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Abstract
Graph property prediction is becoming more and more popular due to the increasing availability of scientific and social

data naturally represented in a graph form. Because of that, many researchers are focusing on the development of improved

graph neural network models. One of the main components of a graph neural network is the aggregation operator, needed

to generate a graph-level representation from a set of node-level embeddings. The aggregation operator is critical since it

should, in principle, provide a representation of the graph that is isomorphism invariant, i.e. the graph representation should

be a function of graph nodes treated as a set. DeepSets (in: Advances in neural information processing systems,

pp 3391–3401, 2017) provides a framework to construct a set-aggregation operator with universal approximation prop-

erties. In this paper, we propose a DeepSets aggregation operator, based on Self-Organizing Maps (SOM), to transform a

set of node-level representations into a single graph-level one. The adoption of SOMs allows to compute node repre-

sentations that embed the information about their mutual similarity. Experimental results on several real-world datasets

show that our proposed approach achieves improved predictive performance compared to the commonly adopted sum

aggregation and many state-of-the-art graph neural network architectures in the literature.

Keywords Graph neural networks � Self-organizing maps � Node aggregation

1 Introduction

Neural Networks for Graphs (GNNs), while dating back to

more than 20 years ago [27], have recently gained popu-

larity due to the good results in tasks such as semi-super-

vised node classification [14], link prediction [13], graph

classification [22] and graph generation [18]. The main

component making possible the application of neural net-

works to graph data is the Graph Convolution (GC), for

which several definitions have been proposed in the liter-

ature. The majority of GC proposals share the basic prin-

ciple of generating a (fixed-size) node representation

considering its local neighborhood.

When considering graph-level prediction tasks, how-

ever, these topologically enriched representations at node-

level need to be aggregated in order to obtain a single

(fixed-size) representation of the graph. This aggregation

component is crucial since it has to transform a variable

number of node-level representations into a single graph-

level one. Moreover, an effective and efficient graph-level

representation should be, as much as possible, invariant to

different isomorphic representations of the input graph,

thus letting the learning procedure to only focus on the

property prediction task, with no need to worry about the

way the graph in input is represented. An approach that is

commonly adopted in many graph neural network archi-

tectures proposed in the literature is to consider simple

aggregation schemes such as the mean, the element-wise

maximum, or the sum. However, recent results [21, 32]

show that using such simple aggregations inevitably results

in a loss of information due to the mix of numerical values

they introduce, which may hurt the overall predictive

performance of the GNN.

A much better approach, from a conceptual point of

view, would be to consider all the topologically enriched

representations of nodes of a graph as a set, and the
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Nicolò Navarin

nnavarin@math.unipd.it

Alessandro Sperduti

sperduti@math.unipd.it

1 Department of Mathematics, University of Padua, Padova,

Italy

123

Neural Computing and Applications
https://doi.org/10.1007/s00521-020-05484-4(0123456789().,-volV)(0123456789().,- volV)

http://orcid.org/0000-0002-3023-3046
http://crossmark.crossref.org/dialog/?doi=10.1007/s00521-020-05484-4&amp;domain=pdf
https://doi.org/10.1007/s00521-020-05484-4


aggregation function to learn as a function defined on these

sets. DeepSets [32] constitute a recently proposed approach

to design neural networks that take sets as input. Compared

to other aggregation schemes, DeepSets scheme is maxi-

mally expressive since, under certain assumptions, it can be

proved to be a universal approximator for functions over

sets (see Sect. 2.3). A DeepSet projects the elements of the

input set in a high-dimensional space via a learned /ð�Þ
function, usually implemented as a multi-layer perceptron

[21]. It then aggregates vectorial element representations

summing them up to obtain a single vector representing the

set, and finally it applies the readout, i.e., the qð�Þ function
(another MLP) to map the set-level representation to the

output of the task at hand. Navarin et al. [21] propose a

graph aggregation scheme based on DeepSets implement-

ing the /ð�Þ function as a multi-layer perceptron. Motivated

by the theoretical properties that the /ð�Þ function should

possess, in this paper we propose to implement /ð�Þ
exploiting self-organizing maps (SOMs) to map the node

representations in the space defined by the activations of

the SOM neurons. The resulting representations consider

information about the similarity between the various inputs

in an unsupervised way. In fact, similar input structures are

mapped in similar output representations. Using a fully

unsupervised mapping for the /ð�Þ function may however

lead to lose task-related information. We thus propose to

make the /ð�Þ mapping supervised by stacking, after the

SOM, a layer that can be trained via supervised learning.

Since we are dealing with graphs we propose, instead of

simply using an MLP, to stack a Graph Convolution layer

after the SOM, allowing to better incorporate topological

information in the mapping. We can then apply the

aggregation as prescribed by DeepSets. Finally, we

implement the readout (qð�Þ function) as an MLP. We show

on several commonly adopted benchmark datasets for

graphs the effectiveness of our proposal.

The paper is organized as follows. In Sect. 2 we intro-

duce the necessary background concepts. In Sect. 3 we

propose our SOM-based aggregation. In Sect. 4 we present

our experimental results, and in Sect. 5 we analyze some

properties of the proposed DeepSets-based aggregation.

Section 6 concludes the paper.

2 Background

In the following, we use italic letters to refer to variables,

bold lowercase letters to refer to vectors, and bold upper-

case letters to refer to matrices. The elements of a matrix A

are referred as aij (and similarly for vectors). We use

uppercase letters to refer to sets or tuples.

Let G ¼ ðV ;E;XÞ be a graph, where V ¼ fv0; . . .; vn�1g
denotes the set of vertices (or nodes) of the graph, E �
V � V is the set of edges, and X 2 Rn�s is a multivariate

signal on the graph nodes with the i-th row representing the

attributes of vi. We define A 2 Rn�n as the adjacency

matrix of the graph, with elements aij ¼ 1 () ðvi; vjÞ 2 E.

With NðvÞ we denote the set of nodes adjacent to node v.

Let also D 2 Rn�n be the diagonal degree matrix where

dii ¼
P

j aij, and L the normalized graph laplacian defined

by L ¼ I� D�1
2AD�1

2, where I is the identity matrix.

2.1 Neural Networks for Graphs

The first definition of the neural network for structured

data, including graphs, has been proposed by Sperduti and

Starita in 1997 [27]. Later, it has been refined by

Micheli [19] and Scarselli et al. [24]. The core idea is to

define a neural architecture that is modeled according to

the graph topology. Thanks to weights sharing, the same

set of neurons is applied to each vertex in the graph, and

computes its output based on the representation of the

vertex and of its neighbors. As usual, the function com-

puted by each layer is parametric. Recently [5], this

approach has been referred to as graph convolution. After a

certain number of graph convolution layers, the node-level

representations are merged by an aggregation operator,

obtaining a fixed-size graph-level representation. Finally,

the readout layer transforms this representation to the

output of the task.

