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1 Introduction and summary

The aim of this work is to provide the mirror TBA description of one particularly interesting

class of composite gauge-invariant operators in planar N = 4 super Yang-Mills (SYM) the-

ory and thus to further advance understanding of the planar AdS/CFT [1] spectral problem.

The operators we are interested in belong to the so-called su(2) sector of the N = 4

SYM and they are eigenstates of the one-loop dilatation operator having the following

explicit form [2]

OL =

L−4∑
i=1

(−1)i tr
(
XX ZiX ZL−i−3

)
. (1.1)

Here X and Z are complex scalars of N = 4 SYM and L ≥ 6 is an even number.
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Our special interest in this class of operators is motivated by the following. At one

loop operators from the su(2) sector can be identified with excitations of the XXX Heisen-

berg spin chain [3]. From this point of view, the operators above represent three-particle

(magnon) states, and the simplest of them is an excitation of the spin chain of length L = 6.

Diagonalizing the Heisenberg Hamiltonian for this case, one finds the corresponding eigen-

value to be 3λ
4π2 , where λ is the ’t Hooft coupling. Thus this state is in the spectrum of the

XXX model and the same conclusion holds for all OL. However, trying to describe these

states by solving the corresponding Bethe Ansatz equations one encounters a problem —

the magnons must have their rapidities uj at distinguished positions in the complex plane,

namely at1 −i, 0, i [4, 5]. As a result, the scattering matrices entering the Bethe Ansatz

are singular and the energies of such states are ill-defined.2 This problem is, of course,

well known and one natural way to cure it is to introduce a regularization by means of a

twist, which we call φ. In the gauge theory twisting can be linked to the Leigh-Strassler

deformation of N = 4 super Yang-Mills theory [6] dual to strings in the Lunin-Maldacena

background [7] with a real deformation parameter and their nonsupersymmetric general-

izations [8]. In this physical theory the limit φ→ 0 can be taken without any problem. In

the Bethe Ansatz approach one first computes the energy of OL for finite φ and then takes

φ→ 0 finding the same result as from the direct diagonalization of the Hamiltonian.

Also, having rapidities of two magnons at singular points ±i can be related to the fact

that OL is a mixture of operators where two fields X are stuck together. In the terminology

of [9] two magnons form an infinitely tight bound state. We will have to say more about

the nature of this bound state later.

Obviously, at one loop introduction of a twist is just a minor feature which distin-

guishes OL from other operators. Going to higher loops reveals more dramatic differences.

To analyze the states corresponding to OL at higher loops, we can try to employ the all-

loop asymptotic Bethe Ansatz [2], which is also referred to as the Bethe-Yang equations.

In addition to the twist φ the Bethe-Yang equations depend on the coupling constant g

which we identify with the effective string tension related to λ as g =
√
λ

2π . Expanding

the Bethe-Yang equations in powers of g and starting from the one-loop rapidities 0,±i,
one can find a formal power series solution for uj with coefficients depending on φ. As

expected, nothing special happens until one reaches the first wrapping order. However,

at the first wrapping order, g2L, one discovers that the limit φ → 0 is singular and the

corresponding energy diverges as φ approaches zero. This behavior should be contrasted

to that of regular states (e.g. Konishi): the latter do not even require the introduction of

a twist. On the other hand, from the point of view of the gauge theory we should do not

expect any problem with taking φ→ 0 for operators of the type OL.

Certainly, the Bethe Ansatz is only asymptotic, that is it provides a correct description

of the spectrum only up to the first wrapping order; the perturbative behavior of OL serves

as a clear confirmation of this fact. Hence, as for regular operators, we should expect that

the TBA must give an adequate solution.

1Here Bethe roots are rescaled by a factor 1/2 in comparison to the XXX standard normalization.
2At one loop one can use Baxter’s Q-operator to describe the corresponding states in terms of dual roots

which lead to the well-defined energy.
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We recall that the TBA approach, originally developed for relativistic theories [10],

enables a computation of the ground state energy of a two-dimensional integrable model in

a finite volume by evaluating the partition function of the accompanying mirror model [11].

In recent years the mirror TBA — a tool to determine energies of string states on AdS5×S5

and correspondingly scaling dimensions of gauge theory operators — has been largely ad-

vanced [12]–[23] and generalized to include excited states [24]–[27]. Results derived from

the corresponding TBA equations [28]–[32, 33] show an agreement with various string [34]–

[37] and gauge theory [38]–[40] computations, and also with Lüscher’s perturbative treat-

ment [41]–[44].

Apparently, constructing the TBA equations for the states corresponding to OL we

might follow the same procedure as for regular states. This amounts to first building up an

asymptotic solution with a finite twist,3 analyzing its analytic properties and then using

them to engineer the TBA equations [21]. However, the TBA equations constructed in such

a way rely on the asymptotic solution which is valid only for λ . φ which makes obscure how

to take the limit φ→ 0 with λ fixed. More precisely, for fixed φ there always exists a critical

value λcr ≡ λcr(φ) such that the Bethe-Yang equations have a well-defined solution for λ ≤
λcr(φ) and no solution for λ > λcr(φ). Nevertheless, in perturbative treatment of the TBA

this problem of order of limits can be overcome by considering first the expansion in powers

of λ and then taking the limit φ→ 0 in each term of the expansion. In this work we consider

in detail the corresponding twisted TBA equations for OL with L = 6. In fact, introduction

of the twist results in the analytic behavior of rapidities and Y-functions very similar to

that considered in [27], in particular, the complex rapidities u2 and u3 of the second and

third particle respectively, lie outside the analyticity strip, which is in between two lines

running parallel to the real axis at − i
g and i

g . Not surprisingly, the TBA equations for the

state corresponding to O6 essentially coincide with that of [27]. By expanding these TBA

equations up to λ6, we then show that the TBA correction to the Bethe-Yang equations

cancels precisely the divergent part of the asymptotic energy rendering therefore the limit

φ→ 0 well-defined. For the energy E(6) at six loops (the first wrapping order) we then find

E(6) =

(
−84753

1024
+

243

128
ζ(3) +

189

64
ζ(5)− 567

128
ζ(9) +O(φ)

)
g12 .

We also provide a mechanism for a similar cancellation at higher orders of λ. This in

principle solves the problem of describing singular states in perturbative theory. It is quite

remarkable that in spite of the fact that the TBA corrections make the energy of a state

finite in the limit φ→ 0, the perturbative rapidities remain divergent in this limit.

A veritable question is however how to describe singular states for finite λ and what

are the corresponding TBA equations. To answer this question, we again consider a state

which contains only our three distinguished magnons. For large L such a state can be

viewed as a scattering state of a fundamental particle and a two-particle bound state with

momenta ±π. We put forward a conjecture that the one-loop rapidities are in fact exact for

any value of λ, and we use this conjecture to propose TBA equations for these states. In

what follows we refer to these rapidities as exceptional. As a very non-trivial consistency

3Introduction of a twist in the mirror TBA has been considered in the recent work [45]–[49].
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check, we show that our conjectured TBA equations lead to the constraints4 Y1∗(uj) = −1

which for regular states would have to be imposed as momentum quantization conditions.

We compute the energy of the shortest operator5 of this type (of length L = 6) up to λ6

and show that it perfectly agrees with the result obtained from the twisted TBA equations.

We believe that the equality of energies computed from the TBA based on twisted and

exceptional rapidities must hold to all orders in perturbation theory.

Amazingly, in the approach based on the exceptional rapidities, the TBA corrections

begin to contribute to the energy already at λ3, and for a generic singular state at λL/2, i.e.

at half-wrapping. This behavior is consistent with the analysis of [11] where a two-particle

bound state with the total momentum p larger than the critical value pcr has been studied.

Indeed, the leading exponential correction to the energy of the bound state found from

the Bethe-Yang equations is e−qJ and the leading TBA correction is expected to be of the

same order. Here q is used to parametrize the complex particle momenta p2 = p
2 + iq and

p3 = p
2 − iq with Re q > 0. At weak coupling pcr ≈ π − 2g, i.e. the momentum p = π of

the two-particle bound state we are interested in here exceeds the critical value. According

to [11], in the limit g → 0 one has q = − log g
2 + . . ., i.e. the leading TBA correction must

be of the order e−qJ ∼ gJ where J ≈ L is large.

The family of three-particle states corresponding to OL is probably the only example

of states which rapidities are known as exact functions of g. For this reason we call the

operators OL exceptional. In a sense these states are similar to the vacuum state for which

one does not have the exact Bethe equations. Of course, the TBA equations for OL are

non-trivial and they are ultimately responsible for the non-trivial dependence of energy on

the coupling constant. It would be very interesting to see whether OL exhibit exceptional

features also from purely field-theoretic point of view.

In fact one can consider more general operators which include the three exceptional

magnons as a building block [5]. In contrast to the exact rapidities of exceptional magnons,

extra rapidities of such an operator are not rigid and have non-trivial λ-dependence. The

results of this paper allow one to readily construct the corresponding TBA equations. In

a sense all such states can be viewed as a new sector of N = 4 SYM with exceptional

operators playing the role of non-BPS vacuum states.

Having established two TBA approaches to exceptional operators — the twisted one

and the one based on the exceptional rapidities (both producing the same perturbative

energies) — one can naturally wonder what is the relation between them. Apparently,

they look rather different, in particular, in the twisted approach the perturbative rapidities

are divergent in the limit φ → 0. To clarify this issue, one can fix a value of λ and look

for the evolution of the rapidities uj(φ) when the twist decreases from some finite value

to zero. Inverting the function λcr(φ), one finds a critical value of the twist φcr = φcr(λ).

