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Abstract

Reliability Options (ROs) are used to enhance the security of supply in electricity systems.
When a power producer writes a RO, s/he agrees to set a cap on the price of electricity that
s/he cashes. In return, the system operator, i.e. the party that is buying the option, pays to the
option issuer a fixed premium. In this paper we analyze how ROs affect the timing and value
of investments in the energy sector and we show under what conditions they can be used as
investment stimuli. We prove that, contrarily to what is expected, ROs can potentially harm
the security of supply by delaying the adoption of new capacity and by reducing the value of
investing in it. To avoid such a result, a careful setting of the relevant parameters is needed.
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1 Introduction

As is well known in the theoretical literature of electricity economics, the equilibrium of perfectly
competitive electricity markets delivers the efficient level of power capacity, that is, the level at
which the marginal investment cost equals the marginal loss attributed to the energy demand that
remains unserved.1 This implies that it would be unnecessary to provide an explicit remunera-
tion for power capacity since the electricity market already provides enough incentives for new
investments.

However, when moving from the first-best analysis to the real-world evaluation, several scholars
(see e.g. Cramton and Stoft, 2006; Joskow and Tirole, 2007; Joskow, 2007, 2008; Joskow and
Wolfram, 2012; Cramton and Ockenfels, 2012; Cramton et al., 2013) have argued that there exist
electricity-specific market failures that can impede reaching the first-best outcome. The limited
and costly storability of electricity coupled with the need to maintain the system balanced in real
time, imply that whenever there is not enough capacity to serve the load, the latter has to be shed.
This means that customers might experience power outages even if they highly need power and
express the willingness to pay for it. This is the so-called security of supply problem.

Explicit remuneration of capacity through Capacity Remuneration Mechanisms (CRMs) can
solve this problem.2 There exist several electricity markets in which CRMs of different forms are
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in use.3 For instance, capacity payments are explicit, administratively set, payments to power
producers. Capacity auctions are procurement auctions through which the System Operator (SO)
remunerates a given amount of generation capacity.4 Capacity obligation is the obligation for load
serving entities to hold enough capacity to serve the load. Strategic reserves have to do with the
withdrawal from the market, and attribution to the SO, of some physical capacity when needed.
On the contrary, markets that have no CRMs are called energy-only markets.

A CRM that is gaining momentum is a specific form of capacity auction in which power pro-
ducers sell Reliability Options (ROs) to the SO. Originally proposed by Vázquez et al. (2002),
Bidwell (2005), Oren (2005) and firstly implemented in Colombia (Cramton and Stoft, 2007), ROs
are also adopted in ISO-New England (FERC, 2014), Ireland (SEM, 2015, 2016a, and 2016b) and
in Italy (Mastropietro et al., 2018; TERNA, 2019).

In a nutshell, ROs have the form of swaps on power production. They are sold by power
producers to the SO in exchange for a premium. In return, the sellers of the ROs agree to supply
energy to the market and return to the SO the extra revenues that they obtain from prices rising
above a predetermined level called the strike price of the RO. The return of these extra revenues,
also called implicit penalty, discourages any opportunistic behavior on the producers’ side who
might otherwise be tempted to withdraw capacity from the market in an attempt to benefit from
price spikes.

Vázquez, et al. (2002), Bidwell (2005) and Oren (2005) introduce ROs and show how they
function. Cramton et al. (2013), Battle et al. (2015) and Bhagwat and Meeus (2019) further
discuss their features. However, all these papers present qualitative discussions on ROs. To the
best of our knowledge, the only paper that quantitatively analyzes the properties of ROs is Andreis
et al. (2020). In that work, the authors provide semi-explicit formulas to calculate the financial
value of a RO. In order to do so, they consider a hypothetical existing power plant, assume that
the overall amount of capacity is fixed and calculate the value of the RO as a financial option.
They show how to calculate the arbitrage-free value of a RO that would emerge in a well diversified
financial market.

Here, we tackle a different issue. For the power plant that is writing a RO, the RO is a tool
to replace stochastic future cash flows, i.e. profits generated by selling electricity at a future time
point, with deterministic present ones, i.e. the RO premium. While it is true that in any arbitrage-
free financial market where ROs are correctly valued the power producer should be indifferent
between participating in an energy-only market and an energy market employing ROs, in a real-
world setting, market failures can make the issuing of ROs an attractive alternative. In this case,
the literature (Joskow and Tirole, 2007, Cramton and Ockenfels, 2012, Cramton et al., 2013) claims
that ROs should allow power producers to hedge their investment risk stimulating, as a result, the
installment of new capacity.

In this paper, we assess whether ROs are effective in fostering investments in power supply, given
that their price can differ from the arbitrage-free equilibrium value, and analyze to what extent
their effectiveness depends on their parameters and on the power price. We do so by explicitly
studying the impact of a RO scheme on the behavior of a potential investor who is contemplating
entering the electricity market. In particular, we pose and answer two research questions:

3In the USA, the Pennsylvania New Jersey Maryland ISO (PJM), Midcontinent ISO (MISO), ISO New England
(ISO-NE), New York ISO (NYISO) and California ISO (CAISO) employ CRMs. In Europe CRMs are used in several
national markets, including Germany, France, UK, Italy, Ireland, Spain and Greece. In South America the national
markets of Brazil, Colombia, Chile and Peru also use CRMs. For more details, see ch. 23 in Creti and Fontini (2019).

4In this paper we denote generically as the SO the entity that balances the grid in the short-run and has the
responsibility of ensuring security of supply (alone or shared with some other entities). In the USA, this entity is the
Independent System Operator (ISO) whereas in Europe it is the Transmission System Operator (TSO).
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”How does the use of a RO scheme affect the timing of investment in new capacity?”
and ”What is the effect of the implementation of this scheme on the value of the option
to make such an investment?”.

We do so by developing a real options model. This allows to properly account for sunk invest-
ment costs (e.g. the cost of setting up the power plant), uncertain future payoffs (e.g. volatile
prices of electricity) and temporal flexibility (e.g. the option to postpone the investment). The
real options approach builds on the idea that the option to undertake an investment project is
analogous to an American call option on a real asset. Hence, when evaluating an investment option
characterized by uncertainty and irreversibility, the potential investor needs to factor in that at the
time of the investment s/he forgoes the option to reconsider the investment decision at some future
time point when the uncertainty will be, naturally, partly resolved.

Within this framework, we find the following. First, we compute the optimal investment thresh-
old and the value of the option to invest in a power plant when the RO scheme is in place. We
show that the effect of the implementation of the RO scheme on the behavior of a potential investor
depends on whether the electricity market is long or short in capacity at the time of the investment.

If the electricity market is long at the time of the investment, i.e. if the strike price of the RO
is larger than the optimal investment threshold chosen by the potential investor, the application of
a RO scheme is favoring the acceleration of the investment in new capacity. This happens because,
on one hand, the timing decision of the potential investor is unaffected by the upper bound that the
RO scheme is setting on electricity prices whereas, on the other, the investor is benefiting from the
premium that the scheme is paying. Consequently, the potential investor opts for investing earlier.

As for the effect of the RO scheme on the value of the option to invest in new capacity, this is
shown to be ambiguous. For a given strike price, we identify the minimum premium that would
make the potential investor indifferent between participating in a RO scheme and abstaining from it.
The non-monotonic effect of the implementation of the RO scheme on the value of the investment
option has to do with the fact that, while the strike price of the RO is not binding when the
investment takes place, it still constitutes an upper bound for the price of electricity. This means
that, while in the short run the power plant can benefit from high prices, the strike price of the
RO will be reached with a positive probability limiting the power plant’s profitability.

If the electricity market is instead short at the time of the investment, i.e. if the strike price
of the RO is binding when the optimal investment threshold is reached, both the timing and the
value effect are shown to be ambiguous. For a given strike price, we identify three possible cases.
First, there is a lower region of RO premiums for which the investment takes place later and has
lower value than an investment in an energy-only market. In this region the combination of strike
price and RO premium is such that a potential investor would choose not to participate in a RO
scheme voluntarily or, alternatively, would opt for a later investment if the participation in the RO
scheme is mandatory. Obviously, in this case the implementation of the RO scheme discourages
investments in new capacity. Then, there is an intermediate region of RO premiums that guarantee
the acceleration of the investment at the expense of the project’s value. The potential investor
chooses to hasten the investment in order to start cashing the RO premium early on but this is
proving costly in terms of project value. Last, there is a higher region of RO premiums that have
a favorable effect both on the value and on the timing of the investment. In this case the RO
premium is so large that it fully neutralizes the adverse effect related to the application of the
strike price of the RO.

Our paper contributes to the extant literature in two ways. First, we show that a RO scheme
does not always qualify as an investment stimulus. Second, we derive the conditions under which a
RO scheme can have a positive effect on the value and the timing of an investment in new capacity.
We conclude the paper presenting some numerical examples focusing on the effect of the price
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volatility on the investment thresholds and investment option values that we derive theoretically.
Our interest in the volatility of the price of electricity has to do with the fact that the security of
supply problem is aggravated when the price of electricity is very volatile since, in that case, more
capacity is needed to cope with increasing imbalances.

