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A B S T R AC T

Among the four fundamental interactions present in nature, gravity is
the only one that has not been quantized. A fundamental task in theo-
retical physics is thus to formulate a theory of quantum gravity. In this
context, the understanding of black hole physics plays a central role,
since a quantum gravity theory must be able to fully describe these
objects, solving the issues that emerge in general relativity. In partic-
ular, a quantum gravity theory should account for their macroscopical
entropy in terms of some microstates describing the black hole.

String theory is one of the leading candidates for a quantum gravity
theory. There are some striking achievements this theory has reached
so far and we are interested mainly in two of them. The first one is
that it manages to reproduce the Bekenstein-Hawking entropy of large
classes of asymptotically flat black holes by counting microstates in a
Boltzmann way. The second one is the formulation of the AdS/CFT cor-
respondence, which establishes a duality between gravitational theories
in Anti-de Sitter and conformal quantum field theory without gravity.
It is tempting to combine these two achievements to study Anti-de Sit-
ter black hole entropy via AdS/CFT correspondence, using a conformal
field theory. However, this has been proven to be hard to do and there
are aspects of the puzzle which have not been solved yet.

The main focus of this thesis is on adding some key ingredients to
solve the task of reproducing rotating AdS black hole entropy using Ad-
S/CFT. The first two chapters contain a detailed introduction on string
theory and AdS/CFT together to the presentation of the problem we
study. We review all the main related known results in the literature,
and an extensive overview of known rotating AdS black hole solutions
in all the dimensions between four and seven is provided. The third
and four chapters contain our main results. There, we shed light on the
physical interpretation of the so called entropy functions, which have
proven to be crucial to reproduce the entropy of rotating AdS black
holes. We show that they coincide with the on-shell action obtained in
a particular limit of black hole thermodynamics that we carefully de-
fine. We also construct two families of new asymptotically locally AdS5
rotating black hole solutions. As opposed to standard AdS5 solutions,
they present a conformal boundary which comprises a squashed three-
sphere. However their near-horizon geometry turns out to be the same
as standard AdS5 black holes; thus the paradigm of holographic uni-
formization, stating that the IR behavior of the solution is independent
of the UV one, is confirmed. Nevertheless, there are new important as-
pects linked to the form the Bekentein-Hawking entropy of these new
black holes can be written in, which we underline and discuss.
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1
I N T RO D U C T I O N A N D
M O T I VAT I O N S

This thesis focuses on the studying of the black holes in asymptoti-
cally Anti-de Sitter (AdS) spaces in various dimensions and on how
to reproduce their entropy using one of the main tools string theory
and supergravity grants at our disposal: the Anti-De Sitter/Conformal
Field Theory (AdS/CFT) correspondence. There are some questions
that might arise in the mind of the readers, especially for the ones
which do not work with black holes everyday, just by reading the title
of this thesis or the last statement above. Some of them might be:

• why should we study black holes in Anti-de Sitter spacetime,
which is so different from the one we live in? Why should we
work with extra dimensions?

• why should we study Anti-de Sitter black holes in string theory
or supergravity if we have not reached yet a complete knowledge
of asymptotically flat ones?

• how can string theory and supergravity tools help us to shed light
on black hole information paradox formulated by Hawking in the
context of general relativity?

All these questions, and many other similar ones, present an answer
that indeed motivates the study of AdS black holes in string theory/-
supergravity and the study of their entropy using AdS/CFT correspon-
dence; therefore the analysis of such black holes is in fact very much
relevant for many important topics in theoretical physics. In this first
chapter of the thesis, we will try to make these answers explicit and to
fully motivate the study of AdS black holes in various dimensions show-
ing how they may shed light on many important aspects of theoretical
physics. To do this, we shall start from the very beginning by the no-
tion of a black hole in general relativity, going forward to explore how
these fascinating objects posed various challenges to the physicists who
aimed to find the fundamental laws governing them and finally discuss
if and how these challenges have been overcome today. Due to the vast
amount of research topics and the complexity of them, this excursus
does not pretend to be comprehensive and exhaustive, but rather to
focus on the aspects which can help us to explain the importance of
AdS black holes in today’s theoretical physics research.
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2 introduction and motivations

1.1 black holes in general relativity and their ther-
modynamics

1.1.1 General relativity

Among all the ideas in 20th-century physics, General Relativity (GR)
has been one of the two hugely successful and groundbreaking ones 1.
It has been developed by Einstein [1] as a four-dimensional classical
theory of gravity which extends his special theory of relativity so to
include also the notions of gravitational acceleration and gravitational
fields. The main revolutionary idea of GR is that space and time are
a dynamic part of physics and not just a background for it to happen.
Therefore, matter and spacetime influence each other: the first one
can change the curvature of the second one which in turn govern the
motion of the matter. This concept is totally conveyed in the form of
the Einstein equations

Rµν −
1
2 gµν R = 8πGN Tµν , (1.1)

where the left-hand side involves the form of the spacetime, represented
by the metric gµν , the Ricci scalar and the Ricci tensor, while the right-
hand side puts matter into account via the energy-momentum tensor
Tµν . After many tests and checks in lots of experiments, nowadays GR
can be regarded as one of the best established and least controversial
theories in physics.

Finding a solution of the Einstein equations means finding a space-
time with some matter configuration which is compatible with general
relativity. Among all the solutions of the Einstein equations there are
some that exhibit singularities. When the singularity is shielded by an
event horizon we have a black hole, which will be the focus of this
thesis.

Two conclusive remarks are in order. The first one is that GR has
proven to be a non-renormalizable field theory [2]; therefore it may
be regarded as an incomplete theory which is the classical limit at low
energies (i.e. large distances) of a more fundamental theory of quantum
gravity. The second remark is that, although it is usually quite simple to
write the full Einstein equations for a given matter configuration, we are
still very far from having a full classification of all the possible solutions.
This is because there are infinite possibilities for matter to couple with
gravity. It is at this point that supersymmetry and supersymmetric
theories play a crucial role: supersymmetric solutions are governed by
first order differential equations2, while Einstein ones are of second

1 The other one is obviously quantum mechanics which we will introduce later.
2 Even though this is true in most of the cases, it is not true in general. Indeed, in the

case of a null vector field Killing spinor bilinear, typically not all of the components of
the Einstein equations hold as a consequence of supersymmetry. When this happens,
there is one component of the Einstein equations which must be imposed by hand.
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order. This makes the task of finding new solutions and classifying them
much more easy and feasible in a supersymmetric theory. String theory
and supergravity are both supersymmetric theory, so this may already
be a hint to understand why these theories are indeed important and
useful.

1.1.2 Black holes in general relativity

Black holes are among the most interesting solutions of general rela-
tivity. In the past, much experimental evidence pointed towards the
existence of black holes in the universe and the presence even in our
galaxy; finally in 2019 the first image of a supermassive black hole,
situated at the centre of the galaxy M87, has been obtained [3].

Black holes are regions of spacetime where gravity becomes so strong
to stop even light from escaping. They are characterized by the presence
of an event horizon hiding a space-time singularity; particles that pass
the horizon can classically never come back.

The first, simplest and best known black hole solution is the
Schwarzschild one [4]. It is a spherical symmetric solution of pure grav-
ity without any matter, i.e. the energy-momentum tensor vanishes. In
spherical coordinates, its metric has the following form:

ds2 = −
(︃

1− 2M
r

)︃
dt2 + dr2(︂

1− 2M
r

)︂ + r2
(︂
dθ2 + sin2 θ dφ2

)︂
(1.2)

with M being a parameter which may be interpreted as the mass of
the black hole. Asymptotically, in the limit r →∞, flat spacetime is re-
covered, while the point r = 0 is a singularity of the solution. However
the singularity is shielded by the coordinate singularity at rh = 2M ,
which is a spherical surface corresponding to the event horizon. This
latter thus prevents the outer region of spacetime from casually inter-
acting with the inner part, in contact with the singularity, because no
particles can classically come out from the horizon. A naked singular-
ity would instead cause the breakdown of the theory; this also makes
manifest the fact that it must be M ≥ 0, otherwise no event horizon
would exist to shield the singularity. The metric (1.2) is symmetric un-
der time translation and space rotations; the full Lorentz symmetry
SO(1, 3) is restored asymptotically. Therefore this black hole is static,
spherically symmetric and asymptotically flat. The only arbitrary pa-
rameter of the Schwarzschild black hole is the mass M . More general
black holes can be found in general relativity, which depend on more
than one parameter.

The simplest of these more general black holes is the
Reissner-Nordström solution [5,6]. This is a charged black hole solution
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in general relativity plus a Maxwell field. Its metric and non-zero gauge
field components can be written as:

ds2 = −U2 (r) dt2 + dr2

U2 (r)
+ r2

(︂
dθ2 + sin2 θ dφ2

)︂
, (1.3)

At =
2Q
r

, Aφ = −2P cos θ , (1.4)

where

U2 (r) = 1− 2M
r

+
Z2

r2 , Z2 = Q2 + P 2 (1.5)

with M being the mass of the black hole, Q being its electric charge and
P the magnetic one. The black hole is again asymptotically flat since
the spacetime becomes just Minkowski when r → ∞ and the electric
and magnetic fields vanish. As for the Schwarzschild black hole, the
point r = 0 is a true singularity; there are one or two more singularities
in the points where U(r) = 0, corresponding to event horizons. They
are given by the equation:

r± =M ±
√︁
M2 −Z2 , (1.6)

so that we have two event horizons if the mass is bigger than the charges
and only one event horizon if the charge balances the mass. In the latter
case the black hole is said extremal. We will return to these special
black holes later. The Reissner-Nordström solution depend on three
parameters: the mass M and the electric and magnetic charges Q and
P .

There is finally the Kerr-Newman solution, which is the most gen-
eral asymptotically flat black hole solution of the Einstein-Maxwell
theory. We will not present the explicit form of the solution since it
is quite involved, but we must underline that this black hole has also
a constant non vanishing angular momentum J in addition to a mass
and electric and magnetic charges. This most general solution is there-
fore governed by four parameters: M , J , Q and P . When J → 0 the
Reissner-Nordström black hole is recovered.

1.1.2.1 Black hole thermodynamics

Classically there seems to be nothing that does not work with the notion
of a black hole since the naked singularity at the center of spacetime
is always shielded by one or more event horizons. However as soon as
one starts taking into account thermodynamics of black holes and their
semiclassical behaviour, things change.

The story about black hole thermodynamics starts with the papers
of Bekenstein [7–9], where it has been shown the need of introduc-
ing an entropy for black holes proportional to the area of their event
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horizon, so as not to violate the second principle of thermodynamics.
Later Bardeen, Carter and Hawking proved the four laws of black hole
mechanics in [10]; these can be put in close analogy with the ones of
thermodynamics. The four laws can be stated as follows:

0. The surface gravity κ of a stationary black hole is constant over
the event horizon. This is analogous to the zeroth law of thermo-
dynamics, which states that the temperature is constant through-
out a body in thermal equilibrium. It suggests that the surface
gravity is analogous to temperature;

1. For perturbations of stationary black holes, the change of energy
is related to change of area, angular momentum, and electric
charge by:

dE =
κ

8π dA+ Ω dJ + Φ dQ , (1.7)

where E is the energy, A is the horizon area, Ω is the angular
velocity, J is the angular momentum, Φ is the electrostatic po-
tential and Q is the electric charge. It is quite immediate to put
in analogy the equation above with the first law of thermodynam-
ics 3;

2. If the energy-momentum tensor satisfies the weak energy condi-
tion4 and assuming the cosmic censorship hypothesis5 to be true,
then in any physical process, the area A of the event horizon does
not decrease, i.e.

δA ≥ 0 . (1.8)

This is the famous area theorem formulated by Hawking [13].
Analogously, the second law of thermodynamics states that the
change in entropy in an isolated system will be greater than or
equal to zero for a spontaneous process, suggesting a link between
entropy and the area of a black hole horizon;

3. It is not possible to reach a vanishing surface gravity, i.e. κ = 0,
via a physical process. This is analogous to the third law of ther-
modynamics, which states that a thermal system cannot reach
zero temperature in a finite number of physical processes.

3 Although the first law is usually stated in terms of perturbations of stationary black
holes, there are also other formulations showing that it is even more fundamental
than it is generally taken to be. An example of these alternative formulations is in the
context of the isolated formalism, discussed in [11]. There, the authors review and
redefine the notion of isolated horizons and show that requiring the time evolution
to be Hamiltonian implies that the first law must hold and viceversa. This approach
has been generalized to rotating black holes in [12].

4 The weak-energy condition states that for every timelike vector field, the matter
density which is observed by the corresponding observer is always non-negative.

5 The cosmic censorship hypothesis states that no naked singularities (i.e. singularities
not shielded by a horizon) exist in the universe.
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1.1.3 The problem of microstates counting and the information para-
dox

It should be now clear the analogy between black hole mechanics and
the laws of thermodynamics. But the story is very far from its ending.
It has been established that black holes have a temperature and an
entropy, which are given by

T =
κ

2π , S =
A

4GN
, (1.9)

for example, by reinstating all the constants which have been sup-
pressed in natural units, for a Schwarzschild black hole in four dimen-
sions they are

T =
ℏ c3

8πGN kBM
, S =

c3A

4ℏGN
.

The temperature of a black hole is known as the Hawking tempera-
ture, while the entropy of a black hole is usually called the Bekenstein-
Hawking entropy.

The precise physical meaning of these quantities was however still un-
clear and there were some problems, that in some fashion are still open
nowadays, which demanded for an answer. The first one is about how
to compute the entropy of the black hole by counting its microstates
via the Boltzmaan law. Indeed, from classical thermodynamics we know
that the entropy of a system is a macroscopic quantity which has a mi-
croscopic interpretation in terms of the microscopic configurations al-
lowed for a given macroscopic state. Due to all the analogies we traced
between black hole mechanics and thermodynamic quantities it is nat-
ural to seek for a microscopical interpretation of black hole entropy in
this direction. Unfortunately, as far as we know, there is no way to de-
scribe and enumerating all the possible black hole microstates in GR;
this is made sharper due to the existence of uniqueness theorems, also
called no-hair theorems [14,15], showing that a classical black hole can
only be described by three charges: the mass, the angular momentum
and the electric or magnetic charge. However, the above mentioned no-
hair theorems do not hold for AdS black holes6, which are the main
focus of this thesis; therefore for such solutions the situation is even
more intricate. The task of counting and characterizing the black hole
microstates, providing thus an interpretation for the entropy, seemed
therefore to be possible only in a theory of "quantum gravity" which
extends GR.

However the question of microstates counting was not the only one
to puzzle theoretical physicists in understanding black hole physics. In
the very famous paper [16] Hawking used a semiclassical approach to

6 This will be evident in Chapter 4, where we will explicitly construct hairy black hole
solutions in AdS5
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study a quantum field on a classical curved background described by
a black-hole geometry, proving that the first forces the black hole to
emit a thermal radiation, the temperature of which coincides with the
Hawking temperature. This discover basically shows that black holes
can be regarded as black-body emitters of particles and has some very
important consequences. Consider a black hole which is formed and
then starts evaporating away, leaving at the end thermal radiation only.
When the black hole is formed, the collapsing matter is in a definite,
pure quantum state. We can associate to this state a density matrix
which will be the one of a pure state. However a black hole presents
an horizon, therefore the total set of states can be divided in states
referred to the inside of the horizon and states referred to the outside.
Outside observers can only have access to the outside states, so the
description they can provide will be necessarily incomplete. From their
point of view, the only state they can describe, i.e. the outside state,
is mixed, in agreement with the fact that it contains thermal radiation.
Accordingly, this mixed state will be represented by a reduced density
matrix. At this point, there are no problems yet, since the interior state
is not lost, but is entangled with the external one. However when the
black hole has completely evaporated nothing is left in the interior and
the system will continue to be described by a reduced density matrix
which is referred to a mixed state. Therefore, to sum up, the black hole
has transformed the pure state of the matter which constitutes it into a
thermal state of pure radiation, once it is completely evaporated. This
feature is in contrast with quantum mechanics, the other groundbreak-
ing paradigm shift of 20th century physics explaining how things at the
very small scales behave. Indeed, time evolution in quantum mechanics
is described by unitary operators, but the black hole matter/radiation
transition we have depicted in the paragraph above is a transition from
a pure state to a mixed state and cannot be described by a unitary op-
erator. Therefore it violates one of the principles of quantum mechanics.
This is known as black hole information paradox [17, 18]. Once again,
it seems it is not possible to solve the paradox inside GR; this problem
demands for a "quantum gravity" framework in order to be solved.

To sum up, we have found two important related questions which
seem impossible to solve within GR and ask for a "quantum gravity"
theory:

• how to count microstates for a given black hole in order to repro-
duce its entropy via a Boltzmaan counting?

• how do we solve the black hole information paradox?

One of the biggest achievements of string theory, the leading candidate
for a theory of quantum gravity, was the computation of the black hole
entropy by microstate counting for some particular black holes [19].
We shall gradually proceed to examine this fundamental result by first
exploring the current state of the art in the search for a quantum grav-
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ity theory and then introducing string theory and supergravity. We will
then converge on one of the main goals of this thesis, which is to present
recent developments on microstate counting for AdS black holes. How-
ever it is useful to provide before a brief illustration of the information
paradox, in order to have a more rigorous understanding of it. The task
of solving the paradox has been at the core of many developments in
theoretical physics, so it is worth presenting it in some details.

1.1.3.1 The Page formulation of the information paradox

In the famous paper [20], Page provided an illuminating formulation of
the black hole information paradox highlighting the contrast between
a statistical-mechanical description of black holes and the thermal na-
ture of Hawking radiation. We now briefly report this formulation here
below since it is quite useful in better understanding the nature of the
paradox.

Consider the Hilbert space H of a standard thermodynamic system
which we would like to describe by using a microcanonical ensemble. In
order to do this, we fix an energy E and denote as ∆E a small variation
of it which is large enough to assure that in the interval (E,E + ∆E)
there are a large number of microstates. The energy eigenstates whose
eigenvalues are in the interval above span the Hilbert space H (E).
At the beginning, the system under consideration is at microcanonical
equilibrium with energy E0; then it will cool down emitting thermal
radiation. In its initial state, contained in H (E0), the system is pure.
In the following since the evolution is unitary, as prescribed by quantum
mechanics, the total state system+radiation is again pure; however each
emitted quanta forming the thermal radiation is in a mixed state, so
to keep consistency each quanta has to be entangled with some other
system. In other words, to allow the total state to be pure, each emitted
quanta has to be entangled with the system. Let us explore what all this
means in more concrete terms. Suppose the system cools down from E0
to E < E0 and call SRAD the Von Neumann entropy of the radiation;
then the Von Neumann entropy of the system S (E0|E) must be equal
to SRAD. At a given time t, the system has an energy which is in the
interval (E(t),E(t) + ∆E) and the corresponding state is comprised
into H (E(t)); the system must have a Von Neumann entropy which
is less than the microcanonical entropy SMICRO = log dimH (E (t)).
Therefore:

S (E0|E) ≤ SMICRO (E (t)) = log dimH (E (t)) . (1.10)

Eventually, there will be a time t when the equal sign holds; this is due
to the fact that the microcanonical entropy decreases with the energy
as the system cools down. The time when the equal sign holds is called
Page time. After that, the radiation cannot be exactly thermal anymore,
therefore it should be entangled with the early time radiation. The time
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dependence of the entropy described now is represented in fig.1.1 and
the corresponding curve is usually called Page curve.

tE

SMICRO

S

tP t

SRAD (t)

Figure 1.1: Entropy of radiation as function of time; the time where the mi-
crocanonical entropy equates the Von Neumann one is the Page
time tP , while tE is the evaporation time. This curve is usually
called Page curve.

For a Schwarzschild black hole described by (1.2), the Page time is
around the half of the total evaporation time, at this point the half
of the black hole mass has been radiated away. For the arguments we
have introduced above, after the Page time the radiation should be
entangled with the early time radiation, since it cannot be thermal
anymore. Here it lays exactly the core of the black hole information
paradox in this formulation: the Hawking radiation is exactly thermal
according to quantum field theory computations so that there seem
not to be any entanglement between early time radiation and late time
one. It clearly emerges a serious contrast and disagreement between the
description provided by QFT and the one developed using black hole
statistical mechanics. What is more, the discrepancy between the two
descriptions starts way long before complete evaporation, so Plack-size
scale effect may not be advocated to solve the paradox since the horizon
scale is still macroscopic at that time.

1.2 string theory and supergravity

1.2.1 Quantum gravity

As we have already mentioned, GR cannot be a complete theory, since
it fails at small scales. At these scales, phenomena start to manifest
a "quantum behavior" and can therefore be described by the quantum
theory.

Quantum theory was founded by Planck’s work on black body radi-
ation, giving birth to quantum mechanics; it was then corroborated by
the work of Einstein on the photo-electric effect [21], by the atomic
model of Bohr [22] and many others. All these revolutionaries and
groundbreaking studies established the quantum theory of particle
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physics. In the quantum world deterministic concepts like trajectory
or equations of kinematics exactly determining position and velocity
no longer exist; they are replaced by the notions of uncertainty and
probabilistic interpretation introduced by Heisenberg and Schroedinger
among others. These new concepts are surely non-intuitive and ground-
breaking and their introduction have been enormously important for
humanity, both for a philosophical and technical point of view. Quan-
tum mechanics subsequently evolved into the formulation of quantum
field theory (QFT), which is the framework describing all particle in-
teractions.