In more detail, a general Graph Neural Network model

is built according to the following equations. First, d graph

convolution layers are stacked:

hGCðiÞv ¼ f graphconv hGCði�1Þ
v ; hGCði�1Þ

u ju 2 NðvÞ
n o� ��

;

ð1Þ

where f ð�Þ is an element-wise non-linear activation func-

tion, graphconvð�; �Þ a graph convolution operator, and

hGCðiÞv is the representation of node v at the i-th graph

convolution layer, 1� i� d, and hGCð0Þv ¼ xv (i.e. the row

of X corresponding to v). Then, an aggregation function is

applied:

hS ¼ aggr fhGCðiÞv jv 2 VG; 1� i� dg
� �

; ð2Þ

where aggrð�Þ is the aggregator function. Note that the

aggregation may depend on all the hidden representations

computed by the different GC layers and not just the last

one. hS is the fixed-size graph-level representation. Then,

the readoutð�Þ (implemented as a multi-layer perceptron)

applies some non-linear transformation on hS. Finally, we
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apply the output layer (e.g., the LogSoftMax for a classi-

fication problem)

o ¼ LogSoftMaxðreadoutðhSÞÞ: ð3Þ

For what concerns the graph convolution, in this paper we

mainly consider a particular operator inspired by the

Weisfeiler-Lehman graph invariant, which has been pro-

posed by Morris et al. [20]. This GC, named GraphConv,

is defined as follows:

Hðiþ1Þ ¼ HðiÞ �W
ðiÞ

þ AHðiÞŴ
ðiÞ
:

ð4Þ

where H0 ¼ X, and �W
ðiÞ

and Ŵ
ðiÞ

are two weights

matrices.

A more complete discussion about the GC operators is

reported in ‘‘Appendix A’’. In the following, we present

different definitions of node aggregation in the literature.

2.1.1 Aggregation of node representations

After stacking a number of graph convolution layers, an

aggregation operator maps the set of representations asso-

ciated with the single vertices into a graph-level repre-

sentation. Different approaches to implement this

aggregation operator are possible.

Linear operators The simplest aggregation operators

adopted in the literature are linear, namely the average and

the sum of vertex representations. NN4G [19] computes,

for each graph, the average graph vertex representation for

each hidden layer, and concatenates them. Other approa-

ches consider only the last graph convolution layer to

compute such an average [1]. In [9], multi-layer percep-

trons are applied to transform node representations before a

sum aggregator is applied.

Non-linear operators SortPooling is a non-linear pool-

ing operator [33] used in conjunction with concatenation to

obtain an aggregation operator. The idea is to select a pre-

determined number of vertex embeddings using a sorting

function, and to concatenate them, obtaining a graph-level

representation of fixed size. Notice, however, that this

representation ignores some of the nodes of the graph.

Another approach consists in using a set2set model,

which is a simplified Neural Turing Machine, for handling

sets as inputs [9] of the readout function. The model is

capable of mapping sets to other sets in output, thus it is

more powerful than what is required for classification or

regression tasks. This complexity makes this instantiation

hard to train, introducing unneeded complexity in the

model. Finally, it has been shown that DeepSets, a general

formulation of a universal approximator of functions over

sets [32], can be successfully adopted as aggregator

operator [21] on graph nodes. More details are reported in

Sect. 2.3.

2.2 Self-organizing map

The main goal of the Self-Organizing Map (SOM) algo-

rithm is to transform the incoming signal pattern of an

arbitrary dimension into a two- or three-dimensional dis-

crete map, and to perform this transformation adaptively in

a topological ordered fashion. The neurons of a self-orga-

nizing map are distributed over a lattice that is usually two-

or three-dimensional, and equipped with synaptic weight

vectors si; i 2 ½1. . .p�, where p is the number of the neu-

rons of the SOM. These neurons compete among them-

selves to be activated, resulting in that only one neuron, the

winner of the competition dubbed best matching unit

(BMU), is selected as the prototype for each input pattern.

The weights of the BMU are made closer to the input

vector, as well as the weights of its neighbours, although at

a minor degree, with the aim of preserving at the lattice

level topological relationships in the input space. Different

variants for the SOM model can be considered. The one

used by us is described in detail in Sect. 3.1.

2.3 DeepSets

It has been proven [32] that any function sf(X) over a set X,

satisfying the following two properties:

1 Variable number of elements in input, i.e., each input is

a set X ¼ fx1; . . .; xmg with xi belonging to some set X

(typically a vectorial space) and m[ 0;

2 Permutation invariance;

can be decomposed in the form:

sf ðXÞ ¼ q
X

xi2X
/ðxiÞ

 !

; ð5Þ

for some qð�Þ and /ð�Þ functions, if X is countable. This is

the general formulation of DeepSets [32], which constitute

a valid option to implement an aggregation operator. First

of all, they can natively take in input the sets of topolog-

ically enriched (by graph convolutions) representations of

graphs’ nodes. Moreover, being in principle universal

approximators for a wide range of functions over count-

able sets, or uncountable sets with a fixed size, they are

potentially very expressive from a functional point of view.

Here we elaborate on this last capability by recalling some

concepts from Zaheer et al. [32]. One of the main argu-

ments of the universal approximation proof of DeepSets for

the countable case, i.e., where the elements of the sets are

countable (jXj � n), relies on the fact that, given the space

of input sets X � 2X, any function over sets can be
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decomposed as sf ðXÞ ¼ qðeðXÞÞ, where e : X ! Rn,

eðXÞ ¼
P

xi2X /ðxiÞ, combining the elements xi 2 X non-

linearly transformed by the /ð�Þ function, maps different

sets in different points. Since we should be able to possibly

associate (via qð�Þ) different outputs for different inputs,

the /ð�Þ function should map its inputs (the elements of the

sets) to an encoding of natural numbers, and eð�Þ should

provide a unique representation for every X 2 X . In the

countable case, one way to achieve such property is to

define the /ð�Þ function mapping each set element to a

representation that is orthogonal to the representations of

every other set element. For the uncountable case, the

scenario becomes more complex, requiring /ð�Þ to be a

homomorphism.

3 SOM-based DeepSets projection

In this paper, we propose to implement the /ð�Þ function of

DeepSets by exploiting a Self-Organizing Map (SOM). A

SOM can be defined to map each input embedding in the

one-hot activation map of the SOM lattice, where only the

winning neuron has a value different from zero. If we

consider an infinitely wide SOM, it is easy to see that every

input embedding activates a different winning neuron, and

that different inputs are mapped in linearly independent

SOM activation maps. Thus, using a SOM to implement

the /ð�Þ function is, from a conceptual point of view, a

viable approach. Following this path, however, poses some

problems from the point of view of learnability. In fact, the

encoding of sets in orthogonal vectors hinders the possi-

bility to exploit similarities among examples. To solve this

problem, we propose to smooth the SOM representations

by exploiting relatively small lattices, and to return in

output not only 1 for the winning neuron, but also a smaller

adjusted value for its neighbors.

Finally, in order to compensate for the unsupervised

nature of SOMs, we suggest to process the SOM output by

a graph convolutional layer that, in addition to allow for

supervised learning, can better preserve the topological

information of the graph with respect to a simple MLP.

Following this operation, the aggregation operator as pre-

scribed by DeepSets can be applied. Even though DeepSets

theoretically proves that the sum aggregation is maximally

expressive, inspired by DiffPool [31] we consider the

concatenation of different statistics such as the sum,

average and component-wise maximum. We found that this

choice leads to slightly improved overall predictive per-

formance, probably slightly easing the training of the net-

work. Finally, we implement the DeepSets readout

function qð�Þ as an MLP.

The proposed SOM-based projection is only one com-

ponent of a graph neural network. In the following, we

describe the overall network architecture, and we provide

more details on the proposed aggregation operator.