The rest of the paper is organized as follows. The investment problem in an electricity market
without ROs is discussed in Section 2. In Section 3 we approach the same problem assuming that
a RO scheme is in place. The effect of the RO scheme is discussed in Section 4. Section 5 discusses
the impact of price volatility on the investment timing and the value of the investment. Conclusions
follow in Section 6. All proofs are grouped in the Appendix.

2 The basic set-up and the investment problem in an energy-only
electricity market

We start off discussing the problem of a potential investor who is considering entering an energy-
only market. We subsequently approach the investment problem considering an electricity market
enriched with a RO scheme which is our original contribution (Section 3).

A potential investor is contemplating investing in a power plant the size of which is normalized
to one (e.g. 1 MW). We do not explicitly consider the choice of the size of the investment for two
reasons. First, in the real-world applications of ROs, the SO applies a de-rating coefficient to ex-
isting and new capacity based on historical or expected availability. This standardizes the capacity
and gives rise to the amount of available capacity which can then be considered a homogeneous
product. ROs are issued per unit of standard (de-rated) capacity, typically, one RO per MW. The
amount of issued ROs depends on the demand for capacity, which is established by the SO on the
basis of the expected need to reach a predetermined target of security of supply (see SEM, 2016b;
TERNA, 2019 for further details).5 In this paper we do not address the issue of how many ROs are
needed, i.e. how severe the security of supply problem is. We just evaluate the conditions under
which ROs enhance security of supply in a market that employs this specific CRM. Therefore, we
abstract from any consideration regarding the size of the installed capacity. The second reason has
to do with the fact that investment in new capacity is a rather homogenous choice. In a given
market, it generally takes the form of a predetermined type of technology and size. As an exam-
ple, Fontini and Paloscia (2007) show that new investments in the Italian market take the form
of Combined Cycle Gas Turbine plants characterized by constant economies of scale and standard
size per each production unit. Therefore, the choices of the potential investors sizewise are quite
limited in reality.6

The investment cost per unit of capacity is I > 0 and is paid in its entirety at the time of
the investment. As soon as the investment takes place, the power produced in the power plant is
sold at the unit price Pt which is assumed to be fluctuating over time according to the following
geometric Brownian motion

dPt
Pt

= adt+ σdWt with P0 = P (1)

5Generally, the SO sets a target of maximum number of acceptable hours of load shedding per year (called Loss
of Load Expectations - LOLE), and on the basis of the load the equivalent need of capacity is derived.

6Irrespective of the technical constraints affecting the investment decision, in principle, potential investors can
have some flexibility when it comes to the choice of capacity. Capozza and Li (1994) and Dangl (1999) among
others have shown that in this case the choice of timing and capacity are not independent. While the effect of the
implementation of a RO scheme on the size of new capacity deserves further work, the non-consideration of this facet
of the problem here does not affect the quality of our main results.
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where a is the drift, σ is the instantaneous volatility and Wt is a standard Wiener process.7

The production cost of electricity is assumed to be constant and equal to c ≥ 0. Consequently,
the instantaneous profit flow associated with the electricity production is πt = Pt − c. When c is
very low, as e.g. in the case of a renewable energy source (RES) plant, πt is positive. However,
when c is substantial, as e.g. in the case of a thermal plant, πt can potentially obtain negative
values. In this case the power plant manager will consider temporarily shutting down the power
plant in order to avoid making losses. Here we assume that, irrespective of the sign of πt, the power
plant is not suspending operations. The motivation of this assumption is both technical and related
to the real-world attributes of energy production.

The first reason that motivates our assumption has to do with technical constraints related to
energy production. Irrespective of the technology of the power plant, switching between “active”
and “stand-by” mode is costly. For this reason, periods during which a power plant remains
operational in spite of non-positive πt cannot be excluded. Power plants can have “no-load” costs,
i.e. quasi-fixed costs that power producers need to pay if they keep running at zero output (Kirschen
and Strbac, 2004; Creti and Fontini, 2019). This means that even if a power plant manager opts
for the temporal suspension of operations, some losses might be unavoidable. Our assumption
therefore can be interpreted as describing investments in technology characterized by no-load costs
that are high enough to induce managers not to suspend power production even under losses.

As for the technical part, in Appendix B we show that if we allow for an operationally flexible
power plant, the associated optimal investment threshold cannot be expressed in closed
form. The lack of a closed form solution deters us from using an operationally flexible
power plant as our standard of comparison since the economic interpretation of the
results becomes quite difficult.8 Nevertheless, this assumption has no effect on our results
regarding the optimal investment threshold and the value of the option to invest in a power plant
when a RO scheme is in place. The reason is that, as we shall see in more detail in the next section,
the writer of a RO is obliged to deliver energy when called by the SO no matter if this is profitable
or not. This means that a RO issuer is in any case operationally rigid.

We also assume that, i) the potential investor is risk-neutral and discounts future payoffs using
the interest rate r > a,9 and, ii) once launched, the project runs forever.10 The operating value of
the power plant at the generic time point t is:

V (Pt) = Et

[∫ ∞
t

(Ps − c) e−r(s−t)ds
]

=
Pt
r − a

− c

r
(2)

The potential investor has the option to invest in the power plant and get V (Pt) by spending
I. However, s/he is not obliged to make the decision immediately. On the contrary, s/he has the
option to delay the investment decision and reconsider it at some point in the future. This ability of

7We deviate from models that incorporate seasonality, mean-reversion and price spikes, for three reasons. The
first one has to do with the practical implementation of ROs. In all the electricity markets that employ them, ROs
cover spans of several years. Thus, the presence of daily or weekly spikes and seasonalities can be neglected in the
long run. This can be justified if we interpret the price Pt as, e.g. a weekly average price (see Bosco et al., 2010
and Gianfreda et al., 2016). The second reason is mathematical tractability. A mean-reverting process would lead
to similar results but at the cost of a much higher mathematical sophistication and of the lack of explicit solutions.
Finally, the mean-reversion effect in electricity prices is not unanimously recognized. For example, de Vany and
Walls (1999) find unit roots (i.e. random-walk-like dynamics) in U.S. markets, and Bosco et al. (2010) reach the
same result for several European markets. In fact, Bosco et al. (2010) even claim that previous findings suggesting
mean-reversion could be due to the use of non-robust statistical techniques.

8See Appendix B for further details.
9This is a standard assumption. See e.g. Dixit and Pindyck (1994, p. 138).

10In principle power plants remain active for long periods of time that can be approximated as infinitely long. See
e.g. Dahlgren and Leung (2015).

5



the potential investor to delay the investment affects profoundly her/his decision to invest. In fact,
according to the real options approach, the investment takes place only as soon as the expected
payoff exceeds the investment cost by a wedge equal to the value of the option to further postpone
the investment decision. Furthermore, since at any time t all the information about the future
evolution of the stochastic process (1) is embodied in Pt, there exists an optimal investment rule
of the form: “invest immediately if Pt is at, or above, a critical threshold and wait otherwise” (see
e.g. McDonald and Siegel, 1986).

In order to derive the optimal investment threshold, we first need to explicitly determine the
value of the option to invest in the power plant. At t = 0 the option value is equal to

F (P ) = sup
τ
E0

[
e−rτ (V (Pτ )− I)

]
(3)

where the supremum is taken over all the stopping times τ and the optimal stopping time is of the

form τ : = inf
{
t > 0|Pt ≥ P̃

}
. The difference V (Pt) − I is the net operating value of the power

plant at the generic time point t, i.e. the termination value of the project. The termination value
is associated with the variational inequality:

max

(
1

2
σ2P 2FPP + aPFP − rF, V − I − F

)
= 0 (4)

Assuming that the initial market price is sufficiently small so that investing immediately is not
preferable,11 Ineq. (4) reduces to:

1

2
σ2P 2FPP + aPFP − rF = 0 (5)

subject to:

F (0) = 0 (6)

F (P̃ ) =
P̃

r − a
− c

r
− I (7)

F ′(P̃ ) =
1

r − a
(8)

Condition (6) arises from the observation that if the price goes to zero, then the operating value of
the power plant becomes negative. Consequently, the value of the option to invest should be equal
to zero as waiting forever would be optimal. Conditions (7) and (8) come from the consideration
of the optimal investment threshold P̃ . Condition (7) is the value matching condition and implies
that as soon as the potential investor decides to exercise the investment option s/he will receive

exactly the termination value P̃
r−a −

c
r − I. Finally, Eq. (8) is a standard smooth pasting condition.