The desired theory of quantum gravity should be able to reconcile
and put together quantum field theory and general relativity, i.e. it
should be a "theory of everything" valid at all the scales where gravity
can be quantized. It is generally desired and believed that such a theory
can be formulated; in principle any consistent quantum theory which
reduces to GR in its classical limit would be a candidate for a quantum
gravity theory.

The task of formulating such a theory proved to be very hard. Even
though there are notable candidates, such as loop quantum gravity and
string theory, which present the desired features to be quantum gravity
theories, there is no experimental evidence strongly pointing towards
one of them.

Even though this is the present state of the art, it is very important
to remind that we can investigate some relevant aspects of quantum
gravity without using a complete theory of everything. Indeed, there
are some quantum features which survive at low energy and can there-
fore be studied in a low energy limit theory of a quantum gravity theory.
Black holes are particularly interesting in this sense, because they pos-
sess a non-vanishing entropy even in the classical regime. As we have
already mentioned above, GR is unable to explain the microscopic ori-
gin of the entropy in terms of fundamental degrees of freedom, i.e. by
counting black hole microstates, but this must be achieved by a theory
of quantum gravity. Most of the entropy aspects of black holes can be
investigated using a low energy limit theory; this is exactly what we
will do in this thesis where we use supergravity, the low energy limit of
string theory, to study black holes and their entropy.

1.2.2 String Theory

String theory is at present one of the most accredited candidates for a
quantum gravity theory. The basic idea behind string theory is to con-
sider one-dimensional extended strings as fundamental objects rather
than point particles. Strings present an infinite number of possible exci-
tations; each of them gives rise to either particles we observe in nature
or to one of the fundamental interactions. Gravitational interaction in
this context is just one of these possibilities. String theory was first
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studied in the late 1960’s as a theory of the strong nuclear force be-
fore being abandoned in favor of the QCD theory due to the fact that
it is not possible to describe hadronic physics with it because of the
presence of an excitation with zero mass and spin two (today we know
that this excitation is indeed the graviton). The first version of string
theory, called bosonic string theory, described only bosonic particles
and it was shown to be consistent only in a 26-dimensional spacetime.
Apart from the very high number of dimensions, which may easily ap-
pear unphysical, it was soon realised that bosonic string theory had a
quite relevant problem: there is a tachyon state in its spectrum, i.e. a
state associated to a particle with m2 < 0.

Both these problems can be overcome with the introduction of super-
symmetry (see below). It is possible to build up five different types of
supersymmetric string theories which manage to describe both fermions
and bosons. All these different kind of string theories are related via
a complicated web of dualities; in the 1990s it was conjectured that
they are also all different limiting cases of a single theory in eleven
dimensions known as M-theory.

In the low-energy limit, string theory can still be described by effec-
tive particle theories, like supergravities (see below); it is desirable that
eventually the low-energy limit of supergravity will lead to the quan-
tum field theory best describing all physical particle phenomena except
gravity, the Standard Model of particle physics. One might be confused
by the fact that supersymmetric string theories are consistent in a 10-
dimensional spacetime, since it may appear not clear how to recover
low-energy theories in dimension 4, which is the one of the universe we
live in. In order to do this, one splits the original 10 dimensions into
6 small and compact directions, which we cannot perceive, and the 4
remaining ones, which are the ones we can experience. This topic is
usually called compactification.

1.2.2.1 Supersymmetry and supergravity

In a quantum theory fundamental particles are either bosons or fermions.
They are not described by the classical Boltzmann statistics, but their
quantum nature demands for a different statistics accordingly to which
of the above mentioned classes they belong to. The main difference
between these two kind of particles is that only a single fermion can
occupy a particular quantum state at a given time, while no such re-
striction applies for bosons. Accordingly, fermions are described by the
so called Fermi-Dirac statistics, while bosons follow the Bose-Einstein
one. Ordinary matter is made entirely of fermions; electrons, protons
and neutrons are all fermions and so are the quarks constituting them.
On the other hand, all the fundamental interactions are mediated by
bosons; photon, the mediator of electromagnetic interaction, is a bo-
son and so are the gluons which are responsible of the nuclear strong
interaction.
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Supersymmetry is a new type of symmetry between fields and space-
time which is able to relate bosons and fermions stating that each or-
dinary boson particle should have a fermion supersymmetric dual and
vice versa. In some theories, supersymmetry can relate more than two
particles; in this case it is said that the amount of supersymmetry is
higher. This latter is "measured" by the amount of the supercharges N
the theory presents, the higher is N the higher the theory is supersym-
metric. The Standard Model is a non supersymmetric theory, i.e. it has
N = 0; this is because this symmetry does not seem to be manifest in
the regime of validity of the Standard Model. However the supersym-
metry breaking process makes it possible for a N > 0 theory to reduce
and be consistent with a theory, like the Standard Model, where super-
symmetry is absent. This enters directly in the flux compactification
topic in the context of string theory: there, one typically tries to build
low-energy effective theories with the lowest amount of supersymmetry
possible, in order to be consistent with the real world.

It should be clear how it can be tempting to try to combine supersym-
metry and gravity. Supergravity theories are indeed the results of this
attempt. In order to introduce gravity we need to describe the graviton,
which is the boson carrying the gravitational interaction. Due to the
presence of supersymmetry, there are supersymmetric fermionic part-
ners to the graviton which are called gravitini; there will be exactly
N gravitini in any N supergravity theory. There are no restrictions on
the matter content that can be included into a supergravity theory; the
only request is of course that it is consistent with supersymmetry. It is
then clear how there are lots of possibilities forN matter-coupled super-
gravities to exist and this indeed produced a large number of different
theories in different dimensions with different amounts of supersymme-
try.

The first supergravity theory was formulated in the 1970s and dis-
covered independently on string theory [23], other supergravity theories
were rapidly found in the next years. They were regarded as candidates
for theories of quantum gravity, but it was soon realized that they are
non-renormalizable so that they do not behave well at high energies;
however they arise as the low energy limit of string theory, which there-
fore provides their ultraviolet completion. As it is for string theories,
also supergravity theories are related via a web of dualities and also
by compactifications and reductions when it is needed to change the
dimensionality of one theory to land to another one.

In a supersymmetric theory there exist supersymmetric states which
are also called BPS states. They are background solutions that remain
invariant under some of the supersymmetry transformations of the the-
ory they belong to. All the BPS states saturate certain BPS bounds
and they are the building blocks of the vacuum structure of any su-
pergravity theory. BPS states have a supergroup of symmetries which
is described by a superalgebra; they provide together with the latter
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a bridge between classical and quantum gravity since supersymmetry
protects low energy solutions from any high energy corrections that can
modify them. Therefore a BPS state in an effective theory will continue
to exist retaining its properties also in the full quantum theory.

In this thesis, we will construct and work with black hole solutions in
(mainly five-dimensional) supergravity theories. The majority of these
black holes will be supersymmetric, i.e. their charges will satisfy a par-
ticular BPS relation and their entropy should be reproduced by count-
ing BPS microstates. Right now, recalling also what we have stated in
the above paragraph, it should be clear how the study of these solu-
tions, although constructed in a low energy limit theory, can help to
shed light on quantum entropy aspects of black holes.

1.3 the strominger-vafa black hole microstate count-
ing

The first black hole microstate counting has been performed by Stro-
minger and Vafa in the seminal paper [19]. There, they constructed an
extremal black hole which is a solution of a low energy limit of type II
string theory and then managed to reproduce its Bekenstein-Hawking
entropy by counting its stringy microstates; they also predicted the
quantum corrections to the classical entropy.

In this section we aim at examining the Strominger-Vafa microstate
counting in order to understand how and why it reproduces the Bekenstein-
Hawking entropy of the black hole into account. This computation,
which is one of the major achievements of string theory, lays on many
fundamental results which characterized the second superstring revolu-
tion around 1995; among them it is mandatory to mention the seminal
work of Polchinski on the Dp-branes [24] since in order to count mi-
crostates it was crucial to engineering a well-defined brane scenario.
Due to the nature of the computation, in this section things start to be
more technical and require a much more advanced mathematical and
theoretical physics background. Nevertheless, we will try to underline
the main concepts which should emerge and be clear also to the non
expert readers.

1.3.1 Strings, dualities and branes

As we have mentioned in the last section, the main idea on which
string theory is based on is to consider one-dimensional tiny strings
as fundamental objects rather then point particles. By quantizing the
fluctuations of these strings one reproduces the different particles of
particle physics from their fluctuation modes. Among these fluctuations
modes in the spectrum, there is one of them which corresponds to a
spin-2 particle: this can be interpreted as the graviton so string theory
immediately becomes a candidate theory of quantum gravity.
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In order to obtain consistent theories we need to put supersymmetry
into the game. However there are different possibilities to implement it:
these correspond to five types of consistent superstring theories. They
are type I, type IIA, type IIB and the two heterotic string theories
with gauge group SO(32) and E8 ×E8. Type I string theory has one
spacetime supersymmetry, since it is a theory of open superstrings only.
Type IIA and IIB are instead theories of closed superstrings and, as
the label II suggests, they posses two independent supersymmetries.
The label A and B refer instead to whether the two ten-dimensional
supercharges have the opposite or the same chirality respectively. To
prevent the theories to be inconsistent for the presence of a conformal
anomaly, they are usually formulated in a 10-dimensional spacetime7.
All these different theories are characterized by fundamental strings
with different features and, as a consequences, the particles arising in
the low-energy spectrum present also different features and symmetries.

There is one fundamental dimensionful parameter in string theories
which is the string length ℓs; when we consider energy scales small
with respect to ℓ−1

s all the massive modes might be neglected since
their mass is proportional to ℓ−3

s . The low-energy limit of string the-
ory is therefore characterized by only massless modes and it coincides
with ten-dimensional supergravity. This is not a unique theory, but
there are many variants of it which are related to the different types of
superstring theories.

The black hole solutions we will consider in this thesis and we are
interested in are solutions of either type IIA or type IIB superstring
theories. These are the two theories we are mainly interested in. As we
have already stated above, both the theories contain two supercharges,
in the first one they have opposite chiralities, in the second one the
chiralities are the same. The low-energy bosonic spectrum of the two
theories is composed by:

• the graviton gµν ;

• the 2-form Kalb-Ramond gauge field Bµν ;

• the dilaton ϕ;

• p-form gauge fields Cp, with p odd in type IIA and p even in type
IIB (therefore type IIA contains as independent forms C1, C3 and
C5 while type IIB presents C0, C2 and C4).

The spectrum is completed with the fermionic sector which contains all
the N = 2 superpartners.

From the analysis of the spectrum above it is evident that anti-
symmetric fields are present in both type IIA and type IIB theory.

7 There are actually other possibilities to get rid of the conformal anomaly without
necessarily considering a 10-dimensional spacetime; the theories so obtained are
called non-critical string theories. We will not examine neither discuss further these
theories since we will not need them for this thesis.
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There should be objects that carry charge under them since they are
basically a generalization of electromagnetic gauge fields. Now there
is a problem: if string theory contains strings only, such objects could
not exist because strings can couple only with a two-rank field, that
is the Kalb-Ramond field Bµν . The conclusion is that in string the-
ory there must be also other objects that can couple to the Cp fields.:
these objects prove to be the so called Dp-branes. Basically a Dp-brane
is an hypersurface extended in p directions with a p+ 1-dimensional
worldvolume. Dp-branes are so called since open strings can end on
them: therefore they provide Dirichlet boundary conditions for the open
strings. An U(1) gauge theory is obtained when a single massless open
string moves on a single Dp-brane; when we have N coincident branes
this gauge symmetry is enhanced to U(N).

A key realization in the development of string theory framework was
the fact that all the different superstring theories are related by a com-
plicated web of dualities; we report a pictorial representation of that
in fig. 1.2. All the theories can be obtained as the limiting case of an
even more fundamental theory: M-theory. In particular type IIA and
type IIB theories are linked by the so called T-duality.

Figure 1.2: Pictorial representation of the web of dualities connecting every
ten-dimensional superstring theory and eleven-dimensional super-
gravity. Picture taken from [25].

1.3.2 The Strominger-Vafa black hole

In [19], Strominger and Vafa consider a family of 1
4 -BPS black hole

solutions in type IIA compactified on S1 ×K3. We will now briefly
introduce this family of black hole solutions and then proceed to review
the original argument to reproduce the Bekenstein-Hawking entropy by
microstate counting.

The bosonic part of the type IIA action compactified on S1×K3 is

SIIA =
1

16π

∫︂
d5x
√
−g5

[︃
e−2ϕ

(︃
R5 + 4 (∇ϕ)2 − 1

4H̃
2
2

)︃
− 1

4F
2
2

]︃
,
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(1.11)

with ϕ being the dilation, F2 being a Ramond-Ramond 2-form field
strength and H̃2 being a 2-form axion field strength arising from the NS-
NS 3-form with one component tangent to the S1. In this framework,
black holes can be charged both with respect F2 or H̃2. Their charges
are given by:

QH =
1
4 π

2
∫︂
S3
⋆ e− 4

3ϕ H̃2 , (1.12)

QF =
1
16 π

∫︂
S3
⋆ e

2
3ϕ F2 . (1.13)

We want to construct an extremal black hole with a non-vanishing
area; this is possible if its near-horizon geometry is AdS2× S3 charged
Robinson-Berttoti universe with constant dilaton ϕ = ϕh. Indeed, it
can be shown that taking the dilation to be constant the metric ansatz

ds2
5 = −f(r)dt2 + dr2

f(r)
+ r2dΩ2

3 ,

f(r) = 1− r2
0
r2 , r0 ≡

(︄
8QH Q2

F

π2

)︄1/6

,
(1.14)

does solve the equations of motion coming from the action (1.11). This
black hole solution presents the desired AdS2 × S3 near-horizon geom-
etry; indeed, it is easy to show, by performing the near-horizon limit
to the metric (1.14), that the near-horizon metric can be written as8

ds2
5 =

r2
0
4

(︄
−r̄2 dt2 + dr̄2

r̄2

)︄
+ r2

0 dΩ2
3 , with r̄ =

4
r2

0
r . (1.15)

It is now quite trivial to compute the entropy via the Bekenstein-
Hawking formula as

SBH = 2π

√︄
QH Q2

F

2 . (1.16)

This is the entropy we aim to reproduce via microstate counting.

1.3.3 The microstate counting

From a brane point of view, the original Strominger-Vafa black hole
family can be regarded as a type IIA system of the D0D4 kind com-
pactified on S1×K3. This system proves to be dual to a D1D5 system

8 In order to establish regularity at the horizon, another possible approach is to find
the appropriate Gaussian null coordinates for the metric (1.14). This would be a
preferable approach with respect to the one we followed here; however we will not
present it in order to not burden the dissertation with technical details. Nevertheless,
we will follow and present the Gaussian null coordinates approach for the AlAdS5
black holes we will construct in Chapter 4.
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compactified on the same space; indeed under T -duality we have that
D1-D3-D5-P in type IIB maps into D0-D2-D4-F1 in type IIA. The au-
thors consider D-brane BPS states which carry the charges QF and
QH , which correspond to the ones of the extremal black hole family.
What it is needed to do now is to count the degeneracy of the black
hole system by counting the number of all BPS bound states. The main
idea which we can exploit to perform the counting is that:

The number of microstates of the Strominger-Vafa black
hole coincides with the the number of independent ways in
which the D1 branes can move inside the K3 if the limit
where K3 is small with respect to S1 is taken.

In the limit above we get a (1+1)-dimensional supersymmetric sigma
model whose target space is the symmetric product of 1

2Q
2
F + 1 copies

of K3. We need to compute the number of 1
4 -BPS states, i.e. those

states which vanish under the action of the right-moving supercharges
(L̄0 = 0). Remarkably, for 2d conformal field theories there is a tool
which can greatly help us: the Cardy formula [26, 27]. This gives the
asymptotic density of states in a two-dimensional conformal field theory
that is determined by only a few features of the symmetry algebra, in-
dependent of any details of the dynamics9. The Cardy formula presents
a great advantage: it is able to count states without requiring detailed
knowledge of them, i.e. without having at disposal a full quantum the-
ory of gravity10. For the case under consideration, the Cardy formula
may be used to obtain the desired counting of the black hole microstates
and it is given by:

d(n, c) ∼ exp
[︃

2π
√︃
nc

6

]︃
; (1.17)

this can be applied only when n ≫ c which is the central charge for
the D1D5 system. It is a crucial point for the Strominger and Vafa
computation to realise that c can be determined solely by the dimension
of the moduli space; indeed it results:

n = QH , c = 6
(︃1

2 Q
2
F + 1

)︃
. (1.18)

Evaluating the entropy from the Cardy formula we find:

Smicro = log d(n, c) ∼ 2π
√︄
QH

(︃1
2 Q

2
F + 1

)︃
, (1.19)

which in the correct D-brane limit QH ≫ Q2
F ≫ 1, coinciding with

the one where the Cardy formula applies, reproduces the Bekenstein-
Hawking entropy (1.16) at leading order. The macroscopic entropy of
the black hole (1.14) is thus reproduced via microstate counting.

9 Strictly speaking, the Cardy formula only exists for 2d CFTs due to the peculiar
and unique modular properties conformal field theories present in two dimensions.

10 Note however that this is also the main weakness of the formula as the actual states
being counted remain disguised.
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1.4 microstate counting for anti-de sitter black holes

The Strominger-Vafa microstates counting described in the last sec-
tion has been the first example of a computation of the entropy of a
black hole by its microstates. The black hole considered by the authors
is asymptotically flat; after this seminal paper an immense literature,
which would be too long to refer to, of important similar results follow
for this kind of black holes. One natural question that could arise was
if and how it is possible to perform similar computations in order to
account for the entropy of black holes with different asymptotics.

One year after the Strominger and Vafa paper, the most fruitful
conjecture in modern contemporary physics, the Anti-De Sitter/Con-
formal Field Theory (AdS/CFT) correspondence, has been formulated
by Maldacena in [28] and sharpened a few months later in [29,30]. The
AdS/CFT correspondence relates quantum gravity on a d-dimensional
AdS spacetime and a (d− 1)-dimensional conformal field theory (CFT)
in absence of gravity. The CFT is thought to live at the boundary of
the AdS space. Applied to black holes, the correspondence implies that
the microstates of black holes should correspond to states in the dual
CFT and therefore this appears the natural setting to exploit in order
to provide an interpretation of the black hole entropy in terms of a
microscopical theory.

Thus, what we can imagine to do is to count the microstates of
asymptotically AdS black holes using the dual CFT and compute the
Bekenstein-Hawking entropy by them. These kind of computations
would constitute for asymptotically AdS black holes a result analo-
gous to the one by Strominger and Vafa for asymptotically flat ones.
In this section we will discuss whether or not similar results have been
reached and we will recap on the state of art of microstate counting
for AdS black holes. Before doing this, we introduce more formally and
rigorously the AdS/CFT correspondence by recalling the process and
the arguments which led Maldacena to its formulation in [28]. Due to
the nature and the complexity of the physical concepts involved, this
part and some others in this subsection might be quite technical, but
nevertheless the main physical concepts should emerge aside the tech-
nicalities.

1.4.1 The original Maldacena’s correspondence

Sometimes, in theoretical physics, the key to find new and important
results has proven to be to realise the fact that two seemingly different
concepts are indeed related to each other at a deep and fundamental
level. Examples of this kind are dualities which relate two appearently
different theories to each other by stating that they are in fact equiv-
alent. In particular, the Hilbert spaces and the dynamics of the two
theories agree. Even though from a mathematical point of view the
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theories are identical, from a physical point of view their descriptions
may differ, for example there may be different Lagrangians for the two
theories.

AdS/CFT correspondence is a duality between a superstring theory
and a certain conformal quantum field theory; it was originally conjec-
tured in [28] as a duality between type IIB string theory on AdS5×S5

and N = 4, SU(N) super Yang-Mills theory. We will start by briefly
review how the original conjecture arose.

The bosonic spectrum of type IIB string theory is the following:

gij , Bij , eϕ in the NS-NS sector ,
C0 , C2 , C4 in the R-R sector

the R-R fields are sourced by Dp-branes; in particular each Cp field is
coupled to a D(p− 1)-brane. Furthermore, each R-R field strength has
a magnetic dual via

Fp = ±F10−p , (1.20)

so that every Dp-brane has a magnetic D(6 − p)-brane dual. There-
fore we see that D3-branes are special objects since they are dual to
themselves and so is the field strength F5 they couple to.