For φ > φcr(λ) the Bethe-Yang equations have a solution corresponding to exceptional

operators, while as far as φ < φcr(λ) the solution ceases to exist. A characteristic property

4Here Y1∗ denotes analytic continuation of the main Y-function Y1 to the string region.
5The operator O6 given by (1.1) appears to be an eigenstate of the four-loop dilatation operator; up

to the order g8 its scaling dimension can therefore be computed by direct application of the corresponding

dilatation operator and without introducing a twist.
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Figure 1. The picture of the z-torus at g = 0.1. Brown and green curves are the boundaries of

the string and (anti-)mirror regions. They intersect at four points which correspond to the branch

points on the string u-plane. Exceptional rapidities are u1 = 0, u2,3 = ∓i/g. Twisted rapidities

are indicated by vi and wi. Rapidities v2,3 are located just a bit outside the analyticity strip as

happens for e.g. L = 6, while w2,3 are inside as for e.g. L = 8. Arrows indicate the conjectured

motion of the twisted rapidities as φ→ 0.

of φcr(λ) is that it vanishes in the limit λ → 0. Importantly, one finds that when φ

approaches φcr from above the complex rapidities u2,3 move towards the branch points of

the string u-plane at −2∓i/g, where the function Y2 develops a double pole. On the z-torus

the branch points correspond to the points of intersection of the boundaries of the string and

(anti-)mirror region, see figure 1. Decreasing the twist below φcr, the only way to smoothly

continue the evolution of u2 and u3 compatible with reality of the energy is to assume that

they move along the cuts of the string u-plane or on the z-torus along the boundaries of

the string region in opposite directions, reaching the positions of the exceptional rapidities

at φ = 0. On the z-torus all the way towards the branch points the rapidities u2 and u3
remain complex conjugate but they loose this property upon passing them. On the u-plane

this corresponds to the fact that u2 and u3 move along the lower edges of the cuts which

reflects our choice of the string u-plane. In fact, such a behavior of u2,3 is the same as

the one found in [11] for a two-particle BPS bound state at infinite J . Concerning the

divergency of rapidities in the twisted theory, it is (almost) certain that this is just an

artifact of the perturbative expansion. For finite λ the rapidities may have an essential

singularity at φ = φcr such that the limit φ→ 0 would produce the exceptional rapidities we

conjecture. For example a term φ e−λ/(φ−φcr(λ))
2

leads to poles in φ in perturbative theory
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while for finite λ it gives a zero contribution in both limits φ → φcr and φ → 0. It would

be important to further justify the above-described scenario, in particular to construct the

TBA equations for φ < φcr and show their consistency with our assumptions of positioning

the rapidities on the boundaries of the string region. It is worth stressing that for these

rapidities the usual asymptotic description does not exist because some S-matrices are

singular. Nevertheless, the existence of the TBA for exceptional rapidities indicates that

the corresponding construction must exist also for this case.

The paper is organized as follows. In the next section we discuss the emergence of singu-

lar states in the asymptotic Bethe Ansatz and introduce a twist. For the three-magnon case

and L = 6 we also provide a perturbative solution of the Bethe-Yang equations up to the

order λ6 accompanied by a small φ-expansion which reveals a singular nature of the state

under consideration. In section 3 we discuss the twisted TBA equations for singular states

and also compute the first Lüscher correction to the energy for the state corresponding to

O6. We then show that the energy admits a smooth limit φ→ 0. To shed further light of

finiteness of energy in the twisted TBA approach, we explicitly demonstrate a cancellation

of the leading singularities in the expression for the energy at order λ7. Section 4 is devoted

to the TBA approach based on exceptional rapidities. After formulating our conjecture

on the exact form of uj , we analyze the analytic properties of the asymptotic Y-functions

which appear to be remarkably simple. Relying on the analytic structure of the asymptotic

solution, we construct the corresponding TBA equations and show that they imply the ful-

fillment of the exact Bethe equations. We then compute the energy of O6 and show that

in spite of the fact that in the approach based on the exceptional rapidities the TBA starts

to contribute to the energy already at half-wrapping, the energy perfectly agrees with that

found from the twisted TBA up to and including the first wrapping order. In the conclu-

sions we discuss some interesting problems for future research. Some technical details are

relegated to four appendices, and explicit expressions for twisted rapidities and Y-functions

can be found in the Mathematica file attached to the arXiv submission of the paper.

2 Bethe-Yang equations and singular rapidities

In a perturbative expansion in g =
√
λ

2π wrapping effects contribute to the scaling dimension

starting from order g2L where L is the length of the operator under consideration. Con-

sequently, the Bethe-Yang equations provide the description of the perturbative spectrum

up to the first wrapping order, and its predictions are usually expected to be qualitatively

true even for finite but small g. It is therefore natural to start our analysis of exceptional

operators with the corresponding Bethe-Yang equations.

In what follows we will interchangeably use the gauge and string theory language,

speaking equivalently of scaling dimension (of a gauge invariant operator) and energy (of

the correspondent string excitation), etc.

2.1 Singular rapidities in the one-loop Bethe ansatz

The one-loop spectrum of N = 4 SYM in the su(2) sector is described by the XXX spin

chain [3]. Scaling dimensions can be found by solving the Bethe ansatz equations for

– 6 –
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rapidities of M magnons

1 = eipkL
M∏
j 6=k

Sxxx(uk, uj) ⇒ 1 =

(
uk + i

uk − i

)L M∏
j 6=k

uk − uj − 2i

uk − uj + 2i
, k = 1, . . . ,M . (2.1)

Invariance under cyclic permutations6 implies

eiP = 1 ⇔
M∏
k=1

i+ uk
i− uk

= 1 , with P =
M∑
k=1

p(uk), p(u) = −i log
i+ u

i− u
. (2.2)

The one-loop scaling dimensions, or energies, are then given by

E = L+ g2
M∑
k=1

2

1 + u2k
. (2.3)

Solutions of the Bethe-Yang equations exist also for complex values of the rapidities. It

has been observed [4, 5] that among those there exist solutions with odd M where three

rapidities are placed at

u1 = 0 , u2 = −i , u3 = i , (2.4)

and the remaining M − 3 rapidities come in pairs. The first three rapidities are rather

exceptional: the corresponding momenta read

p1 = π, p2 = −π
2

+ i∞, p3 = −π
2
− i∞, (2.5)

and similarly the individual energy of each of the last two magnons is ill-defined, signaling

the necessity to introduce a regularization. This can equivalently be done by introducing

a regularization parameter ε in the solutions u1 = f1(ε) and u2,3 = ∓i+ f2,3(ε) as in [2, 5]

or by introducing a twist φ in the Bethe-Yang equations as e.g. in [9]:

1 = e−iφ
(
uk + i

uk − i

)L M∏
j 6=k

uk − uj − 2i

uk − uj + 2i
, k = 1, . . . ,M. (2.6)

Then the cyclicity condition (2.2) becomes P = Mφ/L mod 2π.

Focusing on the case M = 3, where only the three exceptional rapidities are present,

one finds that when L is even (and of course L ≥ 6) solutions can be found so that in the

limit φ → 0 rapidities tend to u1 = 0 and u2,3 = ∓i. This can be done by requiring that

the divergence of momenta for small φ is compensated by a singularity in the S-matrix

Sxxx(u2, u3). Schematically one then has

u1 ∼ φ , u2 ∼ −i− φ− i φL , u3 ∼ +i− φ+ i φL , (2.7)

where the value as well as the sign of the coefficient of the imaginary correction depends on

L. Then, for all even L, the scaling dimension of the operator or equivalently the energy

of the dual string state is also regular and reads

lim
φ→0

E(φ) = L+ 3g2 . (2.8)

6In string theory this is equivalent to imposing the level-matching condition.
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Furthermore, the corresponding one-loop eigenvectors of the dilatation operator can be

found by taking the limit of the Bethe wave-function of the twisted solution, yielding the

N = 4 SYM operators (1.1). Therefore, at one loop, we conclude that there exists a family

of eigenstates of the dilatation operator that can be constructed out of a building block of

three exceptional magnons. These can be thought of as one magnon of maximal momentum

p1 = π and one “infinitely tight” two-magnon bound state having maximal momentum

p2+p3 = −π. It is interesting to see whether and how this picture changes beyond one-loop.

2.2 All-loop Bethe-Yang equations and their breakdown

The all-loop Bethe-Yang equations in the su(2) sector [2, 50, 51] including the twist7 read

1 = e−iφeipkL
M∏
j 6=k

uk − uj − 2i

uk − uj + 2i
σ−2(uk, uj) , (2.9)

where L = J +M and σ(uk, uj) is the dressing factor. Here and in what follows we adopt

the notation usual to field theory in which rapidities approach constant values for small g.

Therefore,

x±k = xs
(
uk/g ± i/g

)
, xs(u) =

u

2

(
1 +

√
1− 4/u2

)
, (2.10)

and the relation between rapidity and momentum of a magnon is eipk = x+k /x
−
k . Again,

the equations are supplemented by the level-matching condition ei P = eiMφ/L.

As before, we focus on three-excitation solutions that for small g tend to the one-loop

configuration of the previous section. From field theory, one expects the scaling dimension

of any operator to admit a well-behaved small coupling expansion. Therefore, one would

hope to resolve any singularity in the Bethe ansatz description by the same means used in

the previous section.

Let us consider, for simplicity, the case of the shortest operator of length L = 6. Then,

for any non-vanishing value of φ, we can numerically solve (2.9). Some of these solutions are

plotted in figure 2. These describe one particle with real rapidity and a pair of particles with

complex conjugate rapidities for small g. However, as noticed in similar cases [27], it ap-

pears that the solution predicted by the Bethe-Yang equations breaks down at some critical

value of the coupling gcr(φ), which depends on the twist, see figure 2. There the rapidities

are no longer complex-conjugate to each other, and as a result the energy becomes complex.

We expect the breakdown to be an artifact of the asymptotic nature of the Bethe-Yang

equations. What is striking, and peculiar of these states, is that the value of gcr(φ) where

the breakdown happens goes to zero with φ, and therefore for finite g the twist cannot be

removed no matter how small g is. This scenario also holds for larger values of L.

This raises the question of whether the asymptotic description can be employed at

least perturbatively in g. Expanding (2.9) perturbatively, up to the order g2L−2 one can

7As discussed in more detail in appendix A.1, the twisted Bethe-Yang equations (together with the

twisted level-matching condition) describe a γ-deformation of N = 4 SYM.
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Figure 2. Plots of the real and imaginary parts of u3 as functions of g for various values of φ. For

any fixed φ the rapidity u3 moves to the branch point −2g + i in the field theory normalization

and reaches it at gcr(φ). Inset represents the inverse function φcr(g) which apparently is a linear

function of g with slope ≈ 3.

find a solution of the form8

ui =

L−1∑
n=0

fi,n(φ,L) g2n +O(g2L) , (2.11)

where at φ = 0 the coefficients fi,n(0, L) are regular. The energy up to O(g2L) is then

found from the asymptotic formula

Easym = J +
M∑
k=1

√
1 + 4g2 sin2(pk/2) , (2.12)

which involves the all-loop dispersion relation only. On general grounds we expect the

asymptotic formula to receive corrections at order g2L due to wrapping effects, and there-

fore to differ from the “true” result (which in principle might be computed by field theory

perturbative techniques). For these particular states, however, the asymptotic energies

appear to be divergent in the limit φ → 0 at the wrapping order. For instance, in the

L = 6 case we find

Easym = 6 + 3g2 − 9

4
g4 +

63

16
g6 − 621

64
g8 − 9

256
(8ζ(3)− 783)g10 + (2.13)

+

(
− 2187

1024φ6
− 3645

8192φ4
+

189783

1310720φ2
+

81

128
ζ(5)+

27

32
ζ(3)− 1223982387

14680064

)
g12+O(g14, φ)

Starting from the wrapping order g2L, the rapidities also become divergent in the limit

φ→ 0. This result is remarkable. Indeed, doing perturbative computations in γ-deformed

N = 4 SYM one would find that for small φ the numerical discrepancy between the asymp-

totic prediction and the true result is enormous. Obviously this is related to the fact that

wrapping corrections have been neglected so far. Since the asymptotic energy diverges as

8The solution for rapidities for L = 6 can be found in the Mathematica file attached to the arXiv

submission of this paper.
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φ approaches zero, contribution of wrapping diagrams becomes crucial for diagonalization

of the mixing matrix. This means that for exceptional states (or for states containing the

three exceptional rapidities) a separation of the exact energy into asymptotic and wrapping

parts is ill-defined in the limit of vanishing twist.

