = 𝑂(|𝑥|−2) and 𝐺′(𝑥) = 𝑂(|𝑥|−3) as |𝑥| → ∞.
3. Let 𝐺̃ be the Poisson extension of 𝐺. There exists a function 𝑓 ∈ 𝐶1(R2

+)
such that 𝑓(0, 0) = 0 and

𝐺̃(𝑥, 𝑦) = − 1
𝜋

ln |(𝑥, 𝑦)|− 𝛾

𝜋
+ 𝑥

𝜋
arctan 𝑥

𝑦
− 𝑦

2𝜋 log(𝑥2+𝑦2)+𝑓(𝑥, 𝑦) in R2
+.

(51)

Proof. Property 1. follows directly by formula (48) and the identity in (49).
Similarly, since

𝑆𝑖(𝑡) = 𝜋

2 − cos 𝑡
𝑡

− sin 𝑡
𝑡2

+𝑂(𝑡−3), 𝐶𝑖(𝑡) = sin 𝑡
𝑡

− cos 𝑡
𝑡2

+𝑂(𝑡−3),

as 𝑡 → +∞, we get 2.
Given 𝑅 > 0, let 𝜓 ∈ 𝐶∞

𝑐 (R) be a cut-off function with 𝜓 ≡ 1 on (−𝑅,𝑅).
Let us denote 𝑔0 := − 1

𝜋 log |·|− 𝛾
𝜋 , 𝑔1 := 1

2 |·|𝜓, 𝑔2 := 𝐺−𝑔0 −𝑔1. By Proposition
A.3, we have

𝑔0(𝑥, 𝑦) = − 1
𝜋

log |(𝑥, 𝑦)| − 𝛾

𝜋
, (𝑥, 𝑦) ∈ R2.

Denoting 𝜃(𝑥, 𝑦) := arctan 𝑥
𝑦 the angle between the 𝑦-axis and the segment

connecting the origin to (𝑥, 𝑦), the function

ℎ(𝑥, 𝑦) := 𝑔1(𝑥, 𝑦) − 1
𝜋
𝑥 𝜃(𝑥, 𝑦) + 1

2𝜋 𝑦 log(𝑥2 + 𝑦2)

is harmonic in R2
+, continuous on R2

+, and identically 0 on (−𝑅,𝑅) ×R. By [33,
Theorem C], we get that ℎ ∈ 𝐶∞(R2

+ ∩ 𝐵𝑅(0, 0)). Finally, note that formula
(48) implies 𝑔2 ∈ 𝐶2(R) and 𝑔2(0) = 0. Hence, standard elliptic regularity yields
𝑔2 ∈ 𝐶1,𝛼(R2

+ ∩ 𝐵𝑅(0, 0)), for any 𝛼 ∈ (0, 1). In particular 𝑔2(0, 0) = 𝑔2(0) =
0.

Lemma 4.11. We have 𝜇𝑘𝑢𝑘 → 𝐺 in 𝐿2(R) ∩ 𝐿∞(R ∖ (−𝜀, 𝜀)), for any 𝜀 > 0,

Proof. Let us set 𝑣𝑘 := 𝜇𝑘𝑢𝑘 − 𝐺 and 𝑓𝑘 = 𝜇𝑘𝜆𝑘𝑢𝑘𝑒
𝛼𝑘𝑢2

𝑘 . By Lemma 4.9 we
have ‖𝑓𝑘‖𝐿1(𝐼) → 1 as 𝑘 → +∞, 𝐼 = (−1, 1). Then, arguing as in Lemma 2.8,
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we get

|𝑣𝑘(𝑥)| =

⃒⃒⃒⃒
⃒⃒∫︁
R

𝐺(𝑦 − 𝑥)𝑓𝑘(𝑦) 𝑑𝑦 −𝐺(𝑥)

⃒⃒⃒⃒
⃒⃒

≤
∫︁
𝐼

|𝐺(𝑥− 𝑦) −𝐺(𝑥)|𝑓𝑘(𝑦) 𝑑𝑦 + |‖𝑓𝑘‖𝐿1(𝐼) − 1|⏟  ⏞  
=𝑜(1)

|𝐺(𝑥)|

+
∫︁

R∖𝐼

𝐺(𝑥− 𝑦)𝑓𝑘(𝑦)𝑑𝑦.

