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Abstract
We propose a mechanism explaining the approximately linear growth of Covid19
world total cases as well as the slow linear decrease of the daily new cases (and daily
deaths) observed (in average) in USA and Italy. In our explanation, we regard a given
population (the whole world or a single nation) as composed by many sub-clusters
which, after lockdown, evolve essentially independently. The interaction is modeled
by the fact that the outbreak time of the epidemic in a sub-cluster is a random
variable with probability density slowly varying in time. The explanation is
independent of the law according to which the epidemic evolves in the single sub
cluster.
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1 Introduction
It is quite striking to observe the graph of the total number of cases in the world epidemic
of Covid19: since the beginning of April to the half of May it is growing approximately
linearly. The daily new cases of USA and Italy also exhibit a strange behavior: up to fluctu-
ations, they decrease approximately linearly.a Similarly the daily deaths of USA and Italy,
but also of UK exhibit an approximately linear decrease in a slightly successive period. The
linear behavior occurs after a transient in which the epidemic grows essentially in agree-
ment with the standard laws of epidemiological models like SIS or SIR, but it is hard to
explain it using such models. In the present paper we propose a mechanism in order to
explain the above mentioned behaviors.
The first ingredient of our mechanism is lockdown. The situation we want to model

is that of a large cluster (the world or a single nation) consisting of several sub-clusters
that, due to a lockdown intervention, become almost completely disconnected from each
other. One thus gets a situation with many separated sub clusters in which the epidemic
evolves independently. A small interaction among the sub clusters can persist, and we
model this by assuming that the time at which the epidemics outbreaks in a sub cluster
is distributed at random. To take into account the fact that the evolution in each sub-
cluster is characterized by different parameters we treat parameters as random variables
onwhich the total number of casesNj in the jth cluster can depend. Then the total number
of cases at a given time is the sum of many random variables, namely the quantities Nj.
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Assuming that the times of outbreak and the parameters describing the epidemic in a sub-
cluster are independent, identically distributed random variables, it turns out that, up to a
small correction, and after some transient, the expectation of the total number of cases at
time t turns out to be proportional to the distribution function of the probability measure
describing the outbreak times (the hypothesis of independence of the above mentioned
random variables can be relaxed to that of weak correlation; see Remark 2.1 below). If one
assumes that the probability density ρ(τ ) of the outbreak times is a function of the form

ρ(τ ) = 1
T #

(
τ

T

)
, (1)

with a large time T , then it is natural to expand in Taylor series in τ /T retaining only the
first few terms. Then one can compute the expectation of the total number of cases, which
(after some transient time, and with some mild assumption on #) turns out to be close to

c0 + c1(t/T) + c2(t/T)2 +O
(
(t/T)3

)
, (2)

with suitable constants c0 < 0, c1 > 0, and c2 < 0. Of course this is a parabola with small
curvature, which is close to a line until the quadratic term becomes relevant; on such a
second time scale, one observes a linear behavior of the daily new cases (i.e. the deriva-
tive of (2)). The interesting issue of estimating the time T and other parameters of the
model from the data of the epidemics, which requires a quite careful analysis, is faced in
a subsequent work.
We emphasize that, as it will be clear from the proof, our explanation predicts that the

linear behavior should occur while the epidemic is passing its pick phase and that the be-
havior of the total number of cases is independent of the specific epidemic model in each
cluster.
We conclude this section by recalling that an alternative explanation of the linear growth

of the official cases has been proposed in [1] as a result of a limited testing capacity: the idea
is that if one can test X cases per day, than he will not be able to discovermore thanX cases
per day. However, we think that thismechanism does not explain neither the linear growth
of the deaths, which is less susceptible to measurement biases, nor the large scale of the
phenomenon (the world). Furthermore such an explanation does not allow to understand
the linear decrease observed in the data.
Finally, we think that it would be very interesting to try to understand the origin of the

probability distribution of the outbreak times throughmodels taking into account the spa-
tial spreading of the epidemic for example by exploiting the ideas of [2–5]. This however
requires a quite detailed study of the spatial model of the epidemics and is left for future
work.
In Sect. 2 we give our result. The Section is split in 3 subsections: in the first one we

present our assumptions, in the second one we present an abstract theorem and in the
third one we show that in the case of slowly changing probability distribution one gets the
wanted linear behavior.