In order to properly account for wrapping effects, we will use the mirror TBA. A con-

venient approach to excited states TBA is to make use of the contour deformation trick

and of the knowledge of analytic properties of asymptotic Y-functions. For this purpose

it is convenient to formulate TBA equations in the twisted theory for g . φ where the

asymptotic description can be trusted.

3 Twisted TBA

We want to find the mirror TBA description of the exceptional three-magnon configura-

tions discussed in the previous section, which we expect to exist for any even L ≥ 6. Our

strategy will be to introduce a twist φ and first formulate the TBA equations for the twisted

theory, which corresponds to a γ-deformation of N = 4 SYM.

Fixing a length L, for any nonzero φ and for g small enough we can find the asymp-

totic solution of the twisted Bethe-Yang equations (2.9). These in turn allow one to write

down the asymptotic Y-functions in the twisted theory. The details of this construction

are given in appendices A.2 and A.3. Knowing the analytic properties of the asymptotic

Y-functions, we can write down the TBA equations, which can then be solved numerically

or perturbatively in g.

3.1 Analytic structure of Y-functions

We are considering here a family of configurations (labeled by even L) with one real ra-

pidity u1 and two complex-conjugate u2,3, depending on g and φ. Since eventually we

are interested in the limit φ → 0, we restrict ourselves to considering a small region of

parameter space,

g . φ� 1 , (3.1)

where the first inequality follows from the necessity of having a real energy solution of the

Bethe-Yang equations.

Different states in the family have slightly different analytic structure for auxiliary

Y-functions, that in turn yield different driving terms in the TBA equations by contour

deformation trick. The procedure to formulate these equations in the case of complex ra-

pidities has been detailed in [27], and can be applied straightforwardly to our case with

minor L-dependent modifications.

Therefore, rather than attempting to give a unified description of each state in the

family, we focus on the shortest one, with L = 6. In order not to clutter our treatment

with technicalities, we relegate the discussion of roots of auxiliary Y-functions and the

formulation of the TBA and exact Bethe equations to appendices A.2 and A.3. There we

also briefly comment on how to obtain the TBA system for L ≥ 8.
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Here, instead, we focus our attention on some peculiar properties of YQ functions for

states with complex rapidities, which were also found in [27]. A crucial observation there

is that depending on the location of the rapidities on the z-torus some YQ-functions may

have poles inside the analyticity strip. As a result, there is a root of 1 + YQ located in

the vicinity of a pole. If the rapidities lie just outside the analyticity strip, this leads to

the appearance of extra terms in the TBA equations as well as the dispersion relation and

total momentum quantization condition.

This is precisely what happens in the case L = 6 for Y2. Let us indicate from now on the

rapidities of the magnons as u
(1)
i . They obey the exact Bethe equations 1 + Y1∗(u

(1)
i ) = 0.

Since we have for Y2 that

Y2(u
(1)+
2 ) =∞ , Y2(u

(1)−
3 ) =∞ , (3.2)

and u
(1)+
2 and u

(1)−
3 are close to the real line then there exist two complex conjugate roots

u
(2)
2,3 close to u

(1)
2,3 such that

1 + Y2(u
(2)+
2 ) = 0 1 + Y2(u

(2)−
3 ) = 0 . (3.3)

Similar relations can be written also for Y3 close to u
(1)++
2 , but as it turns out, in the case

of rapidities just outside the physical strip we can cast the TBA equations in a form that

depends only on the usual roots u
(1)
2,3 and the (shifted) roots u

(2)
2,3.

Taking e.g. the first equality in (3.3) and expanding Y2(u) = ResY2(u)

u−u(1)+2

around the pole

at u
(1)+
2 , one gets

−
(
u
(2)
2 − u

(1)
2

)
= ResY2

(
u
(1)
2

)
+
∂ ResY2
∂u

(
u
(1)+
2

)
(u

(2)
2 − u

(1)
2 ) + . . . . (3.4)

For small residue of Y2 this relation implies that u
(2)
2 − u

(1)
2 is of order of ResY2 which for

small g is g2L. It is also worth noticing that due to the presence of the poles (3.2) which

are very close to the real line and almost pinch it, Y2(u) will take large values around

u = Re
(
u
(1)
2

)
.

3.2 Wrapping corrections for L = 6 at O(g12)

We are interested in the first correction to the energy, which can be found from a pertur-

bative expansion of the energy formula [27]

E = J +
3∑
i=1

E(u
(1)
i )− 1

2π

∞∑
Q=1

∫ ∞
−∞

du
dp̃Q
du

log(1 + YQ) (3.5)

−ip̃2(u(1)+2 ) + ip̃2(u
(2)+
2 )− ip̃2(u(2)−3 ) + ip̃2(u

(1)−
3 ) ,

where we used the fact that for L = 6 the rapidities lie just outside the analyticity strip.

To compute E(u
(1)
i ) to the order g12, it is sufficient to consider the asymptotic expression

of the rapidities found by solving (2.9) and one obviously reproduces (2.13) from the first

two terms in (3.5) since they correspond to (2.12).
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The leading perturbative correction due to wrapping effects can be found by expanding

the remaining terms,

∆E(wrap) = − 1

2π

∞∑
Q=1

∫ ∞
−∞

du
dp̃Q
du

Y ◦Q (3.6)

−i∂p̃2
∂u

(u
(1)+
2 ) ResY ◦2

(
u
(1)+
2

)
+ i

∂p̃2
∂u

(u
(1)−
3 ) ResY ◦2

(
u
(1)−
3

)
,

where we made use of (3.4) and replaced everywhere YQ by its asymptotic expression Y ◦Q,

which can be found in appendix A.2. Furthermore, at this order only the one-loop rapidities

u
(1)
i are needed.

The final result is similar to the correction one would näıvely expect from Lüscher’s

formula, with the important addition of the terms in the second line which are dictated by

the contour deformation trick. It is worth noticing that, since Y ◦Q(u) ≥ 0, the contribution

of the first line alone is negative and for this reason can never cancel the small φ divergence

in (2.13).

In the case L = 6 the computation of ∆E(wrap) can be readily performed. As discussed

above, the separation between the poles of Y ◦2 at u
(1)+
2 and u

(1)−
3 vanishes as φ6 for small

g, as indicated by (2.7). Thus, the contributions divergent in the limit φ → 0 come from

the integral of Y ◦2 and from the residues on the second line of (3.6). Computing ∆E(wrap)

and adding it to the asymptotic contribution, one finds that all divergent terms cancel out,

giving in the limit φ→ 0 the following result

E = 6 + 3g2 − 9

4
g4 +

63

16
g6 − 621

64
g8 − 9

256
(8ζ(3)− 783)g10 (3.7)

+

(
−567

128
ζ(9) +

189

64
ζ(5) +

243

128
ζ(3)− 84753

1024

)
g12 +O(g14, φ) .

The cancellation of the divergencies would not be possible without the terms involving u
(2)
2,3.

This provides the first justification of the energy formula (3.5) which does not rely on the

contour deformation trick.

3.3 Comments on the g14 correction

The cancellation of the divergencies at g12 indicates that, when wrapping corrections are

properly accounted for, the energy should not suffer from any singularity even at higher loop

orders. On the other hand, considering the solution of the asymptotic Bethe ansatz (2.9),

we find that not only the energy at g14 but also the rapidities at g12 are divergent when the

twist is removed. The mirror TBA is expected to render at least the energy formula finite.

Unfortunately, even for the simplest L = 6 state, computing exactly the wrapping

correction to the energy at order g14 is a non-trivial task, conceptually similar to finding

the five-loop energy of the Konishi multiplet [31–33], but much more involved because of

the sophisticated analytic structure of the TBA system under consideration.

To progress with the calculation of the energy at g14, one needs to know the rapidities

u
(1)
i at six loops. These cannot be found just by solving the Bethe-Yang equations: one

– 12 –
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has to consider the exact Bethe equations

log Y1∗(u
(1)
i ) = (2n+ 1)π i , n ∈ Z . (3.8)

These equations are spelled out explicitly in appendix A.3 and they involve auxiliary Y-

functions as well as their roots. In a perturbative expansion, the exact Bethe equations

can be written as

0 = log Y1∗(u
(1)
i )− (2n+ 1)π i = log BY(i)(u

(1)
i ) + δR(i)(u

(1)
i ) , (3.9)

where BY(i) represents the Bethe-Yang contribution for particle i and δR(i) is a correction

of order g12 (which also depends on the other rapidities, auxiliary Y-functions and roots).

If we expand the rapidities u
(1)
i around the asymptotic solution u◦i ,

u
(1)
i = u◦i + δu

(1)
i , (3.10)

we find that the exact Bethe equations can be rewritten as

0 =

3∑
k=1

∂BY(i)

∂u◦k
(u◦i ) δu

(1)
k + δR(i)(u◦i ) +O(g14) , (3.11)

where we used that by construction BY(i)(u◦i ) = 1.

These three coupled equations are supplemented by the quantization condition of the

total momentum P = 2πm+Mφ/L, where the total momentum is given by

P =
∑
i

pi −
1

2π

∫ ∞
−∞

du
dẼQ
du

log(1 + YQ)

− iẼ2(u(1)+2 ) + iẼ2(u(2)+2 )− iẼ2(u(2)−3 ) + iẼ2(u(1)−3 ) . (3.12)

Notice that the quantization condition is non-trivial because unlike most other cases, e.g.

that of the Konishi operator where the rapidities come in pairs of opposite signs, P cannot

be immediately seen to vanish due to the parity properties of YQ-functions.

A natural question one may ask is whether the wrapping corrections to rapidities δu
(1)
i

eliminate the divergent contributions in the asymptotic result at g12. In that case, it should

be

δu
(1)
i = − (divergent part of u◦i ) +O(φ0) . (3.13)

Without having to solve the complicated set of equations (3.11), we can plug our

guess (3.13) into the total momentum quantization condition and check whether it is

satisfied. The advantage of this strategy is that at the order g12 we can expand (3.12) as

P =
∑
i

p(u◦i ) +
∑
i

∂p

∂u
(u◦i ) δu

(1)
i −

1

2π

∫ ∞
−∞

du
dẼQ
du

Y ◦Q

− i∂Ẽ2
∂u

(u◦+2 ) ResY2(u
◦+
2 ) + i

∂Ẽ2
∂u

(u◦−3 ) ResY2(u
◦−
3 ) +O(g14) . (3.14)

where the only non-asymptotic objects appearing in (3.12) are precisely δu
(1)
i .
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Surprisingly, we find that the guess (3.13) is incompatible with the total momentum

condition; in fact it would make P divergent as φ → 0. This implies that the individual

rapidities found from exact Bethe equations remain divergent in perturbative theory.