⏟  ⏞  
=:𝑤𝑘(𝑥)

(52)

Using (41), Lemma 4.6 and (47), we get that 𝑓𝑘 → 0 in 𝐿2(R ∖ 𝐼). In particular

|𝑤𝑘(𝑥)| ≤ ‖𝑓𝑘‖𝐿2(R∖𝐼)‖𝐺‖𝐿2(R) → 0.

Fix 𝜎 ∈ (0, 1) and assume |𝑥| ≥ 𝜎. If we further take |𝑦| ≤ 𝜎
2 , then Proposition

4.10 implies

|𝐺(𝑥− 𝑦) −𝐺(𝑥)| ≤ 𝐶|𝑦|,

where 𝐶 is a constant depending only on 𝜎. Thus, for any 𝜀 ∈ (0, 𝜎
2 ), setting

𝐼𝜀 = R ∖ (−𝜀, 𝜀) we can write

|𝑣𝑘(𝑥)| ≤
∫︁
𝐼

|𝐺(𝑥− 𝑦) −𝐺(𝑥)|𝑓𝑘(𝑦) 𝑑𝑦 + 𝑜(1)‖𝐺‖𝐿∞(R∖(−𝜎,𝜎)) + 𝑜(1)

≤ 𝐶

𝜀∫︁
−𝜀

|𝑦|𝑓𝑘(𝑦) 𝑑𝑦 +
∫︁
𝐼𝜀

|𝐺(𝑥− 𝑦)|𝑓𝑘(𝑦) 𝑑𝑦 + |𝐺(𝑥)|
∫︁
𝐼𝜀

𝑓𝑘(𝑦) 𝑑𝑦 + 𝑜(1)

≤ 𝐶𝜀‖𝑓𝑘‖𝐿1(𝐼) + ‖𝑓𝑘‖𝐿∞(𝐼𝜀)
(︀
‖𝐺‖𝐿1(R) + ‖𝐺‖𝐿∞(R∖(−𝜎,𝜎))

)︀
+ 𝑜(1)

≤ 𝐶𝜀+ 𝑜(1),
(53)

where 𝑜(1) → 0 as 𝑘 → ∞ (depending on 𝜀 and 𝜎). Here, we used that 𝑓𝑘 → 0
in 𝐿∞(R∖ (−𝜀, 𝜀)) by (41) and (47). Since 𝜀 is arbitrarily small, (53) shows that
𝑣𝑘 → 0 in 𝐿∞(R ∖ (−𝜎, 𝜎)).

Next, we prove the 𝐿2 convergence. First, Hölder’s inequality and Fubini’s
theorem give

‖𝑤𝑘‖2
𝐿2(R) =

∫︁
R

⎛⎜⎝∫︁
R∖𝐼

𝐺(𝑥− 𝑦)𝑓𝑘(𝑦)𝑑𝑦

⎞⎟⎠
2

𝑑𝑥 ≤ ‖𝐺‖2
𝐿1(R)‖𝑓𝑘‖2

𝐿2(R∖𝐼) → 0



36 Gabriele Mancini and Luca Martinazzi

as 𝑘 → ∞. With a similar argument, after integrating (52) and using the trian-
gular inequality in 𝐿2, we find

‖𝑣𝑘‖𝐿2(R) ≤

⎛⎜⎝∫︁
R

⎛⎝∫︁
𝐼

|𝐺(𝑥− 𝑦) −𝐺(𝑥)|𝑓𝑘(𝑦) 𝑑𝑦

⎞⎠2

𝑑𝑥

⎞⎟⎠
1
2

+ |‖𝑓𝑘‖𝐿1(𝐼) − 1|‖𝐺‖𝐿2(R) + ‖𝑤𝑘‖𝐿2(R)

≤

⎛⎝∫︁
𝐼

𝑓𝑘(𝑦)𝑑𝑦

⎞⎠ 1
2

⏟  ⏞  
=1+𝑜(1)

⎛⎝∫︁
𝐼

𝑓𝑘(𝑦)
∫︁
R

|𝐺(𝑥− 𝑦) −𝐺(𝑥)|2 𝑑𝑥 𝑑𝑦

⎞⎠ 1
2

+ 𝑜(1).