We start considering graph convolution layers to pro-

vide a representation for each node in the graphs, using the

following general equation:

hGCð1Þv ¼ f graphconvðxv; fxuju 2 NðvÞgÞð Þ; ð6Þ

that can be implemented with any graph convolution layer

described in Appendix A. We stack d graph convolution

layers as follows:

hGCðiÞv ¼ f graphconvðhGCði�1Þ
v ; fhGCði�1Þ

u ju 2 NðvÞgÞ
� �

;

ð7Þ

where 1� i� d. Let us consider the node representation

generated by a graph convolution layer hGCðiÞv . We define

our SOM-based aggregation operator as follows:

h0SðiÞv ¼ somðhGCðiÞv Þ; ð8Þ

h00SðiÞv ¼ f graphconv h0SðiÞv ; h0SðiÞu ju 2 NðvÞ
n o� �� �

; ð9Þ

hSðiÞ ¼ aggr fh00SðiÞv jv 2 VG

� �
; ð10Þ

where somð�Þ is the function computing the SOM activa-

tions (detailed below).

In our architecture, we apply our proposed SOM-based

projection operator to each graph convolution output, as

shown in Fig. 1, obtaining d graph-level feature maps (one

for each layer): hSð1Þ, hSð2Þ; . . .; hSðdÞ. These feature maps

are then concatenated, obtaining a single graph-level

representation:

hS ¼ ½hSð1Þ; hSð2Þ; . . .; hSðdÞ�: ð11Þ

We can apply the readout and the output layer (that toge-

ther implement the qð�Þ function in DeepSets) to the graph-

level representation hS, obtaining the output of our

network:

o ¼ LogSoftMaxðreadoutðhSÞÞ: ð12Þ

The readout function is composed of several dense feed-

forward layers, where we consider the number of layers

and the number of neurons per layer as hyper-parameters.

Each one of these layers uses the ReLU activation function,

and is defined as follows:

hRðjÞ ¼ ReLU WRðjÞhRðj�1Þ þ bRðjÞ
� �

; j 2 ½1; . . .; k � 1�

ð13Þ
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where hRð0Þ ¼ hS. Finally, the output layer of the neural

network for a c-class classification task is defined as

follows:

o ¼ LogSoftMaxðWohRðk�1Þ þ boÞ: ð14Þ

To reduce the covariate shift during training and to atten-

uate overfitting effects, we applied the batch normalization

and dropout to the output of each graph convolutional

layer.

3.1 SOM details

To define the SOM-based aggregation block, we adopted a

SOM model that exploits a two-dimensional map, p0 � p00.
We recall that we have an aggregation operator, and thus a

SOM, associated with each graph convolution. The neurons

in the SOM at the k-th convolution layer s
ðkÞ
i;j are thus

identified by two indices, i 2 f1; . . .; p0g and

j 2 f1; . . .; p00g. As for the similarity measure, we use the 2-

norm of the difference between the input and the SOM

synaptic weights s
ðkÞ
i;j . Thus, the distance between a SOM

neuron and the input embedding for node v at layer k is

defined as

d
ðkÞ
v;i;j ¼ hGCðkÞv � s

ðkÞ
i;j

�
�
�

�
�
�
2
: ð15Þ

This measure is used to compute the BMU for each for-

ward pass of the SOM, identified by the tuple of its

position:

i�ðkÞv ; j�ðkÞv

� �
¼ argmini;j d

ðkÞ
v;i;j

� �
: ð16Þ

Fig. 1 A graphical layout of the proposed architecture, with an expanded view of the SOM-based aggregation block 1 (bottom right)
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As the output of the SOM module, and in accordance with

our discussion about the DeepSets approach, we propose to

exploit the distances d
ðkÞ
v;i;j to compute a similarity measure

in the interval [0, 1] for each SOM neuron:

1SðkÞv;i;j ¼ ar;i
�;j�

i;j e
�d

ðkÞ
v;i;jþd

ðkÞ
v;i� ;j� ; ð17Þ

where we omit the dependency from v and k from i� and j�

for the ease of notation. In this way, each BMU will always

output the value 1. The neighborhood function ar;i
�;j�

i;j is

defined following a Gaussian distribution over the topo-

logical distance between a neuron and the BMU as follows:

ar;i
�;j�

i;j ¼ e�ðði��iÞ2þðj��jÞ2Þ=r2 ; ð18Þ

where r is a hyper-parameter. Combining Eqs. (17)

and (18), we finally get

1SðkÞv;i;j ¼ e
�d

ðkÞ
v;i;jþd

ðkÞ
v;i� ;j��ðði��iÞ2þðj��jÞ2Þ=r2

: ð19Þ

We flatten the two-dimensional output of the SOM

obtaining a vectorial representation of the activation map

of the SOM for each node, i.e., h0SðkÞv where each element of

such vector is defined as fh0SðkÞv gi�p0þj ¼ 1ðkÞv;i;j.

Finally, we implement the aggregator function aggrð�Þ
computing global statistics over the nodes in a graph as

follows:

hSðiÞ ¼ aggr h00SðiÞv j v 2 VG

n o� �
ð20Þ

¼ avgv2VG
h00SðiÞv

� �
;maxv2VG

h00SðiÞv

� �
; sumv2VG

h00SðiÞv

� �h i
:

ð21Þ

3.2 Training procedure

To train a GNN that exploits the proposed SOM-based

aggregation we have to deal with the fact that the SOM

model requires an unsupervised training algorithm, while

we consider supervised learning problems. For this reason,

we developed a four-step training procedure. The basic

idea is to, first of all, learn initial embeddings for nodes

without using the SOM (pre-training). The aim of this step

is to learn stable representations to use for training the

SOM. In the second step, the SOM is trained using an

unsupervised method. The representations developed by

the SOM are then fed for supervised training of the rest of

the network (post-SOM GC and readout). Training is

concluded with a fine-tuning training involving all network

parameters, except for the SOM weights.

Let us define the set of parameters of the Graph Con-

volution Block in equation (7) as hGCB, the SOM param-

eters as hSOM, and all the other parameters (post-SOM GC

and readout) as hrest.

The first step consists in training the hGCB parameters of

the Graph Convolution Block. We add, only for this first

step, an ad-hoc readout layer, which we refer to as pre-

training readout, to perform supervised learning with

backpropagation (see Fig. 1, top left). That allows to train

this part of the model separately from the rest of the net-

work. The pre-training readout layer is defined as follows:

hSðiÞpre ¼ aggr hGCðiÞv j v 2 VG

n ��

¼ avgv2VG
hGCðiÞv

� �
;maxv2VG

hGCðiÞv

� �
; sumv2VG

hGCðiÞv

� �h i
;

ð22Þ

hSpre ¼ hSð1Þpre ; h
Sð2Þ
pre ; . . .; h

SðdÞ
pre

h i
; ð23Þ

opre ¼ LogSoftMax Wopreh
S
pre þ bopre

� �
: ð24Þ

The second step consists in training the hSOM weights of the

SOM layers of the SOM-based aggregation blocks. We

adopted the well-known unsupervised training method

proposed by Kohonen [16]. In the third phase, the aim is to

train hrest parameters. This phase exploits again supervised

training and the part of the model involved in these phases

is represented by Eqs. (9)–(12). In this phase, the SOMs

output will not change. The last training step consists in a

fine-tuning phase. The aim is to tune the model parameters

hGCB and hrest, maintaining hSOM fixed. Further cycles of

adaptation could take place by retraining the SOMs and so

on. In this paper, however, we do not apply these further

adaptation cycles. The pseudo-code that summarizes the

training procedure is reported in Algorithm 1.
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4 Experimental results

In this section, we report and discuss the results obtained

by our proposed model, which we refer to as SOM-GCNN.