There are brane solutions both in type IIA and type IIB string theory.
A generic Dp-brane solution is provided by the following ansatz

ds2 = H−1/2
p (r)

(︂
−dt2 + dx2

1 + · · ·+ dx2
p

)︂
+H1/2

p (r)
(︂
dy2

p+1 + · · ·+ dy2
9−p

)︂
,

(1.21)

C
t,x1,...,xp
p+1 = −1

2H
−1
p (r) , (1.22)

eϕ = gs [Hp (r)]
3−p

4 , (1.23)

here we have labelled as gs the string coupling constant and we have
divided the spacetime coordinates into xp+1 ones longitudinal to the
brane and y9−p transverse to it; furthermore we have defined as r the
transverse distance between the branes

r2 = y2
p+1 + · · ·+ y2

9−p . (1.24)

The type II equations of motion fix the function Hp to be

Hp (r) = 1 + L7−p

r7−p , (1.25)

where L is a constant which must obey to the quantization condition

1
(2π ℓs)p+1 gs

∫︂
Σ8−p

⋆Fp+2 = N ∈N , (1.26)
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with N being the number of p-branes and the integration contour Σ8−p
being a cycle which surrounds the brane at infinity. Recalling the form
of the gauge fields (1.22) and of the Hp functions (1.25), we can in-
tegrate (1.26) in order to obtain a condition for L. Doing so, we find

L7−p = 2 (2π)p−2 ℓ7−p
s gsN . (1.27)

The brane solutions we have constructed are singular in r → 0 for every
p but p = 3. The case of D3-branes seems therefore to be very special
and we shall examine it in detail. From (1.23) and (1.25) we see that
for D3-branes we have:

eϕ = gs , H3 (r) = 1 + L4

r4 , (1.28)

note in particular that the dilaton is constant. From equation (1.27), we
obtain that in the p = 3 case the constant L is fixed by the quantization
condition to be L4 = 4π gs α′2N with α′ = ℓ2s. We can now study the
near-horizon limit r → 0 of the brane solution we have constructed11.
This limit must be taken carefully; in particular we require that [28]

r → 0 , α′ → 0 , so that u =
r

α′ is fixed (1.29)

and we also keep fixed the string coupling gs and the number of branes
N . This limit is equivalent to the situation in which the branes decouple;
the α′ correction to the supergravity approximation are suppressed in
this limit. Performing the limit (1.29), the metric (1.21) becomes

ds2 = α′
[︄
(4π gsN)1/2

(︄
du2

u2 + ds2
(︂
S5
)︂)︄

+
u2

(4π gsN)1/2 dxµdxµ

]︄
,

(1.30)

which is the geometry of AdS5 × S5. Therefore we have found that

the near-horizon geometry, i.e. the geometry near the D3-
branes, is the one of AdS5 × S5.

Note that the radius of S5 and the one of AdS5 are exactly the same
and they are given by L4 = 4π gs ℓ4s N . We want the curvature of the
geometry to be small and the string theory corrections to be negligi-
ble in order to preserve the supergravity approximation; this can be
achieved by imposing L4 ≫ ℓ4s, from which it follows N ≫ 1.

For now we have provided a description of the D3-branes based on
a closed string perspective, i.e. we have treated them merely as super-
gravity solitons. From the point of view of open strings, branes are
extended objects on which open strings can attach and they may be
connected to Super-Yang Mills theory. Let us consider a stack of N
D3-branes in R1,3; we may ask which is the low-energy effective theory
of N coincident Dp-branes in p+ 1 dimensions. The answer turns out
to be

11 Strictly speaking, this is a near-brane limit, rather than a near-horizon one.
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p+ 1-dimensional Super Yang-Mills theory with gauge group
SU(N).

There are several ways to show this; here we just recall that the Super
Yang-Mills action can be easily obtained starting from the effective
action for a Dp-brane. Indeed, the latter is just the Dirac-Born-Infeld
action

SDBI = −Tp
∫︂

dxp+1e−ϕ
√︂
− det (g+ 2π α′ F ) with Tp =

1

(2π)p (α′)
p+1

2 gs

,

(1.31)

performing the limit α′ → 0 and keeping fixed gs (α′)
p−3

2 we obtain
from the above action

SSYM =
1

g2
YM

∫︂
dxp+1e−ϕFµνF

µν , (1.32)

which is the action of a Super Yang-Mills theory12.
We have thus obtained two different descriptions of the same objects

from two different perspectives and thus we are led to the conclusion
that the physics behind both of them should be the same. Therefore
we can state the following conjecture:

type IIB string theory in an AdS5 × S5 background with N

units of R-R fluxes and equal radius L for AdS5 and S5 is
dual to N = 4 Super Yang-Mills conformal field theory in
d = 1 + 3 dimensions with gauge group SU(N) and g2

YM =

2π gs.

This is the famous Maldacena’s conjecture, originally stated in [28],
which has overcome a very large amount of non trivial checks and tests.
However, from a mathematical point of view, this is still a conjecture
and one may even be tempted to invert the statement and use it to
define a quantum gravity theory when the dual CFT is totally known
and under control.

In this original form, AdS/CFT is an AdS5/CFT4 correspondence;
since in this thesis we will mainly focus on AdS5 black holes this is the
form we are interested in the most. Nevertheless, this has been gener-
alised over the years to different context and dimensions (see [31–34]
for a review) such as AdS3/CFT2, which has many important appli-
cations and which naturally arises when studying the Strominger-Vafa
black hole using the correspondence, or AdS4/CFT3, using which the
Bekenstein-Hawking entropy for an AdS black hole has been reproduced
for the first time via microstate counting.

It is worth mentioning that the AdS/CFT correspondence has proven
to be suitable for various applications in experimentally reachable areas
of physics. Indeed, even using only simple classical solutions such as

12 The Yang-Mills constant gY M is given by g2
Y M = 2 (2π)p−2 (︁α′)︁ p−3

2 gs.
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AdS black holes, it is possible to simulate to a good approximation a
certain amount of physically relevant field theories at strong coupling
and finite temperature. Among the system which one may attempt to
describe in such a way there is the quark-gluon plasma [35, 36], tested
at particle accelerators such as LHC, and relevant condensed matter
systems [37,38].

1.4.2 Microstate counting for AdS black holes: state of the art

1.4.2.1 The general idea

Having AdS/CFT correspondence at disposal, it seemed very natural
to use it to provide a description of asymptotically AdS black holes
in terms of microscopical states in a dual quantum field theory, thus
extending the results obtained for the asymptotically flat ones. In this
thesis, we are interested in AdSd black holes with 4 ≤ d ≤ 7; we will
not consider the AdS3 case since it is somewhat special due to the
additional properties the dual CFT2 presents.

We begin by considering, for simplicity, a supersymmetric and ex-
tremal black hole. In this thesis we will call black holes presenting both
these two properties as BPS black holes13. The general idea is that the
entropy should be a function of the charges of the AdS black hole

SBH = SBH (QI , Ji) , (1.33)

where QI are electric or magnetic charges and Ji are angular momenta.
Here we have not considered the energy E since for a BPS black hole
the BPS relation among its charges does hold. This is a linear relation
involving the conserved charges and the chemical potentials which is
a consequence of supersymmetry algebra. We may think of having ex-
ploited the BPS relation to replace the energy with the other charges;
this is why the energy does not appear in the formulae related to BPS
black holes. The boundary metric associated to the black hole solution
would be of the type

ds2 =
dr2

r2 + r2 ds2
Md−2×R + . . . r ≫ 1 , (1.34)

and the entropy should be recovered by counting states in the dual
CFTd−1 on Md−2 ×R

SBH = SBH (QI , Ji) = logn (QI , Ji) . (1.35)
13 We shall see in the following that the two properties of supersymmetry and extremal-

ity correspond to two different conditions and that the first one does not necessarily
imply the second or viceversa. Indeed, there are black hole solutions which are ex-
tremal but not supersymmetric [39,40]. Nevertheless, it is worth mentioning that for
large classes of solutions there are arguments showing that regular supersymmetric
black holes must be extremal. For instance, this is the case of the five-dimensional
supergravity theory that we will consider in Chapter 3, 4. However, it is fundamental
to remark that these arguments only hold for regular black hole solutions and not for
the complexified ones we will consider in Chapter 3. Furthermore, these are theories
for which such arguments are not available: this is the case of D = 11 supergravity.
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In order to try to perform the computation above some ingredi-
ents are needed: a full BPS AdSd black hole solution for which the
Bekenstein-Hawking entropy is computed, knowledge of the CFT dual
to the black hole solution and some tool to count black hole microstates
with given charges in the dual field theory.

1.4.2.2 The first unsuccessful attempts

These requirements seemed to be met for AdS5 black holes when the
first rotating AdS5 BPS black hole solution was constructed in 2004, in
the famous paper [41], and many generalizations quickly followed [42–
45]. Indeed, being them AdS5 black holes, we are in the domain of
the original, emblematic, AdS5/CFT4 correspondence, so that the dual
field theory is just the well known N = 4 Super Yang-Mills theory and
one could have hoped that the counting of the microstates could have
been realised by evaluating the large N limit of the superconformal
index proposed in [46,47]14. It is important to remark that the index is
defined in Euclidean signature, while (1.34) is still written in Lorentzian
one. Therefore, in order to compare the field theory result form the
index with the supergravity black hole entropy, one needs to compactify
the time direction. This latter becomes an S1 with radius β. From a
supersymmetric localization point of view, changing this radius is a Q-
exact deformation. The computation was indeed tried in [47], but the
result did not match the expectations. Indeed, the Bekenstein-Hawking
entropy of five-dimensional black holes goes like N2 in the large N limit,
while the index, also if generalized as proposed in [49–51], behaves
as O(1) in the same large N limit; thus it fails to account for the
correct O(N2) leading behaviour of the Bekenstein-Hawking entropy.
A possible explanation to this result that has been proposed is that
the index retains different signs when counting bosonic and fermionic
states, therefore there could be large cancellations which reduce the
index drastically. To solve this problem one should be able to identify
the exact contribution in the index of the supersymmetric black hole
microstates, separating it from the gravitational ensemble, but this has
proven to be very difficult and the task of reproducing the entropy of
AdS black holes via microstate counting has remained in a somewhat
inconclusive state for a long time.

1.4.2.3 A solution for AdS4 static black holes

The same kind of problem has been solved before in one dimension
lower, for asymptotically AdS4 static supersymmetric black holes. A
key ingredient that allowed the counting to be performed has been
the advent of localization techniques for supersymmetric quantum field

14 It is worth mentioning that the superconformal indices for 3d, 5d, 6d SCFTs have
been introduced and studied in [48]. These are relevant for the AdS4, AdS6 and
AdS7 black holes that we will analyze in this thesis in the next chapters.
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theories [52, 53]. The computation was performed in 2015 in the very
interesting paper [54]. The black holes there involved are quite different
from the rotating ones considered in five-dimensions, since they have
magnetic charges that correspond to a topological twist in the dual
field theory; this latter is the ABJM theory [55] in d = 3. For four-
dimensional AdS black holes, the entropy scales as N3/2 in the large
N limit. This behaviour and the Bekenstein-Hawking entropy itself are
indeed reproduced in the large N limit in [54] by the three-dimensional
supersymmetric partition functions of ABJM theory on Σg × S1 with
a topological twist along the Riemann surface Σg.

The main difference between the above-mentioned case, which re-
gards magnetic charged AdS4 black holes, and the AdS5 rotating one is
that in this latter there is no topological twist. Therefore, some other
technology has to be found in order to perform the black hole microstate
computation for such black holes from a CFT4.

However it is still possible to seek for an inspiration from the AdS4
case. In particular we can note that the topologically twisted index
is a function of magnetic charges pI and fugacities ∆I for the global
symmetries of the theory; in order to obtain the entropy for a black
hole with electric charges qI one has to Legendre transform logZtwisted
in the following fashion

SBH (qI , pI) = I (∆I)
⃓⃓⃓⃓
⃓
∆̄I

= logZtwisted (pI , ∆I)− i
∑︂
I

qI ∆I

⃓⃓⃓⃓
⃓
∆̄I

, (1.36)

with ∆̄I being the extremum of I (∆I) and because of this the procedure
is called I-extremization [54, 56–58]15. This has been proven to corre-
spond with the attractor mechanism in gauged supergravity [61–64].
One possible inspiration which one may follow is to try to find a func-
tion of some fugacities associated to the charges of an AdS5 rotating
black hole that reproduces the entropy once Legendre transformed and
extremized. This is exactly what is done in [65].

1.4.2.4 Inspiration from the gravity side

Although attractor mechanism in five-dimensional gauged supergravity
is not known in details, nevertheless the authors of [65] managed to find
an extremization principle for the entropy of rotating AdS5 black holes.

In particular, they consider the class of black holes found in [41–
45], which are asymptotic to AdS5 × S5, that presents three electric

15 It is worth mentioning that c-extremization principle [59] is capable of reproducing
the entropy of AdS5 black strings. This has been investigated in [60]. There, the
authors constructed black string solutions which can be embedded in AdS5 × S5

and correspond to a twisted compactification of N = 4 SYM on Σg. Holographic
arguments suggest that this theory flows to an IR two-dimensional SCFT; therefore
the entropy of such black strings can be reproduced from field theory by computing
the value of the central charge via c-extremization [60].
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charges QI with I = 1, 2, 3 and two angular momenta Ji with i = 1, 216.
Due to supersymmetry the five charges are connected by a non trivial
constraint and therefore only four of them are independent. In [65] it
has been shown that the Bekenstein-Hawking entropy of the black holes
can be obtained as the Legendre transform of a quantity proportional
to17

I =
π

4
∆1 ∆2 ∆3
ω1 ω2

, (1.37)

where ∆I are chemical potentials conjugated to the electric charges QI
and ωi chemical potentials conjugated to the angular momenta Ji. Note
that the function (1.37) is independent of β. This is in agreement with
the fact that, as we have mentioned in the last subsection, in the super-
symmetric localization computation one obtains a Q-exact deformation
by changing the radius β of the S1 factor of the superconformal index
signature. The function I, which reproduces the entropy once Legendre
transformed and extremized, is called entropy function18. There is the
following constraint that the chemical potentials have to satisfy as a
consequence of the one for the charges:∑︂

i

ωi −
∑︂
I

∆I = ± 2π i , (1.38)

this makes clear that the conjugated chemical potentials are complex19.
However, the entropy obtained by a Legendre transformation must be
real; imposing this, one obtains a non-linear and non-trivial constraint
among the charges which remarkably is verified by the BPS black hole
solution. Later, it has been shown that similar entropy functions exist
also for AdS4, AdS6 and AdS7 black holes [68–70]. For every dimension,
the entropy function is an homogeneous function of conjugated chem-
ical potentials where one has the product of all the ∆I (as many as
the electric charges QI) appearing in the numerator, and the product
of the ωi (as many as the independent angular momenta Ji) appear-
ing in the denominator. For each black hole, the conjugated chemical
potentials appearing in the entropy functions must satisfy a linear con-

16 These are the black holes with whom we will work the most in this thesis; we will
introduce them in much more details in the following chapters.

17 Here we change conventions with respect to [65] in order to match with the one
of [66, 67], which are the one we will use in the whole thesis. As consequence, our
potentials and the one used in [65] differ for some overall constants.

18 Note that sometimes in the literature the term entropy function is used to denote the
right-hand side of (1.39) before evaluating it at the extremal values of the chemical
potentials.

19 Again, we have changed conventions for the chemical potentials with respect to [65]
in order to match with [66, 67]; these conventions make clear that the chemical
potentials are complex since at the right-hand side of the constraint (1.38) there is
an imaginary number.
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straint which is analogous to (1.38). The entropy is always obtained by
Legendre transforming and extremizing the entropy function

SBH (QI , Ji) = I (∆I , ωi)− i (∆I QI + ωi ji)

⃓⃓⃓⃓
⃓
∆̄I , ω̄i

; (1.39)

for this reason, this principle is known in the literature as the extrem-
ization principle for rotating AdS black holes. Note that the fact that
the chemical potentials satisfy a linear constraint similar to (1.38) is
crucial to recover the entropy: had the potentials been completely free,
the Legendre transform would have vanished. However we should un-
derline that none of the above papers tell us how to extract the complex
conjugated chemical potentials from the supergravity black hole solu-
tions nor what is the physical interpretation of the entropy function
from a gravitational point of view nor what is the origin and the inter-
pretation of the linear constraint satisfied by the chemical potentials.
We will return on these fundamental points in the following.

1.4.2.5 Results on the CFT side

The results found on the gravity side have been greatly inspiring for
quantum field theory computations. For AdS5 black holes, we have al-
ready mentioned that the computation performed in [47], using the
supersymmetric index, fails in reproducing the Bekenstein-Hawking en-
tropy; however that same computation is valid only for real fugacities
while the constraint (1.38) seems to point in the direction of complex
fugacities. Therefore, the gravity side results suggest that the saddle
point at large N that one should consider to reproduce the black hole
entropy might be complex. In more concrete words, we can describe
the dual N = 4 Super Yang-Mills theory from a N = 1 point of view;
then we may say that it contains a vector multiplet Wα and three chi-
ral multiplets ϕa with the superpotential W = Tr (ϕ3, [ϕ1,ϕ2]). There
are three R-symmetries RI which are associated to the Cartan U(1)3 ⊂
SO(6); the exact R-symmetry is R = (R1 +R2 +R3) /3. Furthermore,
there are three global symmetries qI = (RI −R) /2, but only two of
them are indepedent, since it must hold the constraint q1 + q2 + q3 = 0.
The superconformal index, which is the most natural place where to
look for the entropy, can be written as

I (∆I ,ωi) = Tr
⃓⃓⃓⃓
⃓
Q=0

(−1)F ei(∆I QI+ωi Ji) , (1.40)

with ∆I and ωi being the chemical potentials and QI = RI/2. the
chemical potentials must fulfil a constraint so that the index depends
only on four independent parameters, as the family of BPS black holes.
We know that there are cancellations between bosonic and fermionic
supersymmetric states in the index, therefore the result we can obtain
should be only a lower bound on the number of BPS states; nevertheless
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we may expect that for large N it saturates the entropy exactly as
it happens for magnetically charged black holes in d = 4. The first
computations in the literature have been performed for real fugacities;
we know that in this case they do not account for the entropy, giving
a result of order O(1) for large N ; however the gravity side results
suggest to look at what happens for complex fugacities. Computations
with complex fugacities have been performed in the literature in the last
couple of years, starting with [66,69,71] and they have been successful
in the two following partial overlapping limits

1. Large N limit and J1 = J2 [71, 72]: the index presents a Stokes
behavior at large N as a function of the chemical potentials and
it may provide a contribution of order O

(︁
N2)︁ if one picks up the

right direction in the complex plane. To perform the computation,
a successful approach has been proven to be writing the supercon-
formal index as a sum over Bethe vacua [73–75]. An other useful
approach leading to the same result is presented in [76,77] while
the extension to the unequal angular momenta case is discussed
in [78].

2. The Cardy limit [69, 79]: this limit corresponds to ωi ≪ 1 with
∆I being fixed and it describes large black holes with

qI ∼
1
ω2 , Ji =

1
ω3 , ω1 ∼ ω2 ∼ ω → 0 . (1.41)

In this approach, chemical potentials must be complex so that
their imaginary parts at the saddle point present phases that
optimally obstruct cancellations between bosonic and fermionic
states. Using such complex potentials, the index in the Cardy
limit is able to reproduce the entropy of large AdS5 black holes.
Generalization to this approach have been provided in [80–85].

Saying that the computations performed with both approaches we have
presented here agree with the gravity side means that the index is found
to match with the entropy function (1.37), i.e.

log I (ωi, ∆I) =
π

4
∆1 ∆2 ∆3
ω1 ω2

, (1.42)

with the constraint ω1 + ω2 − ∆1 − ∆2 − ∆3 = ± 2π i obtained analyti-
cally.

It is worth to mention that the expression (1.42) can be recovered
from quantum field theory also using a third different approach. In [65]
it was pointed out that the expression for the supersymmetric Casimir
energy Ec matches exactly (1.42)20, with the precise coefficient for
N = 4 Super Yang-Mills theory21. Building on this observation, in [66]

20 The supersymmetric Casimir energies formulae for the related maximally supersym-
metric theories have been first written down in [86].

21 In [68] the same fact has been observed for AdS7 black holes, i.e. the supersymmetric
Casimir energy of (0, 2) CFT matches the AdS7 black hole entropy function.
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it has been proved that, by considering a modified supersymmetric par-
tition function on S3 × S1 and imposing the constraint (1.38), the re-
sulting supersymmetric Casimir energy still matches with (1.42). This
is quite intriguing, since it is not clear why this quantity, which is the
energy of the CFT vacuum [87], should have something to do with the
entropy of the black hole. One proposal is that this is the consequence
of some modular properties of the partition function, which has still to
be understood.

The O(N2) behavior of the index in the complex chemical potential
case has been confirmed by numerical analysis performed in [88, 89];
however there seems to be instabilities when decreasing the charges
in all the approaches above mentioned. This might due to the contri-
bution of other types of black holes, which might be for example the
supersymmetric hairy black holes found in [90,91].

The results for AdS5 have been generalized to other dimensions. The
entropy of AdS4 rotating black holes has been reproduced in the Cardy
limit in [92–94], while computations for AdS6 and AdS7 black holes
have been perfomed in [95–98].

1.5 thesis contributions and content

1.5.1 Thesis contribution

From everything we have reported in the last section it should be evi-
dent that the problem of reproducing the entropy for AdS black holes
via microstate counting is complex, involved and interesting and there
are still pieces which must be added to the puzzle in order to have a
full comprehension of this topic.

The main result that has been obtained is that by using holography
the entropy of BPS AdS black holes with large charges can be evaluated
via a superconformal index in the dual conformal field theory. Once the
computation is done correctly, the logarithm of the index results to be
an homegeneous function of chemical potentials which exactly matches
the entropy function on the gravity side. By Legendre transforming and
extremizing such function, we obtain the correct Bekenstein-Hawking
entropy.