Solving Eq. (5) we obtain F (Pt) = Θ1P
β1
t + Θ2P

β2
t where β1,2 = 1

2 −
a
σ2 ±

√(
a
σ2 − 1

2

)2
+ 2r

σ2

with β1 > 1, β2 < 0. From Eq. (6), the second constant term is equal to zero (Θ2 = 0) whereas
from Eqs. (7) and (8) we obtain

P̃ =
β1

β1 − 1
(r − a)

( c
r

+ I
)

(9)

and Θ1 =
P̃
r−a−

c
r
−I

P̃β1
.

11Otherwise our problem reduces to the mere maximization of the net present value V (Pt)− I.
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Summing up, the value of the option to invest is:

F (P ) =

(
P̃

r − a
− c

r
− I

)(
P

P̃

)β1
(10)

From Eq. (9) and Eq. (10) we obtain F (P ) = 1
β1−1

(
c
r + I

) (
P
P̃

)β1
the positivity of which guaran-

tees that the potential investor will indeed perform the investment as soon as P̃ is reached. The
expressions for P̃ and F (P ) are standard in the real options literature (see Dixit and Pindyck,
1994) and will serve as our benchmark values.

3 The investment problem in the presence of a RO scheme

Contrarily to the investment scenario discussed in the previous section we now assume that a RO
scheme is in place. A schematic presentation of such a scheme is provided in Figure 1. In an energy-
only electricity market (left panel), the power plant makes profits whenever Pt > c. If instead the
power plant sells ROs to the SO (right panel), the RO seller cashes ex-ante the premium m. In
principle, the premium m can be paid in full ex-ante, i.e. before the delivery period, or calculated
and delivered through periodic installments. Without loss of generality here we assume the latter.12

The RO is also capping the price, and therefore the revenues, that the power plant gains from
selling electricity to the market. In the following, K is the predetermined strike price of the RO. In
competitive power markets, the price of electricity corresponds to the marginal cost of the marginal
plant, i.e. the plant that is called to produce the last unit of electricity at a given time. In the RO
scheme, the strike price is set at the level of the marginal cost of an efficient peak plant (TERNA,
2019).13 Hence, in the case where K is not binding at the time when the RO is issued, we are
dealing with an electricity system that has enough capacity. On the contrary, in the case where K
is binding, the electricity system is short in capacity since some less efficient peaker is producing.14

Figure 1 about here

Figure 1: The RO scheme. The left panel refers to an energy-only market. The power plant makes
profits whenever Pt > c (grey area). The right panel refers to an electricity market with ROs. By
selling a RO the power plant receives the premium m. At the same time, the RO sets an upper
bound to the price of electricity since, whenever Pt > K, the power plant needs to return to the SO
the difference Pt −K.

Note that in a first-best world, the premium m would be given by the expected
discounted value of the future implicit penalties, i.e. the flow of foregone revenues

12For instance, in the Forward Capacity Market of the ISO-New England and in the new Italian RO scheme the
premium will be paid in monthly installments. Note that m should not be treated as an investment subsidy paid
by the SO to the power producers since, by paying m, the SO obtains the right to exercise the RO. For details on
investment subsidization see e.g. Grossman et al. (2013).

13An efficient peak plant is a power plant that, among those producing with the peak technology, does so at the
lowest cost.

14Note that K is not a reflecting barrier for the price of electricity. For details on price ceilings, reflecting barriers
and their properties see Ch. 9 in Dixit and Pindyck (1994) and Roques and Savva (2009).

7



that power producers will have to return to the SO in exchange for cashing in the
premium:

E0

[∫ ∞
τ

me−rtdt

]
= E0

[∫ ∞
τ

max (Pt −K, 0) e−rtdt

]
However, in real-world settings, this need not be the case. ROs are peculiar products
that are exchanged in markets that are quite different from financial ones. Exchanges
occur in specific periods or dates, trading is less frequent and less liquid than for
standard financial products and contingent to the occurrence of specific events (typ-
ically when a problem of security of supply occurs or is foreseen). Moreover, ROs
are often sold through auction mechanisms that can be plagued by design failures.15

Auction participants can exert market power or face uncertainties that can be difficult
to hedge. Moreover, by adopting ROs the SO sees its own financial structure affected,
since the RO premium is accounted for as a cost in the SO’s book and the implicit
penalties are revenues that will be earned in the future. Thus the financial targets of
the SO might not align with the level of the premium that delivers the desired level of
security of supply. For these reasons, the premium m can take several possible values
and not just the expected discounted value of the implicit penalties.

A RO has also a physical element since it obliges the installed capacity to be available whenever
it is required. In this respect, the SO sets explicit penalties for non-compliance that discourage
strategic behavior on the power plants’ side such as the non delivery of the energy as specified in
the RO. Consequently, the participation in a RO scheme makes a power plant operationally rigid.
In the following, we assume that explicit penalties are so high that the power plant has no choice
but to deliver the energy generated by the agreed capacity.

The instantaneous profit flow associated with electricity production under a RO scheme is:

πt = min {Pt,K} − (c−m) (11)

=

{
Pt − n for Pt ≤ K
K − n for Pt > K

(12)

where n = c−m.16

Given πt, we can derive the power plant’s operating value when a RO scheme is in place:

Proposition 1 The operating value of the power plant when a RO scheme is in place is

V (Pt) = Et

[∫ ∞
t

πse
−r(s−t)ds

]
=

{
AP β1t + Pt

r−a −
n
r for Pt ≤ K

BP β2t + K−n
r for Pt > K

(13)

where

A = − r − β2a
(r − a) (β1 − β2) r

K1−β1 < 0 (14)

B = − r − β1a
(r − a) (β1 − β2) r

K1−β2 < 0 (15)

15For instance, in the Italian RO auction of November 2019, all the auctions cleared at their price cap regardless
of the bidding behavior of the participants (see TERNA, 2019a, 2019b).

16In principle, n can be either positive or negative. It will be positive for all those power plants that have large
operating costs, and in all those cases in which the periodic installment m is not large enough to overtake the marginal
cost of production. It will be negative for those power plants that use renewable energy sources and consequently
have negligible marginal costs.
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Proof. In the Appendix.
The terms AP β1t and BP β2t represent the obligation of the power plant to cash K when Pt > K,

and Pt otherwise (Pt ≤ K). Note that the constants A and B are both negative denoting that these
obligations are, by definition, reducing the operating value of the power plant.

In Eq. (13) we observe that for Pt ≤ K, the operating value of the power plant is given by

the sum of the obligation to cash K as soon as Pt becomes larger than K, AP β1t , plus the net

present value associated with electricity production, Pt
r−a −

n
r . Note that AP β1t is increasing, i.e. is

becoming less costly, in K. This makes sense considering that an increase in the chosen strike price
implies that Pt will reach K less frequently. In the mean time, the power plant manager will have
the opportunity to benefit from high electricity prices that are however still smaller than K.

On the other branch of the value function, that is for Pt > K, the value of the power plant is
given by the sum of the obligation to cash Pt as soon as the price falls below K, BP β2t , plus the

present value of the flow of net payments in this case, K−n
r . Note that BP β2t is decreasing, i.e. is

becoming more costly, in K. This makes sense considering that an increase in the chosen strike
price implies that the power plant will cash the maximum electricity price K less frequently.

Let us now determine the value of the option to invest. As in Eq. (3) the value of the option
to invest is given by:

F (P ) = sup
τ
E0

[
e−rτ

(
V (Pτ )− I

)]
(16)

As before, this value is associated with the variational inequality

max

(
1

2
σ2P 2FPP + aPFP − rF , V − I − F

)
= 0 (17)

Assuming that the initial market price P is sufficiently small so that investing at time zero is
not preferable, Eq. (17) reduces to:

1

2
σ2P 2FPP + aPFP − rF = 0 (18)

Since the investment threshold can be higher or lower than K, and consequently V (Pt) can
take two different analytical forms, we consider two possible cases:

1. K is larger than, or at most equal to, the optimal investment threshold or

2. K is smaller than the optimal investment threshold.

These two cases correspond to the two possible market configurations that can occur at the
time of the investment, namely a market which is long (Case 1) or short (Case 2) in capacity.

3.1 Case 1: The market is long in capacity

Proposition 2 below presents the optimal investment threshold and the corresponding investment
option value in the case where the market is long in capacity at the time of the investment, i.e. in
the case where the strike price of the RO is not binding when the optimal investment threshold is
reached.

Proposition 2 Provided that K ≥ β1
β1−1 (r − a)

(
n
r + I

)
, the optimal investment threshold is equal

to

P ∗ =
β1

β1 − 1
(r − a)

(n
r

+ I
)

(19)
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and the value of the option to invest is equal to

F (P ) =

(
AP ∗β1 +

P ∗

r − a
− n

r
− I
)(

P

P ∗

)β1
> 0 (20)

Proof. In the Appendix.
In this case, K is large enough so that the timing decision of the potential investor is unaffected

by it. Note in fact that P ∗ is not a function of K. Nevertheless, this does not mean that P ∗ is
independent of changes in K since it has the form presented above only if the strike price of the RO
is large enough, namely, if K ≥ β1

β1−1 (r − a)
(
n
r + I

)
.17 The optimal investment threshold might

not be a function of K but is an increasing function of n, i.e. a decreasing function of m. This is
to be expected since the periodic payment m encourages the potential investor to invest earlier so
that s/he can start cashing m as early as possible.