The only way of checking whether the g14 wrapping correction to the energy makes

it finite for small φ is to deal with the full set of TBA equations and expand them around

the asymptotic solution and then in powers of g. This is straightforward but cumbersome,

and is done in appendix A.4 for the case L = 6. The linearized TBA system ends up to be

more complicated than in the case of the Konishi operator. In particular, the linearized

system for the correction to YM |vw-functions does not decouple from the other auxiliary

equations, which makes it hard to find an analytic solution.

On the other hand, if we focus on the most φ-divergent part of the corrections to

rapidities (which in turn determine the most divergent part of the corrections to the

energy) it is relatively easy to see that once again the wrapping effects precisely cancel the

asymptotic divergence. The compatibility of this cancellation with (3.12) can also be seen

as a non-trivial check of the formula for the total momentum.

In conclusion, we find strong evidence of a general mechanism by which the TBA

description of the exceptional operators can be obtained by introducing a twist φ as a

regulator. Even if the TBA system can be found from the asymptotic data only when

g . φ, and therefore never, strictly speaking, at φ = 0, the resulting physical predictions

will be regular in φ when wrapping effects are accounted for. Therefore, we can compute

the perturbative energy for small φ and then take the limit φ→ 0 in the final result.

Even if in principle a similar strategy could be repeated to find energies at finite

g, this would require to (numerically) solve the full TBA system for several values of φ

in order to extrapolate to φ → 0 result. This would be practically unfeasible, and it is

therefore important to look for an alternative TBA description of these operators, which

does not resort to introducing a regulator.

4 TBA with exceptional rapidities

The twisted TBA approach provides a way to compute the anomalous dimensions of

exceptional operators in perturbative gauge theory. However, it leaves open a question

of determining the dimensions at any value of the coupling constant. In this section we

propose a set of TBA equations which allows one to calculate the dimensions of these

operators at any value of λ.

The main idea is that since an exceptional operator is dual to a string theory state

which is composed of a fundamental particle and a two-particle bound state with maximum

allowed momenta±π, the Bethe roots in the gauge theory normalization for any exceptional

state are in fact independent of the coupling constant: u1 = 0 , u2 = −i , u3 = i. The roots

u2,3 satisfy the bound state condition, and since their real part is 0, they are on the cuts of

x±s functions. According to [11], they must lie on the same sides of the cuts, and therefore,

we propose that the exact Bethe rapidities (in the string theory normalization which will be
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Yo-function Zeroes Poles

YM |w 02

1 + YM |w −i/g , +i/g −(M + 2)i/g , (M + 2)i/g

Y1|vw 02

1 + YM |vw Mi/g , −Mi/g

Y− −2i/g , 2i/g 02

Y+ 02 , −i/g
1− Y− −i/g , i/g
1− Y+
Y1 02 −i/g , +i/g

Y2 02

YQ , Q ≥ 3 i(Q− 2)/g , −i(Q− 2)/g

Table 1. Relevant roots and poles of asymptotic Y-functions within the mirror region. 02 means

either a double zero or a double pole at 0.

convenient to write the TBA equations in this section) for any exceptional state are equal to

u1 = +
i0

2
, u2 = − i

g
− i0 , u3 =

i

g
− i0 . (4.1)

With this choice of the signs in front of i0, the fundamental particle and the bound

state composed of u2,3 have momenta +π and −π respectively, if one uses Mathematica’s

conventions for branch cuts. Then the root u2 lies in the intersection of the mirror and

string regions, and u3 is in the intersection of the string and the second mirror regions.

Notice that it is different from the state analyzed in [27] where the rapidity u3 was in the

intersection of the string and the anti-mirror regions. The location of the rapidities on the

z-torus is shown on figure 1, and in terms of the z-rapidity variable all Y-functions and

dispersion relations are meromorphic in the vicinities of these points.

These rapidities lead to a quite simple analytic structure of asymptotic Y-functions

with double poles and zeroes at the origin of the mirror u-plane, see table 1, and it is

natural to assume that the exact Y-functions would have the same analytic properties.9

4.1 TBA equations

In this subsection we list the simplified and hybrid TBA equations for the exceptional

states. They can be obtained from the ones discussed in [27] by sending the roots rM to 0,

and u
(1)
i , u

(2)
i to ui. The only exception is the hybrid equations for YQ where one should

take care of the fact that the root u3 is located in the intersection of the string region

and the second mirror region but not in the anti-mirror region as it was in [27]. The

9Let us mention that Y-functions with double poles and zeroes at the origin are typical for boundary

TBA, see e.g. [52–54].
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TBA equations below are consistent with the analytic structure of Y-functions in table 1

supplemented by the conditions Y1∗(0) = Y1∗(−i/g) = Y1∗(i/g) = −1.

Simplified equations for YM |w.

log YM |w = 2 logS

(
i

g
+v

)
+log(1+YM−1|w)(1+YM+1|w)?s+δM1 log

1− 1
Y−

1− 1
Y+

?̂ s . (4.2)

Simplified equations for YM |vw.

log YM |vw =2δM1 logS

(
i

g
+ v

)
+ log(1 + YM−1|vw)(1 + YM+1|vw) ? s

+ δM1 log
1− Y−
1− Y+

?̂ s− log(1 + YM+1) ? s . (4.3)

Simplified equations for Y±.

log
Y+
Y−

= log(1 + YQ) ? KQy −
∑
i

logS1∗y(ui, v) , (4.4)

log Y+Y− = 2 log
1 + Y1|vw

1 + Y1|w
? s− log (1 + YQ) ? KQ + 2 log(1 + YQ) ? KQ1

xv ? s

− 4 logS

(
i

g
+ v

)
−
∑
i

log
S1∗1
xv (ui, v)2

S2(ui − v)
? s . (4.5)

It is worth mentioning that since the driving terms in the equations above satisfy the

discrete Laplace equation

SQ
(
v − i

g

)
SQ
(
v +

i

g

)
= SQ−1(v)SQ+1(v) , S0(v) = 1 ,

they can be written as

−
∑
i

logS1∗y(ui, v) = − logS1∗y(0, v)− logS2∗y(0, v) , (4.6)

−
∑
i

log
S1∗1
xv (ui, v)2

S2(ui − v)
? s = − log

S1∗1
xv (0, v)2

S2(0− v)
? s− 2 logS2∗1

xv (0, v) ? s+ logS2(0− v) .

This shows that the driving terms in eqs. (4.4), (4.5) can be understood as appearing not

because of the zeroes of 1 + Y1∗ at u = 0 ,−i/g , i/g in the string u-plane but due to the

zeroes of 1 + Y1∗ and 1 + Y2∗ at u = 0 in the string u-plane. It is consistent with the

interpretation of an exceptional state as a bound state of a fundamental particle and a

two-particle bound state with rapidities equal to 0. This interpretation however requires

using integration contours different from the ones described in [27].

Simplified TBA equations for YQ.

• Q ≥ 3

log YQ = log

(
1 + 1

YQ−1|vw

)2
(1 + 1

YQ−1
)(1 + 1

YQ+1
)
? s . (4.7)
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• Q = 2

log Y2 = −2 logS

(
i

g
− v
)

+ log

(
1 + 1

Y1|vw

)2
(1 + 1

Y1
)(1 + 1

Y3
)
?p.v s . (4.8)

Hybrid TBA equations for YQ. To make the presentation transparent, we introduce

a function which combines the terms on the right hand side of the hybrid ground state

TBA equation (LTBA = J + 2)

GQ(v) = −LTBA ẼQ + log
(
1 + YQ′

)
? (KQ′Q

sl(2) + 2s ? KQ′−1,Q
vwx ) (4.9)

+2 log
(
1 + Y1|vw

)
? s ?̂KyQ + 2 log(1 + YQ−1|vw) ? s

−2 log
1− Y−
1− Y+

?̂ s ? K1Q
vwx + log

1− 1
Y−

1− 1
Y+

?̂ KQ + log

(
1− 1

Y−

)(
1− 1

Y+

)
?̂ KyQ .

With the help of GQ, the hybrid TBA equations for YQ read as

log YQ(v) = GQ(v)−
∑
i

logS1∗Q
sl(2)(ui, v) + 4 logS ?p.v. K

1Q
vwx

(
− i

g
, v

)
(4.10)

− logSQ

(
− i

g
− v
)
SyQ

(
− i

g
, v

)
SQ(−v)SyQ(0, v)SQ

(
2i

g
− v
)
SyQ

(
2i

g
, v

)
.

It is important to stress that since the location of the Bethe rapidities is exactly

known the only parameters in the TBA equations for exceptional operators are the charge

J (or equivalently the operator length L = J + 3) and the coupling constant g. In this

respect these TBA equations are of the same level of complexity as the ones for the ground

state of any integrable model.

4.2 Exact Bethe equations

To construct the TBA equations by using the contour deformation trick one has to assume

that 1 + Y1∗ has zeroes at u = 0 ,−i/g , i/g in the string plane. On the other hand once

the equations have been derived one can use the analytic continuation to calculate Y1 at

these points. Thus, the conditions

Y1∗(0) = −1 , Y1∗

(
− i

g

)
= −1 , Y1∗

(
i

g

)
= −1 , (4.11)

on Y1∗ must follow from the TBA equations. This imposes nontrivial consistency

conditions on the TBA equations which we discuss in this subsection.

Bethe equation at u1 = 0: Y1∗(0) = −1. We begin by showing that Y1∗(0) = −1.

Indeed analytically continuing the equation for Y1 to real v one gets

log Y1∗(v) = G1∗(v)−
∑
i

logS1∗1∗
sl(2) (ui, v)

+ 4 log Res S ? K11∗
vwx

(
− i

g
, v

)
+ 2 logS11∗

vwx

(
− i

g
, v

)
− 4 log

(
− v − 2i

g

)x−s (0)− 1
x−s (v)

x−s (0)− 1
x+s (v)
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− logS1

(
− i

g
− v
)
Sy1∗

(
− i

g
, v

)
S1(−v)Sy1∗(0, v)S1

(
2i

g
− v
)
Sy1∗

(
2i

g
, v

)
.

Then one finds that the imaginary part of G1∗(v) in the limit v → 0 is equal to iπ(J + 2)

because all the kernels in G1∗(v) are antisymmetric at v = 0, and the real part of G1∗(v)

is given by the usual expression

Re G1∗(v) = −
∑
i

logS1∗y(ui, v) ?̌ K1 . (4.12)

One can then easily check that in the limit v → 0

−
∑
i

logS1∗y(ui, v) ?̌ K1 −
∑
i

logS1∗1∗
sl(2) (ui, v)

+ 4 log Res S ? K11∗
vwx

(
− i

g
, v

)
+ 2 logS11∗

vwx

(
− i

g
, v

)
− 4 log

(
− v − 2i

g

)x−s (0)− 1
x−s (v)

x−s (0)− 1
x+s (v)

− logS1

(
− i

g
−v
)
Sy1∗

(
− i

g
, v

)
S1(−v)Sy1∗(0, v)S1

(
2i

g
−v
)
Sy1∗

(
2i

g
, v

)
=0 mod 2πi ,

and therefore

log Y1∗(0) = iπ(J + 2) . (4.13)

Thus if J is odd as it is for exceptional operators then Y1∗(0) = −1.