Although this general picture is quite clear and it has been proven
to work for all the dimensions 4 ≤ d ≤ 7, there are still some open
questions to address on the gravity side. In this thesis we aim to an-
swer some of these questions, mostly by summarizing and reporting
the results of the papers [67, 99, 100] on which this work is based, but
also introducing and presenting some original unpublished material. We
may now briefly present the main problems we try to face in the next
chapters and the most important results we find; instead in the next
subsection we present how the thesis is organized in a more detailed
manner.
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The first topic we would like to investigate is the physical interpreta-
tion of the entropy function, both on the gravity and the field theory
side of the holographic correspondence. For rotating black holes this
question is rather subtle because, due to the constraint (1.38), the sad-
dle point values of both the rotational and electric chemical potentials
turn out to be complex and it is not obvious how to read the chem-
ical potentials in (1.38) from the black hole solution. These aspects
have been firstly investigated in [66], there it has been found that the
entropy function for a particular class of rotating BPS black holes in
AdS5 is the supergravity on-shell action after taking a specific BPS
limit. This latter goes along a supersymmetric trajectory in the space
of complexified solutions.

We provide an extension of the gravity side results of the above
mentioned work in [67]. There, we analyze other classes of rotating,
asymptotically AdS black holes in four, five, six and seven dimensions,
discussing also the cases with more than one electric charge; while the
authors of [66] only consider AdS5 black holes with two angular mo-
menta and only one electric charge. For any dimension, we start from
a non-supersymmetric and non extremal family of black holes and we
reach extremality by performing the limit we propose in the paper,
which follows a supersymmetric trajectory in the space of complexified
solutions. In this way, we are able to define the appropriated chemical
potentials for the family of BPS black holes under consideration and we
verify that they satisfy a constraint of the type (1.38). Moreover, the
supersymmetric on-shell action I takes the form of a simple function of
these variables, that precisely matches the entropy functions proposed
in [65, 68, 70]. The Legendre transform of I (subject to the constraint
(1.38)) is in general a complex quantity, so it cannot be immediately
identified with the entropy of the Lorentzian solution. However, de-
manding reality of the Legendre transform, which amounts to a specific
condition on the charges, one finds precisely the Bekenstein-Hawking
entropy of the BPS black hole [66, 69]. The saddle point values of the
chemical potentials remain complex and match the ones that we obtain
from the solution. Therefore we have provided a physical derivation of
the proposed entropy functions and the related extremization principles
via the BPS limit of black hole thermodynamics described throughout
the paper.

In each of the field theoretic computations aiming to reproduce the
entropy of AdS black holes that we have described in the last section, it
is crucial to understand which are the field theory states that contribute
to the entropy. Further information on them might come from studying
whether the black hole solutions continue to exist when one tries to de-
form the geometry of the conformal boundary, and if so how this affects
their thermodynamics. This problem has been studied in [101]. There,
the authors work in five-dimensional minimal gauged supergravity and
construct both supersymmetric and non-supersymmetric black holes
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which are not globally asymptotically AdS, but just locally, since the
boundary is non conformally-flat. Such solutions are therefore AlAdS5
(asymptotically locally Anti-de Sitter) black holes. While the squash-
ing at the boundary is arbitrary, in the supersymmetric case the event
horizon geometry turns out to be completely frozen and therefore the
entropy takes a fixed value. This behaviour is qualitatively different
from the one of asymptotically AdS5 black hole solutions to minimal
gauged supergravity with the same symmetry [41], where the entropy
depends on one parameter controlling the horizon geometry.

Motivated by the above mentioned paper, in [99] we construct more
general supersymmetric AlAdS5 black hole solutions in the context of
five-dimensional Fayet-Iliopoulos supergravity; this theory, to be for-
mally introduced in the next chapter, is five-dimensional supergravity
coupled to an arbitrary number nV of vector multiplets and with a U(1)
gauging of the R-symmetry. This is a more general theory with respect
to minimal gauged supergravity. In the paper, we keep nV general and
we look for black hole solutions having the energy, one angular mo-
mentum and nV + 1 electric charges as conserved charges. The system
of equations for a supersymmetric solution to Fayet-Iliopoulos gauged
supergravity has been given in [42]. In [99] we partially solve these
conditions and we impose an ansatz on the scalar fields in order to re-
duce the system to two coupled ordinary differential equations; however
these are very hard to solve and we could not find new analytic solu-
tions. Therefore we resort to the numerical approach: we construct the
near-horizon and near-boundary solutions perturbatively and then in-
terpolate numerically. By using this approach, we find a two-parameter
family of supersymmetric black holes with both running gauge fields
and scalar fields; this family of solutions generalizes the one presented
in [101] which depends only on one parameter. We find two main re-
sults in this paper: the first one is that the horizon does not depend
on the squashing at the boundary since of the two parameters the one
that controls the squashing is washed away in the near-horizon region.
In other words, whatever is the squashing at the boundary, the radial
flow towards the horizon acts as an attractor that brings the transverse
geometry into a form which only depends on the other parameter. This
result is in agreement with other ones already present in the litera-
ture suggesting a general principle of holographic uniformization [102],
where the UV freedom of the solution is fixed in the IR region22. Never-
theless, we have still found an interesting near-horizon geometry since
this latter depends non trivially on the remaining parameter and is not
frozen as in [101]. The second main result is that the black hole entropy
can be expressed as a simple function of the Page electric charges rather
than the holographic electric charges. These are two different types of

22 In particular, in [102] black string solutions of the same five-dimensional gauged
supergravity exhibiting the same uniformization behaviour have been studied. See
also [103] for more recent results on the same topic.
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charges which however are numerically different only when there is a
non vanishing Chern-Simons term at the boundary, as it is for the
family of AlAdS5 black holes.

The solution of [99] is quite general and valid for an arbitrary num-
ber of vector multiplets nV ; however it is still obtained by imposing a
particular ansatz on the scalar fields which constrains all their compo-
nents orthogonal to the scalar vacuum expectation values in the super-
symmetric AdS5 vacuum to be the same. In [100] we look for a more
general solution, obtained without imposing any ansatz, for the theory
with nV = 2. Therefore we let the scalar fields unconstrained by aban-
doning the restrictive conditions imposed in [99]. The choice of nV = 2
is motivated by the fact that the supergravity theory so obtained can
be uplifted to type IIB supergravity in ten dimensions; the solutions
obtained in this theory are thus particularly relevant from a string-
theoretical perspective. In order to find such solutions, we consider the
system of nV + 1 coupled differential equations obtained in [99], which
is the result of a rearrangement process applied to the conditions given
in [42], to be imposed in order to have a supersymmetric solution, and
we specialize it to the case nV = 2; in this way we obtain three coupled
differential equations to be solved. These are very cumbersome and
complicated and again we have to resort to the numerical approach.
We construct the near-horizon family of candidate black hole solutions,
a near-boundary family of candidate AlAdS5 solutions and we find nu-
merically that the two perturbative solutions thus obtained match in
the bulk; we therefore obtained a new three-parameter family of su-
persymmetric black holes. This family of solution generalizes the one
of [99] for the case nV = 2 since the scalar fields are now left uncon-
strained. The main results obtained by analyzing the properties of this
new family of solutions are quite similar to the one of [99]. The hori-
zon geometry and the horizon properties are controlled by two of the
three total parameters; the last parameter regulates the squashing at
the boundary geometry, but does not influence the horizon. Therefore
once again the near-horizon geometry is independent of the squashing.
By evaluating the entropy of the solutions we find that it is remarkably
reproduced by a simple formula containing the Page charges, rather
than the holographic charges.

1.5.2 Thesis content

This thesis is composed of five chapters and two appendices.
In Chapter 2 we provide a review of various AdS black hole solutions

of different supergravity theories in all the dimensions 4 ≤ d ≤ 7.
For each dimension, we introduce a finite-temperature solution and we
present the corresponding BPS solution, illustrating how it is possible
to land on the latter starting from the former. We will see that, by
taking the BPS limit as it is usually performed, one cannot obtain the
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BPS chemical potentials ωi and ∆I , which play a central role in the
extremization principles. In this Chapter, in particular, we extensively
analyze the black holes constructed by Gutowski and Reall in [41, 42],
since they would be particularly relevant for the topics of this thesis.

In Chapter 3 we introduce our BPS limit of rotating AdS black hole
thermodynamics, which goes along a supersymmetric trajectory in the
space of complexified solutions. We then apply it to the AdS black
holes we have introduced in Chapter 2. For each dimension, we start
from the finite-temperature solution and we arrive at the BPS locus
by taking our BPS limit; we will see that in the limiting procedure
complex quantities naturally emerges and it is possible to obtain the
BPS chemical potentials ωi and ∆I from the supergravity black hole
solution. Furthermore, we will show that, in this limit, the Euclidean on-
shell action coincides with the entropy function. Thus, we will provide a
physical derivation of the extremization principles for AdS black holes
in all the dimensions 4 ≤ d ≤ 7.

In Chapter 4 we turn our attention on black hole solutions which are
just asymptotically locally AdS5, rather than asymptotically AdS5 like
the ones examined in Chapters 2, 3. We present two different families
of solutions: the first one is composed by solutions of N = 2 Fayet-
Iliopoulos supergravity with an arbitrary number nV of vector multi-
plets, while the second one contains solutions of the theory with nV = 2.
The latter case is particularly interesting since the solutions can be up-
lifted to d = 10 supergravity on AdS5 × S5, as explained in [104]. All
the solutions present a boundary geometry containing a squashed S3.
We begin the chapter by writing the supersymmetry equations one has
to solve in order to find supersymmetric black hole solutions in the
Fayet-Iliopoulos supergravity theories under consideration. Then, we
proceed to solve these supersymmetry conditions. They will turn out
to be very hard to be solved analytically, therefore we will attack them
with a perturbative and a numerical approach. For both the cases of
arbitrary nV and nV = 2, we will construct near-boundary and near-
horizon perturbative solutions and then we will show numerically that
the two smoothly interpolate in the bulk, giving rise to fully regular
black hole solutions. Although the solutions thus obtained are numer-
ical, we will still able to evaluate analytically many of their relevant
physical properties. In particular, we will evaluate all the conserved
charges of the solutions and we will discuss how the entropy can be
written as a function of them.

In Chapter 5 we draw the conclusions of this thesis and we discuss
some possible outlooks. This chapter concludes the relevant physical
discussion in this thesis. In order to make the main text less technical,
some more mathematical aspects are left to the appendices.

In Appendix A we briefly review the main features of holographic
renormalization in d = 5 and how this is used to compute the physical
properties described in Chapters 3, 4 for both AdS5 and AlAdS5 black
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holes. In particular, we focus on the computation of the renormalized
on-shell action and of the one-point functions. Appendix B contains an
analogous review on holographic renormalization in d = 4. Here, we
also review how this can be used to compute some relevant physical
properties of the AdS4 black holes discussed in Chapters 3, 4.





2
A D S B L AC K H O L E S I N
S U P E RG R AV I T Y

For a long time, Anti-de Sitter black holes have been somewhat ne-
glected in the literature with respect to Minkowski ones; this is mainly
because such solutions seemed of little relevance for describing observ-
able objects in our universe. As already depicted in the last chapter,
the situation changed with the introduction of the AdS/CFT corre-
spondence, for various reasons. One main reason is the importance AdS
black holes retain in the microstate counting problem, as we have al-
ready stated. Another important reason is that thermal black objects in
AdS are relevant for the holographic description of various condensed
matter phenomena at strong coupling, which cannot be attacked us-
ing the usual perturbative QFT approaches. Among these phenomena,
there are high temperature superconductivity and quantum Hall effect.
Furthermore the same thermal objects are also involved in the descrip-
tion of the quark-gluon plasma.

It is worth mentioning the fact that the zoo of AdS black holes is
much larger compared to the asymptotically flat case; the term "black
hole" in AdS has a much broader meaning than in Minkowski. Consider
for example the four-dimensional case: the topology of the horizon of
AdS4 black holes is not unique as for asymptotically flat black holes;
in particular the horizon geometry can be a Riemann surface of any
genus [105]. Therefore, black holes in AdS4 fall in three separate classes:
spherical, toroidal and higher genus. However, AdS black holes exhibit
thermodynamic properties analogous to the asymptotically flat ones, in
particular the entropy is given by 1/4 of the area of the event horizon.

We devote this section to introduce all the black hole solutions we will
analyze throughout this thesis. We start by looking at AdS5 black holes,
since they are the ones which we will study the most, introducing the
N = 2 Fayet-Iliopoulos supergravity theory of which they are solutions.
Then we move to introduce AdS4, AdS6 and AdS7 black holes.

The large majority of what we will introduce in this chapter is back-
ground material, in preparation for the original results that will be
presented in the next chapters. However, we will also present original
results that provide a better understanding of the thermodynamics of
the various black hole solutions. Among these, there are the computa-
tions, performed using the framework of holographic renormalization,
of the on-shell action for AdS5 and AdS4 black holes, as well as the
evaluation of the conserved charges of the same black holes using the
same framework.

35
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2.1 ads5 black holes

2.1.1 Fayet-Iliopoulos gauged supergravity

The AdS5 black hole solutions we are interested in belong to five-
dimensional N = 2 supergravity with a Fayet-Iliopoulos gauging of
the R-symmetry [106]. This theory is known for an arbitrary number
nV of vector multiplets, although it can be uplifted to ten-dimensional
type IIB supergravity on AdS5 × S5 only for nV = 2 [104].

2.1.1.1 The theory with arbitrary nV

We start by presenting the theory for an arbitrary number of vector
multiplets [106]. The bosonic content of the theory is constituted by
the metric gµν , nV + 1 Abelian gauge fields AIµ, I = 1, . . . ,nV + 1, of
which one is the graviphoton in the gravity multiplet, and by nV real
scalar fields. It is convenient to parametrize the latter in terms of nV + 1
real variables XI , subject to the following constraint

1
6 CIJKX

IXJXK = 1 , (2.1)

with CIJK being a constant, symmetric tensor. In the mostly plus sig-
nature (−,+,+,+,+), the bosonic action can be written as:

S =
1

2κ2

∫︂ [︄
(R− 2V) ⋆1−QIJF I ∧ ⋆F J

−QIJdXI ∧ ⋆dXJ − 1
6CIJKA

I ∧ F J ∧ FK
]︄
, (2.2)

where F I = dAI and κ2 is the five-dimensional gravitational coupling
constant.

All known black holes in this theory have been found by assuming
the additional property that the scalar target space is symmetric, which
is equivalent to require that the CIJK tensor satisfies the following
identity [107]

CIJKCJ ′(LMCPQ)K′ δJJ
′
δKK

′
=

4
3 δI(LCMPQ) . (2.3)

It is important to underline that in principle there is no reason to
believe that this is a necessary condition to be imposed to have black
hole solutions, i.e. it should be totally possible to find solutions that
do not respect this property; however they have not been found yet at
the time this thesis is written.

It is convenient to introduce the lower-index scalars

XI =
1
6CIJKX

JXK , (2.4)
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so that (2.1) reads

XIX
I = 1 . (2.5)

Using the property (2.3), we can express the upper-index variables with
respect to the lower-index ones

XI =
9
2C

IJKXJXK , (2.6)

with the upper-index tensor CIJK being defined as

CIJK = δII
′
δJJ

′
δKK

′
CI′J ′K′ . (2.7)

From (2.6) and (2.5) it also follows

CIJKXIXJXK =
2
9 . (2.8)

The kinetic matrix QIJ appearing in the action and its inverse QIJ
read23:

QIJ =
9
2XIXJ −

1
2CIJKX

K , (2.9)

QIJ = 2XIXJ − 6CIJKXK , (2.10)

it is also useful to note that

QIJX
J =

3
2XI . (2.11)

The theory is gauged by choosing nV + 1 Fayet-Iliopoulos parameters
VI so as to gauge a U(1) subgroup of the SU(2) R-symmetry that the
ungauged supergravity theory presents. The vector field gauging this
U(1) is specified by the parameters VI through the linear combination
VIA

I . Doing so, nothing changes in the bosonic sector apart from the
introduction of the scalar potential

V = −27CIJKVIVJXK , (2.12)

as required by supersymmetry.
From the action (2.2), one obtains the following Einstein, Maxwell

and scalar equations

Rµν − QIJ F I
µκF J

ν
κ − QIJ ∂µXI∂νXJ +

1
6 gµν

(︂
QIJ F I

κλF J κλ − 4V
)︂
= 0 ,

(2.13)

d
(︂

QIJ ⋆ F J
)︂
+

1
4CIJKF J ∧ F K = 0 , (2.14)

d(⋆dXI ) −
(︂1

6 CMNI − 1
2 XICMNJ XJ

)︂
dXM ∧ ⋆dXN

+
(︂

XM XP CNP I − 1
6 CMNI − 6XIXM XN +

1
6 XICMNJ XJ

)︂
F M ∧ ⋆F N

+ 6
(︂

6XICMP QVM VP XQ − CMP QVM VP CQIJ XJ
)︂

⋆ 1 = 0 . (2.15)

23 Note that the inverse matrix QIJ can be expressed in this form only if the prop-
erty (2.3) does hold.
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Assuming the condition CIJKVIVJVK > 0, the theory admits a su-
persymmetric AdS5 vacuum of radius ℓ where the scalars are constant;
their constant value is determined by the Fayet-Iliopoulous parameters
as

X̄I = ℓ VI . (2.16)

In the following, since we find it convenient, we exploit equation (2.16)
to get rid of every parameter VI and use instead the constant values of
the scalars in the vacuum X̄I . Then, the scalar potential can be written
as

V = −6ℓ−2 X̄
I
XI . (2.17)

The most general set of black hole conserved charges, in the theory
we have presented in this subsection, is given by the energy, nV + 1
electric charges and two angular momenta. To impose supersymmetry
and extremality means to require that the BPS black hole satisfies two
more constraints, hence the BPS solution carries nV + 2 independent
conserved charges [45].

2.1.1.2 The theory with nV = 2 and the uplift to type IIB supergravity

A supergravity theory like the one we have described is particularly
interesting when it can be uplifted to string theory or M-theory. This
is also the case in which the holographic interpretation is well under
control. A consistent uplift of the theory we are considering is provided
by type IIB supergravity on AdS5 × S5 [104], whose SCFT dual is the
N = 4, SU(N) Super Yang-Mills at large N . Indeed, starting from type
IIB theory one can truncate to Fayet-Iliopoulos gauged supergravity
with nV = 2 and with the CIJK tensor given by

CIJK = CIJK = |ϵIJK |

⎧⎪⎨⎪⎩1 if (IJK) is a permutation of (123) ,

0 otherwise .
(2.18)

In this theory24, the constraint on the scalars (2.1) becomes

X1X2X3 = 1 , (2.19)

while the scalar kinetic matrix (2.9) is given by

QIJ =
9
2 diag

(︄
(X1)

2 , (X2)
2 , (X3)

2
)︄

. (2.20)

24 Note that the supergravity theory with nV = 2 vector multiplets has gauge group
U(1)3; for this reason this particular case is sometimes dubbed as U(1)3 theory [42,
45]. We will sometimes use this denomination to refer to this particualr theory
throughout the thesis. We underline the fact that it remains true that the fermion
fields are only charged under one linear combination of the vector fields
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The scalars assume the following values in the AdS5 vacuum:

X̄
I = 1 , ⇒ X̄I =

1
3 , (2.21)

accordingly, the corresponding kinetic matrix in the same vacuum be-
comes

Q̄IJ =
1
2 I3×3 . (2.22)

Since this theory is obtained by setting nV = 2, the most general set
of conserved charges a black hole can present is given by the energy,
three electric charges and two angular momenta. Imposing supersym-
metry and extremality there are two more relations to be satisfied and
therefore the maximum number of independent charges a BPS solution
can present is equal to four.

We conclude this section by briefly reviewing how we can embedN =

2, D = 5 supergravity with U(1)3 gauge group in ten-dimensional type
IIB supergravity following [104]. Starting from type IIB on AdS5 × S5,
we can have a consistent truncation turning on the τ = C0 + ie−Φ, C4
and gMN fields, where xM = (xµ, ya) with xµ being the AdS5 coordi-
nates and ya = (θ̃, ψ̃, ϕ̃1, ϕ̃2, ϕ̃3) being the S5 coordinates. In this set
of coordinates the round S5 is

dΩ2
5 =

∑︂
i

(︂
dµ2

i + µi dϕ̃
2
i

)︂
. (2.23)

Then we have:

ds2
10 =

√︂˜︁∆ ds2
5 +

ℓ2√︁˜︁∆ ds̃2
5 , ˜︁∆ =

3∑︂
i=1

Xiµi , (2.24a)

ds̃2
5 = Gabdyadyb =

∑︂
i

X−1
i

[︃
dµ2

i + µ2
i

(︂
dϕ̃2

i + ℓ−1A
(1)
i

)︂2]︃
,

(2.24b)
µ1 = sin θ̃ , µ2 = cos θ̃ sin ψ̃ , µ3 = sin θ̃ cos ψ̃ , (2.24c)

Xi = e− 1
2 ai·φ , X1X2X3 = 1 , F i(2) = dAi(1) , (2.24d)

a1 =

(︃ 2√
6

, +
√

2
)︃

, a2 =

(︃ 2√
6

, −
√

2
)︃

, a3 =

(︃
− 4√

6
, 0
)︃

,

(2.24e)
C2 = 0 = B2 , F5 = dC4 = G5 + ⋆10G5 , (2.24f)

G5 = 2ℓ−1∑︂
i

(︂
Xiµ

2
i − ˜︁∆Xi

)︂
vol5 −

ℓ

2
∑︂
i

⋆5d logXi ∧ dµ2
i

+
ℓ2

2
∑︂
i

dµ2
i ∧

(︂
dϕ̃2

i + ℓA
(1)
i

)︂
∧ ⋆5F

i
(2) , (2.24g)

where ⋆5 ≡ ⋆ and vol5 are referred to the AdS5 metric. In the formulae
above Xi are variables which are parametrized with respect to the real
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scalar fields φ. Considering the only relevant part of the usual type IIB
lagrangian

LIIB ⊇
√
−gE

[︃
RE −

1
2
∂τ · ∂τ
Im τ

− 1
2 F5 ∧ ⋆10F5

]︃
, (2.25)

and inserting the ansatz (2.24), with an appropriate field-redefinition,
we land to eq. (2.2).