2 Model and results
2.1 The model
Let us consider a cluster C consisting of a large number K of disconnected sub-clusters
Cj, j = 1, . . . ,K , and denote by Nj(t) the total number of cases or deaths at time t in Cj.
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For the sake of definiteness, we will simply refer to Nj as the number of cases, without
distinguishing between total cases, deaths or else. If pj denotes the population of Cj, then
nj(t) :=Nj(t)/pj is the fraction, or density of cases there.
In order to model the differences among the sub-clusters we assume nj to depend on

some parameters ω varying in some probability space %. Moreover, the epidemic is sup-
posed to start in Cj at some time τj. We assume that there exists a smooth function
0≤ n(ω, t) ≤ 1, non decreasing with respect to t, s.t.

nj(t) = n(ωj, t – τj), (3)

n(ω, t) = 0, ∀t ≤ 0,∀ω ∈ %. (4)

In particular the assumption (4) means that no history of the epidemic exists before the
outbreak at t = 0.
The number of cases in the total cluster C := ⋃K

j=1 Cj, with total population PK = ∑K
j=1 pj,

is the sum N(t) := ∑K
j=1Nj(t) =

∑K
j=1 pjnj(t), and its density is the population weighted av-

erage

ηK (t) :=
N(t)
PK

=
K∑

j=1

pj
PK

nj(t). (5)

The limit of η(t) of ηK (t) as K → +∞ is the relevant dynamical variable considered in the
present work. In order to ensure its existence and to be able to compute it we make the
following assumptions.
H0. limK→+∞ pK /PK = 0, i.e. most of sub-populations do not have a macroscopic size.
H1. ω1, . . . ,ωK are i.i.d. random variables, distributed according to a probability

measure dµ(ω) on %.
H2. τ1, . . . , τK are non negative i.i.d. random variables, distributed according to a

probability measure dR(τ ) := ρ(τ ) dτ .
As a consequence of the hypotheses H0–H2, the density of cases in C defined in (5),

namely

ηK (t,ω1, . . . ,ωK , τ1, . . . , τK ) =
K∑

j=1

pj
PK

n(t – τj,ωj), (6)

becomes a weighted average of K mutually independent, identically distributed random
variables defined, for any t, on the probability space R+ × % endowed by the measure
dRdµ. Moreover, since n(t,ω) is positive and upper bounded by definition, by the weak
law of large numbers the limit

ηK (t,ω1, . . . ,ωK , τ1, . . . , τK )
K→+∞−→ η(t) :=

∫
n(ω, t – τ ) dR(τ ) dµ(ω) (7)

exists in probability; see for example Theorem 1 in [6].

Remark 2.1 One can substitute the assumptions H1, H2 above with the assumption that
the variables ωj and τj, and as a consequence the variables nj := n(t – τj,ωj), be just weakly
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correlated (namely, assumption (b) of Theorem 1 in [7]). This amounts to assume that the
correlation between ni and nj decays sufficiently fast with the distance of the sub-clusters
Ci and Cj. Of course, in this case the sub-clusters are to be thought of as the nodes of a
network with suitably weighted connections. A precise mathematical formulation of such
a weaker assumption is also faced in a subsequent work.

2.2 An abstract result
Since n(t,ω), as a function of t is a bounded non decreasing function, the limit

n∞(ω) := lim
t→+∞

(t,ω) (8)

exists point-wise and furthermore, by the dominated convergence theorem

lim
t→+∞

〈
n(t)

〉
%
= 〈n∞〉%, (9)

where

〈·〉% :=
∫

%

(·) dµ(ω).