Since 𝐺 ∈ 𝐿2(R), the function 𝜓(𝑦) :=
∫︀
R |𝐺(𝑥 − 𝑦) − 𝐺(𝑥)|2𝑑𝑥 is continuous

on R and 𝜓(0) = 0. Let 𝜙 ∈ 𝐶(R) be a compactly supported function such that
𝜙 ≡ 𝜓 on 𝐼. Then, Lemma 4.9 implies∫︁

𝐼

𝑓𝑘(𝑦)
∫︁
R

|𝐺(𝑥− 𝑦) −𝐺(𝑥)|2 𝑑𝑥 𝑑𝑦 =
∫︁
R

𝑓𝑘(𝑦)𝜙(𝑦)𝑑𝑦 + 𝑜(1) → 0,

as 𝑘 → ∞, and the conclusion follows.

Repeating the argument of Proposition 2.8, we get the following:

Lemma 4.12. We have 𝜇𝑘𝑢̃𝑘 → 𝐺̃ in 𝐶0
loc(R2

+ ∖ {(0, 0)}) ∩𝐶1
loc(R2

+), where 𝐺̃
is the Poisson extension of 𝐺.

With Proposition 4.4 and Lemma 4.12 we can give an upper bound on 𝐷𝜋.

Proposition 4.13. Under the assumption that 𝜇𝑘 → ∞ as 𝑘 → ∞, we have
𝐷𝜋 ≤ 2𝜋𝑒−𝛾 .

Proof. For a fixed and small 𝛿 > 0 set

𝑎𝑘 := inf
𝐵𝐿𝑟𝑘

∩R2
+

𝑢̃𝑘, 𝑏𝑘 := sup
𝐵𝛿∩R2

+

𝑢̃𝑘, 𝑣𝑘 := (𝑢̃𝑘 ∧ 𝑎𝑘) ∨ 𝑏𝑘.

Recalling that ‖∇𝑢̃𝑘‖2
𝐿2(R) = ‖(−Δ) 1

4 𝑢𝑘‖2
𝐿2(R) = 1 − ‖𝑢𝑘‖2

𝐿2(R), we have∫︁
(𝐵𝛿∖𝐵𝐿𝑟𝑘

)∩R2
+

|∇𝑣𝑘|2𝑑𝑥𝑑𝑦 ≤ 1 − ‖𝑢𝑘‖2
𝐿2 −

∫︁
R2

+∖𝐵𝛿

|∇𝑢̃𝑘|2𝑑𝑥−
∫︁

R2
+∩𝐵𝐿𝑟𝑘

|∇𝑢̃𝑘|2𝑑𝑥

(54)
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Clearly the left-hand side bounds

inf
𝑢̃|R2

+∩𝜕𝐵𝐿𝑟𝑘
=𝑎𝑘

𝑢̃|R2
+∩𝜕𝐵𝛿

=𝑏𝑘

∫︁
(𝐵𝛿∖𝐵𝐿𝑟𝑘

)∩R2
+

|∇𝑢̃|2𝑑𝑥𝑑𝑦 = 𝜋
(𝑎𝑘 − 𝑏𝑘)2

log 𝛿 − log(𝐿𝑟𝑘) .

Using Proposition 4.4, Proposition 4.10 and Lemma 4.12 we obtain

𝑎𝑘 = 𝜇𝑘 +
− 1

𝜋 log𝐿+𝑂(𝐿−1) + 𝑜(1)
𝜇𝑘

,

𝑏𝑘 =
− 1

𝜋 log 𝛿 − 𝛾
𝜋 +𝑂(𝛿| log 𝛿|) + 𝑜(1)

𝜇𝑘
, (55)

where 𝑜(1) → 0 as 𝑘 → ∞ for fixed 𝐿 > 0, 𝛿 > 0, and |𝑂(𝐿−1)| ≤ 𝐶𝐿−1,
|𝑂(𝛿| log 𝛿|)| ≤ 𝐶𝛿| log 𝛿|, uniformly for 𝛿 small, and 𝐿, 𝑘 large. Still with Propo-
sition 4.4 we get

lim
𝑘→∞

𝜇2
𝑘

∫︁
𝐵+

𝐿𝑟𝑘

|∇𝑢̃𝑘|2𝑑𝑥𝑑𝑦 = 1
4𝜋2

∫︁
𝐵+

𝐿

|∇𝜂∞|2𝑑𝑥𝑑𝑦

= 1
𝜋

log 𝐿2 +𝑂

(︂
log𝐿
𝐿

)︂
.