2.1.2 Finite-temperature AdS5 black holes

Here we present the finite-temperature AdS5 black hole solutions which
are relevant for this work of thesis and we briefly discuss their ther-
modynamic properties. For finite-temperature black holes, we directly
assume nV = 2 and work in the U(1)3 theory; while for BPS black
holes we will also consider the general case of nV arbitrary as we shall
see in the following.

Since we assume nV = 2, the most general black hole solution can
present a total of six independent conserved charges: the energy, two
angular momenta and three electric charges. Such a solution has been
constructed in [108]; however the expressions of the physical fields and
properties of this general solution are quite involved and cumbersome,
thus we choose to work in a slightly less general case. In particular
we assume the angular momenta to be equal and the three charges
to be independent; a solution with these properties was originally con-
structed in [109] and further discussed in [110]. This solution contains
the three-parameter BPS black hole of [42], as we will see in detail
later25. Another interesting solution is the one obtained by setting
the three charges equal and leaving the two angular momenta uncon-
strained; this solution belongs to minimal gauged supergravity and has
been constructed in [44] and extensively examined in [66]. This solution
becomes the one of [41] in the BPS limit.

We now present the non-supersymmetric, finite temperature solu-
tion of [109], following the notation of [110]. The five-dimensional ac-
tion (2.2) can be rewritten for the U(1)3 theory in the following fashion

S =
1

16π

∫︂ [︃(︃
R+ 4g2

3∑︂
I=1

(︂
XI
)︂−1
− 1

2∂ϕ⃗
2
)︃
⋆ 1

− 1
2

3∑︂
I=1

(︂
XI
)︂−2

F I ∧ ⋆F I − 1
6 |ϵIJK |A

I ∧ F J ∧ FK
]︃

,

(2.26)

where AI , I = 1, 2, 3, are the three Abelian gauge fields, with field
strength F I = dAI , while ϕ⃗ = (ϕ1,ϕ2) are real scalar fields and we
have parametrized the three variables XI as

X1 = e− 1√
6
ϕ1− 1√

2
ϕ2 , X2 = e− 1√

6
ϕ1+

1√
2
ϕ2 , X3 = e

2√
6
ϕ1 . (2.27)

25 Solutions with restricted set of independent charges were also found in [43,111,112].
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Furthermore, we have defined g = 1
ℓ and we have made use of (2.18).

We choose the set of coordinates (t, r, θ,ϕ,ψ) to express the solution
and, in order to make the SU(2)× U(1) symmetry manifest, we intro-
duce the following left-invariant 1-forms on a three-sphere S3 parame-
terized by (θ,ϕ,ψ):

σ1 + i σ2 = e−iψ(dθ+ i sin θ dϕ) ,
σ3 = dψ+ cos θ dϕ . (2.28)

The metric, scalar fields and gauge fields of the solution of [109] are
given by

ds2
5 = (H1H2H3)

1/3
[︄
− r2 Y

f1
dt2 + r4

Y
dr2

+
r2

4
(︂
σ2

1 + σ2
2

)︂
+

f1
4r4H1H2H3

(︃
σ3 −

2f2
f1

dt
)︃2
]︄
,

(2.29)

XI =
(H1H2H3)

1/3

HI
, (2.30)

AI = AIt dt+AIψ σ3 , (2.31)

where

AIt =
2m
r2HI

sI cI +αI , AIψ =
m a

r2HI
(cI sJ sK − sI cJ cK) , (2.32)

and the indices I, J ,K in AIψ are never equal. In the temporal com-
ponent of the gauge fields we also introduced a constant gauge choice
αI , that will be fixed in the following. The solution depends on the
following functions of the radial coordinate r:

HI = 1 + 2ms2
I

r2 ,

f1 = r6H1H2H3 + 2m a2r2 + 4m2a2
[︄
2 (c1c2c3 − s1s2s3) s1s2s3

− s2
1s

2
2 − s2

2s
2
3 − s2

3s
2
1

]︄
,

f2 = 2m a (c1c2c3 − s1s2s3) r
2 + 4m2a s1s2s3 ,

f3 = 2m a2(1 + g2r2) + 4 g2m2a2
[︄
2(c1c2c3 − s1s2s3)s1s2s3

− s2
1s

2
2 − s2

2s
2
3 − s2

3s
2
1

]︄
,

Y = f3 + g2r6H1H2H3 + r4 − 2mr2 , (2.33)

with sI , cI being shorthand notations for:

sI = sinh δI , cI = cosh δI , I = 1, 2, 3 . (2.34)
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Looking at the relevant fields above, it is easy to see that the so-
lution depends on the five parameters m, δ1, δ2, δ3, a; this number of
parameters is expected since it is equal to the number of independent
conserved charges. The horizons are given by the roots of Y (r); we de-
mand that the spatial components of the metric are positive for r > r+,
where r+ is the largest positive root of this function and thus denotes
the position of the outer horizon. This implies that the five parameters
should satisfy suitable inequalities. Provided this, the outer horizon is
actually a Killing horizon since the Killing vector

V =
∂

∂t
+ 2 f2(r+)

f1(r+)

∂

∂ψ
(2.35)

is null at r = r+. The following physical properties can be associated
to the outer horizon

S =
π2

2

√︂
f1(r+) , β = 4π r+

√︂
f1(r+)

(︃dY
dr (r+)

)︃−1
,

Ω = 2 f2(r+)

f1(r+)
,

ΦI =
2m

r2
+HI(r+)

(︂
sI cI +

1
2 aΩ (cI sJ sK − sI cJ cK)

)︂
, (2.36)

with S being the Bekenstein-Hawking entropy computed as 1
4 the area

of the horizon, β = T−1 = 2π
κ being the inverse Hawking temperature

obtained from the surface gravity κ, Ω being the angular velocity rel-
ative to a non-rotating frame at infinity as read off from the Killing
vector V , and ΦI being the electrostatic potentials,26 defined as

ΦI = ιVA
I |r+ − ιVAI |∞ . (2.37)

The five independent conserved charges are given by the energy E

for translations along ∂
∂t , the angular momentum J for rotations along

− ∂
∂ψ , and three electric charges QI . They result to be:

E = E0 +
1
4 mπ

(︂
3 + a2g2 + 2 s2

1 + 2 s2
2 + 2 s2

3

)︂
,

J =
1
2 m aπ (c1 c2 c3 − s1 s2 s3) ,

QI =
1
2 mπ sI cI . (2.38)

The electric charges and the angular momentum have been computed
in [110] using the boundary integrals

QI = −
1

16π

∫︂
S3

bdry

(︂
XI
)︂−2

⋆ F I ,

J =
1

16π

∫︂
S3

bdry

⋆ d (gψµdxµ) , (2.39)

26 In eq. (3.10) of [110] there was a minus sign typo in the expression for ΦI ; here we
have corrected this, see also [67,69].
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while the energy E was obtained by integrating the first law of thermo-
dynamics,

dE = T dS + Ω dJ + ΦI dQI . (2.40)

The integration constant E0 was fixed to zero in [110] by requiring that
E vanishes in the limiting case m = 0 where the solution becomes
empty AdS5, which is regarded as the vacuum solution (see [113] for
more details on this approach to compute the energy).

There are other approaches one can adopt to compute the same
charges. One possibility is to use the framework of holographic renor-
malization [114–116]. We perform the computation of the charges using
this framework in app. A, adopting a minimal subtraction scheme. As
expected from the analysis of [117], we find agreement with the expres-
sions above for the angular momentum J and the electric charges QI .
The energy E also agrees, except that the AdS mass E0 now takes the
non-vanishing value

E0 =
3π

32 g2 . (2.41)

The thermodynamical quantities introduced above must satisfy the
quantum statistical relation

I = βE − S − β Ω J − β ΦI QI , (2.42)

with I being the on-shell action of the solution under consideration. In
order to provide an interpretation for the extremization principle for
AdS5 black holes, we will need to evaluate this quantity. This has been
computed for the first time in [67], again using holographic renormal-
ization. The action must be evaluated on a regular Euclidean section
of the solution. The Euclideanization is obtained by the Wick rotation
t = −iτ , together with the continuation of the parameter a to purely
imaginary values. After the action is computed one can take a back to
the original real domain, or choose to analytically continue the solution
to more general complex values of the parameters [118]. As usual, regu-
larity of the Euclidean section leads to identify the length of the circle
parameterized by the Euclidean time τ with the inverse Hawking tem-
perature, that is

∫︁
dτ = β. A further regularity condition is that the

contraction of the Killing vector (2.35) with the gauge fields vanishes
at the horizon,

ιV A
I |r=r+ = 0 . (2.43)

This leads us to fix the constant gauge choice αI introduced in (2.32)
as

αI = −ΦI , (2.44)
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where ΦI is the electrostatic potential (2.36). As for the charges, we
describe this computation in detail in app. A while here we just provide
the final result

I = I0 −
πβ

12

[︃
2m

(︂
c1s1Φ1 + c2s2Φ2 + c3s3Φ3

)︂
+ 4m2g2

(︂
s2

1s
2
2 + s2

1s
2
3 + s2

2s
2
3

)︂
+ 3m(g2a2 − 1)

+ 3g2r4
+ + 2m

(︂
2g2r2

+ − 1
)︂ (︂
s2

1 + s2
2 + s2

3

)︂ ]︃
, (2.45)

where

I0 = βE0 (2.46)

is the on-shell action of empty AdS5 at temperature β. Using the above
result for the on-shell action I and the expressions for the thermody-
namical quantities provided in (2.36), (2.38), it is easy to check that
the quantum statistical relation (2.42) is indeed satisfied. This equation
has also a microscopic interpretation: it can be seen as the relation be-
tween a grand-canonical partition function I = − logZgrand, seen as
a function of the chemical potentials, I = I(β, Ω, ΦI), and the micro-
canonical partition function S = logZmicro, seen as a function of the
charges S = S(E, J ,QI). The latter can be obtained by varying I with
respect to the chemical potentials as

E =
∂I

∂β
, J = − 1

β

∂I

∂Ω
, QI = −

1
β

∂I

∂ΦI
. (2.47)

Two conclusive remarks are in order.
The first one is about the contribution E0 to the energy and the

corresponding I0 in the on-shell action. These two are not fixed, but
their specific values depend on the regularization adopted. Indeed, if we
had performed the computation by using the background subtraction
method as done for similar solutions in e.g. [113, 119, 120], we would
have found the same result (2.45), but with I0 = 0. This is because
this method regularizes the divergences due to the infinite spacetime
volume by subtracting the action of empty AdS space, with a boundary
at large distance r̄ matched to the boundary of the black hole solution,
and then sends r̄ → ∞. In this way the action I is measured relative
to the action of the AdS vacuum which results from taking m = 0.
Therefore in this approach I0 = 0 by construction. However the quan-
tum statistical relation is still satisfied, provided one sets E0 = 0 for
consistency. This regularization is different from the one associated to
holographic renormalization; in this framework one can shift E0 (and
I0) to any desidered value by adding a finite, local counterterm to the
action. In particular, we can add to the Lorentzian action the finite
counterterm ς

8π
∫︁

d4x
√
hR2, where ς is a parameter, hij is the bound-

ary metric and R its Ricci curvature, so to obtain the shift one obtains
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the shift I0 → I0 − 9πgβς and E0 → E0 − 9πgς.27 Because of the
fact that E0 and I0 can be shifted to any desired arbitrary constant
via a local counterterm, they may be considered ambiguous quantities,
without an intrinsic physical meaning. This is confirmed by the Ad-
S/CFT correspondence, which identifies E0 with the Casimir energy of
the dual conformal field theory on S3×R, that does not have intrinsic
value [87]. However we are mainly interested in supersymmetric solu-
tions and the presence of supersymmetry changes the above situation.
Indeed, the R2 counterterm we have introduced is not allowed in a su-
persymmetric setup and thus E0 acquires physical meaning [87, 121].
In [122,123] E0 has been interpreted as the consequence of a supercur-
rent anomaly, which is physical in nature. It may be possible to see
this as a mixed anomaly and thus shift it away by adding local coun-
terterms that restore supersymmetry at the expense of breaking part
of the diffeomorphisms, along the lines of [124–126].

The second remark concerns the fact that in principle, in the inte-
gral for the electric charges (2.39) there should also be a contribution
given by the Chern-Simons term in the action (2.26); however the latter
vanishes in the solution of interest because F I → 0 as r → ∞, so we
omitted this term. Nevertheless, it is worth remarking that it implies
a priori different definitions of the electric charge such as the Maxwell
charge, the Page charge, and the charge that arises from integrating
the holographic currents; these charges are indeed different when there
is a non vanishing Chern-Simons term. This is the case, for example,
of the AlAdS5 black holes constructed in [99–101]; we will return to
this point extensively in Chapter 4 when we will turn to examine such
black holes.

2.1.3 BPS AdS5 black holes

In this subsection we provide a detailed presentation of the first and
best known BPS AdS5 black holes: the ones found by Gutowski and
Reall in [41,42]. The first one is a solution to theN = 2 Fayet-Iliopoulos
gauged supergravity under consideration, while the second one is a
solution to N = 2 minimal gauged supergravity. The Gutowski-Reall
black holes are fundamental for this work of thesis, since the BPS limit
of the family of solutions of [110] introduced in the last subsection
coincides with the solution of [42]; furthermore the AlAdS5 solutions
constructed in [99–101] can be regarded as deformations of the solutions
of [41] and [42].

Before starting with the review, we remind one more time that we
denote as BPS black holes the ones which are both supersymmetric and

27 This counterterm also yields a trivial − 3ς
2π ∇2R contribution to the trace of the

energy-momentum tensor, while the “minimal subtraction” scheme that we used to
reach (2.41) is characterized by the fact that the trace of the holographic energy-
momentum tensor does not contain trivial ∇2R terms.
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extremal and that neither of these two properties automatically implies
the other. This will be made clearer in the following.

2.1.3.1 The Gutoswki-Reall black holes

Historically, the first rotating AdS5 BPS black hole which has been
found is the minimal gauged supergravity one of [41]; some days later
the more general solution in Fayet-Iliopoulos gauged supergravity has
been presented in [42]. Here we will start by the more general solution
of [42], then we discuss how it is possible to recover the minimal gauged
supergravity solution.

The black hole of [42] has been constructed for an arbitrary number
of vector multiplets nV and it is a solution of the action (2.2). It is
obtained by assuming the property (2.3), i.e. that the scalar target
space is symmetric. We now briefly review how this solution has been
obtained.

The authors of [42] are interested in bosonic, supersymmetric solu-
tions with a local SU(2)× U(1)× U(1) symmetry. As a consequence of
supersymmetry, the existence of a Killing vector is guaranteed and the
form of the solutions depends on whether it is timelike or null; here we
will just consider the timelike case. Furthermore, as a consequence of
the additional SU(2)× U(1) symmetry, the supersymmetry conditions
reduce to ODE’s. The necessary and sufficient conditions for solutions
of this type have been provided in [42]; we shall now summarize them
and review how they can be solved to find the black hole solution.

The starting point to obtain these conditions is to analyse the differ-
ential forms that can be constructed from a commuting Killing spinor;
in the spirit of [127] the authors search for algebraic and differential
properties of these forms. Then, they specialize the conditions so ob-
tained to the timelike case we are interested in. For this latter, we con-
sider the set of coordinates (y, ρ, θ,ϕ, ψ̂) and we introduce the SU(2)
left-invariant one-forms

σ̂1 = cos ψ̂ dθ+ sin ψ̂ sin θ dϕ ,
σ̂2 = − sin ψ̂ dθ+ cos ψ̂ sin θ dϕ ,
σ̂3 = dψ̂+ cos θ dϕ , (2.48)

satisfying dσ̂1 = −σ̂2 ∧ σ̂3, dσ̂2 = −σ̂3 ∧ σ̂1, dσ̂3 = −σ̂1 ∧ σ̂2. The hat
symbol on ψ̂ (and thus on the σ’s) distinguishes this coordinate from a
different coordinate ψ which is relevant for AlAdS5 solutions and will
be introduced later in Chapter 4.
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Supersymmetry equations

Supersymmetry fixes the timelike Killing vector as V = ∂
∂y , while the

left-invariant vector ∂
∂ψ̂

generates the other Abelian symmetry. The
following form for the five-dimensional metric is assumed28

ds2 = −f2(dy+w σ̂3)
2 + f−1

[︂
dρ2 + a2(σ̂2

1 + σ̂2
2) + (2aa′)2 σ̂2

3

]︂
,

(2.49)

where a,w, f are functions of the radial coordinate ρ, and throughout
this subsection a prime denotes differentiation with respect to ρ. The
square parenthesis contains a Kaḧler metric on a four-dimensional base
space B; this is requied by supersymmetry29. The scalar fields depend
on the ρ coordinate only

XI = XI (ρ) , (2.50)

while the gauge fields are given by

AI = XIf (dy+w σ̂3) + U I σ̂3 , (2.51)

with U I (ρ) being additional functions that depend only on the radial
coordinate ρ.

To find a solution, one has to determine a(ρ),w(ρ), f(ρ),XI(ρ),U I(ρ).
The analysis of the supersymmetry conditions, developed by combining
also these latter with the Maxwell equation, performed in [42] results
in the following set of equations

f = fmin X̄
I
XI , (2.52)(︂

a2U I
)︂′

= 36ϵ
ℓ
a3a′f−1CIJKX̄JXK , (2.53)

f−1XI

(︂
a−2U I

)︂′
= −2

3
(︂
a−2w

)︂′
, (2.54)

X̄IU
I =

ϵℓ

3 p , (2.55)[︃
a3a′

(︂
f−1XI

)︂′
+
ϵ

ℓ
X̄Ia

2w+
1
12CIJKU

JUK
]︃′
= 0 , (2.56)

in the expressions above ϵ = ±1 is just an arbitrary sign choice related
to the versus of rotation of the solution along ∂

∂ψ̂
. We have furthermore

denoted as fmin the function30

fmin =
12 a2a′

ℓ2(a2a′′′ − a′ + 7aa′a′′ + 4(a′)3)
(2.57)

28 In [42] the authors work with a negative signature metric while here we present their
solution using a positive signature one; this is because the mostly plus signature is
the one we will always use in the thesis. As a consequence, there are some quantities
we introduce below that differ for an overall minus sign when compared to [42].

29 Even though there are in general obstructions that prevent a Kaḧler metric to pro-
vide supersymmetric solutions [128,129], these are automatically solved by the sym-
metric ansatz (2.49).