Bethe equation at u2 = −i/g: Y1(−i/g) = −1. To show that Y1∗(−i/g) = −1

we notice that u2 = −i/g − i0 is in the mirror region, and therefore Y1∗(u2) = Y1(u2).

Moreover, since we approach −i/g from the mirror real line, we can always use the

mirror-mirror kernels in (4.10). Then to show that Y1(−i/g) = −1 we use that all

Y-functions are even, and all the kernels in (4.10) satisfy

K(t, v) = K(−t,−v) , (4.14)

and therefore for any even function f

2f ? K(v) = f ? K(v) + f ? K(−v) ≡ f ?
(
K(v) +K(−v)

)
. (4.15)

Thus we have the following equality

2 log Y1(v) = G1(v) +G1(−v)− 2
∑
i

logS1∗1
sl(2)(ui, v) (4.16)

+ 4 logS ?p.v.

(
K11
vwx

(
− i

g
, v

)
+K11

vwx

(
− i

g
,−v

))
− 2 logS1

(
− i

g
− v
)
Sy1

(
− i

g
, v

)
S1(−v)Sy1(0, v)S1

(
2i

g
− v
)
Sy1

(
2i

g
, v

)
.

Now we want to take the limit v → −i/g. Since all the kernels satisfy the discrete Laplace

equation we would näıvely get

G1(−i/g) +G1(i/g) = G2(0)− log (1 + Y2(0)) , (4.17)
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where the last term appears because of the pole in K21
sl(2)(t, v) at t = ±i/g. The kernel

KyQ also has a pole there and it produces the term 2 log
(
1 + Y1|vw

)
? s which is in G2,

and it could produce the term log
(
1− 1

Y−

)(
1− 1

Y+

)
but it vanishes because Y±(0) = −∞.

The only problem with (4.17) is that Y2(0) = ∞, and therefore we should deal with the

term F1 ≡ − log (1 + Y2) ? K1 more carefully. We represent it in the form

F1(v) = −
∫

dt log
1 + Y2(t)

1 + C2

t2

K1(t− v)−
∫

dt log

(
1 +

C2

t2

)
K1(t− v) , (4.18)

where C2 = limt→0 t
2Y2(t). The first term then represents no problem and one gets

2F1

(
ε− i

g

)
=−

∫
dt log

(
1 + Y2(t)

)
K2(t− ε) (4.19)

+

∫
dt log

(
1 +

C2

t2

)
K2(t− ε)− 2

∫
dt log

(
1 +

C2

t2

)
K1

(
t− ε+

i

g

)
,

where ε is infinitesimally close to 0 with positive imaginary part. The integral on the

second line can be computed, and expanding it in powers of ε one gets

2F1

(
ε− i

g

)
= − log(1 + Y2) ? K2(0)− log

C2

ε2
− iπ . (4.20)

Thus, the formula (4.17) contains the extra iπ term, and takes the form

G1(−i/g) +G1(i/g) = G2(ε)− log Y2(ε)− iπ + o(ε) . (4.21)

Taking into account the TBA equation for Y2 one gets

2 log Y1(v) = −iπ +
∑
i

logS1∗2
sl(2)

(
ui, v +

i

g

)
− 2

∑
i

logS1∗1
sl(2)(ui, v) (4.22)

− 2 logS1

(
− i

g
− v
)
Sy1

(
− i

g
, v

)
S1(−v)Sy1(0, v)S1

(
2i

g
− v
)
Sy1

(
2i

g
, v

)
+ logS2

(
− i

g
− v
)
Sy2

(
− i

g
, v

)
S2(−v)Sy2(0, v)S2

(
2i

g
− v
)
Sy2

(
2i

g
, v

)
,

where v = ε− i
g . Taking the limit ε→ 0 one finally gets

log Y1

(
− i

g

)
= −iπ . (4.23)

In the same way one can show that Y1(
i
g ) = −1 (or one can use the Y-system equation

for Y1), and then the condition Y1∗(
i
g ) = −1 can be proven by using the crossing symmetry

relations as was done in [27]. Let us finally mention that it should be possible to show that

the TBA equations imply in addition Y2∗(0) = −1 because the particles with rapidities

±i/g can be thought of as constituents of a two-particle bound state with rapidity equal

to 0. This however requires a careful analytic continuation of the hybrid TBA equation for

Y2 to the string u-plane through the cut at −2i/g, and we will not pursue this here.
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Scaling dimensions of exceptional operators. Scaling dimensions of exceptional op-

erators or energies of dual string states are found from the usual formula

∆− J = E − J =
∑
i

E(ui)−
1

2π

∫ ∞
−∞

du
dp̃Q
du

log(1 + YQ)

=
√

1 + 4g2 +
√

4 + 4g2 − 1

2π

∫ ∞
−∞

du
dp̃Q
du

log(1 + YQ) , (4.24)

where we used the exceptional rapidities of the particles. This formula shows that at large

g the first two terms in (4.24) which come from the dispersion relation are proportional

to g. On the other hand for finite J and large g the scaling dimension of these operators

should behave as
√
g. Thus, the linear term should be canceled by the contribution

coming from the YQ-functions. This is different from the expected large g behaviour of

two-particle states studied in [25, 29, 30]. It would be interesting to understand if the

linear term comes entirely from the pole contribution of Y2.

4.3 Leading TBA correction up to g10

The proposed TBA equations are based on the assumption that the rapidities of ex-

ceptional states are given exactly by (4.1). These rapidities are obviously very different

from the rapidities of the states in the twisted theory which diverge in the limit φ → 0

at least in the perturbation theory. Still, the TBA equations should produce the same

perturbative expansion of the scaling dimensions of exceptional operators as the one

we obtained from the twisted TBA equations in the previous section. In this and next

subsections we compute the scaling dimension of the shortest exceptional operator of

length L = 6 and show that it coincides with the twisted TBA result. We will use the

gauge theory normalization of rapidities in which the exact Bethe roots are 0,±i.
Let us recall that the finite-size corrections to the energy of the twisted exceptional

operator for finite φ start exactly at g12 as expected for an operator of length L = 6 from

the su(2) sector. Thus up to g10 one can just use the dispersion relation and the BY

equations. Then, as was shown in the previous section, one gets

Eφ=0 = 6 + 3g2 − 9g4

4
+

63g6

16
− 621g8

64
− 9g10ζ(3)

32
+

7047g10

256
. (4.25)

On the other hand if one uses the energy formula (4.24) with the exceptional Bethe roots,

then the contribution coming from the dispersion relation is just given by the first two

terms and its expansion up to g10 produces

Easym =
√

1 + 4g2 +
√

4 + 4g2 ≈ 6 + 3g2 − 9g4

4
+

33g6

8
− 645g8

64
+

3591g10

128
. (4.26)

The two formulas obviously become different already at the g6 order. Thus the finite-size

corrections in the case of the TBA with exceptional rapidities must appear at the g6 order

which from the field theory point of view is half-wrapping. We know that perturbative

expansion of all YQ-functions begins at g12 and therefore any YQ-function regular on

the real line begins to contribute to the energy at the g12 order. The only exception
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is Y2-function which has a double pole at zero (if φ = 0). As a result the perturbative

expansion of the integral
∫
du dp̃du log(1 + Y2) starts at the g6 order. Thus, up to the g10

order one should get the same energy (4.25) by keeping only Y2 in TBA equations and

the energy formula. Therefore, the formula of interest up to g10 is

E = Easym − 1

2π

∫
du
dp̃2
du

log(1 + Y2) (4.27)

where Easym is given by (4.26). Up to the g10 order we only need the coefficient of the

double pole at u = 0 up to the g16 order

Y2(u) =
9g12

(
3g4(8ζ(3) + 15)− 24g2 + 8

)
2048u2

+ const +O(u2) .

Then computing the integral in (4.27) one finds

Epole = − 1

2π

∫
dv
dp̃2
dv

log(1 + Y2) = −9g10ζ(3)

32
− 135g10

256
+

3g8

8
− 3g6

16
, (4.28)

where in Y2 we only kept the 1/u2 term.

Adding (4.28) to (4.26), one gets precisely (4.25).

4.4 Next-to-leading TBA correction at g12

The agreement between the energies observed in the previous subsection should also hold

at the g12 order where one should calculate the usual contributions from all YQ-functions.

In addition one also has to take into account the TBA correction to the coefficient of the

double pole of Y2 which is of the g18 order.

Linearization of the TBA equations. It is well-known that at small g Y-functions

get TBA corrections beyond their asymptotic form Y ◦. Computing the leading TBA

corrections requires linearization of the TBA equations which can be done by representing

any Y-function as follows

Y (u) = Y ◦(u)
(

1 + Y (u)
)
. (4.29)

Since the Bethe roots do not get corrections, the Y ’s have neither zeroes nor poles on

the real line. Then one expands the hybrid TBA equations up to the first order in Yaux
while keeping only the contributions from the asymptotic YQ-functions on the r.h.s. of the

equations. It is clear that leading corrections to any Y are of order g6 or higher, and they

come only from the pole part of Y ◦2 . Discarding any term of O(g8), we find that only the

following two equations are relevant at the g6 order

Y2 = log(1 + Y ◦2 ) ? (K22
sl(2) + 2s ? K12

vwx) + 4
(
A1|vw Y1|vw

)
? s , (4.30)

YM |vw = AM−1|vwYM−1|vw ? s+AM+1|vwYM+1|vw ? s− δM1 log(1 + Y ◦2 ) ? s , (4.31)

where we defined the coefficient

AM |vw =
Y ◦M |vw

1 + Y ◦M |vw
, M ≥ 1.
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The g6 contribution of Y ◦2 to these equations can be easily computed because for any

kernel K(u, v) regular for real u and v one gets

log(1 + Y ◦2 ) ? K → R◦2

∫
du log

(
1 +

1

u2

)
K(R◦2 u, v)→ 3π

8
g6K(0, v) , (4.32)

where R◦2 is the square root of the coefficient of the pole of Y ◦2

Y ◦2 =
(R◦2)2

u2
+· · · , R◦2 =

3

16
g6
(

1−3g2

2
+

3g4

16
(8ζ(3)+9)+

g6

32
(−120ζ(3)−108ζ(5)−55)

)
. (4.33)

This also proves that the leading TBA corrections to Y-functions are of order g6.