We start introducing the adopted datasets, our model set

up, and the hyper-parameter selection strategy. We then

present and discuss our experimental results.

4.1 Datasets

The proposed model, and the other models compared with

it, were empirically validated on commonly adopted graph

classification benchmarks. Specifically, we used five

datasets modeling bioinformatics problems: PTC [12],

NCI1 [29], PROTEINS, [3], D&D [6] and ENZYMES [3].

PTC, and NCI1 involve chemical compounds represented

by their molecular graph, where the atom type is repre-

sented by node labels, and bonds correspond to edges. The

prediction task for PTC concerns the carcinogenicity for

male rats by chemical compounds. In NCI1 the graphs

represent anti-cancer screens for cell lung cancer. The

remaining datasets, PROTEINS, D&D and ENZYMES,

involve graphs that represent proteins. Amino acids are

represented by nodes while edges connect amino acids that

are less then 6 Å apart. All the prediction tasks are binary

classification tasks, except for the ENZYMES dataset,

where a multi-class classification of chemical compounds
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(6 classes) is represented. Relevant statistics about the

datasets are reported in Table 1.

4.2 Model selection and experimental setup

In order to test the effectiveness of the proposed SOM

aggregation block, we applied it to a simple GNN model

inspired by the FGCNN model [21], which obtained very

good results in the considered datasets. Our model is

reported in Fig. 1. In particular the base model (Graph

Convolution Block in the figure) is composed of three

Graph Convolution layers (therefore d is set to 3 in

Eq. (11)). In FGCNN, the number of neurons of each layer

increases with increasing depth. More precisely,

hGCð1Þ 2 Rl, hGCð2Þ 2 R2l, and hGCð3Þ 2 R3l. As graph

convolution operator we used the GraphConv [20]. As

activation function f for the various convolution layers we

choose the ReLU.

For what concerns the readout part of the model, we

experimented with a shallow setting, where k ¼ 1, there-

fore only the output layer defined in Eq. (14) is used after

the aggregation layer hS in Eq. (11). We also tested a

model that exploits a deeper version of the readout com-

posed of three fully connected feed-forward layers before

the output layer (k ¼ 3). In any case, the pre-training

readout exploited a single output layer, i.e., k ¼ 1. The

results reported in Table 4 were obtained by performing

five runs of tenfold cross-validation.

The goal of this work is to evaluate the benefit of using

the SOM-based aggregation. For this reason, we focused

our attention on the adopted SOM parameters, in particular,

we carefully validated the dimensions of the lattice, and the

learning rate used during the self-organizing phase. These

two parameters were selected using a limited grid search

where the explored set of values changes based on the

considered dataset (see Table 2). Due to the high time

requirements of performing an extensive grid search, we

decided to limit the number of values taken into account

for each hyper-parameter, by performing several prelimi-

nary tests. As score, we used the average accuracy com-

puted over the 10-fold cross-validation on the validation

sets, and we used the same set of selected hyper-parameters

for each fold. The selection of the epoch was performed for

each fold independently based on the accuracy on the

validation set. Another parameter that influences the SOM

performance is r that modifies the impact of the neigh-

borhood function (see Eq. (18)). For this value, we use a

heuristic solution by making the value dependent on the

maximum dimension of the SOM:

r ¼ maxðp0; p00Þ=2: ð25Þ

During training the trend of neighborhood function is

influenced not only by the value of r, but also by the

learning rate. Indeed at each training iteration the r value

used by the neighborhood function to update the weights is

defined as follows:

rtraining ¼ r � lr � ðð1� icÞ=itÞ; ð26Þ

where lr is the learning rate, ic is the current iteration, and it
is the total number of training iterations.

An issue related to the proposed SOM-based aggrega-

tion is the high number of hyper-parameters. This aspect

makes time-consuming to perform a complete grid search

considering all hyper-parameters. For this reason, for what

concerns the other parameters of the model, we adopted a

random search strategy. Therefore, we believe that all

reported results may be slightly improved by a more sys-

tematic search. The selected parameters for each

dataset/configuration are reported in Table 3. For further

details about the experimental setup, it is possible to con-

sult the publicly available code.1

Table 1 Datasets statistics
Dataset #Graphs #Node #Edge Avg #Nodes/graph Avg. #Edges/graph

PTC 344 4915 10,108 14.29 14.69

NCI1 4110 122,747 265,506 29.87 32.30

Proteins 1113 43,471 162,088 39.06 72.82

D&D 1178 334,925 1,686,092 284.32 715.66

Enzymes 600 19,580 74,564 32.63 124.27

Table 2 Sets of hyper-parameters values used for model selection via

grid search

Dataset SOM learning-rate SOM sizes

PTC 0.1, 0.05, 0.005 (12, 9), (16, 12), (20, 15)

NCI1 0.1, 0.05, 0.005 (10,7), (15, 10), (15, 20)

Proteins 0.1, 0.05, 0.005 (10, 7), (12, 9), (15, 10)

D&D 0.1, 0.05, 0.005 (7, 10), (15, 10), (17, 12)

Enzymes 0.1, 0.05, 0.005 (10, 7), (12, 9), (15, 12)

1 https://github.com/lpasa/SOMBasedGraphAggregation.
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4.3 Baselines

We compare SOM-GCNN with several GNN architectures,

which achieved state-of-the-art results on the different

datasets. In Table 4 we report the results of such compar-

ison. Specifically, we consider PSCN [23], Funnel GCNN

(FGCNN) [21], DGCNN [34], GIN [30], DIFFPOOL [31]

and GraphSage [11]. More details about these architectures

are provided in ‘‘Appendix B’’. For FGCNN, we did not

consider the additional loss term based on the Weisfeiler-

Lehman graph kernel to ensure a fair comparison.

The results reported in the GIN paper [30] cannot be

compared with the other results reported in Table 4,

because the authors state ‘‘The hyper-parameters we tune

for each dataset are [...] the number of epochs, i.e., a single

epoch with the best cross-validation accuracy averaged

over the ten folds was selected.’’. Similarly, for the result

reported in Chen et al. [4] for the GCN and the GFN

models, the authors state ‘‘We run the model for 100

epochs, and select the epoch in the same way as [30], i.e., a

single epoch with the best cross-validation accuracy

averaged over the ten folds is selected.’’ In both cases, the

model selection strategy is different from the one we

adopted. This makes the results not comparable. Moreover,

in the GIN and Diffpool papers [30, 31] the node

descriptors are augmented with structural features (a one-

hot representation of the node degree in both works, and a

clustering coefficient in the latter). We decided to use a

common setting for the chemical domain, where the nodes

are labeled with a one-hot encoding of their atom type

only. The only exception is ENZYMES, where it is com-

mon to use 18 additional available features, thus we deci-

ded to adopt this setting. These issues, and the importance

of the validation strategy, are highlighted and discussed

in [8]. The same paper reports the results of a fair com-

parison between the considered baseline models. We fol-

low this setting as much as possible.