30 This function has a geometrical meaning: it is proportional to the inverse scalar
curvature RB of the four-dimensional Kaḧler base, i.e. it results fmin = − 24

ℓ2 RB
.
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which is the expression for f that is obtained when working in minimal
gauged supergravity [41]. The last function we have introduced is in
eq. (2.55) and it results

p = −1 + 2aa′′ + 4(a′)2 . (2.58)

This function fulfils the following identity31

a3a′f−1
min =

ℓ2

24
(︂
a2p

)︂′
. (2.59)

Derivation of the black hole solution

We now review how Gutowski and Reall solved the system of equations
provided above and constructed the BPS black hole. The key ingredient
to solve the system is to make the following guess

f−1XI = X̄I +
qGR
I

4 a2 , (2.60)

with qGR
I being constants. As a consequence of (2.4) and (2.1), it must

be

CIJKXIXJXK =
2
9 , (2.61)

combining this with eq. (2.60) we easily get

f−3 =
9
2C

IJK

(︄
X̄I +

qGR
I

4 a2

)︄(︄
X̄J +

qGR
J

4 a2

)︄(︄
X̄K +

qGR
K

4 a2

)︄
, (2.62)

from which we obtain the expression for f

f =

(︄
1 + αGR

1
4 a2 +

αGR
2

16 a4 +
αGR

3
64 a6

)︄−1/3

, (2.63)

where we have defined the αGR
i constants as

αGR
1 =

27
2 C

IJKX̄IX̄Jq
GR
K ,

αGR
2 =

27
2 C

IJKX̄Iq
GR
J qGR

K ,

αGR
3 =

9
2C

IJKqGR
I qGR

J qGR
K . (2.64)

Plugging (2.60) in the equation for U I given by (2.53), the latter be-
comes a total derivative and it is possible to solve for those functions
as

U I =
9 ϵ
ℓ
CIJKX̄J

(︄
a2X̄K +

qGR
K

2

)︄
, (2.65)

31 The function p determines the Ricci form on the Kähler base as R = ϵ d(p σ̂3). The
identity (2.59) expresses the fact that in Kähler geometry the trace of the Ricci
form is proportional to the Ricci scalar, JmnRmn = R. Here J = −ϵ d(a2σ̂3) is the
Kähler form on the Kähler base B [42].
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where we have set to zero a possible term of the form constant of
integration times a−2 for compatibility with the black hole solution of
the minimal theory constructed in [41]. Having the explicit expressions
of the U I functions, we can determine w from (2.54):

w =
ϵ

ℓ

(︄
w0 a

2 − αGR
1
2 − αGR

2
16 a2

)︄
, (2.66)

with w0 being a constant of integration. Now eq. (2.55) can be inte-
grated twice to obtain

a =
ℓ

2

√︄
1 + αGR

1
ℓ2

sinh
(︃
ρ

ℓ

)︃
. (2.67)

It is remarkable that the geometry of the base space, determined by the
a function found above, is constituted by the same singular deformation
of the Bergmann manifold one can found in the minimal theory [41].
We have one last equation to satisfy, which is (2.56). Plugging in all
the results we have obtained for the various functions and using the
property (2.3), it can be shown that this equation is equivalent to the
condition

w0 = −2 , (2.68)

which fixes the integration constant and therefore the w function as

w = −ϵ
ℓ

(︄
2 a2 +

αGR
1
2 +

αGR
2

16 a2

)︄
. (2.69)

Properties of the solution

The solution is controlled by the nV + 1 constants qGR
I , with the αGR

i

determined by these using eq. (2.64). To better describe the horizon
geometry and to better investigate which solutions have regular hori-
zons, it is convenient to switch to gaussian null coordinates adapted to
the supersymmetric Killing vector field V . The appropriate coordinate
transformations are given by:

dy = du+
(︄

fw2

(2aa′)2 −
1
f2

)︄
dρ̃ ,

dψ̂ = dψ̃− f w

(2aa′)2 dρ̃ ,

dρ =
√︄

1
f
− f2w2

(2aa′)2 dρ̃ , (2.70)

using them, the original five-dimensional metric (2.49) becomes

ds2 = −f2du2 + 2 dudρ̃− 2f2w du σ̃3

+ f−1a2(σ2
1 + σ2

2) +
(︂
f−1(2aa′)2 − f2w2

)︂
σ̃2

3 .
(2.71)
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To guarantee a regular horizon at ρ̃ = 0, we must require that f−1a2

approaches a positive constant and that f−1(2aa′)2 − f2w2 does the
same. These two conditions imply respectively

αGR
3 > 0 , (2.72)

αGR
3

(︄
1 + αGR

1
ℓ2

)︄
−

(︂
αGR

2

)︂2

4 ℓ2 > 0 . (2.73)

Having the αGR
i fulfilling the above inequalities guarantees that the

solution has a regular horizon; in order to avoid problems outward the
horizon, for ρ̃ > 0, one must impose further restrictions on the αGR

i

which we do not report here32.
The Bekenstein-Hawking entropy can be computed as 1

4 the area of
the horizon33 and results to be

S =
π2

2

⌜⃓⃓⎷αGR
3

(︄
1 + αGR

1
ℓ2

)︄
−
(︁
αGR

2
)︁2

4 ℓ2 , (2.74)

note that, due to the second inequality of (2.72), the entropy is al-
ways real and well defined. The angular velocity of the event horizon
calculated with respect to a stationary frame at infinity is34

ΩH =
2 ϵ
ℓ

. (2.75)

The energy and the angular momentum of the solutions are evalu-
ated in [42] using the Ashtekar and Das (AD) approach [131] and they
assume the following values35

E =
π

4

(︄
αGR

1 +
3αGR

2
2 ℓ2 +

2αGR
3
ℓ4

)︄
, (2.76)

J =
ϵ π

8 ℓ

(︄
αGR

2 +
2αGR

3
ℓ2

)︄
. (2.77)

The conserved electric charges are defined as36

QI = −
1

8π

∫︂
S3

bdry

QIJ ⋆ F
J , (2.78)

32 Note that they are neither reported in the original paper [42].
33 Here we set the five-dimensional gravitational constant to 1.
34 Note that taking the limit ℓ → ∞ with qGR

I held fixed, one obtains the static BPS
black holes of the ungauged supergravity theory constructed in [130].

35 As for the finite temperature case, these charges can be evaluated also using other
approaches, such as holographic renormalization. Using this latter, the expectation
is that the energy so evaluated differs from the AD result for an additive term
which is the Casimir energy; while the angular momentum remains the same. We
will discuss this topic in more details as we proceed further in the thesis.

36 Note that this definition is in agreement with (2.39), since in the U(1)3 theory
the QIJ matrix is given by (2.20) and due to the parametrization (2.27) for the
finite-temperature solution it results XI = 1

3
(︁
XI
)︁−1.
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and they evaluate to

QI = π

(︄
3
4q

GR
I − 3αGR

2
8 ℓ2 X̄I +

9
8 ℓ2CIJKX̄

J
CKLMqGR

L qGR
M

)︄
. (2.79)

By looking at (2.76), (2.77), (2.79) one can establish that the following
BPS equality does hold

E − 2
ℓ
|J | − |X̄I

QI | = 0 . (2.80)

The non-extremal generalization of the black hole solution presented
here is known only in the nV = 2 case and coincides with the solution
of [109] we presented in the last subsection. Below, we will explicitly
see how starting from the latter solution one can recover the BPS black
hole under consideration. The solution of [108] is a further generaliza-
tion with respect to the one of [109], since it presents different angular
momenta. The BPS generalization of the black hole of [42], presenting
two different angular momenta and retaining three independent con-
served charges, is instead known for any nV and it coincides with the
solution of [45].

The nV = 2 black hole of the U(1)3 theory

When nV = 2, the black hole solution presented above is a solution
of the U(1)3 theory; in this case the index I runs from 1 to 3. In
this paragraph we briefly describe this particular solution. To ease the
notation, we assume ℓ = 1 and ϵ = 1.

For convenience, we define rescaled parameters for the nV = 2 black
hole solution as:

qGR
I =

µI
3 with I = 1, 2, 3 , (2.81)

recalling the form of the CIJK tensor in this theory (2.18) and the
definitions of the αGR

i (2.64), it is easy to see that

αGR
1 = µ1 +µ2 +µ3 , αGR

2 = µ1 µ2 +µ2 µ3 +µ3 µ1 , αGR
3 = µ1 µ2 µ3 .

(2.82)

We then define the functions:

HGR
I = 1 + µI

4 a2 , (2.83)

these allow to write f in (2.63) as

f =
(︂
HGR

1 HGR
2 HGR

3

)︂−1/3
, (2.84)

and the lower-index scalars as

XI =
1
3H

GR
I

(︂
HGR

1 HGR
2 HGR

3

)︂−1/3
. (2.85)
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The regularity conditions (2.72) to be imposed in order to have a regular
horizon translate in the U(1)3 theory into the following restrictions on
the µI :

µI > 0 for any I = 1, 2, 3 ,
4µ1 µ2 µ3 (µ1 + µ2 + µ3 + 1) > (µ1 µ2 + µ2 µ3 + µ3 µ1)

2 , (2.86)

it is worth noting that this last constraint is highly non-trivial; for
example it is not satisfied when µ1 = µ2 ≫ µ3. In the following, we
always assume that the µI are chosen so that the conditions (2.86) are
satisfied.

The Bekenstein-Hawking entropy of the solution is

S =
π2

4

√︂
4µ1µ2µ3 (µ1 + µ2 + µ3 + 1)− (µ1µ2 + µ2µ3 + µ3µ1)

2 ,

(2.87)

while the angular velocity and the electrostatic potentials take the fixed
values

Ω = 2, ΦI = 1 , (2.88)

finally the BPS charges are given by

E =
π

4

(︃
2µ1 µ2 µ3 +

3
2 (µ1 µ2 + µ2 µ3 + µ3 µ1) + µ1 + µ2 + µ3

)︃
,

J =
π

8 (2µ1 µ2 µ3 + µ1 µ2 + µ2 µ3 + µ3 µ1) ,

Q1 =
π

8 (2µ1 + µ1 µ2 + µ1 µ3 − µ2 µ3) , (2.89)

with Q2, Q3 being obtained from Q1 by a cyclic permutation of the
indices 1, 2, 3. The charges satisfy the linear relation

E −Ω J −ΦI QI = 0 , (2.90)

which is a consequence of supersymmetry; furthermore, the electric
charges and angular momentum satisfy the non-linear relation

Q1 Q2 Q3 +
π

4 J
2 =

(︂
Q1 Q2 +Q2 Q3 +Q3 Q1 −

π

2 J
)︂(︂

Q1 +Q2 +Q3 +
π

4

)︂
,

(2.91)

which is related to well-definiteness of the horizon area, that is of the
entropy. The BPS entropy can be written as a function of the charges
in the suggestive form [132]

S = 2π
√︃
Q1Q2 +Q2Q3 +Q3Q1 −

π

2J . (2.92)
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From the solution of [109] to the one of [42]

Here we show that the finite-temperature black hole solution of [109],
that we have introduced above, admits a BPS limit which coincides
with the solution of [42] with nV = 2.

Let us begin by showing that the solution introduced in sec. 2.1.2
admits an extremal limit. To do this, we consider the function Y (r) in
the metric (2.29), which, being a cubic polynomial, can be written as

Y (r) = g2(r2 − r2
+)(r

2 − r2
0)(r

2 − r2
−) , (2.93)

where the roots r2
+ ≥ r2

0 ≥ r2
− are related to the parameters of the

solution as:

r2
+ + r2

0 + r2
− = −2m(s2

1 + s2
2 + s2

3)− g−2 ,

r2
+r

2
0 + r2

0r
2
− + r2

−r
2
+ = 4m2(s2

1s
2
2 + s2

2s
2
3 + s2

3s
2
1) + 2m(a2 − g−2) ,

r2
+r

2
0r

2
− = −8m3s2

1s
2
2s

2
3 − g−2f3(r = 0) . (2.94)

Recalling the expressions of the physical properties (2.36), we can note
that the product of the temperature and the entropy is proportional to

T S =
π

8
Y ′(r+)

r+
=

πg2

4 (r2
+ − r2

0)(r
2
+ − r2

−) , (2.95)

hence the limit in which the roots r2
+ and r2

0 coalesce corresponds to
the extremality condition T = 0 (as long as the horizon area remains
finite). It is important to notice that this condition does not imply
supersymmetry.

However, in order to obtain a BPS black hole, we have to impose
both supersymmetry and extremality. The authors of [110] found that
one solution to the supergravity Killing spinor equations is guaranteed
if the parameters satisfy:

a g =
1

eδ1+δ2+δ3
, (2.96)

so that two supercharges are preserved. To ease the notation, from now
on we set g = 1 in this subsection. We also trade the parameters δI for
new parameters µI defined as

e4δI =
µI (µJ + 2) (µK + 2)

(µI + 2)µJ µK
, (2.97)

where the indices I, J ,K are never equal. We will see that these pa-
rameters coincide with the µI defined in the previous subsections. We
can express the supersymmetry condition (2.96) in terms of the new
parameters µI as

a =

(︃
µ1 µ2 µ3

(µ1 + 2) (µ2 + 2) (µ3 + 2)

)︃1/4
. (2.98)
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Once this condition is imposed, closed timelike curves in the solution
are avoided by taking

m = m⋆ ≡
1
2

√︂
µ1µ2µ3(µ1 + 2)(µ2 + 2)(µ3 + 2) , (2.99)

which implies that the outer horizon r+ merges with the inner horizon
r0

r0 → r⋆ ← r+ , (2.100)

with their common location being the BPS horizon, given by

r2
⋆ ≡ 1

2

(︂√︁
µ1µ2µ3(µ1 + 2)(µ2 + 2)(µ3 + 2) − µ1µ2 − µ2µ3 − µ3µ1 − µ1µ2µ3

)︂
.

(2.101)

We have denoted the BPS horizon with a ⋆ symbol: in this thesis we
will always use this subscript to denote the physical quantities of a
BPS black hole obtained after a BPS limit is performed on a finite-
temperature one; in this way there should be no confusion between
labels referred to quantities of the BPS solutions and to the finite-
temperature ones.

The supersymmetry condition (2.96) together with the requirement
(2.99) of no casual pathologies implies extremality; therefore we indeed
landed on a BPS black hole solution. It is then immediate to show
that, by imposing both these conditions at the same time, one obtains
the U(1)3 solution of Gutowski and Reall, described in the previous
subsection; in particular the BPS charges exactly match (2.89), the
same does the BPS entropy with (2.87) and the chemical potentials Ω⋆

and ∆⋆ I with (2.88).
It is worth mentioning that in this BPS limit there is no emergence

of the complex BPS chemical potentials ω and ϕ⋆ I . Therefore we have
no clues about how to construct the entropy function (1.37) from the
black hole solution. We will return on this very important point in
Chapter 3.

Limit to the minimal black hole solution of [41]

It is possible to recover the minimal gauged supergravity black hole
solution of Gutowski and Reall, originally constructed in [41], by taking
the limit to this theory. In this subsection we show how this can be done.

In [41], the authors assume for the black hole the metric ansatz (2.49)
and they show that the supersymmetry conditions obtained working in
the N = 2 minimal gauged supergravity theory can be reduced to a
single equation, which we dub Gutowski-Reall equation37. This latter
reads(︄

∇2f−1
min + 8ℓ−2f−2

min −
ℓ2g2

18 + f−1
ming

)︄′

+
4a′g

afmin
= 0 , (2.102)

37 See [99–101,133] for a detailed study of the Gutowski-Reall equation.
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where we have defined the function g as

g = −a
′′′

a′ − 3a
′′

a
− 1
a2 + 4a

′2

a2 , (2.103)

and

∇2f−1
min =

1
a3a′∂ρ

[︂
a3a′∂ρ(f

−1
min)

]︂
(2.104)

is the Laplacian on the Kaḧler base. Since fmin and g may be expressed
in terms of a, equation (2.102) can be transformed into an equation for
a(ρ) only. We want to show that the system of equations (2.52)-(2.56)
of the N = 2 Fayet-Iliopoulos supergravity theory reduces to (2.102)
in a particular limit, which will define the minimal limit of our theory.

As asserted in [42], in order to obtain the minimal theory one must
have:

dXI = 0 , (2.105)

so the scalars are constant and equal to the value taken in the AdS5
solution:

XI
min = X̄

I . (2.106)

Furthermore the gauge fields must obey:

AI = X̄
I
Amin . (2.107)

Given the above, we can reduce (2.52) to:

f = fmin . (2.108)

The next step is to examine (2.53), which, since the scalars are constant,
reduces to:(︂

a2U I
)︂′

=
ϵℓ

3 X̄
I
(︂
a2 p

)︂′
, (2.109)

so this equation can be immediately integrated to obtain:

U I =
U I0
a2 +

ϵℓ

3 X̄
I
p , (2.110)

where U I0 are constants of integration. As prescribed in [42], in order
to obtain the minimal solution the right choice is to require U I0 = 0 for
each I. Doing this, we obtain:

U I =
ϵℓ

3 X̄
I
p . (2.111)

Plugging this relation in (2.56) and noticing that X̄I factorizes, we get:

∂ρ

[︃
a3a′∂ρ(f

−1) +
ϵ

ℓ
a2w+

1
18 ℓ

2p2
]︃
= 0 . (2.112)
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Finally plugging (2.55) in (2.54) we find:

2∂ρ(a−2w) + ϵ ℓ f−1 ∂ρ(a
−2p) = 0 . (2.113)

Now equations (2.113) and (2.112) contain both w and w′. Eliminating
w′ we obtain the following expression for w:

w = −ϵ ℓ a
2

4

[︄
∇2(f−1

min) +
8
ℓ2
f−2

min −
ℓ2g2

18 + f−1
min g

]︄
, (2.114)

plugging this back either in (2.113) or (2.112) we land exactly on equa-
tion (2.102). We have therefore defined the correct limit to obtain the
minimal solutions starting from the more general Fayet-Iliopoulos the-
ory.

Among the solutions that equation (2.102) presents, there is the black
hole of [41]. This corresponds to the following solution of the Gutowski-
Reall equation

a = αmin ℓ sinh ρ
ℓ

, (2.115)

the functions f and w assume the values

fmin =
12α2

min sinh2 (ρ/ℓ)
12α2

min sinh2 (ρ/ℓ) + 4α2
min − 1

, (2.116)

w = −2 ϵ α2
min ℓ sinh2 (ρ/ℓ)

[︃
1 + 4α2

min − 1
4α2

min sinh2 (ρ/ℓ)
+

+

(︁
4α2

min − 1
)︁2

96α4
min sinh4 (ρ/ℓ)

]︃
. (2.117)

The gauge field is given by

A =

√
3

2 fmin

[︄
dy+ ϵ ℓ

(︁
4α2

min − 1
)︁2

144α2
min sinh2 (ρ/ℓ)

σ̂3

]︄
. (2.118)

It is more convenient to express the physical properties of the mini-
mal black hole solution with respect to the parameter

R0 = ℓ

√︄
4α2

min − 1
3 , (2.119)

the conserved charges of the solution, which are the energy E, one
angular momentum J and one electric charge Q, are then given by

E =
3π R2

0
4

(︄
1 + 3R2

0
2 ℓ2 +

2R4
0

3 ℓ4

)︄
, (2.120)

J =
3 ϵ π R4

0
8 ℓ

(︄
1 + 2R2

0
3 ℓ2

)︄
, (2.121)

Q =

√
3π R2

0
2

(︄
1 + R2

0
2 ℓ2

)︄
, (2.122)
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while the Bekenstein-Hawking entropy of the solution is

S =
π2

4 R3
0

√︄
1 + 3R2

0
4 ℓ2 . (2.123)

It is worth mentioning that the supersymmetric black hole of the min-
imal theory we have examined here can be recovered from the more
general Fayet-Iliopoulos solution by taking the parameters αGR

i to be
αGR

1 = 3R2
0, αGR

2 = 3R4
0 and αGR

3 = R6
0.

We conclude by noting that solutions to equation (2.102) different
from the one of [41] have been searched and found in [101,133]; although
the solutions found in these papers are only known numerically they
are still interesting and remarkable. In particular, in [133] the authors
look for AlAdS5 solutions with a squashed boundary and extensively
analyze equation (2.102) with a perturbative approach; they find a new
numerical solution which turns out to be a soliton. Instead, in [101] the
authors use a similar approach to construct a new AlAdS5 black hole
with a squashed boundary; this solution presents a frozen horizon, i.e.
the horizon geometry is completely fixed. We will discuss in much more
detail the solutions found in [101, 133] and the perturbative approach
used in the two papers in Chapter 4, when we will devote ourselves
to the construction of AlAdS5 black holes in Fayet-Iliopoulos gauged
supergravity.

2.2 ads4 black holes

In this section we introduce some AdS4 black hole supergravity solu-
tions which will be relevant for our future discussions. Since the main
focus of this thesis is on five-dimensional black holes, we will keep the
presentation shorter.

2.2.1 Finite-temperature AdS4 black holes

We consider a class of rotating, electrically charged asymptotically
AdS4 black hole solutions, originally constructed in [134] within a consis-
tent truncation of four-dimensional N = 8, SO(8) gauged supergravity.
The truncation is obtained by restricting to the U(1)4 Cartan subgroup
of SO(8) and setting the corresponding four gauge fields pairwise equal.
The action of the theory under consideration is:

S =
1

16π

∫︂ [︃
(R− 2V) ⋆ 1 − 1

2 dξ ∧ ⋆ dξ − 1
2 e2ξ dχ∧ ⋆dχ

− 1
2 e−ξ F3 ∧ ⋆F3 −

1
2 χF3 ∧ F3

− 1
2 (1 + χ2e2ξ)

(︂
eξ F1 ∧ ⋆F1 − e2ξ χF1 ∧ F1

)︂ ]︃
,

(2.124)
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with F1 and F3 being field strengths of the Abelian gauge fields A1 = A2
and A3 = A4,38 and with V being the scalar potential for the axion and
dilaton scalar fields χ, ξ:

V = −1
2 g

2
(︂
4 + 2 cosh ξ + eξχ2

)︂
. (2.125)

To describe the solution, we take the set of coordinates (t, r, θ,ϕ), where
θ ∈ [0,π], ϕ ∼ ϕ+ 2π parameterize a two-sphere. The metric, in a frame
that rotates at infinity, assumes the following form

ds2
4 = −∆r

W

(︃
dt− a

Ξ
sin2 θ dϕ

)︃2
+W

(︃dr2

∆r
+

dθ2

∆θ

)︃
+

+
∆θ sin2 θ

W

(︃
adt− r1r2 + a2

Ξ
dϕ
)︃2

, (2.126)

where

ri = r+ 2ms2
i , Ξ = 1− a2g2 ,

∆r = r2 + a2 − 2mr+ g2 r1 r2
(︂
r1 r2 + a2

)︂
,

∆θ = 1− a2g2 cos2 θ , W = r1 r2 + a2 cos2 θ , (2.127)

and we have introduced again the shorthand notations si = sinh δi,
ci = cosh δi, i = 1, 2. The scalar fields result to be

eξ = 1 + r1 (r1 − r2)

W
, χ =

a (r2 − r1) cos θ
r2

1 + a2 cos2 θ
, (2.128)

finally the gauge fields read

A1 =
2
√

2ms1c1r2
W

(︃
dt− a

Ξ
sin2 θ dϕ

)︃
,

A3 =
2
√

2ms2c2r1
W

(︃
dt− a

Ξ
sin2 θ dϕ

)︃
. (2.129)

There are four parameters controlling the solution, which arem, a, δ1, δ2.
Accordingly, there should be four independent conserved charges; these
are the energy E, the angular momentum J and two independent elec-
tric charges Q1 and Q3. The most general set of conserved charges a
black hole may present in this theory is composed by the energy, one an-
gular momentum and four independent electric charges Q1,...4; here we
have only two independent charges since we have set the correspond-
ing gauge fields pairwise equal, so we have Q1 = Q2 and Q3 = Q4.
This most general finite-temperature black hole solution has not been
constructed yet at the time this thesis is written, however the corre-
sponding BPS black hole solution has recently been presented in [135].
Since it is contained in SO(8) gauged supergravity, the solution up-
lifts to eleven-dimensional supergravity on S7 (see [134] and references

38 In this section we use lower indices on the vector fields and the respective chemical
potentials Φ.
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therein for the explicit uplift formulae). The dual SCFT3 is then the
ABJM theory.