Similarly Lemma 4.12 and Proposition 4.10 yield

lim inf
𝑘→∞

𝜇2
𝑘

∫︁
R2

+∖𝐵𝛿

|∇𝑢̃𝑘|2𝑑𝑥𝑑𝑦 ≥
∫︁

R2
+∖𝐵𝛿

|∇𝐺̃|2𝑑𝑥𝑑𝑦

with∫︁
R2

+∖𝐵𝛿

|∇𝐺̃|2𝑑𝑥𝑑𝑦 =
∫︁

R2
+∩𝜕𝐵𝛿

−𝜕𝐺̃

𝜕𝑟
𝐺̃𝑑𝜎 +

∫︁
(R×{0})∖𝐵𝛿

−𝜕𝐺̃(𝑥, 0)
𝜕𝑦

𝐺(𝑥)𝑑𝑥

=
∫︁

R2
+∩𝜕𝐵𝛿

(︂
1
𝜋𝛿

+𝑂(| log 𝛿|)
)︂(︂

− 1
𝜋

log 𝛿 − 𝛾

𝜋
+𝑂(𝛿| log 𝛿|)

)︂
𝑑𝜎

−
∫︁

R∖(−𝛿,𝛿)

𝐺(𝑥)2𝑑𝑥

= − 1
𝜋

log 𝛿 − 𝛾

𝜋
− ‖𝐺‖2

𝐿2(R) +𝑂(𝛿 log2 𝛿),

where we used that

−𝜕𝐺̃(𝑥, 0)
𝜕𝑦

= (−Δ)
1
2𝐺(𝑥) = −𝐺(𝑥), for 𝑥 ∈ R ∖ {0}.
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From Lemma 4.11 we get that 𝜇𝑘𝑢𝑘 → 𝐺 in 𝐿2(R), hence

‖𝑢𝑘‖2
𝐿2(R) =

‖𝐺‖2
𝐿2(R) + 𝑜(1)
𝜇2

𝑘

as 𝑘 → +∞. We then get

𝜋(𝑎𝑘 − 𝑏𝑘)2

log 𝛿 − log(𝐿𝑟𝑘) ≤ 1 −
1
𝜋 log 𝐿

2𝛿 − 𝛾
𝜋 +𝑂(𝛿 log2 𝛿) +𝑂

(︁
log 𝐿

𝐿

)︁
+ 𝑜(1)

𝜇2
𝑘

.

Using (55) and rearranging as in the proof of Proposition 2.9, we find

log 1
𝜆𝑘𝜇

2
𝑘

≤
(︁

1 − 𝛼𝑘

𝜋

)︁
log 𝐿

𝛿
+ (𝛼𝑘 − 𝜋)𝜇2

𝑘 + (𝛼𝑘

𝜋
− 2)𝛾 + 𝛼𝑘

𝜋
log 2 + log𝛼𝑘

+𝑂(𝛿 log2 𝛿) +𝑂

(︂
log𝐿
𝐿

)︂
+ 𝑜(1),

with 𝑜(1) → 0 as 𝑘 → ∞. Then, recalling that 𝛼𝑘 ↑ 𝜋, letting 𝑘 → ∞ first and
then 𝐿 → ∞, 𝛿 → 0, we obtain

lim sup
𝑘→∞

log 1
𝜆𝑘𝜇

2
𝑘

≤ −𝛾 + log(2𝜋),

and using Proposition 4.8 we conclude.

Proposition 4.14. There exists a function 𝑢 ∈ 𝐻
1
2 ,2(R) such that ‖𝑢‖𝐻 ≤ 1

and 𝐸𝜋(𝑢) > 2𝜋𝑒−𝛾 .

Proof. For 𝜀 > 0 choose 𝐿 = 𝐿(𝜀) > 0 such that as 𝜀 → 0 we have 𝐿 → ∞ and
𝐿𝜀 → 0. Fix

Γ𝐿𝜀 :=

{︃
(𝑥, 𝑦) ∈ R2

+ : 𝐺̃(𝑥, 𝑦) = 𝛾𝐿𝜀 := min
R2

+∩𝜕𝐵𝐿𝜀

𝐺̃

}︃
,

and
Ω𝐿𝜀 :=

{︀
(𝑥, 𝑦) ∈ R2

+ : 𝐺̃(𝑥, 𝑦) > 𝛾𝐿𝜀

}︀
.

By the maximum principle we have R2
+ ∩𝐵𝐿𝜀 ⊂ Ω𝐿𝜀. Notice also that Proposi-

tion 4.10 gives

𝛾𝐿𝜀 = − 1
𝜋

log(𝐿𝜀) − 𝛾

𝜋
+𝑂(𝐿𝜀| log(𝐿𝜀)|).