Table 3 Hyper-parameters

selected via random search
Dataset Readout l LR pre-training LR readout LR fine-tuning Batch size

PTC Shallow 30 5� 10�4 5� 10�4 1� 10�4 32

PTC Deep 20 5� 10�4 5� 10�4 1� 10�4 32

NCI1 Shallow 75 5� 10�4 5� 10�4 1� 10�4 32

NCI1 Deep 50 5� 10�4 5� 10�4 1� 10�4 32

Proteins Shallow 30 1� 10�4 1� 10�4 1� 10�4 32

Proteins Deep 20 1� 10�4 1� 10�4 1� 10�4 32

D&D Shallow 40 5� 10�4 5� 10�4 1� 10�4 16

D&D Deep 40 5� 10�4 5� 10�4 1� 10�4 16

Enzymes Shallow 30 5� 10�4 5� 10�4 1� 10�4 32

Enzymes Deep 20 5� 10�4 5� 10�4 1� 10�4 32

For what concerns dropout probability and weight decay all datasets/configurations use 0.5 and 5� 10�4,

respectively

Table 4 Accuracies by SOM-

GCNN and state-of-the-art
models on the five used datasets

Dataset PTC NCI1 Proteins D&D Enzymes

PSCN [23] 60.00 ± 4.82 76.34 ± 1.68 75.00 ± 2.51 76.27 ± 2.64 –

FGCNN [21] 58.82 ± 1.80 81.50 ± 0.39 74.57 ± 0.80 77.47 ± 0.86 –

DGCNN [21] 57.14 ± 2.19 72.97 ± 0.87 73.96 ± 0.41 78.09 ± 0.72 –

DGCNN [8] – 76.4 ± 1.7 72.9 ± 3.5 76.6 ± 4.3 38.9 ± 5.7

GIN [8] – 80.0 ± 1.4 73.3 ± 4.0 75.3 ± 2.9 59.6 – 4.5

DIFFPOOL [8] – 76.9 ± 1.9 73.7 ± 3.5 75.0 ± 3.5 59.5 ± 5.6

GraphSAGE [8] – 76.0 ± 1.8 73.0 ± 4.5 72.9 ± 2.0 58.2 ± 6.0

DGCNN-DeepSets [21] 58.16 ± 1.05 74.19 ± 0.59 75.11 ± 0.28 77.86 ± 0.27 –

SOM-GCNN shallow 62.24 ± 1.7 83.30 ± 0.45 75.01 ± 0.65 74.65 ± 1.23 50.01 ± 2.92

SOM-GCNN deep 61.70 ± 0.97 82.32 ± 0.52 75.22 ± 0.61 78.10 ± 0.60 44.10 ± 1.87

The best results are reported in bold
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For the sake of comparison we also reported the results

of the DGCNN-DeepSets [21]. We want to point out that

these results are not completely comparable with the ones

obtained by our models for two reasons: (i) the DeepSets

was implemented by MLPs on a different base GNN

architecture, i.e., a DGCNN model; (ii) the adopted vali-

dation strategy is different from the one we applied in this

study.

4.4 Discussion of experimental results

The results reported in Table 4 show that the predictive

performance of our proposed SOM-GCNN architecture are

highly competitive compared to the other considered

methods in all the considered datasets, with the exception

of ENZYMES. Specifically, the proposed method shows

the best performances on PTC, NCI1, PROTEINS and

D&D datasets, significantly outperforming state-of-the-art

methods in many cases. NCI1 and D&D are the two

datasets that have higher numbers of nodes/graphs. From

this point of view, it is also interesting to notice that the

experimental results on D&D are the only case where the

deep version of the readout shows improved results com-

pared to the shallow one. Indeed, in the other datasets, the

higher number of parameters of the deep readout and the

limited size of the datasets favor the onset of overfitting in

this setting. That is more visible in the fine-tuning phase. In

this regard, it is important to point out that the selection of

the type of output highly depends on the considered data-

set. For the seek of analysis, we report the results of both

types of output for all datasets. In some cases (like DD and

PROTEINS) we consider the model with a deep readout,

while for the other datasets is clearly more convenient to

use a shallow readout. Note that the selection of the readout

type is part of the validation process. Moreover, the pro-

posed base aggregation method turns out to be completely

detached from the adopted readout architecture. The sec-

ond best performing method on D&D is DGCNN in the

validation setting of Navarin et al. [21]. However, in the

more rigorous validation setting of Errica et al. [8] that we

followed, the difference gap compared to our proposed

SOM-GCNN is higher. On PROTEINS, SOM-GCNN

achieves slightly improved predictive performances com-

pared to PSCN [23], but with a significantly lower vari-

ance. Moreover, its performance are close to DGCNN-

DeepSets [21], for which we recall there is a difference in

the validation setting that can favor DGCNN-DeepSets.

The ENZYMES dataset involves a 6-class classification

task, and in this case, the proposed SOM-based aggregation

method seems very efficient in increasing the graph con-

volutional accuracy. Indeed, the results obtained after the

SOM-based aggregation improve significantly the ones

achieved after the first training phase. Unfortunately, the

accuracy of the base GNN model (Table 5) is significantly

lower than the ones reached by the state-of-the-art models.

We argue that this difference in accuracy performance is

highly related to the readout part of the model. In fact, the

model considered during the first training phase turns out to

be similar to the FGCNN network reported in Table 4

except for the readout part, which in our case is shallow.

Table 5 Accuracy obtained

after the various training steps
Dataset Pre-training Readout type Readout Fine-tuning

PTC 57.75 ± 1.51 Shallow 62.24 ± 1.71 61.15 ± 1.54

58.05 ± 1.62 Deep 61.70 ± 0.97 61.19 ± 0.65

4 layers GC Block 58.77 ± 1.76

NCI1 81.53 ± 0.51 Shallow 82.32 ± 0.52 83.30 ± 0.45

81.69 ± 0.30 Deep 82.32 ± 0.52 82.27 ± 0.18

4 layers GC Block 82.09 ± 0.51

Proteins 72.07 ± 1.16 Shallow 73.88 ± 0.37 75.01 ± 0.65

73.15 ± 0.88 Deep 74.92 ± 0.97 75.22 ± 0.61

4 layers GC Block 69.93 ± 1.40

D&D 72.00 ± 0.82 Shallow 74.52 ± 1.19 74.65 ± 1.23

70.24 ± 1.22 Deep 77.57 ± 0.41 78.10 ± 0.6

4 layers GC Block 70.34 ± 1.57

Enzymes 43.7 ± 0.84 Shallow 46.77 ± 1.50 50.01 ± 2.92

41.81 ± 1.81 Deep 43.93 ± 2.19 44.10 ± 1.87

4 layers GC Block 43.30 ± 3.41

Note that the pre-training phase always uses a shallow pre-training readout, while the hyper-parameters

could be different (see Table 3). The last row of each dataset reports the accuracy of the pre-training

readout using a Graph Convolution Block composed of four GC layers
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The choice of using a simple and shallow readout layer for

pre-training the first part of the model is due to the fact that

the readout part (Eqs. (22)–(24)) will be discarded after the

pre-training phase. Moreover, the first training step aims to

initialize properly the weights of the Graph Convolution

Block to provide meaningful inputs to the second training

step that involves the SOMs.

In Table 5, we reported the accuracy results reached in

the different training phases (we merge the SOM training

and the readout part training since both steps are necessary

to obtain a fully trained model). In Table 4 we reported for

each dataset/configuration the best result with or without

fine-tuning, selected according to the validation error.