The solution presents an outer horizon at r = r+, which coincides
with the largest root of ∆r. This is a Killing horizon, which is generated
by the vector

V =
∂

∂t′
+ Ω

∂

∂ϕ′ , (2.130)

with the coordinates

ϕ′ = ϕ+ a g2 t , t′ = t (2.131)

defining a frame that is non-rotating at infinity and Ω is the angular
velocity at the horizon, which is given by:

Ω =
a
(︁
1 + g2 r1 r2

)︁
r1 r2 + a2 . (2.132)

The Bekenstein-Hawking entropy, the inverse temperature and the elec-
trostatic potentials of the solution assume the following values:

S =
π
(︁
r1 r2 + a2)︁

Ξ
, β = 4π

(︂
r1 r2 + a2

)︂(︃d∆r
dr

)︃−1
,

Φ1 = Φ2 =
2ms1 c1 r2
r1 r2 + a2 , Φ3 = Φ4 =

2ms2 c2 r1
r1 r2 + a2 , (2.133)

where all the functions of the radial coordinate are evaluated in r+. The
electrostatic potentials ΦI , I = 1, . . . , 4, have been evaluated from the
four vector fields gauging the Cartan subgroup of SO(8); since these are
set pairwise equal in the action (2.124), necessarily we have Φ1 = Φ2
and Φ3 = Φ4. The conserved charges, which are the energy (that is
the charge associated with translations generated by ∂

∂t′ ), the angular
momentum (that is the charge associated with rotations generated by
− ∂
∂ϕ′ ) and the electric charges, are given by:

E =
m

Ξ2

(︂
1 + s2

1 + s2
2

)︂
, J =

m a

Ξ2

(︂
1 + s2

1 + s2
2

)︂
,

Q1 = Q2 =
ms1 c1

2 Ξ
, Q3 = Q4 =

ms2 c2
2 Ξ

. (2.134)

The electric charges and the angular momentum were obtained in [110]
evaluating the standard Maxwell and Komar asymptotic integrals re-
spectively, while the energy was computed by integrating the first law
of thermodynamics,

dE = T dS + Ω dJ + 2 Φ1 dQ1 + 2 Φ3 dQ3 . (2.135)

All the conserved charges can be also computed by using holographic
renormalization in order to check whether the obtained expressions
agree with (2.134). We do this explicitly in B, finding that the holo-
graphic renormalization approach leads to the same results given in (2.134).
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The thermodynamical quantities (2.132), (2.133), (2.134) must satisfy
the quantum statistical relation

I = βE − S − β Ω J − 2β Φ1Q1 − 2β Φ3Q3 , (2.136)

with I being the Euclidean on-shell action of the solution. As in the
five-dimensional case, we will need the expression of this quantity in
order to provide an interpretation for the extremization principle for
this family of black holes; one possibility to obtain it is to assume the
quantum statistical relation and use it to compute I. We choose another
road: we we compute I by means of holographic renormalization, as we
have done for the five-dimensional case. We report the details of this
computation in app. B; here we just provide the final result which is

I =
β

2(a2g2 − 1)

{︄
g2r3

+ + 3mg2r2
+

(︂
s2

1 + s2
2

)︂
+ r+

[︂
a2g2 + 2m2g2

(︂
s4

1 + 4s2
1s

2
2 + s4

2

)︂]︂
+m

(︂
a2g2 + 4m2g2s2

1s
2
2 − 1

)︂
(s2

1 + s2
2)−m

+
2m2 [︁c2

1s
2
1
(︁
2ms2

2 + r+
)︁
+ c2

2s
2
2
(︁
2ms2

1 + r+
)︁]︁

a2 + (2ms2
1 + r+) (2ms2

2 + r+)

}︄
.

(2.137)

We have explicitly verified that the on-shell action and the thermody-
namical quantities (2.132), (2.133), (2.134) satisfy the quantum statis-
tical relation (2.136).

2.2.2 BPS AdS4 black holes

Here we present the four-dimensional BPS black hole solution corre-
sponding to the finite-temperature black hole introduced in the last
subsection. To ease the notation we will set g = 1 from now on.

As for the five-dimensional case, in order to obtain a BPS solution we
have to require both supersymmetry and extremality, which correspond
to two different conditions. Supersymmetry is imposed by requiring
that39

a =
2

e2 (δ1+δ2) − 1
, (2.138)

we assume this condition and in the following we use it to eliminate a

from all the expressions. The remaining parameters m, δ1, δ2 describe
then a supersymmetric family of solutions. For real values of these pa-
rameters, it was shown in [110] that the equation ∆r(r) = 0 determining
the existence of a horizon only has a solution if

m2 = m2
⋆ ≡

cosh2(δ1 + δ2)

4 eδ1+δ2 sinh3(δ1 + δ2) c1 s1 c2 s2
, (2.139)

39 In (2.138) and (2.139), we are using the expressions given in [136], which correct
typos in the corresponding expressions of [110].
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in this case there is a regular horizon at the location

r = r⋆ ≡
2m⋆ s1 s2

cosh(δ1 + δ2)
. (2.140)

The value r⋆ is a double root of ∆r, therefore the supersymmetric solu-
tion becomes extremal and the temperature vanishes. We thus obtain a
BPS solution that is regular everywhere40. If we further impose δ1 = δ2,
we obtain a solution to pure N = 2 gauged supergravity in four dimen-
sions, which has been originally discussed in [138].

We now turn to examine the thermodynamical properties of the BPS
solution. The chemical potentials are fixed to the BPS values

Ω⋆ = 1 , Φ⋆
1 = Φ⋆

3 = 1 , β →∞ , (2.141)

the BPS charges are given by the following expressions

E⋆ =
(c1 c2 − s1 s2)

√︂
e−(δ1+δ2) (c1 s2 + c2 s1)

2 (coth (δ1 + δ2)− 2)2√c1 c2 s1 s2
,

J⋆ =
c1 c2 − s1 s2

2 (coth(δ1 + δ2)− 2)2
√︂

e3(δ1+δ2) c1 c2 s1 s2 (c1 s2 + c2 s1)
,

Q⋆1 =

√︃
c1 c2 s1 s2

(︂
e2(δ1+δ2) − 1

)︂
2
√

2 c2 s2
(︂
e2(δ1+δ2) − 3

)︂ ,

Q⋆3 =

√︃
c1 c2 s1 s2

(︂
e2(δ1+δ2) − 1

)︂
2
√

2 c1 s1
(︂
e2(δ1+δ2) − 3

)︂ . (2.142)

The above introduced thermodynamical quantities satisfy the relation

E⋆ −Ω⋆J⋆ − 2 Φ⋆
1Q

⋆
1 − 2 Φ⋆

3Q
⋆
3 = 0 , (2.143)

that is a consequence of supersymmetry algebra. This is a linear rela-
tion between the charges which allows to fix one of them with respect
to the other three. There is also another non trivial and non linear rela-
tion that the BPS angular momentum and electric charges also satisfy,
which is [70]

J⋆ = (Q⋆1 +Q⋆3)
(︂√︂

1 + 64Q⋆1Q⋆3 − 1
)︂

. (2.144)

The validity of this relation is related to the fact that we have im-
posed (2.139) on top of the supersymmetry condition (2.138); indeed,
having fixed two of the four free parameters of the solution, there can-
not be more than two independent charges. Finally we have the BPS
entropy, which is

S⋆ =
2π

e2δ1+2δ2 − 3 , (2.145)

40 We underline that the black hole solutions we are discussing here are different from
the rotating solutions with magnetic charges recently found in [137].
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and can be expressed in terms of the charges as [70]:

S⋆ =
π J⋆

2(Q⋆1 +Q⋆3)
. (2.146)

The BPS entropy must be positive: this condition restricts the allowed
range of δ1 + δ2.

2.3 ads6 black holes

We now turn to six-dimensional AdS black holes. As we have done
in the two previous sections, we introduce the finite-temperature solu-
tion of interest for this work of thesis and we review its corresponding
BPS solution which is obtained by imposing both supersymmetry and
extremality.

2.3.1 Finite-temperature AdS6 black holes

We consider the asymptotically AdS6 black hole of [139], which is a
solution to the six-dimensional N = (1, 0), SU(2) gauged supergravity
of [140]. This uplifts to massive type IIA supergravity on S4/Z2 [141].

The set of conserved charges the black hole presents is composed
by the energy E, two angular momenta Ja, Jb and one U(1) ⊂ SU(2)
electric charge Q. This is the first solution we look at which has two
independent angular momenta: because of this it looks slightly different
in form from the other solutions introduced in the previous sections.

The metric of the solution is given by:

ds2 = H1/2
[︄
(r2 + y2)(r2 + z2)

R
dr2 +

(r2 + y2)(y2 − z2)

Y
dy2

+
(r2 + z2)(z2 − y2)

Z
dz2 − R

H2(r2 + y2)(r2 + z2)
A2

+
Y

(r2 + y2)(y2 − z2)

(︄
dt′ + (z2 − r2) dψ1

− r2z2 dψ2 −
qrA

H(r2 + y2)(r2 + z2)

)︄2

+
Z

(r2 + z2)(z2 − y2)

(︄
dt′ + (y2 − r2) dψ1

− r2y2 dψ2 −
qrA

H(r2 + y2)(r2 + z2)

)︄2]︄
,

(2.147)
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while the gauge and scalars fields assume the following expressions

X = H−1/4, A(1) =
2mscr

H(r2 + y2)(r2 + z2)
A,

A(2) =
q

H(r2 + y2)2(r2 + z2)2

[︄
− yz[2r(2r2 + y2 + z2) + q]

H
dr ∧A

+ z[(r2 + z2)(r2 − y2) + qr] dy∧

∧
(︃

dt′ + (z2 − r2) dψ1 − r2z2 dψ2 −
qrA

H(r2 + y2)(r2 + z2)

)︃
+ y[(r2 + y2)(r2 − z2) + qr] dz∧

∧
(︃

dt′ + (y2 − r2) dψ1 − r2y2 dψ2 −
qrA

H(r2 + y2)(r2 + z2)

)︃]︄
,

(2.148)

where:

Y = −(1− g2y2)(a2 − y2)(b2 − y2),
Z = −(1− g2z2)(a2 − z2)(b2 − z2),

H = 1 + qr

(r2 + y2)(r2 + z2)
, q = 2ms2, s = sinh δ, c = cosh δ,

A = dt′ + (y2 + z2) dψ1 + y2z2 dψ2 . (2.149)

and R(r) is the blackening function

R(r) = g2
[︂
r
(︂
a2 + r2

)︂
+ 2ms2

]︂ [︂
r
(︂
b2 + r2

)︂
+ 2ms2

]︂
+

+
(︂
a2 + r2

)︂ (︂
b2 + r2

)︂
− 2mr .

(2.150)
As it is evident from the expressions of the functions above reported,

the solution is controlled by the four parameters m, a, b, δ and presents
an outer horizon at r = r+, which is defined as the largest root of R(r).
The entropy and the chemical potentials of the solution are given by

S =
2π2 [︁(︁r2

+ + a2)︁ (︁r2
+ + b2)︁+ 2mr+ s

2]︁
3 Ξa Ξb

,

Ωa = a

(︁
1 + g2 r2

+

)︁ (︁
r2
+ + b2)︁+ 2mg2 r+ s

2

(r2
+ + a2) (r2

+ + b2) + 2mr+ s2 ,

Ωb = b

(︁
1 + g2 r2

+

)︁ (︁
r2
+ + a2)︁+ 2mg2 r+ s

2

(r2
+ + a2) (r2

+ + b2) + 2mr+ s2 ,

Φ =
2mr+ s c

(r2
+ + a2) (r2

+ + b2) + 2mr+ s2 ,

1
β
=

1
D

(︄
2r2

+(1 + g2r2
+)(2r2

+ + a2 + b2)+

− (1− g2r2
+)(r

2
+ + a2)(r2

+ + b2) + 8mg2r3
+s

2 − 4m2g2s4
)︄

,

D = 4π r+
[︂(︂
r2
+ + a2

)︂ (︂
r2
+ + b2

)︂
+ 2mr+ s

2
]︂

, (2.151)
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where Ξa = 1− a2 g2 and Ξb = 1− b2 g2. The conserved charges of the
black hole solution, which are the energy, the angular momenta and
the electric charge, are given by

E =
2πm

3 Ξa Ξb

[︃ 1
Ξa

+
1

Ξb
+ s2

(︃
1 + Ξa

Ξb
+

Ξb
Ξa

)︃]︃
, Q =

2πms c

Ξa Ξb
,

Ja =
2πm a

3 Ξ2
a Ξb

(︂
1 + Ξb s2

)︂
, Jb =

2πm b

3 Ξa Ξ2
b

(︂
1 + Ξa s2

)︂
,

(2.152)

as expected, they satisfy the first law of black hole thermodynamics:

dE = T dS + Ωa dJa + Ωb dJb + Φ dQ . (2.153)

For the black hole under consideration, the quantum statistical relation
reads

I = β E − S − β Ωa Ja − β Ωb Jb − β ΦQ , (2.154)

this relation must be verified by the thermodynamical quantities of
the solution. Once again, as for the five- and four-dimensional cases,
we will need the Euclidean on-shell action I in order to provide a
physical interpretation to the extremization principle applied to this
six-dimensional black hole. One possibility to obtain I is to assume
the quantum statistical relation to hold and use it to compute the Eu-
clidean on-shell action. This is exactly what we do in sec. 3.3 where
we analyze the extremization principle for six-dimensional black holes.
Therefore, while in the four- and five-dimensional cases we explicitly
verified the quantum statistical relation by computing the on-shell ac-
tion via holographic renormalization, in the present case we will just
assume this to hold. We will demonstrate that chemical potentials satis-
fying the correct complex constraint arise from a suitably complexified
family of supersymmetric solutions, and that the expression of I on
these solutions is precisely the entropy function given in [70].

2.3.2 BPS AdS6 black holes

Here we introduce the AdS6 BPS black hole solution we are interested
in; this can be obtained by imposing supersymmetry and extremality
to the finite-temperature solution we presented in the last subsection.
For ease of notation we set g = 1 from now on.

The finite-temperature black hole is supersymmetric if

e2δ = 1 + 2
a+ b

, (2.155)

in the following we shall always assume this condition to eliminate δ in
all the expressions. The solution depends now on the remaining three
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free parameters m, a, b. In order to guarantee that it is free from closed
timelike curves, one has to impose that

m = m⋆ =
(a+ b)2 (1 + a) (1 + b) (2 + a+ b)

2 (1 + a+ b)

√︄
a b

1 + a+ b
. (2.156)

Imposing both this condition and (2.155), the temperature vanishes
and we obtain a BPS solution whose horizon coordinate is given by

r⋆ =

√︄
a b

1 + a+ b
. (2.157)

For the BPS solution, the chemical potentials are fixed to the BPS
values

Ω⋆
a = Ω⋆

b = 1 , Φ⋆ = 1 , β →∞ , (2.158)

the BPS charges are given instead by

E⋆ = −π r⋆ (a+ b)
[︁
2 a2 + a (b− 1) + (b+ 1) (2b− 3)

]︁
3 (a− 1)2 (b− 1)2 (a+ b+ 1)

,

J⋆a = −π r
3
⋆ (a+ b) (a+ 2 b+ 1)
3 b (a− 1)2 (b− 1)

,

J⋆b = −π r
3
⋆ (a+ b) (2 a+ b+ 1)
3 a (a− 1) (b− 1)2 ,

Q⋆ =
π r⋆ (a+ b)

(a− 1) (b− 1)
.

There is the following linear relation satisfied by the thermodynamical
quantities above

E⋆ −Ω⋆
a J

⋆
a −Ω⋆

b J
⋆
b −Φ⋆Q⋆ = 0 , (2.159)

which is a consequence of supersymmetry algebra. The BPS entropy of
the BPS black hole solution reads

S⋆ =
2π2 r2

⋆ (a+ b)

3 (1− a) (1− b)
; (2.160)

in the following we assume 0 < a < 1, 0 < b < 1, which guarantee r⋆ to
be real and the BPS entropy to be real and positive. The BPS entropy
satisfies the following two non-linear relations, which involve also the
BPS charges [70]

S⋆ 3 − 2π2

3 S⋆ 2 − 12π2
(︃
Q⋆

3

)︃2
S⋆ +

8π4

3 J⋆a J
⋆
b = 0 ,

Q⋆

3 S⋆ 2 +
2π2

9 (J⋆a + J⋆b )S
⋆ − 4π2

3

(︃
Q⋆

3

)︃3
= 0 . (2.161)

The two relations above may be combined to express the BPS entropy
in terms of the charges and to obtain a relation between J⋆a , J⋆b ,Q⋆,
analogously to what happens in the other spacetime dimensions.
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2.4 ads7 black holes

The final stage of our journey through AdS black holes is given by the
seven-dimensional ones. As usual, we introduce the finite-temperature
solution of interest for this thesis in the next subsection and later we
look at its BPS version, which we construct by imposing supersymmetry
and extremality.

2.4.1 Finite-temperature AdS7 black holes

We consider the seven-dimensional black hole originally found in [142]
and further discussed in [110]. This is a solution to maximal SO(5)
gauged supergravity and uplifts to eleven-dimensional supergravity on
S4 [104]. We begin with a brief summary of its relevant physical prop-
erties41.

The metric of the solution under consideration is given by:

ds2
7 = (H1H2)

1/5
[︃
− Y dt2

f1 Ξ2
−
+
r2 ρ4 dr2

Y

+
f1

ρ4H1H2 Ξ2

(︃
σ− 2f2

f1
dt
)︃2

+
r2 + a2

Ξ
dΣ2

2

]︃
,

(2.162)

while the gauge and scalar fields assume the following form:

Ai1 =
2msi
ρ4 ΞHi

(αi dt+ βi σ) ,

A2 =
m a s1 s2
ρ4 Ξ2

−

(︃ 1
H1

+
1
H2

)︃
dt∧ σ , A3 =

2m a s1 s2
ρ2 Ξ Ξ−

σ ∧ J ,

Xi = (H1H2)
2/5H−1

i , (2.163)

with the various functions being given by:

Ξ± = 1± a g , Ξ = 1− a2 g2 , ρ =
√

Ξ r , HI = 1 +
2ms2

I

ρ4 ,

α1 = c1 −
1
2
(︁
1− Ξ2

+

)︁
(c1 − c2) , α2 = c2 +

1
2
(︁
1− Ξ2

+

)︁
(c1 − c2) ,

β1 = −aα2 , β2 = −aα1 , sI = sinh δI , cI = cosh δI , (2.164)

41 We correct a few misprints in [110] following [68,69].
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f1(r) = Ξρ6H1H2 −
4Ξ2

+m
2a2s2

1s
2
2

ρ4

+
ma2

2

[︂
4Ξ2

+ + 2c1c2(1− Ξ4
+) + (1− Ξ2

+)
2(c2

1 + c2
2)
]︂
,

f2(r) = −
1
2 g Ξ+ ρ

6H1H2

+
1
4ma

[︁
2
(︁
1 + Ξ4

+

)︁
c1c2 +

(︁
1− Ξ4

+

)︁ (︁
c2

1 + c2
2
)︁]︁

,

Y (r) = g2ρ8H1H2 + Ξρ6

+
1
2ma2

[︂
4Ξ2

+ + 2
(︁
1− Ξ4

+

)︁
c1c2 +

(︁
1− Ξ2

+

)︁2 (︁
c2

1 + c2
2
)︁]︂

− 1
2mρ

2
[︂
4Ξ + 2a2g2 (︁6 + 8ag+ 3a2g2)︁ c1c2

− a2g2 (2 + ag) (2 + 3ag)
(︁
c2

1 + c2
2
)︁ ]︂

. (2.165)

Looking at the expressions above, we clearly see that there are four parameters
controlling the solution, which are m, a, δ1, δ2, while r is the radial coordinate.
The largest root of the equation Y (r) = 0 defines the outer horizon,
which we dub as r+.