Extremals for fractional Moser-Trudinger inequalities 39

and Ω𝐿𝜀 ⊆ R2
+ ∩𝐵2𝐿𝜀

. For suitable constants 𝐵, 𝑐 ∈ R to be fixed we set

𝑈𝜀(𝑥, 𝑦) :=

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

𝑐−
log
(︁

𝑥2

𝜀2 +
(︀
1 + 𝑦

𝜀

)︀2
)︁

+ 2𝐵

2𝜋𝑐 for (𝑥, 𝑦) ∈ 𝐵𝐿𝜀(0,−𝜀) ∩ R2
+

𝛾𝐿𝜀

𝑐
for (𝑥, 𝑦) ∈ Ω𝐿𝜀 ∖𝐵𝐿𝜀(0,−𝜀)

𝐺̃(𝑥, 𝑦)
𝑐

for (𝑥, 𝑦) ∈ R2
+ ∖ Ω𝐿𝜀.

Observe that R2
+ ∩𝐵𝐿𝜀(0,−𝜀) ⊆ R2 ∩𝐵𝐿𝜀 ⊆ Ω𝐿𝜀. We choose 𝐵 in order to have

continuity on R2
+ ∩ 𝜕𝐵𝐿𝜀(0,−𝜀), i.e. we impose

− log𝐿2 − 2𝐵
2𝜋𝑐 + 𝑐 = 𝛾𝐿𝜀

𝑐
,

which gives the relation

𝐵 = 𝜋𝑐2 + log 𝜀+ 𝛾 +𝑂(𝐿𝜀| log(𝐿𝜀)|). (56)

This choice of 𝐵 also implies that the function 𝑐𝑈𝜀 does not depend on the value
of 𝑐. Then we can choose 𝑐 by imposing

‖∇𝑈𝜀‖2
𝐿2(R2

+) + ‖𝑢𝜀‖2
𝐿2(R) = 1, (57)

where we set 𝑢𝜀(𝑥) = 𝑈𝜀(𝑥, 0). Since the harmonic extension 𝑢̃𝜀 minimizes the
Dirichlet energy among extensions with finite energy, we have

‖(−Δ)
1
4 𝑢𝜀‖2

𝐿2(R) =
∫︁
R2

+

|∇𝑢̃𝜀|2𝑑𝑥𝑑𝑦 ≤
∫︁
R2

+

|∇𝑈𝜀|2𝑑𝑥𝑑𝑦,

and (57) implies ‖𝑢𝜀‖2
𝐻

1
2 ,2(R)

≤ 1.
In order to obtain a more precise expansion of 𝐵 and 𝑐 we compute∫︁

𝐵𝐿𝜀(0,−𝜀)∩R2
+

|∇𝑈𝜀|2𝑑𝑥𝑑𝑦 = 1
4𝜋2𝑐2

∫︁
𝐵𝐿(0,−1)∩R2

+

|∇ log(𝑥2 + (1 + 𝑦)2)|2𝑑𝑥𝑑𝑦

=
1
𝜋 log

(︀
𝐿
2
)︀

+𝑂
(︁

log 𝐿
𝐿

)︁
𝑐2 ,

(58)
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and ∫︁
R2

+∖Ω𝐿𝜀

|∇𝑈𝜀|2𝑑𝑥𝑑𝑦 = 1
𝑐2

∫︁
R2

+∖Ω𝐿𝜀

|∇𝐺̃|2𝑑𝑥𝑑𝑦

= − 1
𝑐2

∫︁
R2

+∩𝜕Ω𝐿𝜀

𝜕𝐺̃

𝜕𝜈
𝐺̃𝑑𝜎 − 1

𝑐2

∫︁
(R×{0})∖Ω̄𝐿𝜀

𝜕𝐺̃

𝜕𝑦
𝐺̃𝑑𝜎

= (𝐼) + (𝐼𝐼).