Indeed the fine-tuning phase does not always improve the

model classification performance. It turns out to be more

useful when the size of the training set is large. Indeed,

also, in this case, the problem is related to the already

mentioned overfitting phenomenon. The results reported in

Table 5 show that the application of the SOM-based

aggregation blocks always allows to reach improved results

compared to the base model (pre-training). In particular,

the comparison between the pre-training and the readout

accuracy in the shallow model (where the exploited read-

outs are very similar) highlights the benefit of adopting the

proposed aggregation technique. Table 6 reports the results

obtained on the validation set by using different SOM

dimensions. In three out of five datasets, the SOMs with

highest dimensions obtain better results. One exception is

the deep readout version of the SOM-GCNN on NCI1,

where the results of the (15,10) SOM are very close to the

one with the lattice of (20,15). Moreover, in this case, also

the overfitting influences the results. In our preliminary

experiments, we noticed that using larger lattices drives the

model to overfit quickly. The other exceptions are the PTC

and ENZYMES datasets. These datasets are the ones with

the smallest number of nodes/graphs (see Table 1), which

reduces the advantage of using larger lattices. Having lar-

ger SOMs increases also the number of parameters of the

model, and considering the limited size of these two

datasets, using a larger lattice may boost the rise of the

overfitting issues. In the next section, we analyze in more

detail the SOM’s behavior in the proposed aggregation

mechanism.

In Table 5, we also report the results of a pre-trained

graph convolutional network with four GC layers. These

results turns out to be crucial to assess the benefit of using

the SOM-based aggregation blocks. Indeed, considering

that a SOM-based aggregation block includes a GC layer

after the SOM, it is important to verify that the observed

improvements with respect to the pre-trained model are not

due to that additional GC layer. The comparison with a pre-

trained model with four GC layers is thus intended to

provide this information. The results show that, in all cases,

the use of a further GC layer does not significantly improve

the accuracy results, which turn out to be similar to the

results obtained with the three layers graph convolutional

block. Therefore we can conclude that the SOM plays a

crucial role in the proposed aggregation method.

5 SOM-based aggregation block analysis

In this section, we analyze how the use of the SOM layer

modifies the representations learned by a GNN. In partic-

ular, we start by analyzing the benefits of using a trained

SOM vs. using an untrained one. Subsequently, we study

the global distribution of the representations generated by

the SOM. We do this by comparing the normalized dis-

tribution of the distances between all couples of nodes’

embeddings in the whole dataset in the representation

computed by the SOM, versus the ones obtained by the first

set of GC layers and by the post-SOMs CG layers. As a

result of this analysis, we question whether the GC pro-

jection layers are actually useful. For this reason we per-

form an ablation study that shows that these layers are

beneficial for the final performance. Finally, we explore

how nodes belonging to positive/negative graphs are

mapped onto the SOM lattice. This last analysis is quite

interesting since it allows, in principle, to explain the

output of the model. This is an additional advantage of

integrating SOM modules into the model.

Table 6 Accuracy obtained on the validation sets by using SOM with

different lattice sizes

Dataset Som size

PTC (12, 9) (16, 12) (20, 15)

Shallow readout 79.14 76.00 74.29

Deep readout 73.430 74.00 71.43

NCI1 (10, 7) (15, 10) (20, 15)

Shallow readout 84.38 85.11 86.30

Deep readout 83.65 84.64 84.54

Proteins (10, 7) (12, 9) (15, 10)

Shallow readout 78.30 78.48 79.91

Deep readout 79.46 78.482 80.09

D&D (10, 7) (15, 10) (17,1 2)

Shallow readout 80.08 80.42 81.10

Deep readout 82.46 81.78 83.05

Enzymes (10, 7) (12, 9) (15, 12)

Shallow readout 61.00 56.17 57.50

Deep readout 54.5 52.83 52.17

The best results are reported in bold

Each reported result was obtained by selecting the best epoch and

using the best learning rate based on validation test accuracy results
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5.1 Advantage in using SOM-based aggregation
block

In order to evaluate the positive effect of using SOM

projection, we defined a model by randomly initializing the

SOM synaptic weights s
ðkÞ
i;j , and trained it without per-

forming the second step, where the SOMs weights are

trained using the unsupervised method. Thus, the SOMs of

the obtained models have all the weights set to random

values. The results of these experiments are reported in

Table 7, and they can be directly compared versus the ones

reported in Table 5, since we used the same hyperparam-

eters. Also in this case the results were obtained by per-

forming five runs of 10-fold cross-validation. It is possible

to notice the in all cases the obtained accuracy drops sig-

nificantly using random SOM synaptic weights. Note that,

in some cases the results after the readout training are even

lower than the ones computed in the pre-training phase. It

is important to point out that also in this case the readout

training phase is performed. These results suggest that the

SOMs allow to obtain a node embedding that makes it

somehow easier to perform the classification task. In the

following, we analyze how the SOM influences the

obtained node embeddings.

5.2 Node embedding distances

In Fig. 2 we report the cumulative distribution of the

(normalized) pairwise nodes distances of all nodes of the

training set’s graphs of the NCI1 dataset. We observed a

similar behavior for the other datasets, thus we decided to

omit the plots for brevity. The black line represents the

cumulative distribution of the input nodes representations

(node labels). In the figure, it is possible to notice that in

NCI1 dataset there are almost 104 nodes that share the

same input representation.

The blue line represents the cumulative distribution of

the representations returned by the Graph Convolution

block of the model. In this specific case, the considered

node representation is the concatenation of the three graph

convolutional layers outputs:

hGCv ¼ hGCð1Þv ; hGCð2Þv ; hGCð3Þv

h i
: ð27Þ

The SOM in the i-th SOM-based aggregation block

receives in input the corresponding node embeddings hGCðiÞv

and computes in output h0SðiÞv . The red curve represents the

cumulative distance between the concatenation of the

various SOM Layers Aggregation outputs:

h0Sv ¼ h0Sð1Þv ; h0Sð2Þv ; h0Sð3Þv

h i
: ð28Þ

Finally, we analyze the representation obtained by the

Table 7 Accuracy obtained using random initialized SOMs, and without performing the unsupervised learning phase on them

Dataset Pre-training Readout type Readout Fine-tuning

PTC 59.61 ± 2.48 Shallow 57.04 ± 1.25 57.14 ± 1.05

59.49 ± 1.84 Deep 58.16 ± 1.73 59.14 ± 0.74

NCI1 81.29 ± 0.38 Shallow 81.17 ± 0.24 81.65 ± 0.15

81.57 ± 0.46 Deep 81.18 ± 0.49 81.45 ± 0.36

Proteins 71.29 ± 1.09 Shallow 71.91 ± 0.96 72.39 ± 0.75

71.51 ± 1.02 Deep 72.63 ± 0.65 73.43 ± 0.86

D&D 70.44 ± 1.56 Shallow 71.85 ± 1.08 72.58 ± 1.21

71.39 ± 0.86 Deep 75.21 ± 0.44 75.76 ± 0.86

Enzymes 43.77 ± 1.64 Shallow 40.83 ± 2.16 45.03 ± 2.03

41.17 ± 1.38 Deep 42.07 ± 1.22 42.10 ± 1.96

Note that the pre-training phase always uses a shallow pre-training readout, while the hyper-parameters could be different (see Table 3)

Fig. 2 Cumulative distribution of the pairwise nodes distances of all

nodes of the training set’s graphs of the NCI1 dataset. Note that in the

y-axis each value is written in scientific notation and is multiplied by

107
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Graph Convolution Layer Projection. Also in this case we

considered the distances of the concatenation of the various

layer outputs:

h00Sv ¼ h00Sð1Þv ;h00Sð2Þv ; h00Sð3Þv

h i
: ð29Þ

The yellow curve represents the correspondent cumulative

distribution.