Expansion of the energy formula. Let us now assume that we know Y2 up to the g6

order and compute the energy up to the g12 order. The expansion of Easym gives

Easym, (12) = −43029g12

512
. (4.34)

The contribution of YQ with Q 6= 2 is found from the usual formula

E
(Q6=2)
Y = − 1

2π

∑
Q 6=2

∫
duY ◦Q . (4.35)

Computing the integrals and taking the sum, one obtains

E
(Q 6=2)
Y = g12

(
135ζ(3)

128
+

297ζ(5)

128
− 567ζ(9)

128
+

358424597369

580608000000

)
(4.36)

To find the contribution of Y2 we represent the integrands in the energy formula as follows:

log(1 + Y2) = log
1 + Y2

1 +
R2

2
u2

+ log

(
1 +

R2
2

u2

)
, (4.37)

where R2 is the square root of the coefficient of the pole of Y2 which also includes the

contribution from Y2 and therefore can be written as

R2 = R◦2
√

1 + Y2(0) . (4.38)

The first term in (4.37) is regular everywhere, and can be expanded in g starting from g12,

and at that order depends solely on asymptotic quantities. Its contribution to the energy

at the g12 order is given by

Ereg
Y2

= − 1

2π

∫
du log

1 + Y ◦2

1 +
R2

2
u2

=
15795402631

580608000000
g12 . (4.39)

The contribution of the second term yields

Epole
Y2

= − 1

2π

∫
du

dp̃2
du

log

(
1 +

R2
2

u2

)
= Epole

Y ◦2
− 3g6

32
Y2(0) +O(g14), (4.40)
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where Epole
Y ◦2

is the contribution due to the pole of Y ◦2

Epole
Y ◦2

=
3g12

256

(
72ζ(3) + 54ζ(5) + 55

)
− 9g10ζ(3)

32
− 135g10

256
+

3g8

8
− 3g6

16
. (4.41)

This means that to find the energy at order g12, we need to know the leading TBA

correction to Y2 at u = 0. The correction is given by (4.30) which at u = 0 can be written

in the form

Y2(0) =
3g6

32
(8 log(2)− 3) + 4

(
A1|vw Y1|vw

)
? s(0) . (4.42)

The last term 4
(
A1|vw Y1|vw

)
? s(0) can be found by solving eq.(4.31) which takes the

following explicit form

YM |vw(u) = AM−1|vwYM−1|vw ? s+AM+1|vwYM+1|vw ? s− δM1
3g6

8
π s(u) . (4.43)

Introducing the functions XM (u) which satisfy the following difference equations

XM (u+ i) + XM (u− i)
AM |vw(u)

= XM−1 + XM+1 + δM1 2πs(u) , (4.44)

the quantity 4
(
A1|vw Y1|vw

)
? s(0) appearing in (4.42) can be written in the form

4
(
A1|vw Y1|vw

)
? s(0) = −3g6

4
X1(0) . (4.45)

Thus summing up all the contributions one finds the energy of the exceptional state at

the g12 order

E(12) =
3g12(24X1(0)− 1512ζ(9) + 1008ζ(5) + 648ζ(3)− 28237− 24 log 2)

1024
. (4.46)

Comparing this formula with (3.7) obtained from the twisted TBA, one gets

E(12) − E(12)
φ=0 =

3

512
g12(12X1(0) + 7− 12 log 2) . (4.47)

Thus the two results coincide if

X1(0) = log 2− 7

12
≈ 0.109814 . (4.48)

We could not prove this equality analytically. Solving the system (4.44) numerically we

find that the equality (4.48) holds with very high precision.

To conclude this section let us point out that the consideration above can be easily

generalized to the exceptional operator of length L = J + 3. The Y2-function begins to

contribute at the gL order. The improved dressing factor contribution can be easily found

at this order, and one gets that the energy of the exceptional operator is just equal to

EL = J +
√

1 + 4g2 +
√

4 + 4g2 − 3

2L−2
gL +O(gL+2) . (4.49)

It is not difficult to check that at this order the same expression is obtained by using the

twisted state in the limit φ→ 0 [2]. One can in principle go all the way till g2L. The only

technically nontrivial part is finding the power series expansion of the dressing phase up

to the gL+2 order.
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5 Conclusions

In this work we have provided the mirror TBA description for the exceptional class

of gauge theory operators OL. From the point of view of the Bethe Ansatz the states

corresponding to these operators are singular that is the asymptotic energy diverges at the

first wrapping order in the limit of vanishing twist. On the other hand, in the approach

based on Baxter’s Q-operator, the same state with M = 3 Bethe roots can be described

by means of L −M + 1 = L − 2 dual roots which are all regular at one loop. It would

be interesting to see whether the dual root picture can be implemented at the level of the

TBA equations. A natural starting point here would be to explicitly develop the all-loop

Baxter equation in the su(2) sector in the spirit of [55, 56].

In a certain respect the operators from the family {OL} are even more interesting

than the Konishi operator. Indeed, the fact that their Bethe rapidities are known exactly

must simplify the numerical analysis of the corresponding TBA equations since one does

not need to solve the exact Bethe equations. Also, the rather rigid analytic structure of

Y-functions — the presence of double poles and zeroes — hints that it possibly remains

the same all the way from weak to strong coupling which might help to find a proper

ansatz for Y-functions at strong coupling. This should be contrasted to the case of regular

operators, where the position of zeroes and poles depends on the coupling constant and

there are critical points [25, 29, 30].

Since a three-magnon state with rapidities 0,+i/g,−i/g can be viewed as a scattering

state of a fundamental particle and a two-particle bound state with momenta ±π, the

asymptotic energy is

Easym = J +
√

1 + 4g2 +
√

22 + 4g2 .

Therefore, at large g the asymptotic energy scales as Easym ∼ g. On the other hand, the

operators we consider belong to the class of short operators for which the energy must

scale as
√
g ∼ 4

√
λ at strong coupling. Hence, according to the TBA description, the

contribution of YQ-functions must scale as g at strong coupling and cancel the leading

term of Easym at g → ∞. It would be interesting to verify this fact by constructing the

corresponding analytic and numerical solution.

Let us also mention that recently there has been an interesting development [57, 58],

see also [59], concerning a construction of a finite set of non-linear integral equations

(NLIE), which is a complementary approach to the TBA description of the spectrum of

the AdS5 × S5 superstring. It would be important to see how the states corresponding to

operators OL can be accommodated within the NLIE approach.

The experience we gained here with the exceptional operators brings us back to the

question of the strong coupling behavior of a generic bound state in N = 4 theory discussed

in [27]. We expect that similarly to what happens in the φ → 0 limit for twisted states,

the complex rapidities of a generic bound state will reach the branch points at finite value

of g and afterwards continue to move along the boundary of the string region towards the

position of the exceptional rapidities reaching them at g =∞. To confirm this picture one

has to further investigate the TBA equations obtained in [27]. If true this would suggest

a universal behavior of a generic state: when coupling increases eventually real rapidities
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move towards −2, 0, 2, while complex rapidities reach the branch points and upon passing

them approach the exceptional rapidities. The points −2, 2 and 0,± i
g would serve as

attractors for all rapidities. This would classify states with a finite number of roots at strong

coupling and might explain the universal 4
√
λ-behavior of the energy of short operators.
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A Details on the twisted approach

A.1 Twisted transfer matrices and relating twist to a γ-deformation

In this section we will show how the twist parameter φ that we have introduced as a mere

regulator can be related to the parameters of a γ-deformation of N = 4 SYM. To do this

let us recall that the most general γ-deformation imposes twisted boundary conditions on

the angles ϕi of S5 as follows [8]

ϕi(2π) = ϕi(0)− 2π εijkγjJk , (A.1)

where γj are three deformation parameters, and Ji are angular momenta on S5

corresponding to the direction of ϕi. Let us introduce the notation

αi = −2π εijkγjJk , α` = −α2 + α3

2
, αr = −α2 − α3

2
. (A.2)

The level-matching condition in the presence of such modified boundary conditions is

P = α1 + 2πn , n ∈ Z , (A.3)

and the asymptotic su(2) transfer matrix in the left and right sectors has the form [45, 46]

T
su(2) (`,r)
Q,1 = (Q+ 1)

M∏
i=1

x− − x−i
x+ − x−i

√
x+

x−
−Qe−iα`,r

M∏
i=1

x− − x+i
x+ − x−i

√
x+x−i
x−x+i

(A.4)

−Qeiα`,r

M∏
i=1

x− − x−i
x+ − x−i

x−i −
1
x+

x+i −
1
x+

√
x+x+i
x−x−i

+ (Q− 1)
M∏
i=1

x− − x+i
x+ − x−i

x−i −
1
x+

x+i −
1
x+

√
x+

x−
,

where M is the number of magnons and x±, x±i are the usual parameterizations of mirror

and string rapidities.
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We will restrict to the choice

α3 = 0, α = α` = αr = −α2

2
, (A.5)

and it is immediate to obtain the Bethe-Yang equation

− 1 = Y ◦1∗(uk) , (A.6)

from the analytic continuation of the asymptotic Y ◦Q functions

Y ◦Q(v) = e−J ẼQ(v) T
(`)
Q,1

(
v, {uk}

)
T
(r)
Q,1

(
v, {uk}

) M∏
j=1

SQ1∗
sl(2)(v, uj) . (A.7)

One then finds

− 1 = eipkJeiα2

M∏
j=1

Ssl(2)(uk, uj)

x−k − x+j
x+k − x

−
j

√√√√x+k x
−
j

x−k x
+
j

2

. (A.8)

which can be rewritten using the explicit form of the S-matrix and the total momentum

quantization condition (A.3) as

1 = eipk(J+M) eiα2 e−iα1

M∏
j 6=k

uk − uj − 2i

uk − uj + 2i
σ−2(uk, uj) . (A.9)

Applying this discussion to the family of the states of interest, for which M = 3,

J = J1 = L− 3, J2 = 3 and J3 = 0, one finds

3γ1 + (L− 3)γ2 = 0 , (A.10)

whereas the Bethe-Yang equations can be written simply as

1 = eipk L e2πiL γ3
M∏
j 6=k

uk − uj − 2i

uk − uj + 2i
σ−2(uk, uj) , (A.11)

so that we can think of twist as being related to a deformation by

φ = −2π Lγ3 =
1

2

L

L− 3
α . (A.12)

It is also interesting to notice that, in the case L = 6, the constraint (A.10) is compat-

ible with the choice

γ1 = γ2 = γ3 , (A.13)

which is the Leigh-Strassler deformation preserving N = 1 supersymmetry and dual to

the Lunin-Maldacena background [7]. Furthermore, inspecting (A.4) one finds that, on

a solution of (A.9), the explicit dependence on the deformation parameter drops from the

asymptotic transfer matrix. As a result, many of the analytic properties of the asymptotic

Y-functions will be essentially the same as in the untwisted case.
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Yo-function Zeroes Poles

YM |w r
λM±1

M±1

1 + YM |w rλM −M , rλM +
M u2 − (M + 1)i/g , u3 + (M + 1)i/g

Y1|vw u1 , r
λ0
0

1 + YM |vw u2 + (M + 1)i/g , u3 − (M + 1)i/g

Y− u−2 , u
+
3 u+2 , u

−
3

Y+ u−1

1− Y− rλ0−0 , rλ0 +0

1− Y+
Y1 rλ00 u++

2 , u−−3

Y2 u+2 , u
−
3

YQ , Q ≥ 3 u2 + i
g (Q− 1) , u3 − i

g (Q− 1)

Table 2. Relevant roots and poles of asymptotic Y-functions for general L. The index λM =

1, . . . , λmax
M labels different roots, and λmax

M depends on L.