Note that P ∗ can be written as:

P ∗ = P̃ − β1
β1 − 1

(r − a)
m

r
(21)

Since m > 0, we have P ∗ < P̃ . This means that, when K ≥ β1
β1−1 (r − a)

(
n
r + I

)
, the use of

a RO scheme encourages the potential investor to enter the electricity market earlier
than when the RO scheme is not in place. This finding answers partially (i.e. for the
case when the market is long in capacity) to the first research question that we pose
in Section 1 regarding the effect of the implementation of a RO scheme on the timing
of investment in new capacity.

The value of the option to invest F (P ) is a function of both m and K. Applying the envelope
theorem we obtain:

∂F (P )

∂n
= −1

r

(
P

P ∗

)β1
< 0 (22)

and,
∂F (P )

∂K
=
∂A

∂K
P β1 > 0. (23)

The value of the option to invest is increasing both in m and in K. A higher m suggests that the
potential investor can count on a higher remuneration that is not subject to the fluctuations of Pt.
This increases the value of the option to invest in the project of interest. Similarly, a higher K
implies that, upon investment, the power plant will be able to benefit from periods of high prices
before K is reached.

Last, one can show that:

Proposition 3 For a given m, the strike price K∗:

K∗ =

 (β1 − 1) ÃP ∗β1(
n
r + I

)
−
(
c
r + I

) (
P ∗

P̃

)β1


1
β1−1

(24)

where Ã = r−β2a
(r−a)(β1−β2)r (> 0) and K∗ ≥ β1

β1−1 (r − a)
(
n
r + I

)
, results in F (P ) = F (P ).

17Recall that, by assumption, P ∗ > P , i.e. investing at time zero is not preferable. Alternatively, this can be
written as n

r
+ I > P

r−a
β1−1
β1

. Obviously, n
r

+ I needs to be strictly positive. The positivity of n
r

+ I guarantees also
the positivity of P ∗.
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Proof. In the Appendix.
This means that despite the fact that P ∗ < P̃ , the SO can keep the value of the project at F (P )

by choosing K∗ for a given m.18 Equivalently, any K can have the property of K∗ as soon as an
appropriate m∗ is chosen. Summing up, the SO can, under certain conditions, use the RO scheme
in order to induce earlier investment without depreciating the value of the investment option. This
finding gives a partial answer to the second research question that we pose regarding
the effect of the implementation of a RO scheme on the value of the option to invest
in new capacity.

3.2 Case 2: The market is short in capacity

WhenK < β1
β1−1 (r − a)

(
n
r + I

)
we can have eitherK ≤ Ir+n orK ∈

(
Ir + n, β1

β1−1 (r − a)
(
I + n

r

))
:

Proposition 4 Provided that K ≤ Ir + n, the investment does not take place.

Proof. In the Appendix.
Proposition 4 refers to combinations of m and K that do not allow for the investment to take

place. In these cases, the strike price of the RO is too low to remunerate for the investment and
the operating cost.

For higher values of K we have:

Proposition 5 Provided that K ∈
(
Ir + n, β1

β1−1 (r − a)
(
I + n

r

))
, the optimal investment thresh-

old is equal to

P ∗∗ =

[
1

B

β1
β1 − β2

(
I − K − n

r

)] 1
β2

(25)

and the value of the option to invest is equal to

F (P ) =

(
BP ∗∗β2 +

K − n
r
− I
)(

P

P ∗∗

)β1
> 0 (26)

Proof. In the Appendix.
Contrarily to P ∗ which is always smaller than P̃ , P ∗∗ can be larger, smaller or exactly equal to

the benchmark investment threshold P̃ . A comparison between P ∗∗ and P̃ suggests that:

Proposition 6 For any K ∈
(
Ir + n, β1

β1−1 (r − a)
(
I + n

r

))
, a periodic cash flow

m̃ = c+ rI −K +K
r − β1a

(r − a)β1

(
P̃

K

)β2
(27)

results in P ∗∗ = P̃ .

Proof. In the Appendix.

This means that when K ∈
(
Ir + n, β1

β1−1 (r − a)
(
I + n

r

))
, the use of a RO scheme

has an ambiguous effect on the optimal investment threshold. This finding completes
the answer to the first research question that we pose, regarding the effect of the
implementation of a RO scheme on the timing of investment in new capacity.

18Note that, as expected, lim
m→0

K∗ =∞.
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One can also check that

∂P ∗∗

∂K
=

[
β1 (r − a) r

(r − β1a)

] 1
β2

K
β2−1
β2

(
K − n
r
− I
) 1
β2 1

β2

(
β2 − 1

K
+

1(
K−n
r − I

)
r

)
< 0 (28)

and
∂P ∗∗

∂n
=
P ∗∗

β2

1

I − K−n
r

1

r
> 0. (29)

Similarly to P ∗, P ∗∗ is an increasing function of n, i.e. a decreasing function of m. This means
that a higher level of m encourages the potential investor to invest earlier. At the same time P ∗∗ is,
as expected, decreasing in K. This means that a high strike price K will encourage the potential
investor to invest earlier. This is thanks to the fact that the potential investor will benefit from
periods of high electricity prices before K is reached. On the contrary, when K is low, the potential
investor will attempt to hedge against the periods during which the low strike price is binding by
investing later on.

Let us now see what is the effect of K and m on the value of the option to invest. Applying
the envelope theorem we obtain:

∂F (P )

∂n
= −1

r

(
P

P ∗∗

)β1
< 0 (30)

and
∂F (P )

∂K
= −

(
P

P ∗∗

)β1 β2
β1 − β2

(
1

r
+

β1
P ∗∗

(
I − K − n

r

)
∂P ∗∗

∂K

)
> 0 (31)

As in Case 1, the value of the option to invest is increasing both in m and in K. A comparison
between F (P ) and F (P ) suggests that:

Proposition 7 For a given K ∈
(
Ir + n, β1

β1−1 (r − a)
(
I + n

r

))
, a periodic cash flow m∗∗ that

satisfies (
I − K − (c−m∗∗)

r

)
β2

β1 − β2
=
( c
r

+ I
) 1

β1 − 1

(
P ∗∗ (m∗∗)

P̃

)β1
(32)

guarantees F (P ) = F (P ).

Proof. In the Appendix.
This proposition completes the answer to the second research question that we pose

regarding the effect of the implementation of a RO scheme on the value of the option
to invest in new capacity. Contrarily to Case 1, in Case 2 the SO can choose combinations of
m and K that result either in F (P ) = F (P ) or in P̃ = P ∗∗. Nevertheless, for any given K we
have m̃ < m∗∗ which means that it is not possible to have the two equalities holding at the same
time.19 Summing up, the SO can, under certain conditions, use the ROs as investment stimuli
either inducing earlier investment or appreciating the value of the option to invest in the power
plant.

Last, note that changes in n and K affect also the conditions that allow for P ∗ and P ∗∗. For

instance we have, ∂
∂n

[
β1
β1−1 (r − a)

(
I + n

r

)]
> 1. Hence, an increase in n (decrease in m) enlarges

the interval
(
Ir + n, β1

β1−1 (r − a)
(
I + n

r

))
. At the same time, an increase in n (decrease in m)

tightens the condition β1
β1−1 (r − a)

(
n
r + I

)
≤ K that allows for P ∗. This means that an increase

in n (decrease in m) relaxes the conditions that allow for P ∗∗ (> K) to be the optimal investment
threshold and tightens the condition that allows for P ∗ (≤ K) to be the optimal one.

19The proof is in the Appendix.
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4 Discussion

Figure 2 below summarizes our findings.

Figure 2 about here

Figure 2: Case 1 and Case 2

The left panel of Figure 2 refers to Case 1, that is, to an electricity market that is long in capacity.
The right panel of Figure 2 instead, refers to an electricity market that is short in capacity (Case
2). In Case 1, the implementation of a RO scheme favours, in expected terms, earlier investment
(Eq. (21)). On the contrary, the effect on the value of the investment option is ambiguous. If
producers are free to decide whether to participate in the RO scheme or not, they would do so only
if, for a given strike price K, m is large enough, namely, larger than m∗ (Proposition 3).

When instead the electricity market is short in capacity (Case 2) both the timing and the value
effect are ambiguous (see Propositions 6 and 7 respectively). When, for a given K, m > m∗∗, the
RO scheme favours investments of higher value that take place, in expected terms, earlier than in
an energy-only market. When, m ∈ (m̃,m∗∗) the timing effect is still the same but the value effect
is reversed. This implies that under a RO scheme in which participation is voluntary, a potential
investor would abstain from participating in the scheme. Last, for m < m̃, also the timing effect is
reversed.