The first observation is that SOM tends to increase the

pairwise distance between nodes. We think this is consis-

tent with the SOM property to exploit several neurons in

the lattice for dense populated zones in the input space. The

second observation is that the application of the Graph

Convolution Layer Projection after the SOM Layers

Aggregation reduces the distances among the representa-

tions. However, the resulting representations are less close

than the ones computed by the first Graph Convolution

Layers. Note that the representations h00SðiÞv encapsulate

more information than hGCðiÞv (and consequently, by h0SðiÞv ),

because the additional Graph Convolution layer extends of

one hop the node neighbor.

As a final remark, we think it is fair to claim that the

SOM seems to help the model to develop more separable

internal representations, which may explain the better

observed performances.

5.3 Graph convolution layer projection

As reported in Fig. 1, the proposed SOM-based aggrega-

tion block is composed of three parts: SOM Layer Pro-

jection, Graph Convolution Layer Projection and,

Aggregation Layer. In the previous section, we showed that

Graph Convolution Layer Projection reduces the distances

among the representations obtained by the SOM Layer

Projection. In order to study whether the contraction made

by Graph Convolution Layer is useful, we trained the

model removing these specific components. The results of

this ablation study are reported in Table 8, and they can be

directly compared versus the ones reported in Table 5,

since we used the same hyperparameters.

The results show the benefits of having a Graph Con-

volutional layer that allows to aggregate the SOM Layer

Projection outputs according to the graph topology. In all

datasets, the accuracy decreases significantly compared to

the results obtained with the full model (Table 5). Note that

for datasets that have a higher average number of edges per

graph (DD, ENZYMES), the accuracy drop is even more

pronounced.

5.4 SOM lattice representations

In Figs. 3, 4, 5 and 6, we report heatmaps with entries

computed as follows. Let Gþ and G� be set of graphs

belonging to class þ and -, respectively. For each layer

level k, and class c 2 fþ;�g, we define the entry (i, j) of

heatmapðcÞðkÞ as follows:

heatmapðcÞðkÞi;j ¼ 1

jGcj
X

g2Gc

X

v2Vg

1ðkÞv;i;j: ð30Þ

Notice that the inner summation computes a graph-based

contribution of each neuron, since it aggregates the outputs

of the neuron for all the nodes of a single graph. Then, the

outer summation computes an average over the set of

graphs belonging to the same class c.

Each figure reports the heatmap of each SOM layer (one

per SOM-based aggregation block). We also report the

differences between the two heatmaps in order to highlight

how the SOM output conveys information related to the

classification task. Our analysis is limited to the datasets

that model a binary classification task.

In all datasets, the area where the neurons are activated

by the input widens with increasing depth, and in the first

layer, it tends to be close to the lattice borders. This

Table 8 Accuracy obtained

training the model where the

Graph Convolution Layer
Projection were removed from

the SOM-based aggregation

blocks

Dataset Pre-training Readout type Readout Fine-tuning

PTC 57.71 ± 4.46 Shallow 58.00 ± 3.35 59.48 ± 2.44

60.51 ± 1.61 Deep 59.89 ± 0.26 60.40 ± 0.37

NCI1 81.51 ± 0.65 Shallow 78.05 ± 0.52 80.88 ± 0.82

81.60 ± 0.23 Deep 81.67 ± 0.45 81.63 ± 0.25

Proteins 71.89 ± 0.91 Shallow 71.97 ± 0.08 72.44 ± 1.74

72.29 ± 0.83 Deep 73.66 ± 0.60 73.48 ± 0.69

D&D 71.64 ± 1.37 Shallow 71.81 ± 1.27 72.78 ± 0.94

71.40 ± 2.21 Deep 75.75 ± 0.41 76.18 ± 0.49

Enzymes 42.67 ± 0.73 Shallow 42.44 ± 3.58 44.72 ± 1.46

42.16 ± 2.73 Deep 45.72 ± 0.75 46.61 ± 1.11

Note that the pre-training phase always uses a shallow pre-training readout, while the hyper-parameters

could be different (see Table 3)
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behavior could be due to the limited size of the input

vocabulary. In NCI1 (Fig. 3) the representation of the

positive and negative classes is quite similar in the first

layer, while a more prominent differentiation arises in

deeper layers. In PTC and in DD (Figs. 4 and 5, respec-

tively) the visible distinction between the two classes could

be noticed in the magnitude of the SOM activations, while

the area of activation is partially overlapping. A very sharp

difference between the two classes representations can be

noticed in the PROTEINS dataset (Fig. 6). In fact, in this

case both the magnitude and the distribution of the active

SOM neurons seems to be very different.

In PTC, D&D and PROTEINS, the activations of the

positive and the negative classes differ both in terms of the

width of the area and in the magnitude of activations.

Indeed, all these datasets have a ratio between the positive

and the negative class different from 1. We argue that this

difference is related to the imbalanced class distribution of

these datasets. Moreover, NCI1 is the only dataset that is

almost perfectly balanced and the positive and negative

heatmaps turn out to be more similar in terms of output

magnitude.

6 Conclusion and future works

In this paper, we proposed a node aggregation scheme for

graph convolutional neural networks inspired by Deep-

Sets [32] that exploits self-organizing maps followed by

graph convolutions to transform the node embeddings, and

then aggregates them according to the DeepSets formula-

tion in a fixed-size graph-level representation. Due to the

unsupervised nature of the SOM training algorithm, we

developed an ad-hoc training algorithm for supervised

Fig. 3 Heatmaps computed according to Eq. (30) on a batch of the

NCI1 test set. Each image row presents from left to right: the heatmap

obtained by considering only nodes that belong to graphs with

negative target, the heatmap obtained by considering only nodes that

belong to graphs with positive target, and (on a different scale) the

difference between the two heatmaps (positive minus negative). Each

row reports the heatmaps relative to a single SOM-based aggregation

block, from first (top) to third (bottom)
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learning tasks to learn the parameters of the resulting graph

neural network.

We empirically validated the proposed SOM-based

aggregation method on five commonly adopted graph

classification benchmarks modeling bioinformatics

problems. Experimental results show that our proposal

achieves improved predictive performance compared to

competing methods in the majority of the considered

datasets. We investigated how much the SOM component

helps in reaching these results. We showed that training the

Fig. 4 Heatmaps computed according to Eq. (30) on a batch of the

PTC test set. Each image row presents from left to right: the heatmap

obtained by considering only nodes that belong to graphs with

negative target, the heatmap obtained by considering only nodes that

belong to graphs with positive target, and (on a different scale) the

difference between the two heatmaps (positive minus negative). Each

row reports the heatmaps relative to a single SOM-based aggregation

block, from first (top) to third (bottom)
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SOM is beneficial for the predictive performance, as well

as stacking a GC projection layer after the SOM. More-

over, we studied the distances between node representa-

tions after the first graph convolution block, comparing

them with the distances after applying the SOM mapping

and the subsequent Graph Convolution Layer Projection.