By the divergence theorem we have for 𝜏 < 𝐿𝜀 and letting 𝜏 → 0,

(𝐼) = −𝛾𝐿𝜀

𝑐2

∫︁
(R×{0})∩(Ω𝐿𝜀∖𝐵𝜏 )

𝜕𝐺̃

𝜕𝜈
𝑑𝜎 − 𝛾𝐿𝜀

𝑐2

∫︁
R2

+∩𝜕𝐵𝜏

𝜕𝐺̃

𝜕𝜈
𝑑𝜎

= 𝛾𝐿𝜀

𝑐2

⎛⎜⎝ ∫︁
(R×{0})∩Ω𝐿𝜀

𝐺𝑑𝜎 + 1

⎞⎟⎠
= 𝛾𝐿𝜀

𝑐2 (1 +𝑂(𝐿𝜀 log(𝐿𝜀)))

=
1
𝜋 log

(︀ 1
𝐿𝜀

)︀
− 𝛾

𝜋 +𝑂(𝐿𝜀 log2(𝐿𝜀))
𝑐2 , (59)

where in the third identity we used that Ω𝐿𝜀 ⊂ 𝐵2𝐿𝜀 for 𝐿𝜀 small enough.
Observe also that

‖𝑢𝜀‖2
𝐿2(R) = 1

𝑐2

∫︁
(R×{0})∖Ω̄𝐿𝜀

𝐺2𝑑𝑥+ 𝑂(𝐿𝜀 log2(𝐿𝜀))
𝑐2 = −(𝐼𝐼) + 𝑂(𝐿𝜀 log2(𝐿𝜀))

𝑐2 .

Together with (57)-(59) this gives

− log 𝜀− log 2 − 𝛾 +𝑂(𝐿𝜀 log2(𝐿𝜀)) +𝑂

(︂
log𝐿
𝐿

)︂
= 𝜋𝑐2,

which, together with (56), implies

𝐵 = − log 2 +𝑂(𝐿𝜀 log2(𝐿𝜀)) +𝑂

(︂
log𝐿
𝐿

)︂
.
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Now, observe that 𝐵𝐿𝜀(0,−𝜀) ∩ (R × {0}) = (−𝜀
√
𝐿2 − 1, 𝜀

√
𝐿2 − 1) and that

𝜀
√

𝐿2−1∫︁
−𝜀

√
𝐿2−1

𝑒𝜋𝑢2
𝜀𝑑𝑥 = 𝜀

√
𝐿2−1∫︁

−
√

𝐿2−1

exp

(︃
𝜋

(︂
𝑐− log(1 + 𝑥2) + 2𝐵

2𝜋𝑐

)︂2
)︃
𝑑𝑥

> 𝜀𝑒𝜋𝑐2−2𝐵

√
𝐿2−1∫︁

−
√

𝐿2−1

1
1 + 𝑥2 𝑑𝑥

= 2𝑒−𝛾+𝑂(𝐿𝜀 log2(𝐿𝜀))+𝑂( log 𝐿
𝐿 )𝜋

(︂
1 +𝑂

(︂
1
𝐿

)︂)︂
= 2𝜋𝑒−𝛾 +𝑂(𝐿𝜀 log2(𝐿𝜀)) +𝑂

(︂
log𝐿
𝐿

)︂
.

Moreover∫︁
(R×{0})∖Ω̄𝐿𝜀

(︁
𝑒𝜋𝑢2

𝜀 − 1
)︁
𝑑𝑥 ≥

∫︁
(R×{0})∖Ω̄𝐿𝜀

𝜋𝑢2
𝜀𝑑𝑥 = 1

𝑐2

∫︁
(R×{0})∖Ω̄𝐿𝜀

𝜋𝐺2𝑑𝑥 =: 𝜈𝐿𝜀

𝑐2 ,

with
𝜈𝐿𝜀 > 𝜈 1

2
> 0, for 𝐿𝜀 < 1

2 .

Now choose 𝐿 = log2 𝜀 to obtain

𝑂(𝐿𝜀 log2(𝐿𝜀)) +𝑂

(︂
log𝐿
𝐿

)︂
= 𝑂

(︂
log log 𝜀
log2 𝜀

)︂
= 𝑜

(︂
1
𝑐2

)︂
,

so that

𝐸𝜋(𝑢𝜀) =
∫︁
R

(︁
𝑒𝜋𝑢2

𝜀 − 1
)︁
𝑑𝑥 ≥ 2𝜋𝑒−𝛾 +

𝜈 1
2

𝑐2 + 𝑜

(︂
1
𝑐2

)︂
> 2𝜋𝑒−𝛾

for 𝜀 small enough.