It is clear that the effect of a RO scheme on the timing (first research question) and the
value of an investment (second research question) depends on whether participation in such a
scheme is voluntary for a power producer or not. In some real-world cases, such as the ISO-New
England for instance, the participation to the RO scheme is mandatory.20 In this case, our results
suggest that it is possible that a RO scheme discourages investments in power production. At
the same time, there exist energy markets in which new investors are free to decide whether to
participate in the RO scheme or not. For instance, in Italy a power producer has no obligation
to sell ROs to the SO. This means that no investor would voluntarily choose to sell ROs if this is
expected to be non-profitable.

Another consequence of our findings refers to the technological neutrality of ROs. In principle,
one can distinguish the different types of investment by looking at the relative amount of their fixed
and variable costs. Consider for instance a power plant producing electricity from a conventional
primary energy source (such as a gas-fired power plant) and a plant producing electricity from
RES. The former is typically characterized by high operational and low investment costs. On the
contrary, the latter has low operational and high investment costs. In our model, a power plant
using conventional energy sources would be characterized by a high c and a low I whereas a power
plant using RES would have a low c and a high I. Nevertheless, throughout our analysis we only
come across the total investment cost I+ c

r which means that as soon as the total cost I+ c
r remains

fixed, the results will remain unaffected. In other words, the RO scheme does not favor one type
of technology over another.

20In the Forward Capacity Market (FCM) participation is mandatory for existing capacity. Power producers can
call for a temporary exemption of their obligation if they do not intend to participate in the market. New capacity
can voluntarily be qualified to participate in the FCM auctions prior to completion of the investment. It would be
regarded as existing and be mandated to participate in the FCM auctions once the investment project is competed
and the capacity ready to supply energy. For further details, see https://www.iso-ne.com.
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Last, as far as the net present value of the RO scheme is concerned, in the Appendix we show
that since the instantaneous savings for the SO are of the form st = max {Pt −K, 0}, the net
present value of employing a RO scheme is:

V (Pt) =

{
−AP β1t − m

r for Pt ≤ K
−BP β2t + Pt

r−a −
K
r −

m
r for Pt > K

(33)

We also have V (Pt) = V (Pt) − V (Pt), ∂V (Pt) /∂m < 0 and ∂V (Pt) /∂K < 0. The equality
V (Pt)+V (Pt) = V (Pt) needs to hold as long as the RO is a contract between the SO and the power
plant that leaves the economic fundamentals of the investment (e.g. investment cost, operating
cost, stochastic process related to the price etc.) unchanged. As for the signs of ∂V (Pt) /∂m and
∂V (Pt) /∂K, an increase in m implies a more costly policy and an increase in K implies that the
SO will benefit from the RO less frequently.

5 The effect of price volatility on the investment

In this section we discuss how the timing, the net present value (NPV) and the value of the option to
invest are affected by different levels of price volatility. Several scholars (Woo et al., 2011; Ketterer,
2014; Higgs et al., 2015; Brancucci et al., 2016; Pereira da Silva and Horta, 2019) have argued that
the increase of electricity production from RES causes, i) the reduction of the average electricity
price and, ii) the increase of its volatility.21 The first effect is expected to result in reduced revenues
and, consequently, is expected to discourage investments in back-up power plants, i.e. power plants
that can quickly ramp-up and down complementing power plants using non-controllable RES for
electricity production. At the same time, the increase in volatility makes the problem of security of
supply even more relevant since it might increase the frequency with which such a flexible capacity
is needed. Given all this, it is evident that a discussion on the relationship between price volatility
and the ROs’ ability to stimulate investments is of particular interest for those systems that are
experiencing an increase in the share of power plants that produce electricity using non-controllable
RES.

Let us assume the following reference values for the parameters of the model (unit measures
are between parentheses): a = 0, r = 0.000005, c = 25 (Euros/MWh), I = 2000000 (Euros/MW)
and P = 0.1 (Euros/MWh). Then, for σ ∈ [0.0034, 0.0051], K = 200 (Euros/MWh) and m = 25
(Euros/MWh) we obtain a solution that corresponds to Case 1 (see Figure 3).22

Figure 3 about here

21However, other scholars have argued that the evidence is not univocal and the effect on volatility might differ
depending on the different types of RES, the markets and prices considered, the time spell and the way volatility is
measured. See Rintamäki et al. (2017) and Khoshrou et al. (2019).

22The values for investment and operational costs refer to an efficient new gas-fired plant (EIA, 2020). For the
structural parameters of the stochastic process capturing the evolution of the price of electricity as well as the values
of the strike price and the premium we refer to the Italian market (Andreis et al. 2020). In particular, σ is the
hourly rate that corresponds to an average yearly volatility that ranges from 0.26 to 0.53. These
figures are consistent with the yearly volatility of weekly-averaged day-ahead prices for the Italian
continental price zones (data is available from the authors upon request). For the drift parameter a,
day-ahead prices for the Italian continental price zones suggest that a suitable value could be a = 0
(which of course does not change when changing time scale). Finally, r is the hourly rate that corresponds
to a yearly average risk-adjusted market rate of 4.4% (EIA, 2020). Note that P , the starting price, is kept low just
to make sure that the optimal investment threshold lies somewhere in the future.
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Figure 3: Investment thresholds, NPVs and Option values in Case 1

The left panel shows the optimal investment thresholds P ∗ and P̃ , the chosen strike price K
and the strike price that would result in F = F , K∗. The right panel shows the investment option
values, F and F , and their corresponding NPVs. Since the NPV and NPV are computed by

scaling up F and F by
(
P ∗

P

)β1
and

(
P̃
P

)β1
respectively, we use a secondary vertical axis in order to

plot all four curves in the same figure. We do the same for Figures 4 and 5 below.
As expected, higher levels of volatility correspond to higher investment triggers and higher

investment option values. This finding is standard in the real options literature. Note also that
F is flatter than F . This is attributed to the fact that the RO scheme imposes the strike price K
while paying the premium m. For low levels of volatility we have F > F because the positive effect
of cashing the option premium is stronger than the negative effect of having to respect K. On the
contrary, for high levels of volatility we have F < F since the adverse effect dominates. Hence,
while a power producer will voluntarily participate in the RO scheme for low levels of volatility,
s/he will abstain from participating in the RO scheme when σ becomes higher than 0,00425. At
this level of σ the combination of strike price and premium guarantees F = F . As for the effect of
volatility on the NPV of the power plant at the time of the investment, in an energy-only market
higher volatility implies a higher investment threshold and consequently a higher value for the
power plant at the time of the investment. However, in an electricity market that employs ROs
this effect dissipates since the power producer will be unable to benefit from Pt above K.

For σ ∈ [0.0039, 0.0056], K = 100 and m = 2.5 we obtain a solution that corresponds to Case
2 (see Figure 4).

Figure 4 about here

Figure 4: Investment thresholds, NPVs and Option values in Case 2 under m < m??

Obviously, in Figure 4 we are dealing with a case of low value
(
F < F

)
and ambiguous timing.

This means that for σ ∈ [0.0039, 0.0056] and K = 100, the RO premium m = 2.5 is smaller than
m∗∗ and becomes equal to m̃ when σ is about 0.0048. In this case, the participation of a power
producer in the RO scheme makes her/him worse off both in terms of NPV at the time of the
investment and in terms of investment option value. For σ ∈ [0.0028, 0.0036], K = 1.9 and m = 34
we obtain again a solution that corresponds to Case 2 but this time we have an ambiguous effect
on the value of the option to invest and always earlier investment (see Figure 5).

Figure 5 about here

Figure 5: Investment thresholds, NPVs and Option values in Case 2 under m > m̃

In this case the option premium m = 34 is larger than m̃ and is reaching m∗∗ when σ is about
0.0032. For σ < 0.0032 we have F > F because the positive effect of cashing the option premium
is stronger than the negative effect of having to respect the strike price K. On the contrary, for
higher levels of volatility we have F < F since the adverse effect prevails. Hence, for some levels
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of volatility the power producer opts for participating in the RO scheme. However, this is not true
for the whole range of values.

The figures suggest that while the investment triggers remain monotonic in volatility, the value
of the option to invest is concave in σ. The concavity of F with respect to σ is attributed to the
fact that the effect of the components of the RO scheme, i.e. the RO premium and the implicit
penalty, on the value of the investment option depends on the level of price volatility. For low
σ the application of the RO scheme benefits the power plant manager since, on one hand, s/he
cashes the RO premium and, on the other, s/he rarely pays the implicit penalty to the SO as price
spikes are infrequent. For high σ the application of the RO scheme has the opposite effect since
the RO premium cannot remunerate the power plant manager for the more frequent payment of
the implicit penalty.

6 Conclusion

In this paper we study the conditions under which a RO scheme can induce investments in power
production. The literature on CRMs describes ROs as tools that can be used to enhance security
of supply, stimulating the adoption of new capacity. Nevertheless, our results cast some doubts on
the effectiveness of ROs as investment stimuli.