Denote by

R(t) :=
∫ t

0
dR(s) =

∫ t

0
ρ(s) ds

the distributions function of the measure dR, then the following theorem holds.

Theorem 1 For any ε > 0 there exists Tε > 0 such that for any t > Tε the expected density
of cases defined in (7) is given by

η(t) = 〈n∞〉%R(t – Tε) +CR(t) + δ(t), (10)

where

CR(t) :=
∫ Tε

0

〈
n(s)

〉
%
ρ(t – s) ds, (11)

and

∣∣δ(t)
∣∣ < ε. (12)

Proof First of all,

η(t) =
∫ +∞

0

〈
n(t – τ )

〉
%
ρ(τ ) dτ =

∫ t

0

〈
n(s)

〉
%
ρ(t – s) ds,
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where we used Eq. (4). Now, by (9), for any ε > 0 there exists Tε > 0 such that, for t > Tε

one has |〈n∞〉% – 〈n(t)〉%| < ε and thus

η(t) =
∫ Tε

0

〈
n(s)

〉
%
ρ(t – s) ds +

∫ t

Tε

〈
n(s)

〉
%
ρ(t – s) ds

= CR(t) +
∫ t

Tε

〈n∞〉%ρ(t – s) ds +
∫ t

Tε

[〈
n(s)

〉
%
– 〈n∞〉%

]
ρ(t – s) ds

= CR(t) + 〈n∞〉%R(t – Tε) + δ(t), (13)

where δ(t) is defined as the third integral appearing on the second line above, and clearly
|δ(t)| < εR(t – Tε) ≤ ε. !

Remark 2.2 The quantity CR(t), defined in (11) represents the contribution of the sub
clusters in which the epidemic started between t – Tε and t and thus has not yet reached
an end at time t.

2.3 Linear behavior
We first remark that a trivial case of linear behavior is that corresponding to a uniform
distribution R.

Corollary 1 Assume that

ρ(τ ) = 1
T χ[0,T](τ ),

with some T fulfilling T > Tε , then, for times t fulfilling Tε < t < T , one has

η(t) = 〈n∞〉%
T (t – Tε) + c̄ + δ(t), (14)

with c̄ the constant given by

c̄ := 1
T

∫ Tε

0

〈
n(s)

〉
%
ds.

Proof Under the assumptionsmade, the quantityCR defined in (11) is independent of time
and equal to c̄. !

More generally, in order to get the behavior (2), assume that the probability density of dR
is slowly changing in time, namely it is of the form (1) with some large T . Then, expanding
# in Taylor series, one has (as in multiscale expansions)

#(t) = #0 + #1t + 1
2#2t

2 +O
(
t3), t = t/T , (15)

with #j = d#/dt|t=0 (j = 0, 1, 2 . . . ). In particular, we are interested in densities such that
#1 < 0. We have the following

Corollary 2 Assume (1) and t > Tε ; then one has

η(t) = c0 + c1(t/T) + c2(t/T)2 +O
(
(t/T)3

)
+ δ(t), (16)
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where, in terms of the positive small parameter

λ := Tε

T

(
〈n∞〉% – 1

Tε

∫ Tε

0

〈
n(s)

〉
%
ds

)
, (17)

the coefficients of the expansion (16) read

c0 := –#0λ +O
(
λ2); (18)

c1 := #0〈n∞〉% – #1λ +O
(
λ2); (19)

c2 :=
1
2#1〈n∞〉% – 1

2#2λ +O
(
λ2), (20)

whereas |δ| < ε as in Theorem 1.

Proof One just computes R andCR for the considered case, by plugging the expansion (15)
into both of them and collecting the terms proportional to the same power of t/T . !

Concerning the signs of the coefficients c0, c1 and c2, we observe that #0 > 0 and λ > 0
is small, which ensures c0 < 0 and c1 > 0. On the other hand, in order to ensure c2 < 0 one
needs #1 < 0, as pointed out above.
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