A.2 Twisted Y-functions and their analytic properties

The asymptotic transfer matrices in the antisymmetric representation (A.4), together

with Bazhanov-Reshetikhin formula [60], yield all of the TQQ′ .
10 From those, one finds

the auxiliary Y-functions [13]

YM |w =
T1,MT1,M+2

T2,M+1
, Y− = −T2,1

T1,2
, Y+ = −T2,3T2,1

T1,2T3,2
, YM |vw =

TM,1TM+2,1

TM+1,2
, (A.14)

whereas the asymptotic YQ functions are given by (A.7). All are real analytic functions of

the mirror rapidity. The relevant analytic properties of the full Y-functions can be found

from inspecting their asymptotic counterparts at small g. Recall that in doing so, we will

always consider the regime φ . g.

In table 2 the meromorphic structure of Y-functions is schematized. A few remarks

on how this scenario depends on L are in order:

1. Auxiliary functions YM |w and Y− satisfy quantization conditions at the shifted values

of the (real) roots {rλMM }λM=1,...,λmax
M

, which by contour deformation trick will appear

in the TBA equations. Their number λmax
M and their position will depend on the

value of L under consideration.

2. As discussed, the form of the TBA equation and of the energy and momentum

formulae will depend on whether the complex rapidities u2,3 lie inside or outside the

physical strip, which depends on L.

10For practical purposes it can be convenient to directly find T1Q′ by a duality transformation as detailed

in [21] rather than from Bazhanov-Reshetikhin formula.

– 27 –



J
H
E
P
0
9
(
2
0
1
2
)
0
0
6

3. As seen in the previous appendix, the case L = 6 is special in that it can be linked

to a deformation which preserves more supersymmetry. As a result, the large-u

asymptotic of YQ(u) will be different depending on whether L = 6 or not, which is

consistent with the fact that the relation between the TBA length LTBA and J is

modified when all supersymmetry is broken [46].

4. It is worth pointing out that Y2 has poles at u−2 , u
+
3 , which lie very close to the real

line. As can be seen from (2.7), in the limit g � φ� 1 their distance from the real

line is of order φL.

A.3 TBA equations for the twisted theory

The TBA equations for the family of states of interest can be engineered by contour

deformation trick, taking into account the analytic properties for the state at hand. We

write them in a rather general form, by introducing terms D∗ that indicate the driving

terms of a given equation that depend on the roots {rλMM }λM=1,...,λmax
M

, coming from

YM |w = −1 or Y− = 1.

For concreteness, we consider a more involved case in which the complex rapidities

lie (just) outside the analyticity strip (which is the case of L = 6), and express TBA

equation in terms of simplified and hybrid equations only. When the rapidities are inside

the analyticity strip there is no need to consider the quantization of the roots of 1 + Y2
and therefore u

(2)
2,3 drop out from all equations. We refer the reader to [27] for a detailed

discussion of the TBA equations with complex rapidities, whereas the definition of the

kernels used below can be found in [25].

Simplified equations for YM |w.

log YM |w = log(1 + YM−1|w)(1 + YM+1|w) ? s+ δM1 log
1− 1

Y−

1− 1
Y+

?̂ s+ DM |w. (A.15)

Simplified equations for YM |vw.

log YM |vw =− log(1 + YM+1) ? s+ log(1 + YM−1|vw)(1 + YM+1|vw) ? s (A.16)

+ δM1 log
1− Y−
1− Y+

?̂ s+ δM1

(
log

S(u
(2)+
2 − v)

S(u
(2)−
3 − v)

− logS(u−1 − v)

)
+ DM |vw .

Simplified equations for Y±.

log
Y+
Y−

= log(1 + YQ) ? KQy (A.17)

−
∑
i

logS1∗y(u
(1)
i , v) + log

S2y(u
(1)+
2 , v)

S2y(u
(2)+
2 , v)

S2y(u
(2)−
3 , v)

S2y(u
(1)−
3 , v)

,

log Y+Y− = 2 log
1 + Y1|vw

1 + Y1|w
? s− log (1 + YQ) ? KQ + 2 log(1 + YQ) ? KQ1

xv ? s
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− log
S2(u

(1)+
2 − v)

S2(u
(2)+
2 − v)

S2(u
(2)−
3 − v)

S2(u
(1)−
3 − v)

+ 2 log
S21
xv(u

(1)+
2 , v)S21

xv(u
(2)−
3 , v)

S21
xv(u

(2)+
2 , v)S21

xv(u
(1)−
3 , v)

? s

−2 logS1∗1
xv (u1, v) ? s+ logS2(u1 − v) ? s (A.18)

−2 log
S11
xv(u

(1)
2 , v)

S11
xv(u

(1)
3 , v)

? s+ log
S1(u

(1)
2 − v)

S1(u
(1)
3 − v)

+ D+×− .

Simplified TBA equations for YQ.

• Q ≥ 4

log YQ = log

(
1 + 1

YQ−1|vw

)2
(1 + 1

YQ−1
)(1 + 1

YQ+1
)
? s (A.19)

• Q = 3

log Y3 = logS(u
(2)+
2 − v)− logS(u

(2)−
3 − v) + log

(
1 + 1

Y2|vw

)2
(1 + 1

Y2
)(1 + 1

Y4
)
? s . (A.20)

• Q = 2

log Y2 = logS(u
(1)
2 − v)− logS(u

(1)
3 − v) + log

(
1 + 1

Y1|vw

)2
(1 + 1

Y1
)(1 + 1

Y3
)
?p.v s , (A.21)

Hybrid TBA equations for YQ. Following [27] we introduce a function which combines

the terms on the right hand side of the hybrid ground state TBA equation

GQ(v) = −LTBA ẼQ + log
(
1 + YQ′

)
? (KQ′Q

sl(2) + 2s ? KQ′−1,Q
vwx ) (A.22)

+2 log
(
1 + Y1|vw

)
? s ?̂KyQ + 2 log(1 + YQ−1|vw) ? s

−2 log
1− Y−
1− Y+

?̂ s ? K1Q
vwx + log

1− 1
Y−

1− 1
Y+

?̂ KQ + log

(
1− 1

Y−

)(
1− 1

Y+

)
?̂ KyQ .

Then the hybrid TBA equations for YQ read

log YQ(v) = GQ(v)− log
S1Q
sl(2)(u

(1)
2 , v)

S1Q
sl(2)(u

(1)
3 , v)

S1∗Q
sl(2)(u1, v) + log

S2Q
sl(2)(u

(2)−
3 , v)

S2Q
sl(2)(u

(1)−
3 , v)

S2Q
sl(2)(u

(1)+
2 , v)

S2Q
sl(2)(u

(2)+
2 , v)

− logS1Q
vwx(u1, v) + 2 logS(u−1 , v) ?p.v. K

1Q
vwx

− 2 log
S(u

(2)+
2 , v)

S(u
(2)−
3 , v)

? K1Q
vwx + DQ . (A.23)

The exact Bethe equations can be found by analytic continuation of e.g. the hybrid

equations to the string region. In the next appendix, we will consider them for the case

L = 6.

– 29 –



J
H
E
P
0
9
(
2
0
1
2
)
0
0
6

Driving terms in the L = 6 case. The case on which we focus for explicit calculations

is L = 6. There, one has that there is always exactly one root rM for any M , so that the

driving terms take the explicit form

DM |w = − logS(r−M−1 − v)S(r−M+1 − v) (A.24)

DM |vw = −δM1 logS(r−0 − v)

D+×− = + logS(r−1 − v)

DQ=1 = + logS1Q
vwx(r0, v)− logSQ(r−0 − v)SyQ(r−0 , v) + 2 logS(r−0 , v) ?p.v. K

1Q
vwx .

Since the twist preserves one supersymmetry, we have [25]

LTBA = J + 2 . (A.25)

Driving terms in the L = 10 case. As another example, we consider a state with

L = 10 for which rapidities are outside the analyticity strip. One finds that the auxiliary

functions YM |w and Y− satisfy quantization conditions at three distinct (shifted) rapidities

r
(1)
M , r

(2)
M , r

(3)
M for any M . As a result, the driving terms are now

DM |w = −
3∑
i=1

logS((r
(i)
M−1)

− − v)S((r
(i)
M+1)

− − v) , (A.26)

DM |vw = −δM1

3∑
i=1

logS((r
(i)
0 )− − v) ,

D+×− =

3∑
i=1

logS((r
(i)
1 )− − v) ,

DQ=1 =

3∑
i=1

[
logS1Q

vwx

(
r
(i)
0 , v

)
− logSQ

(
(r

(i)
0 )− − v

)
SyQ

(
(r

(i)
0 )−, v

)]
+2

3∑
i=1

logS
(

(r
(i)
0 )−, v

)
?p.v. K

1Q
vwx .

Furthermore, in this case we have

LTBA = J . (A.27)

A.4 Linearized TBA and exact Bethe equations for L = 6

To find the first perturbative correction to the asymptotic quantization conditions it is

convenient to expand the TBA system and exact Bethe equations around their asymptotic

solution. As discussed, this will leave us with three equations (3.11), two of which are com-

plex and conjugate to each other, in three real unknowns δu
(1)
1 , Re(δu

(1)
2 ) and Im(δu

(1)
2 ).

These equations are compatible with the quantization of total momentum (3.14). This

allows one to find a solution for δu
(1)
i by considering one of the two complex exact Bethe

equations together with (3.14).
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To this end, we consider the exact Bethe equation for u
(1)
2 , that is

log(−1)=log Y1(u
(1)
2 )=G1(u

(1)
2 ) + 2 log

(
1 + Y1|vw

)
? s̃− log

S11
sl(2)(u

(1)
2 , u

(1)
2 )

S11
sl(2)(u

(1)
3 , u

(1)
2 )

S1∗1
sl(2)(u1, u

(1)
2 )

− 2 log
S(u

(2)+
2 , u

(1)
2 )

S(u
(2)−
3 , u

(1)
2 )

? K11
vwx − logS1(r

−
0 − u

(1)
2 )Sy1(r

−
0 , u

(1)
2 )

+ log
S21
sl(2)(u

(2)−
3 , u

(1)
2 )

S21
sl(2)(u

(1)−
3 , u

(1)
2 )

+ log
ResS21

sl(2)(u
(1)+
2 , u

(1)
2 )

S21
sl(2)(u

(2)+
2 , u

(1)
2 ) ResY2(u

(1)+
2 )

(A.28)

+ 2 log ResS ? K11
vwx(u−1 , u

(1)
2 )− log

(
u1 − u(1)2 −

2i

g

)2
x−s (u1)− 1

x−(u
(1)
2 )

x−s (u1)− 1

x+(u
(1)
2 )

2

+ 2 log ResS ? K11
vwx(r−0 , u

(1)
2 )− log

(
r0 − u(1)2 +

2i

g

)2
(
x+s (r0)− x+(u

(1)
2 )

x+s (r0)− x−(u
(1)
2 )

)2

.

where we used the fact that u2 lies in the overlap of string and mirror regions, and intro-

duced the short-hand notation

log
S(u

(2)+
2 , u

(1)
2 )

S(u
(2)−
3 , u

(1)
2 )

? K11
vwx ≡

∫
dt log

S(u
(2)+
2 , t)

S(u
(2)−
3 , t)

K11
vwx(t, u

(1)
2 ) . (A.29)

We now want to expand this and the other TBA equations, by considering

YM |w(v) = Y ◦M |w(v)(1 + YM |w(v))
S(r◦−M−1 − v)

S(r−M−1 − v)

S(r◦−M+1 − v)

S(r−M+1 − v)
, M ≥ 1 (A.30)

Y1|vw(v) = Y ◦1|vw(v)(1 + Y1|vw(v))
S(r◦−0 − v)

S(r−0 − v)
,

YM |vw(v) = Y ◦M |vw(v)(1 + YM |vw(v)), M ≥ 2

Y±(v) = Y ◦±(v)(1 + Y±(v))
S(r−1 − v)

S(r◦−1 − v)
.