Proof of Theorem 1.2 (completed). By Propositions 2.10 and 4.14, we know that
𝜇𝑘 ≤ 𝐶. Then, by dominated convergence theorem we have 𝑒𝛼𝑘𝑢2

𝑘 → 𝑒𝜋𝑢2
∞ in

𝐿1
loc(R). Then, by Lemma 4.2, we infer

𝐸𝛼𝑘 (𝑢𝑘) = 𝐸𝜋(𝑢∞) + 𝜋(‖𝑢𝑘‖2
𝐿2(R) − ‖𝑢∞‖2

𝐿2(R)) + 𝑜(1). (60)

This implies that 𝑢∞ ̸≡ 0, otherwise we would have 𝐸𝛼𝑘 (𝑢𝑘) ≤ 𝜋‖𝑢𝑘‖2
𝐿2(R) +

𝑜(1) ≤ 𝜋 + 𝑜(1), which contradicts the strict inequality 𝐷𝜋 > 2𝜋𝑒−𝛾 > 𝜋, since
𝐸𝛼𝑘 (𝑢𝑘) = 𝐷𝛼𝑘 → 𝐷𝜋 as 𝑘 → ∞.
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Let us denote 𝐿 := lim sup𝑘→∞ ‖𝑢𝑘‖2
2, 𝜏 =

‖𝑢∞‖2
𝐿2(R)

𝐿 and observe that
𝐿, 𝜏 ∈ (0, 1]. Let us consider the sequence 𝑣𝑘(𝑥) = 𝑢𝑘(𝜏𝑥). Clearly, we have
𝑣𝑘 ⇀ 𝑣∞ in 𝐻, where 𝑣∞(𝑥) := 𝑢∞(𝜏𝑥). Since ‖𝑣∞‖2

𝐿2 = 𝐿, and

‖(−Δ)
1
4 𝑣∞‖2

𝐿2 ≤ lim inf
𝑘→∞

‖(−Δ)
1
4 𝑣𝑘‖2

𝐿2 = lim inf
𝑘→∞

‖(−Δ)
1
4 𝑢𝑘‖2

𝐿2 ≤ 1 − 𝐿,

we get ‖𝑣∞‖
𝐻

1
2 ,2 ≤ 1. By (60) we have

𝐷𝜋 = 𝐸𝜋(𝑢∞) + 𝜋𝐿(1 − 𝜏) = 𝜏𝐸𝜋(𝑣∞) + 𝜋𝐿(1 − 𝜏) ≤ 𝜏𝐷𝜋 + 𝜋𝐿(1 − 𝜏).

If 𝜏 < 1, this implies 𝐷𝜋 ≤ 𝜋𝐿, which is not possible. Hence, we must have
𝜏 = 1 and 𝐸𝜋(𝑢∞) = 𝐷𝜋. �

A Appendix: The half-Laplacian on R

For 𝑢 ∈ 𝒮 (the Schwarz space of rapidly decaying functions) we set

̂(−Δ)𝑠𝑢(𝜉) = |𝜉|2𝑠𝑢̂(𝜉), 𝑓(𝜉) :=
∫︁
R

𝑓(𝑥)𝑒−𝑖𝑥𝜉𝑑𝑥. (61)

One can prove that it holds (see e.g.)

(−Δ)𝑠𝑢(𝑥) = 𝐾𝑠𝑃.𝑉.

∫︁
R

𝑢(𝑥) − 𝑢(𝑦)
|𝑥− 𝑦|1+2𝑠

𝑑𝑦 := 𝐾𝑠 lim
𝜀→0

∫︁
R∖[−𝜀,𝜀]

𝑢(𝑥) − 𝑢(𝑦)
|𝑥− 𝑦|1+2𝑠

𝑑𝑦, (62)

from which it follows that

sup
𝑥∈R

|(1 + 𝑥1+2𝑠)(−Δ)𝑠𝜙(𝑥)| < ∞, for every 𝜙 ∈ 𝒮 .

Then one can set

𝐿𝑠(R) :=

⎧⎨⎩𝑢 ∈ 𝐿1
loc(R) : ‖𝑢‖𝐿𝑠

:=
∫︁
R

|𝑢(𝑥)|
1 + |𝑥|1+2𝑠

𝑑𝑥 < ∞

⎫⎬⎭ , (63)

and for every 𝑢 ∈ 𝐿𝑠(R) one defines the tempered distribution (−Δ)𝑠𝑢 as

⟨(−Δ)𝑠𝑢, 𝜙⟩ :=
∫︁
R

𝑢(−Δ)𝑠𝜙𝑑𝑥 =
∫︁
R

𝑢ℱ−1(|𝜉|𝜙(𝜉)) 𝑑𝑥, for every 𝜙 ∈ 𝒮.