The comparison shows the benefit of using the SOM-based

aggregation block to increase the distances between the

node embeddings, thus potentially making the classifica-

tion task easier.

Finally, thanks to the use of SOMs in the proposed

model, we were also able to produce heatmaps representing

each graph. By taking the average of such heatmaps over a

set of graphs, we studied how SOMs represent graphs

belonging to different classes.

A limit of the proposed approach is its relatively high

number of hyper-parameters, which makes the application

of a complete grid search time-consuming. In the future,

we plan to study and develop a simpler version of the

SOM-based aggregation that depends on a significantly

lower number of hyper-parameters. We will extend the

study to different types of lattice configurations as well as

to more advanced types of SOM models (e.g., the Gener-

ative Topographic Map (GTM) [2]. Finally, we will

explore a fully supervised extension of our proposal

exploiting supervised SOM training algorithms, e.g. the

algorithm proposed by Hagenbuchner et al. [10].

Fig. 5 Heatmaps computed according to Eq. (30) on a batch of the

D&D test set. Each image row presents from left to right: the heatmap

obtained by considering only nodes that belong to graphs with

negative target, the heatmap obtained by considering only nodes that

belong to graphs with positive target, and (on a different scale) the

difference between the two heatmaps (positive minus negative). Each

row reports the heatmaps relative to a single SOM-based aggregation

block, from first (top) to third (bottom)
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Fig. 6 Heatmaps computed according to Eq. (30) on a batch of the

PROTEINS test set. Each image row presents from left to right: the

heatmap obtained by considering only nodes that belong to graphs

with negative target, the heatmap obtained by considering only nodes

that belong to graphs with positive target, and (on a different scale)

the difference between the two heatmaps (positive minus negative).

Each row reports the heatmaps relative to a single SOM-based

aggregation block, from first (top) to third (bottom)
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Appendix A: Graph convolutions

In this section, we review some definitions of graph con-

volution in the literature, besides the ones used in the

proposed architecture. In the following definitions, for the

sake of simplicity, we ignore the bias terms. Scarselli e-

t al. [24] proposed a recurrent neural network for graphs

that adopts the following general form of convolution:

htþ1
v ¼

X

u2NðvÞ
fHðhtu; xv; xuÞ; ð31Þ

where t	 0 is the time of the recurrence, htþ1
v is the rep-

resentation of node v at timestep t þ 1, fh is a neural net-

work whose parameters h have to be learned, and are

shared among all the vertices. If edge labels are available,

they can be easily included in Eq. (31). The recurrent

system is defined as a contraction mapping, thus it is

guaranteed to converge to a fixed point. Li et al. [17]

extended the work of Scarselli et al. [24], removing the

constraint for the recurrent system to be a contraction

mapping.

Micheli [19] proposed the Neural Network for Graphs

(NN4G) model. It is based on a graph convolution that is

defined for the first and the ðiþ 1Þ-th layer (for i[ 0),

respectively, as follows:

hð1Þv ¼ f �W
ð1Þ
xv

� �
; ð32Þ

hðiþ1Þ
v ¼ f �W

ðiþ1Þ
xv þ

Xi

k¼1

Ŵ
ðiþ1;kÞ X

u2NðvÞ
hku

0

@

1

A; ð33Þ

where 1� v� n is the vertex index, Ŵ
ðl;mÞ

are the weights

connecting the representations at the m-th and l-th layer,

and �W ðiþ1Þ are weights transforming the input representa-

tions for the iþ 1-th layer . Note that in this formulation,

skip connections are present, to the ðiþ 1Þ-th layer, from

layer 1 to layer i. Duvenaud et al. [7], proposed a hierar-

chical approach, similar to NN4G and inspired by circular

fingerprints in chemical structures. While NN4G [19]

adopted Cascade-Correlation for training, Duvenaud et al.

used end-to-end back-propagation. ECC [26] developed an

improvement of the approach introduced by Duvenaud

et al. [7], weighting the sum over the neighbors of a vertex

by weights conditioned by the edge labels.

Kipf and Welling [15] proposed a graph convolution

that closely resembles NN4G in Eq. (33). Motivated by a

first-order approximation of localized spectral filters on

graphs introduced by Defferrard et al. [5], the graph con-

volutional filter is defined as follows:

Hðiþ1Þ ¼ f ð ~D�1
2 ~A ~D

�1
2HðiÞWðiÞÞ; ð34Þ

where ~A ¼ Aþ I, ~dii ¼
P

j ~ai;j, f is any activation function

applied element-wise, and H0 ¼ X, the matrix obtained by

collecting as rows the labels of the graph. Note that in this

equation, we compute the representation of all the vertices

in the graph at once. It is easy to see that Eq. (34) is very

similar to Eq. (33) with no skip connections. DGCNN [33]

proposed a slight modification of the graph convolution in

Eq. (34), defined as follows:

Hðiþ1Þ ¼ f ð ~D�1 ~AHðiÞWðiÞÞ; ð35Þ

where H0 ¼ X, and ~A ¼ Aþ I. The difference between

Eqs. (35) and (34) is the use of a different propagation

scheme (different normalization of the graph Laplacian) to

propagate vertices’ representations. In fact, both equations

can be seen as first-order approximations of the polyno-

mially parameterized spectral graph convolution [5]. Tra-

n et al. [28]. extended DGCNN with a hyper-parameter

controlling the neighborhood distance considered in the

convolution operation.

PATCHY-SAN [23] follows a more straightforward

approach to define convolutions on graphs, which is con-

ceptually closer to convolutions defined over images. First,

it selects a fixed number of vertices from each graph,

exploiting a canonical ordering on graph vertices. Then, for

each vertex, it defines a fixed-size neighborhood (of ver-

tices possibly at distance greater than one), exploiting the

same vertex ordering. A standard CNNs is then applied

since the dimension of the resulting representation is fixed.

This approach requires the vertices of each input graph to

be in a canonical ordering, which is as complex as the

graph isomorphism problem (no polynomial-time
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algorithm is known), which introduces a computational

bottleneck for the method.

Diffusion CNN [1] defines a different graph convolution

(i.e., diffusion-convolution) that incorporates in the defi-

nition of graph convolution the diffusion operator, i.e., the

multiplication of the input representation with a power

series of the degree-normalized transition matrix.

Appendix B: State-of-the-art graph neural
network architectures

In this section, we briefly review SOTA Graph Neural

Network architectures.

The Funnel GCNN (FGCNN) model [21] aims to

enhance the gradient propagation using a simple aggrega-

tion function and LeakyReLU activation functions. Hing-

ing on the similarity of the adopted graph convolutional

operator to the way feature space representations by

Weisfeiler-Lehman (WL) Subtree Kernel [25] are gener-

ated, it introduces a loss term for the output of each con-

volutional layer to guide the network to reconstruct the

corresponding explicit WL features. Moreover, the number

of filters used at each convolutional layer is based on a

measure of the WL kernel complexity. GraphSage [11]

aggregates neighbor representations in the graph convolu-

tion using sum, mean or max-pooling operators, and then

performs a linear projection in order to update the node

representations. In addition to that, GraphSage exploits a

particular neighbors sampling scheme. GIN [30] is an

extension of GraphSage that defines a maximally expres-

sive graph convolution. DiffPool [31] combines a differ-

entiable graph encoder with a trainable pooling

mechanism. Indeed, the method learns an adaptive pooling

strategy to collapse nodes on the basis of a supervised

criterion.
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