In the Introduction we pose two research questions: ”How does the use of a RO
scheme affect the timing of investments in new capacity?” and ”What is the effect
of the implementation of this scheme on the value of the option to make such an
investment?”. Our findings suggest that the adoption of a RO scheme can potentially hinder the
security of supply by delaying the adoption of new capacity. We also show that a RO scheme can
adversely affect the value of the option to invest in power production.

If the electricity market is long in capacity at the time of the investment, then this takes
place, in expected terms, earlier than in an energy-only market. Nevertheless, the investors are not
necessarily better off since the value of the option to invest depends also on the magnitude of the
premium that the RO pays to its issuer. If instead the electricity market is short in capacity at the
time of the investment, then both the timing and the value effect are ambiguous. While there are
combinations of the strike price and the RO premium that raise the investment option value and
hasten its exercise, there are also combinations that have the opposite effect both in terms of value
and in terms of timing.

The duration of the obligation set by the RO is an area of research that deserves future work; we
have not tackled it here. In order to perform our analysis, we adopted the simplifying assumption
of a life-long lasting investment and RO. In reality, this is not necessarily the case. There are RO
schemes, such as the Italian one (TERNA, 2019), in which the obligation set by the RO on the
power producer lasts for a period that is quite long (15 years). In this case, our assumption can be
regarded as not too restrictive. However, when the obligation set by the RO is short, for example
one year as is the case in the ISO-New England, the analysis cannot abstain from taking this into
consideration.

Another issue that we do not consider here is the relationship between the premium and the
strike price of the RO. As we mentioned in Section 3, from a theoretical point of view, the premium
corresponds to the expected discounted value (under some risk-adjusted measure) of the flow of the
implicit penalties, i.e. the flow of money that the RO issuers need to return to the SO over time.23

However, in the real world, ROs are exchanged through procurement mechanisms that could be
subject to market failures or allocative inefficiencies. In this paper we chose to treat both K and

23See Andreis et al. (2020).
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m as parameters. Nevertheless, a careful consideration of the auction mechanism complementing
a RO scheme can provide a deeper insight into this scheme’s strengths and weaknesses.

The main message of this paper is that it is not correct to draw the conclusion that a RO scheme
will necessarily encourage investments in new capacity. Instead, the careful implementation of this
scheme proves to be crucial for its success. In this respect, the rigorous analysis of the objectives
of the responsible policy maker is needed. One direction in which this work could be extended is
to model explicitly a policy maker who chooses to employ a RO scheme because this proves to be
optimal in terms of social welfare (see, e.g. Huisman and Kort, 2015). This will allow for the proper
identification of the optimal strike price of the ROs, the optimal design of the auction mechanism
through which ROs are exchanged, their duration and generally all the parameters that need to be
correctly adjusted so that the RO scheme can be successfully implemented.
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A Appendix

A.1 Proof of Proposition 1

The firm’s operating value, V (Pt), satisfies the following differential equation:

ΓV
L

(Pt) = − (Pt − n) for Pt ≤ K (A.1)

ΓV
H

(Pt) = − (K − n) for Pt > K (A.2)

where:

Γ = −r + aPt
∂

∂Pt
+

1

2
σ2P 2

t

∂2

∂P 2
t

(A.3)

V
L

(Pt) is the firm’s operating value under Pt ≤ K and V
H

(Pt) is the firm’s operating value under
Pt > K.

Solving we obtain:

V
L

(Pt) = AP β1t + CP β2t +
Pt
r − a

− n

r
(A.4)

V
H

(Pt) = DP β1t +BP β2t +
K − n
r

(A.5)

The terms Pt
r−a −

n
r for Pt ≤ K and K−n

r for Pt > K, capture the net value of the project. On the

contrary, the sums AP β1t + CP β2t for Pt ≤ K and DP β1t + BP β2t for Pt > K, correspond to the
obligation that the power plant undertakes when writing a RO.

Note that V
L

(Pt) explodes as Pt → 0 unless C = 0. Also note that if Pt → ∞, the obligation

DP β1t +BP β2t should be valueless and this implies D = 0. Summing up, we have:

V
L

(Pt) = AP β1t +
Pt
r − a

− n

r
(A.6)

V
H

(Pt) = BP β2t +
K − n
r

(A.7)

At Pt = K, the value matching and smooth pasting conditions require:

AKβ1 +
K

r − a
− n

r
= BKβ2 +

K − n
r

(A.8)

Aβ1K
β1−1 +

1

r − a
= Bβ2K

β2−1 (A.9)

Solving we obtain:

A = − r − β2a
(r − a) (β1 − β2) r

K1−β1 (A.10)

B = − r − β1a
(r − a) (β1 − β2) r

K1−β2 (A.11)

Since r > a, the signs of A and B are determined by the signs of r − β2a and r − β1a respectively.
From the negativity of β2 we have r − β2a > 0 which results in A < 0. As for the sign of r − β1a,
this can be shown to be positive in the following way. β1 and β2 are the roots of the characteristic
quadratic 0.5σ2β (β − 1)+αβ−r = 0. Plugging r/α in 0.5σ2β (β − 1)+αβ−r we obtain 0.5σ2 rα

r−α
α

which is positive. This means that r/α must be larger than the positive root β1, i.e. r/α > β1
which means that B < 0.
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A.2 Proof of Propositions 2 and 3

We need to solve the equation 1
2σ

2P 2FPP + aPFP − rF = 0 keeping in mind that the investment
threshold P ∗ is smaller than, or at most equal to, K. Assuming a general solution F (P ) =
Ω1P

β1 + Ω2P
β2 and using the first branch of Eq. (13), we have:

F (0) = 0 (A.12)

F (P ∗) = AP ∗β1 +
P ∗

r − a
− n

r
− I (A.13)

F
′
(P ∗) = Aβ1P

∗β1−1 +
1

r − a
(A.14)

From F (0) = 0 we have Ω2 = 0. Then the value matching and smooth pasting conditions give:

P ∗ =
β1

β1 − 1
(r − a)

(n
r

+ I
)

(A.15)

and

Ω1 =
AP ∗β1 + P ∗

r−a −
n
r − I

P ∗β1
(A.16)

Note that for P ∗ (≥ P > 0) to make sense we require n
r + I > 0, i.e. c

r + I > m
r . If on the contrary

c
r + I ≤ m

r , the periodic flow m fully covers the investment and operation cost of the project. In
this case the potential investor enters the electricity market as soon as possible in order to cash the
deterministic flow of m and the timing decision problem becomes trivial.

Summing up, we have:

F (P ) =

(
AP ∗β1 +

P ∗

r − a
− n

r
− I
)(

P

P ∗

)β1
(A.17)

Note that by assumption the investment threshold P ∗ is smaller than, or at most equal to, K. For
this to hold we require:

K ≥ β1
β1 − 1

(r − a)
(n
r

+ I
)

(A.18)

At the same time, the investment takes place at P ∗ only if the net present value of the project at
the time of the investment is positive:

AP ∗β1 +
P ∗

r − a
− n

r
− I > 0 (A.19)

This in turn implies: (
K

P ∗

)β1−1
> β1

r − β2a
(β1 − β2) r

(A.20)

Since β1
r−β2a

(β1−β2)r < 1, the condition P ∗ ≤ K is stricter than the condition AP ∗β1+ P ∗

r−a−
n
r−I > 0.

This means that, the solution takes the form P ∗ = β1
β1−1 (r − a)

(
n
r + I

)
if K ≥ β1

β1−1 (r − a)
(
n
r + I

)
.

This concludes the proof of Proposition 2.
As for the proof of Proposition 3, we can easily derive the K that, for a given m, results in

F (P ) = F (P ). Plugging A (Eq. (A.10)) and P ∗ (Eq. (A.15)) in F (P ) (Eq. (A.17)) we obtain

F (P ) =
(
−ÃK1−β1P ∗β1 +

n
r
+I

β1−1

) (
P
P ∗

)β1
where Ã = r−β2a

(r−a)(β1−β2)r (> 0). Similarly, substituting P̃
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(Eq. (9)) in F (P ) (Eq. (10)) we obtain F (P ) = 1
β1−1

(
c
r + I

) (
P
P̃

)β1
. Equalizing the two and

solving for the strike price we obtain:

K∗ =

 (β1 − 1) ÃP ∗β1(
n
r + I

)
−
(
c
r + I

) (
P ∗

P̃

)β1


1
β1−1

A.3 Proof of Propositions 4–7

We need to solve the equation 1
2σ

2P 2FPP + aPFP − rF = 0 keeping in mind that the investment
threshold P ∗∗ is larger than K. Assuming a general solution F (P ) = Ψ1P

β1 + Ψ2P
β2 and using

the second branch of Eq. (13), we have:

F (0) = 0 (A.21)

F (P ∗∗) = BP ∗∗β2 +
K − n
r
− I (A.22)

F
′
(P ∗∗) = Bβ2P

∗∗β2−1 (A.23)

Thanks to F (0) = 0 we have Ψ2 = 0. Then, from the value matching condition we obtain

Ψ1 =
1

P ∗∗β1

(
BP ∗∗β2 +

K − n
r
− I
)

(A.24)

whereas from the smooth pasting condition we have:

P ∗∗ =

[
1

B

β1
β1 − β2

(
I − K − n

r

)] 1
β2

(A.25)

The value of the option to invest is,

F (P ) =

(
BP ∗∗β2 +

K − n
r
− I
)(

P

P ∗∗

)β1
.