Here Y ◦∗ (v) are computed out of the asymptotic transfer matrices evaluated at the

exceptional rapidities u
(1)
i . These vanish at some root r◦∗ = r◦∗(u

(i)
i ) that is not the exact

root r∗ dictated by the quantization conditions coming from TBA. The S-matrices on the

right hand side have poles at these roots, so that the corrections Y∗ are always small on

the real line. For any Y-function it is convenient to introduce

A∗ =
Y ◦∗

1 + Y ◦∗
. (A.31)

Since in many equations terms involving u
(2)
2,3 occur, we will have to consider their variation.

In particular, it is convenient to express them in terms of the difference between u
(1)
2,3 and

u
(2)
2,3, which we will indicate as

δu2,3 ≡ u(2)2,3 − u
(1)
2,3 , (A.32)
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and for which we know an asymptotic expression (3.4). This quantity should not be

confused with the corrections δu
(1)
2,3 which are the quantities that we are looking for, and

which cannot be found from asymptotic considerations. In a similar way, we also write

δrM ≡ rM − r◦M . (A.33)

We now proceed expanding the TBA equations.

Expansion of YM |w equations.

YM |w = AM−1|w
(
YM−1|w − 2πi s(r◦M−2 − v)δrM−2 − 2πi s(r◦M − v)δrM

)
? s

+AM+1|w
(
YM+1|w − 2πi s(r◦M − v)δrM − 2πi s(r◦M+2 − v)δrM+2

)
? s

+ δM1

(
−A−
Y ◦−

Y− +
A+

Y ◦+
Y+ − 2πi

(
A−
Y ◦−

Y− −
A+

Y ◦+

)
s(r◦1 − v)δr1

)
?̂s . (A.34)

Expansion of YM |vw equations.

• M = 1

Y1|vw = A2|vwY2|vw ? s+ (−A−Y− +A+Y+ − 2πis(r◦1 − v)(A− −A+) δr1) ?̂s

+2πi s(u+2 − v)δu2 − 2πi s(u−3 − v)δu3 − Y ◦2 ? s . (A.35)

• M = 2

Y2|vw = A1|vwY1|vw ? s+A3|vwY3|vw ? s− 2πiA1|vws(r
◦
0 − v) δr0 ? s

−Y ◦3 ? s . (A.36)

• M ≥ 3

YM |vw = AM−1|vwYM−1|vw ? s+AM+1|vwYM+1|vw ? s− Y ◦M+1 ? s . (A.37)

Expansion of Y± equations.

• log Y+/Y−

Y+ − Y− = Y ◦Q ? KQy − 2πiK2y(u
◦,+
2 , v)δu2 + 2πiK2y(u

◦,−
3 , v)δu3 (A.38)

• log Y+Y−

Y+ + Y− = 2A1|vw
(
Y1|vw − 2πi s(r◦0 − v)δr0

)
? s

−2A1|w
(
Y1|w − 2πi s(r◦0 − v)δr0 − 2πi s(r◦2 − v)δr2

)
? s

−Y ◦Q ? KQ + 2Y ◦Q ? K
Q1
vx ? s+ 2πiK2(u

+
2 − v)δu2 − 2πiK2(u

−
3 − v)δu3

−4πi
(
K21
xv(u

+
2 , v)δu2 −K21

xv(u
−
3 , v)δu3

)
? s. (A.39)
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Expansion of the quantization condition for r0. Since r0 appears explicitly in the

exact Bethe equation (A.28), it will be necessary to consider its quantization condition.

The quantization condition for r0 should be found by continuing the equation for Y− to

−i/g. One can however check that (A.38) is subleading in g, so that we can directly work

with the equation for log Y+Y− and continue this down to −i/g. We have

log Y −+ Y
−
− = 2 log

1 + Y1|vw

1 + Y1|w
?pv s̃− log (1 + YQ) ?pv K

−
Q (A.40)

+ logS2(u1 − v) ?pv s̃+ log
S1(u

(1)+
2 − v)

S1(u
(1)+
3 − v)

− log
S2(u

(1)++
2 − v)

S2(u
(2)++
2 − v)

S2(u
(2)
3 − v)

S2(u
(1)
3 − v)

+ logS(r1 − v) + log
1 + Y1|vw(v)

1 + Y1|w(v)
− 1

2
log (1 + Y1(v)) ,

where we dropped all the contributions of kernels sub-leading in g. Evaluating this equation

at r0 yields a quantization condition, which can be expanded as follows:

0 = 2A1|vw
(
Y1|vw − 2πi s(r◦0 − v)δr0

)
? s̃

−2A1|w
(
Y1|w − 2πi s(r◦0 − v)δr0 − 2πi s(r◦2 − v)δr2

)
? s̃ (A.41)

−Y ◦Q ?pv K−Q + 2πiK2(u
++
2 − r◦0)δu2 − 2πiK2(u3 − r◦0)δu3 −

1

2
Y1(r

◦
0)

+δr0

[
2 log

1 + Y ◦1|vw

1 + Y ◦1|w
?pv s̃

′ − log Y ◦Q ?pv (K−Q)′ + logS2(u1 − v) ?pv s̃
′

+ logS2(u1 − v) ?pv s̃
′ +K1(u

+
2 − r

◦
0)−K1(u

+
3 − r

◦
0) +K(r◦1 − r◦0) + ∂vY

◦
1|vw(r◦0)

−∂vY ◦1|w(r◦0)− 1

2

∂vY
◦
1 (r◦0)

1 + Y1(r◦0)
+

1

2
K2(u1 − r◦0)

]
,

where the primes denote derivatives with respect to the argument where r0 is inserted.

Expansion of exact Bethe equation for u2. From the expansion of the exact Bethe

equation we will be able to find the form of δR(2), as outlined in (3.11). Some care is

needed in dealing with the expansion of

log
ResS21

sl(2)(u
(1)+
2 , u

(1)
2 )

S21
sl(2)(u

(2)+
2 , u

(1)
2 ) ResY2(u

(1)+
2 )

= log
ResS21

sl(2)(u
(1)+
2 , u

(1)
2 )

ResS21
sl(2)(u

(2)+
2 , u

(1)
2 )

u
(1)
2 − u

(2)
2

ResY2(u
(1)+
2 )

(A.42)

that according to (3.4) can be written as

− 2πiResK21
sl(2)(u

◦+
2 , u◦2) δu2 −

∂ResY2

∂u

(
u◦+2

)
. (A.43)

The remaining terms can be readily expanded. Since we are interested in the lowest order

correction to the quantization condition, we can also drop any sub-leading contribution in g,

and in particular the terms containing the convolution ?̂ . This leaves us with the final result

δR(2) = Y ◦Q ?
(
KQ1

sl(2) + 2s ? KQ−1,1
vwx

)
+ 2A1|vw

(
Y1|vw − 2πi s(r◦−0 − v)δr0

)
? s̃
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−4πi
(
s(u◦+2 , u◦2)δu2 − s(u◦−3 , u◦2)δu3

)
? K11

vwx

+2πiK21
sl(2)(u

◦−
3 , u◦2) δu3 − 2πiResK21

sl(2)(u
◦+
2 , u◦2) δu2 −

∂ResY2

∂u

(
u◦+2

)
+4πiRess ? K11

xvw(r◦0, u
◦
2)δr0 − 2πiK(r◦0, u

◦
2)δr0 , (A.44)

where have introduced the notation K(u, v) = 1
2πi

d
duS(u, v) with

S(u, v) = S1(u
− − v)Sy1(u

−, v)
(
u−− − v

)2(x+s (u)− x+s (v)

x+s (u)− x−s (v)

)2

, (A.45)

in order to conveniently group all driving terms involving r0.

Cancellation of the most φ-divergent terms. Finding an explicit expression for the

contribution of δR(2) to δu
(1)
2 and in turn to the seven-loop energy is highly non-trivial.

The task is much more complicated than in the case of the Konishi operator [31–33]

because in (A.44) the correction δr0 appears explicitly, together with Y1|vw. To determine

these, one would have to solve both linear system associated to YM |vw and to YM |vw,

together with the equation yielding the quantization condition for δr0. All these are

coupled which makes finding a solution, even numerically, a complicated task.

For the purpose of finding evidence of a non-trivial cancellation of the divergent terms

in the energy at g14, however, a much simpler analysis suffices.

Let us consider the O(g12) part of (A.44) and of the linearized TBA equations, and

expand them in powers of φ. This expansion is expected to involve negative powers, which

should be the ones that cure the divergences in the energy and that will come multiplying

the sources of the linear systems.

For instance, in (A.35) the sources are

2πi s(u+2 − v)δu2 − 2πi s(u−3 − v)δu3 − Y ◦2 ? s
= −2πiResY ◦2 (u◦+2 ) + 2πiResY ◦2 (u◦−3 )− Y ◦2 ? s = O(φ−6) , (A.46)

due to the pole of Y2 at u◦−3 ≈ u◦+2 + O(φ6). This implies that we can expect that

Y1|vw = O(φ−6). Carrying out a similar analysis for all the remaining TBA equations and

quantization conditions for auxiliary roots, one concludes that indeed Y1|vw = O(φ−6) and

δrM = O(φ0).

Turning now to δR2, we find that up to higher orders in φ we have

δR(2) = Y ◦2 ? K
21
sl(2)(u

◦
2) + 2πiK21

sl(2)(u
◦−
3 , u◦2) δu3 −

∂ResY2

∂u

(
u◦+2

)
+O(φ−6) . (A.47)

These three terms are all divergent at O(φ−12) due to the singularities of Y2 and K21
sl(2),

and their contribution can be immediately evaluated in terms of asymptotic formulae.

Inserting this into (3.11) and using that P = O(φ), one finds indeed that the most

divergent part of the asymptotic energy at g14, which goes like O(φ−8), is precisely

canceled by wrapping corrections in (3.5).
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