(64)
Moreover we will define for 𝑝 ≥ 1 and 𝑠 ∈ (0, 1)

𝐻𝑠,𝑝(R) := {𝑢 ∈ 𝐿𝑝(R) : (−Δ)
𝑠
2 𝑢 ∈ 𝐿𝑝(R)}. (65)
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In the case 𝑠 = 1
2 we have 𝐾 1

2
= 1

𝜋 in (62) and a simple alternative definition of
(−Δ) 1

2 can be given via the Poisson integral. For 𝑢 ∈ 𝐿 1
2
(R) define the Poisson

integral

𝑢̃(𝑥, 𝑦) := 1
𝜋

∫︁
R

𝑦𝑢(𝜉)
(𝑦2 + (𝑥− 𝜉)2)𝑑𝜉, 𝑦 > 0, (66)

which is harmonic in R2
+ = R × (0,∞) and satisfies the boundary condition

𝑢̃|R×{0} = 𝑢 in the following sense:

Proposition A.1. If 𝑢 ∈ 𝐿
1
2 (R), then 𝑢̃(·, 𝑦) ∈ 𝐿1

loc(R) for 𝑦 ∈ (0,∞) and
𝑢̃(·, 𝑦) → 𝑢 in the sense of distributions as 𝑦 → 0+. If 𝑢 ∈ 𝐿

1
2 (R) ∩ 𝐶((𝑎, 𝑏))

for some interval (𝑎, 𝑏) ⊆ R, then 𝑢̃ extends continuously to (𝑎, 𝑏) × {0} and
𝑢̃(𝑥, 0) = 𝑢(𝑥) for any 𝑥 ∈ (𝑎, 𝑏). If 𝑢 ∈ 𝐻

1
2 (R), then 𝑢̃ ∈ 𝐻1(R2

+), the identity
‖∇𝑢̃‖𝐿2(R2

+) = ‖(−Δ) 1
4 𝑢‖𝐿2(R) holds, and 𝑢̃|R×{0} = 𝑢 in the sense of traces.

Then we have (see e.g [4])

(−Δ)
1
2 𝑢 = −𝜕𝑢̃

𝜕𝑦

⃒⃒⃒⃒
𝑦=0

, (67)

where the identity is pointwise if 𝑢 is regular enough (for instance 𝐶1,𝛼
loc (R)), and

has to be read in the sense of tempered distributions in general, with⟨
− 𝜕𝑢̃

𝜕𝑦

⃒⃒⃒⃒
𝑦=0

, 𝜙

⟩
:=
⟨
𝑢,−𝜕𝜙

𝜕𝑦

⃒⃒⃒⃒
𝑦=0

⟩
, 𝜙 ∈ 𝒮, 𝜙 as in (66). (68)

More precisely:

Proposition A.2. If 𝑢 ∈ 𝐿 1
2
(R) ∩ 𝐶1,𝛼

loc ((𝑎, 𝑏)) for some interval (𝑎, 𝑏) ⊂ R
and some 𝛼 ∈ (0, 1), then the tempered distribution (−Δ) 1

2 𝑢 defined in (64)
coincides on the interval (𝑎, 𝑏) with the functions given by (62) and (67). For
general 𝑢 ∈ 𝐿 1

2
(R) the definitions (64) and (67) are equivalent, where the right-

hand side of (67) is defined by (68).

It is known that the Poisson integral of a function 𝑢 ∈ 𝐿
1
2 (R) is the unique

harmonic extension of 𝑢 under some growth constraints at infinity. In fact, com-
bining [36, Theorem 2.1 and Corollary 3.1] and [33, Theorem C] we get:

Proposition A.3. For any 𝑢 ∈ 𝐿 1
2
(R), the Poisson extension 𝑢̃ satisfies

𝑢̃(𝑥, 𝑦) = 𝑜(𝑦−1(𝑥2 + 𝑦2)) as |(𝑥, 𝑦)| → ∞. Moreover, if 𝑈 is a harmonic
function in R2

+ which satisfies 𝑈(𝑥, 𝑦) = 𝑜(𝑦−1(𝑥2 + 𝑦2)) as |(𝑥, 𝑦)| → ∞ and
𝑈(·, 𝑦) → 𝑢 as 𝑦 → 0+ in the sense of distributions, then 𝑈 = 𝑢̃ in R2

+.
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