Let us now check under what conditions P ∗∗ > K. Plugging B in P ∗∗ and rearranging we
obtain [

− β1 (r − a) r

K (r − β1a)

(
I − K − n

r

)] 1
β2

> 1

Since β2 < 0 this inequality holds if− β1(r−a)r
K(r−β1a)

(
I − K−n

r

)
< 1 which results inK < β1

β1−1 (r − a)
(
I + n

r

)
.

At the same time, the investment takes place only if the net present value of the project at
the time of the investment is positive. This requires Ir + n < K. One can easily check that

Ir+ n < β1
β1−1 (r − a)

(
I + n

r

)
which means that the interval

(
Ir + n, β1

β1−1 (r − a)
(
I + n

r

))
is non-

empty. Last, as in Case 1, P ∗∗ makes sense only if n
r + I > 0, i.e. c

r + I > m
r . This concludes the

proofs of Propositions 4 and 5.
As for the proofs of Propositions 6 and 7, we can easily derive the m that, for a given K, results

in P̃ = P ∗∗ (Proposition 6) and F (P ) = F (P ) (Proposition 7). Starting from P̃ = P ∗∗, we plug

P ∗∗ (Eq. (A.25)) and B (Eq. (A.11)) in P̃ = P ∗∗ and obtain K−ñ
r − I = K r−β1a

r(r−a)β1

(
P̃
K

)β2
where
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ñ = c − m̃. From this, we can isolate m̃ which is equal to c + rI − K + K r−β1a
(r−a)β1

(
P̃
K

)β2
. As

for the m that results in F (P ) = F (P ) for a given K, plugging P ∗∗ (Eq. (A.25)) in F (P ) we

obtain F (P ) =
(
I − K−n

r

) β2
β1−β2

(
P
P ∗∗

)β1
. Similarly, plugging P̃ (Eq. (9)) in F (P ) (Eq. (10)) we

obtain F (P ) =
(
c
r + I

)
1

β1−1

(
P
P̃

)β1
. F (P ) and F (P ) are equal when

(
I − K−(c−m∗∗)

r

)
β2

β1−β2 =(
c
r + I

)
1

β1−1

(
P ∗∗(m∗∗)

P̃

)β1
which is the formula presented in Proposition 7. In the following we

prove that m̃ < m∗∗.

A.4 Proof of m̃ < m∗∗

When K ∈
(
Ir + n, β1

β1−1 (r − a)
(
I + n

r

))
, m̃ is such that P̃ = P ∗∗ whereas m∗∗ is such that

F (P ) = F (P ), that is,
(
I − K−(c−m∗∗)

r

)
β2

β1−β2 =
(
c
r + I

)
1

β1−1

(
P ∗∗(m∗∗)

P̃

)β1
.

Let us see how
(
I − K−(c−m)

r

)
β2

β1−β2 and
(
c
r + I

)
1

β1−1

(
P ∗∗(m)

P̃

)β1
are affected by changes in m.

∂
(
I − K−(c−m)

r

)
β2

β1−β2

∂m
= − β2

β1 − β2
1

r
> 0 (A.26)

∂
(
c
r + I

)
1

β1−1

(
P ∗∗(m)

P̃

)β1
∂m

=
c
r + I

P ∗∗ (m)

β1
β1 − 1

(
P ∗∗ (m)

P̃

)β1 ∂P ∗∗ (m)

∂m
< 0 (A.27)

So
(
I − K−(c−m)

r

)
β2

β1−β2 is linear and increasing in m whereas
(
c
r + I

)
1

β1−1

(
P ∗∗(m)

P̃

)β1
is decreasing

in m.
We have m∗∗ > m̃ only when( c

r
+ I
) 1

β1 − 1

(
P ∗∗ (m̃)

P̃

)β1
>

(
I − K − (c− m̃)

r

)
β2

β1 − β2
(A.28)

Now, since P ∗∗ (m̃) = P̃ we have:( c
r

+ I
) 1

β1 − 1
>

(
I − K − (c− m̃)

r

)
β2

β1 − β2
(A.29)

(Ir + c)
β1 (β2 − 1)

β2 (β1 − 1)
− m̃ > K (A.30)

k > K (A.31)

where k = (Ir + c) β1(β2−1)β2(β1−1) − m̃.

We need to check if any of theK that satisfy k > K belong in the interval
(
Ir + n, β1

β1−1 (r − a)
(
I + n

r

))
.

If k > β1
β1−1 (r − a)

(
I + n

r

)
, then all the K ∈

(
Ir + n, β1

β1−1 (r − a)
(
I + n

r

))
result in m∗∗ > m̃:

k >
β1

β1 − 1
(r − a)

(
I +

n

r

)
(A.32)

(Ir + c)
β1 (β2 − 1)

β2 (β1 − 1)
− m̃ >

β1
β1 − 1

(r − a)

(
I +

c− m̃
r

)
(A.33)

m̃ >
β1
β2

r − aβ2
r − aβ1

(Ir + c) (A.34)
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This is always true since β1
β2

r−aβ2
r−aβ1 (Ir + c) < 0. Consequently, all theK ∈

(
Ir + n, β1

β1−1 (r − a)
(
I + n

r

))
are such that m∗∗ > m̃.

A.5 The net present value of the RO scheme

The instantaneous savings for the SO are:

st = max {Pt −K, 0} (A.35)

=

{
Pt −K for Pt > K
0 for Pt ≤ K

(A.36)

The value of the savings is:

ΓSL(Pt) = − (Pt −K) for Pt > K, (A.37)

ΓSH(Pt) = 0 for Pt ≤ K, (A.38)

where

Γ = −r + aPt
∂

∂Pt
+

1

2
σ2P 2

t

∂2

∂P 2
t

(A.39)

SL(Pt) is the value of the savings under Pt > K and SH(Pt) is the value of the savings under
Pt ≤ K.

For the homogenous part we assume a solution S(Pt) = ∆P β1t + ΦP β2t . At the same time, the
expression Pt

r−a −
K
r is a particular solution for the differential equation under Pt > K.

Summing up:

SL(Pt) = ∆1P
β1
t + Φ1P

β2
t +

Pt
r − a

− K

r
(A.40)

SH(Pt) = ∆2P
β1
t + Φ2P

β2
t (A.41)

For these to make sense we require the value of the savings to be zero when prices go to zero which
means that Φ2 = 0. Also the value of the savings cannot explode for very high prices so ∆1 = 0:

Summing up we have:

S (Pt) =

{
Φ1P

β2
t + Pt

r−a −
K
r for Pt > K

∆2P
β1
t for Pt ≤ K

(A.42)

Now, at Pt = K the standard optimality conditions require:

Φ1K
β2 +

K

r − a
− K

r
= ∆2K

β1 (A.43)

Φ1β2K
β2−1 +

1

r − a
= ∆2β1K

β1−1 (A.44)

Solving we obtain:

S (Pt) =

{
−AP β1t for Pt ≤ K
−BP β2t + Pt

r−a −
K
r for Pt > K

(A.45)

Now, the difference between the value of the savings and the cost of the policy is:

V (Pt) = S (Pt)−
m

r
=

{
−AP β1t − m

r for Pt ≤ K
−BP β2t + Pt

r−a −
K
r −

m
r for Pt > K

(A.46)
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For Pt ≤ K we have:
∂V (Pt)

∂K
= −∂AP

β1
t

∂K
< 0 (A.47)

whereas for Pt > K we have:

∂V (Pt)

∂K
=

1

r

(
P β2t
Kβ2

r − β1a
r − a

1− β2
β1 − β2

− 1

)
< 0 (A.48)

At the same time, for any Pt, we have:

∂V (Pt)

∂m
= −1

r
< 0 (A.49)

B Appendix

B.1 The investment problem in an energy-only electricity market when the
power plant is operationally flexible

Here we reframe Section 2 explicitly assuming that the power plant is operationally flexible. This
means that, whenever the price of electricity falls below the unit production cost c, the power
plant manager will temporarily shut down the power plant in order to avoid making losses. In this
case, the instantaneous profit flow associated with electricity production is not πt = Pt − c but
πt = max {Pt − c, 0}.

The operating value of the power plant at the generic time point t is

V (Pt) = Et

[∫ ∞
t

max {Ps − c, 0} e−r(s−t)ds
]

and satisfies the following differential equation:

ΓV L(Pt) = 0 for Pt ≤ c, (A.50)

ΓV H(Pt) = − (Pt − c) for Pt > c. (A.51)

The differential operator Γ is given in Eq. (A.3). V L(Pt) is the firm’s operating value under Pt ≤ c
and V H(Pt) is the firm’s operating value under Pt > c.

Solving we obtain:

V L(Pt) = Y P β1t + UP β2t (A.52)

V H(Pt) = XP β1t + ZP β2t +
Pt
r − a

− c

r
(A.53)

The term Pt
r−a −

c
r is the operating value of a power plant that is not operationally flexible (see Eq.

2). On the contrary, the sums Y P β1t +UP β2t for Pt ≤ c and XP β1t +ZP β2t for Pt > c correspond to
the options of the power plant manager to temporarily suspend operations when Pt ≤ c and restart
them when Pt > c.

The term V L(Pt) explodes as Pt → 0 unless U = 0. Also, if Pt becomes very large the option to

temporarily suspend operations XP β1t +ZP β2t should be valueless and this implies X = 0. Summing
up, we have:

V (Pt) =

{
ZP β2t + Pt

r−a −
c
r for Pt ≥ c

Y P β1t for Pt < c
(A.54)
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The value matching and smooth pasting conditions at Pt = c result in:

Z =
r − β1a

(r − a) (β1 − β2) r
c1−β2 > 0

Y =
r − β2a

(r − a) (β1 − β2) r
c1−β1 > 0

The expressions in the two branches of V (Pt) have straightforward economic interpretations. In
the region Pt < c, operations are suspended and the power plant yields no current profit flow.
However, there is a positive probability that the price process will at some future time move into
the region Pt ≥ c, where operations will resume and profits will accrue. This is captured by the
positive term Y P β1t . Similarly, ZP β2t is the value of the option to suspend operations whenever
Pt < c.

The potential investor has the option to invest in the power plant and get V (Pt) by spending
I. Following the presentation of Section 2, we can derive the optimal investment threshold and the
value of the option to invest in the power plant. One can easily show that the potential investor will
consider investing only in the region Pt ≥ c (see p. 190 in Dixit and Pindyck, 1994 for more details).
Assuming also that the initial market price is sufficiently small so that investing immediately is not
preferable, the problem that the potential investor needs to solve is as follows:

ΓF = 0 (A.55)

subject to:

F (0) = 0 (A.56)

F (P ) = ZP β2 +
P

r − a
− c

r
− I (A.57)

F ′(P ) = Zβ2P
β2−1 +

1

r − a
(A.58)

where F is the value of the opportunity to invest in a power plant with operational flexibility and
P is the optimal investment threshold.

Condition F (0) = 0 arises from the observation that if the price goes to zero, then the operating
value of the power plant becomes equal to zero. Consequently, the value of the option to invest
should be equal to zero as waiting forever would be optimal. Conditions (A.57) and (A.58) come
from the consideration of the optimal investment threshold P . The first is the value matching
condition and implies that, as soon as the potential investor decides to exercise the investment

option, s/he will receive exactly the termination value ZP β2 +
P

r−a −
c
r − I. The second is a

standard smooth pasting condition. Solving the differential equation (A.55) we obtain F (Pt) =

Θ1P
β1
t +Θ2P

β2
t . From F (0) = 0, we have Θ2 = 0 whereas from the value matching and the smooth

pasting conditions we can solve for Θ1, which is equal to
(
ZP β2 +

P

r−a −
c
r − I

)
/P β1 , and P which

is the unique solution of G(P ) = 0 such that P > c, where G is defined as:

G(p) := Z (β1 − β2) pβ2 + (β1 − 1)
p

r − a
− β1

( c
r

+ I
)

(A.59)

The function G is convex and limp→0G(p) = limp→+∞G(p) = +∞, G(P̃ ) > 0, G(c) < 0
and G(c+rI) < 0 where c+rI is the Marshallian full cost. Then, the optimal investment
threshold (larger than the Marshallian full cost) must lie in the increasing part of G,
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i.e. G′
(
P
)
> 0. From P̃ > c + rI, G

(
P̃
)
> 0, and G

(
P
)

= 0 we infer that P̃ > P ,

that is, the investment threshold corresponding to an operationally flexible plant is
lower than the one corresponding to an operationally rigid one.24 This is to be expected,
since a potential investor will be willing to invest earlier in an investment project characterized by
operational flexibility, as the one presented here, than in an identical investment project without
operational flexibility, as the one presented in the main body of the paper.

Let us now check how P and P ∗ compare. One can easily show that, provided that

K ≥ β1
β1−1 (r − a)

(
n
r + I

)
, an m∗ satisfying

(
β1 (r − a)

c

)β2−1( c−m∗
r + I

β1 − 1

)β2
=

m∗

r − β1a
(A.60)

results in P ∗ = P .

Similarly, one can show that, provided that K ∈
(
Ir + n, β1

β1−1 (r − a)
(
I + n

r

))
, an m∗∗

satisfying

P ∗∗
(
m∗∗

)
= P̃ +

β1
β1 − 1

(r − a)
( c
K

)1−β2 (
I −

K −
(
c−m∗∗

)
r

)
(A.61)

results in P ∗∗ = P .
As is obvious from Eqs. (A.60) and (A.61) the lack of a closed form solution for P

makes the analysis of the properties of m∗ and m∗∗ quite difficult.

B.2 Comparison between F (P ) and F (P )

The value of the option to invest in an operationally flexible power plant is:

F (P ) =

(
ZP β2 +

P

r − a
− c

r
− I
)(

P

P

)β1
(A.62)

In Case 1 where K ≥ β1
β1−1 (r − a)

(
n
r + I

)
the value of the option to invest is:

F (P ) =

(
AP ∗β1 +

P ∗

r − a
− n

r
− I
)(

P

P ∗

)β1
(A.63)

For a given m, the strike price K∗:

K∗ =

(
(β1 − 1) ÃP ∗β1

n
r + I − (β1 − 1)F (P )

(
P ∗

P

)β1
) 1

β1−1

(A.64)

results in F (P ) = F (P ). Equivalently, any K can have the property of K∗ as long as an appropriate
m∗ is chosen.

For m∗ = m∗, i.e. for P ∗ = P and F (P ) = F (P ) to hold simultaneously, we require

AP ∗β1 + m∗

r = ZP ∗β2. The sum on the left-hand side of the equality is comprised by

24For the investment to take place at P we require ZP β2 +
P

r−a −
c
r
− I > 0 which indeed holds thanks

to G′
(
P
)
> 0.
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the obligation of the plant towards the SO
(
AP ∗β1

)
and the discounted flow of RO

premiums
(
m∗/r

)
. On the contrary, the term on the right-hand side of the equality

is the value of being operationally flexible
(
ZP ∗β2

)
. This equality basically says that

a combination of m and K that satisfies P ∗ = P will result in F (P ) = F (P ) as long
as the net benefit from participating in a RO scheme exactly outweighs the loss of
operational flexibility that the participation in such a scheme implies. Note that,
contrarily to the benchmark presented in Section 2 where it is enough for the flow
of RO premiums to cover the cost associated with the obligation to respect a certain
K, here the flow of premiums needs to pay also for the forfeited flexibility that power
plants not participating in the RO market enjoy.

In Case 2 where K ∈
(
Ir + n, β1

β1−1 (r − a)
(
I + n

r

))
the value of the option to invest is

F (P ) =

(
BP ∗∗β2 +

K − n
r
− I
)(

P

P ∗∗

)β1
(A.65)

For a given K, the periodic cash flow m∗∗ that satisfies(
I − K − (c−m∗∗)

r

)
β2

β1 − β2
=

(
ZP β2 +

P

r − a
− c

r
− I
)(

P ∗∗ (m∗∗)

P

)β1
(A.66)

guarantees F (P ) = F (P ).

For m∗∗ = m∗∗, i.e. for P ∗∗ = P and F (P ) = F (P ) to hold simultaneously when

K ∈
(
Ir + n, β1

β1−1 (r − a)
(
I + n

r

))
, a necessary and sufficient condition is BP ∗∗β2 + K+m

r =

ZP ∗∗β2 + P ∗∗

r−a . The sum on the left-hand side of the equality captures again the net
benefit from participating in a RO scheme with binding K at the time of the invest-
ment. The sum of the right-hand side instead, represents the operating value of an
operationally flexible power plant abstaining from the RO market. As before, this
equality implies that a combination of m and K that satisfies P ∗∗ = P will result in

F (P ) = F (P ) as long as the benefits from participating in a RO scheme exactly out-
weigh the loss of operational flexibility that the participation in such a scheme implies.
The only difference with respect to the analysis presented in the main body of the
paper is again the consideration of the operational flexibility that a power plant that
is not selling ROs is enjoying. Again, the lack of a closed form solution for P makes
the analysis of the properties of m∗ and m∗∗ quite difficult.
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2022, available at: https://www.terna.it/it/sistema-elettrico/pubblicazioni/news-
operatori/dettaglio/rendiconto-Asta-capacity-market-2022

[43] TERNA (2019b) Mercato della capacità Rendiconto degli esiti - Asta madre
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