The entropy, inverse temperature, angular velocity and electrostatic
potentials on the horizon result to be:

S =
π3 ρ2√f1

4 Ξ3 , β = T−1 = 4π g ρ3√︁Ξ f1

(︃dY
dr

)︃−1
,

Ω = −1
g

(︃
g+

2 f2
f1

Ξ−

)︃
, ΦI =

4msI
ρ4ΞHI

(︃
αIΞ− + βI

2f2Ξ−
f1

)︃
,

(2.166)

these are measured in a non-rotating frame at infinity. The conserved
charges of the black hole solution, which are the energy, the angular
momentum and the electric charges, are given by

E =
mπ2

32 g Ξ4

[︂
12Ξ2

+

(︁
Ξ2
+ − 2

)︁
− 2c1c2a

2g2 (︁21Ξ4
+ − 20Ξ3

+ − 15Ξ2
+ − 10Ξ+ − 6

)︁
+
(︁
c2

1 + c2
2
)︁ (︁

21Ξ6
+ − 62Ξ5

+ + 40Ξ4
+ + 13Ξ2

+ − 2Ξ+ + 6
)︁ ]︂

,

J = −maπ2

16 Ξ4

[︂
4agΞ2

+ − 2c1c2(2Ξ5
+ − 3Ξ4

+ − 1)+

+ ag(c2
1 + c2

2)(Ξ+ + 1)(2Ξ3
+ − 3Ξ2

+ − 1)
]︂

,

Q1=
ms1 π2

8 g Ξ3

[︂
a2g2c2 (2Ξ+ + 1)− c1

(︁
2Ξ3

+ − 3Ξ2
+ − 1

)︁ ]︂
,

Q2=
ms2 π2

8 g Ξ3

[︂
a2g2c1 (2Ξ+ + 1)− c2

(︁
2Ξ3

+ − 3Ξ2
+ − 1

)︁ ]︂
. (2.167)

The conserved charges are computed in a scheme in which the energy
of the vacuum AdS7 solution vanishes, i.e. it is E0 = 0. In a different
scheme, the expression above should be regarded as E −E0; consider-
ations similar to the ones discussed in the five-dimensional case apply
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also here. The thermodynamical quantities introduced above satisfy the
first law of black hole thermodynamics

dE = T dS + 3 Ω dJ + Φ1 dQ1 + Φ2 dQ2 , (2.168)

while the quantum statistical relation reads

I = βE − S − 3β Ω J − β Φ1Q1 − β Φ2Q2 ; (2.169)

as for the six-dimensional case, we will assume this is satisfied and
use it to evaluate I. Therefore we will not evaluate the on-shell action
independently and check the validity of the quantum statistical relation,
as instead we have done for the five- and four-dimensional cases. To
ensure consistency with the assumption made for the vacuum energy,
we assume we are working in a scheme where I0 = βE0 = 0.

The most general finite-temperature black hole solution of this the-
ory should carry two independent electric charges and three indepen-
dent angular momenta; however this solution has not been found yet,
even though it is likely to exist. The black hole we are considering
here presents two independent electric charges and three equal angular
momenta; it is worth mentioning that there is a solution, constructed
in [143], which carries three independent angular momenta with the
two electric charges being equal.

2.4.2 BPS AdS7 black holes

Now we turn to AdS7 BPS black hole solutions, introducing the BPS
version of the finite-temperature solution presented in the last subsec-
tion. As we have already stated for the previous cases, in order to land
to the BPS black hole we need to impose both supersymmetry and ex-
tremality, which are two separate conditions. For ease of notation, we
will set g = 1 from now on.

The solution is supersymmetric (preserving two supercharges) if [110]

a =
2

3(1− eδ1+δ2)
. (2.170)

We will always use this relation to eliminate a in the expressions below.
The solution depends now on three parameters, which are m, δ1, δ2.
For simplicity, we restrict to the case of two equal electric charges
by imposing δ1 = δ2 ≡ δ (and similarly c1 = c2 ≡ c, s1 = s2 ≡
s); the extension δ1 ̸= δ2 is in principle straightforward although the
computations are much more involved. Now we therefore have Φ1 =

Φ2 ≡ Φ and Q1 = Q2 ≡ Q.
To avoid closed timelike curves from our family of solutions, we take

m = m⋆ =
4 e−3δ (c+ 2 s)3

729 c2 s6 , (2.171)
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imposing this in addition to (2.170) implies vanishing of the tempera-
ture and thus leads to the BPS solution, whose horizon is located at

r2
⋆ = −

16
3 (2 e2δ − 3 e4δ + 5)

. (2.172)

The square of the horizon coordinate must be positive, so the equation
above implies

e2δ >
5
3 ; (2.173)

this is a physical condition on the parameter δ that we shall always
assume in the following.

The chemical potentials are fixed to the BPS values

Ω⋆ = 1 , Φ⋆ = 2 , β →∞ , (2.174)

while the BPS charges are given by

E⋆ =
16π2

(︂
−21 e4δ + 18 e6δ + 7

)︂
3 (5− 3 e2δ)4 (e2δ + 1)2 ,

J⋆ =
16π2

[︂
9 e2δ

(︂
e2δ + 2

)︂
− 23

]︂
9 (5− 3 e2δ)4 (e2δ + 1)2 ,

Q⋆ = − π2 tanh δ e−3δ

(c− 4 s)3 , (2.175)

these satisfy the supersymmetry linear relation

E⋆ − 3 Ω⋆J⋆ − 2 Φ⋆Q⋆ = 0 . (2.176)

The BPS entropy can be immediately computed and it is given by

S⋆ =
2π3√c+ 8 s

3 e4δ
√

3 c3 (4 s− c)3 , (2.177)

this can be written in terms of the charges as [69]:

S⋆ = 2π
√︄

32 (Q⋆)3 − 3π2 (J⋆)2

32Q⋆ − π2 . (2.178)





3
T H E B P S L I M I T O F
RO TAT I N G A D S B L AC K
H O L E T H E R M O DY N A M I C S

In Chapter 2 we have introduced some families of finite-temperature
AdS black holes for each dimension 4 ≤ d ≤ 7. Furthermore, we have
shown how, by imposing supersymmetry and extremality to the finite-
temperature solution, one can obtain BPS black holes. In Chapter 1,
sec. 1.4.2, we have reviewed a general feature that has been identified in
the last few years, namely the fact that the Bekenstein-Hawking entropy
of BPS black holes in AdS arises from an extremization principle [54,56,
65–68, 70]: the entropy is reproduced as the Legendre transform of an
entropy function of rotational and electrical chemical potentials ωi, ∆I .
These are subject to a linear, complex constraint of the following kind∑︂

i

ωi −
∑︂
I

∆I = 2π i . (3.1)

For none of the BPS black hole solutions we looked at in the previous
chapter it is obvious how to retrieve the BPS chemical potentials ωi and
∆I . These cannot be the usual chemical potentials Ωi and ΦI , since,
being fixed to a specific value, they are always trivial in the BPS so-
lutions. Furthermore, in our analysis there is no emergence of complex
quantities, since everything seems to stay real. Therefore it is not obvi-
ous at all how to read the chemical potentials in (3.1) from the black
hole solution. As a consequence, being the entropy function a function
of the BPS chemical potentials, it is not clear how we can obtain it
from the black hole solution, neither what is its physical interpretation,
both on the gravity and on the field theory side of the holographic
correspondence.

Another natural question that may arise in the mind of the reader is
what the physical interpretation of the constraint (3.1) could be. This
was understood in [66] as a regularity condition for the Killing spinor of
the supersymmetric solution, ensuring that this is antiperiodic around
the Euclidean time circle of finite length β corresponding to the orbit
of the Killing generator of the horizon. In fact the only spin structure
allowed in the topology of the cigar formed by the radial direction and
the orbit of the Killing generator is the one of an antiperiodic spinor.

In this chapter, we solve the problems stated above by showing that,
for each family of rotating AdSd black holes we have introduced in
Chapter 2, the entropy function is the supergravity on-shell action

71
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after taking a specific BPS limit, that goes along a supersymmetric
trajectory in the space of complexified solutions42. By performing the
mentioned limit, the BPS complex chemical potentials ωi and ∆I can
be retrieved from the black hole solutions. These results have been ob-
tained for the first time in [66], where the authors applied the BPS limit
to the family of AdS5 black holes constructed in [142] which presents
two independent angular momenta and one electric charge. Later, im-
portant generalizations have been provided in [67], where the analysis
of [66] has been extended to other classes of rotating AdS black holes
in different dimensions, thus showing the universality of the approach
of [66]. Here we will review the results of [67] and we will show that, for
every family of AdS black holes we have introduced in Chapter 2, by
performing the proposed BPS limit, the BPS chemical potentials can
be read from the black hole solution and that the entropy function can
be always identified with the supergravity on-shell action.

Before proceeding to analyze every specific case in each dimension,
we briefly summarize the main results we will get. Starting from the
finite-temperature solution, we want to reach the BPS locus in param-
eter space, namely the BPS solution. Motivated by the fact that in the
dual field theory one is mostly interested in studying a supersymmet-
ric ensemble of states, we adopt the strategy of [66] and first impose
supersymmetry, namely that the supergravity Killing spinor equations
are solved. As we have stressed various times in the previous chapters,
imposing supersymmetry amounts to precisely one condition that the
parameters of the original solution have to satisfy, and it does not imply
extremality, i.e. vanishing of the temperature43. However we have also
seen that, in Lorentzian signature, the supersymmetric solution has
causal pathologies unless one also imposes another condition on the
parameters which is equivalent to send the temperature to zero [110].
This condition is usually imposed together with supersymmetry, since
one wants to get rid immediately of these pathologies. Here, follow-
ing [66,67], we choose to do something different: we only impose super-

42 The entropy function of non-rotating BPS black holes has been related to the super-
gravity on-shell action in [144–146] for AdS4 black holes and in [147] for AdS6 black
holes. Using the approaches proposed in those papers, everything stays real and
there is no complexification to be considered. However complexification do emerge
in the recent paper [148]. There, the authors construct supersymmetric black saddle
solutions in the STU model of four-dimensional gauged supergravity which are holo-
graphically dual to partially twisted ABJM theory on S1 × Σg for arbitrary values
of the deformations parameters of the theory. They explicitly show that the regular-
ized on-shell action of the black saddles agrees with the topologically twisted index.
Some of these black saddle solutions can be Wick-rotated to the well known super-
symmetric dyonic AdS4 black holes of the supergravity theory under consideration;
therefore the entropy of this black holes may be reproduce starting from the black
saddle solutions, which are complex.

43 For convenience, we remind what we already stated in the previous chapters, i.e.
that a quantity evaluated after imposing both supersymmetry and extremality will
be called “BPS” and denoted by the symbol ⋆ in the formulae. For instance, S⋆ is
the BPS entropy.
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symmetry and carefully study the so obtained family of solutions. We
are interested in semi-classical saddle points of the Euclidean path in-
tegral, and thus allow for more general solutions by complexifying (one
of) the remaining parameters. Thus, we obtain a complexified family of
supersymmetric solutions; this is interesting since it gives in principle
the possibility to build complex quantities and so are the BPS chemical
potentials and the entropy function we are looking for. To move on this
direction, building on ideas of [149], we introduce the variables

ωi = β
(︂

Ωi −Ωi ⋆
)︂

, ∆I = β (ΦI −ΦI⋆) , (3.2)

where Ωi ⋆ and ΦI ⋆ are the (frozen) values taken by Ωi and ΦI in the
BPS solution. The variables (3.2) are the chemical potentials conjugate
to the angular momenta and electric charges when one identifies the
generator of “time” translations with the conserved quantity {Q,Q},
where Q is the supercharge.

The dual superconformal field theory partition function, Z, is defined
by the asymptotic behavior of the supergravity solution; starting from
the considerations above, the following Hamiltonian representation can
be inferred:

Z = Tr
[︂
e−β{Q,Q}+ωiJi+∆IQI

]︂
, (3.3)

where there is no (−1)F due to anti-periodicity of the supercharge.
The authors of [66] have shown that, upon using (3.1), the partition
function Z is proportional to the superconformal index [46,47]; in par-
ticular there is an identification between the SCFT chemical potentials
appearing in (3.3) and the black hole variables (3.2).

Following [67], here we will show, for each black hole we introduced
in Chapter 2, that after imposing supersymmetry the variables (3.2)
satisfy a linear constraint of the type (2.5) and are otherwise free. We
also show that the supersymmetric on-shell action I can indeed be
written as a simple function of the variables (3.2), so that it precisely
matches the entropy functions proposed in [65, 68, 70]. It is important
to underline the fact that these results are referred to solutions which
are supersymmetric only: we have not imposed extremality yet. The
supersymmetric thermodynamical variables satisfy the following super-
symmetric form of the quantum statistical relation

I = −S − ωiJi − ∆I QI , (3.4)

while the first law of thermodynamics in the supersymmetric ensemble
reads

dS + ωi dJi + ∆I dQI = 0 . (3.5)

In the expressions above the energy does not appear since we have re-
placed it with the other charges by using the linear supersymmetric
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relation between the charges which emerges as a consequence of super-
symmetry algebra. It is not immediately obvious to identify the Legen-
dre transform of I, subject to the constraint (3.1), with the entropy of
the Lorentzian solution, since the former turns out to be in general a
complex quantity while the latter is naturally real. However, demanding
reality of the Legendre transform, which amounts to a non-linear condi-
tion on the charges, one finds precisely the Bekenstein-Hawking entropy
of the supersymmetric and extremal black hole [66,69]. The saddle point
values of the chemical potentials remain complex and match the ones
that we obtain from the solution by taking the zero-temperature limit
of (3.2). We have thus reached the two following important results:

• taking the proposed BPS limit, the variables (3.2) become indeed
the BPS chemical potentials we were looking for. Now we are thus
able to read them from the supergravity black hole solution;

• the BPS limit of black hole thermodynamics we have described
gives a derivation of the proposed entropy functions and the re-
lated extremization principles.

Some remarks are in order. The first one is that it is important
to underline that the on-shell action I, which enters in the quantum
statistical relation, is first defined in a regular Euclidean solution where
the Wick-rotated time has been compactified and the metric is positive-
definite. Then, after the on-shell action has been computed in this way,
it is possible to extend its value to a complexified solution by analytic
continuation [118]. As it should be clear from the discussion above,
we find that this complexification is crucial for the on-shell action to
eventually match the proposed entropy functions. A further remark
regards the fact that the same family of black hole solutions we have
introduced in Chapter 2, on which we will proceed to apply our BPS
limit, have been considered also in [69, 70]. In these papers, the BPS
limit of quantum statistical relation has been discussed; however our
limit is different from the one considered there precisely because it
reaches the physical BPS black hole through a complexified family of
solutions, specified by supersymmetry. Instead, the limit taken in [69,
70] appears similar to the one originally discussed in [149], in that it
yields real chemical potentials that satisfy just the real part of (3.1).
Therefore, the on-shell action in this other limit does not match the
entropy functions proposed in [65,68,70].

A final comment regards the relation between our BPS limit and
Sen’s entropy function formalism. This latter is based on a near-horizon
analysis of extremal black holes, which are not necessarily supersym-
metric [150,151]. Using Sen’s approach, one obtains real chemical poten-
tials and real entropy function, therefore it appears quite different from
ours. It was shown in [152] that Sen’s formalism is matched by an ex-
tremal limit of black hole thermodynamics where all quantities remain
real. In [66] it has been shown how there is in fact a continuous family
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of extremal limits of black hole thermodynamics, all leading to a mean-
ingful entropy function and an associated constraint between chemical
potentials. However, it is fundamental to underline the fact that, of all
these possible limits, only the manifestly supersymmetric one discussed
above leads to the entropy functions proposed in [65, 68, 70]. One task
which would be surely interesting to complete in the future is to clarify
further the relation between our limit and Sen’s near-horizon approach.

In the next four sections, we proceed to analyze the BPS limit for
AdS5, AdS4, AdS6 and AdS7 black holes respectively44. In each case,
we will introduce and discuss our BPS limit, we will get the explicit
values of the BPS chemical potentials from the supergravity black hole
solution and we will show that the on-shell action matches the pro-
posed entropy function. For the AdS5 and AdS4 black hole solutions
we have evaluated the on-shell action explicitly by using holographic
renormalization; appendix A and appendix B contain the details on
these computations in five and four dimensions, respectively.

3.1 bps limit for ads5 black holes

We start describing our BPS limit for the AdS5 finite temperature
solution presented in sec. 2.1.2.

As we have already noted in sec.. 2.1.3 when we have looked at
the BPS version of this black hole, in the BPS solution the chemical
potentials take the fixed values Ω = Ω⋆, ΦI = ΦI ⋆, β−1 = 0. Since
these are just trivial, they cannot be the BPS chemical potentials ω and
∆I . Therefore, one can ask if the BPS black hole satisfies non-trivial
thermodynamic relations and, in particular, what is the BPS version of
the quantum statistical relation (2.42). There are many possible limits
towards the BPS solution [149]; among these there is the one proposed
in [66] that reaches the BPS point along a supersymmetric trajectory in
parameter space, thus fully respecting supersymmetry. This limit was
applied in [66] to the AdS5 black hole of [43], with two independent
angular momenta and only one electric charge; this provided a result
that agrees with dual supersymmetric field theory computations. The
proposed BPS limit has then been generalized in [67], where it has been
applied to other AdS black holes, including the finite-temperature one
we have presented in sec. 2.1.3.

We start by eliminating the parameter a imposing the supersymme-
try condition (2.96) and for now we do not require (2.99) to clear the
solution from closed timelike curves; recall that imposing this last con-
dition would imply extremality. Although for m ̸= m⋆ the Lorentzian
solution has closed timelike curves, we are interested in saddle points
of the quantum gravity path integral, and thus allow ourselves to work

44 As we have done in the previous chapter, here we choose to present first the AdS5
black holes rather than the AdS4 ones, since the former will be the main focus of
this thesis and the ones we will analyze the most.
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with a complex section of the solution, to be specified momentarily.
The supersymmetric family of solutions we are considering now de-
pends on the four parameters m, µ1, µ2, µ3. One natural manner to
impose extremality would be to send the outer horizon coordinate r+
to the BPS horizon r⋆, given in (2.101); this would be easy to do if
we trade one of the four parameters of the supersymmetric solution
for the outer horizon position r+. This can be achieved by solving the
equation Y (r+) = 0 for m so as to trade m for r+. Since the equation
Y (r+) = 0 is of third order in m, its solution is quite complicated. To
circumvent this complication, we first change the radial coordinate r
into a new coordinate R, such that45:

r2 = R2 +
m

m⋆

(︂
r2
⋆ − µ1

)︂
. (3.6)

Performing this change of coordinates, we break the symmetry in the µi,
but this will be restored in the final results regarding the BPS solution.
In the new radial coordinate, the outer horizon position is given by the
largest root R+ of the equation Y (R) = 0. From (3.6) we see that in
the new coordinate the BPS horizon is found at

R2
⋆ = µ1 . (3.7)

Now the equation Y (R+) = 0 is only quadratic in m, and its solution
can be written as:

m =
2m⋆ R4

+(R
2
+ + 1)

R4
+ (2µ1 − µ2 − µ3) + R2

+ (µ1µ2 + µ2µ3 + µ3µ1 + 2µ1) − µ1µ2µ3 ∓(R2
+ − µ1)R

,

(3.8)

where we introduced the quantity:

R =
√︂
R4

+(µ2 − µ3)2 − 2R2
+µ2 µ3 (µ2 + µ3 + 2) + µ2

2 µ
2
3 . (3.9)

It is now crucial to study the sign of the argument of the above square
root. It is easy to see that this is undefined: indeed, for very large R2

+ we
have thatR is real, thus m is real; on the other hand, for R2

+ sufficiently
close to R2

⋆ = µ1, that is sufficiently close to the extremal value, the
square rootR is purely imaginary as a consequence of (2.86). Therefore,
the expression for m in (3.8) may be complex and in particular it is
complex close to extremality. In the strict extremal limit R2

+ = R2
⋆ we

have that the factor multiplying R in (3.8) goes to zero, so although R
is purely imaginary, m becomes real and reaches its BPS value (2.99).

Thus, we have discovered that fixing a as in (2.96) and trading m

for R+ as in (3.8), we reach a family of complexified, supersymmetric
solutions. Obtaining complex quantities is promising since we know

45 In terms of the old parameters δI , the change of coordinate is expressed as r2 =
R2 − 2m sinh2 δ1. This implies r2H1 = R2. The new coordinate R should not be
confused with the Ricci scalar.
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that the BPS chemical potentials and the BPS entropy function we are
looking for must be complex. Evaluating the quantities (2.36) for this
family of solutions, we obtain quite cumbersome expressions, that we
will not display here. Remarkably, we find that the chemical potentials
obtained in this way satisfy the constraint:

β (1 + Ω−Φ1 −Φ2 −Φ3) = ∓ 2π i , (3.10)

where the sign choice follows from the one in (3.8). Although we have
obtained the full expressions of the complex chemical potentials, de-
riving the constraint above has proven to be not a trivial task due to
the complexity of these expressions and we did not manage to do it
in full generality. However we verified the validity of (3.10) with many
numerical checks over a wide range of the parameters as well as in a
perturbative expansion near the BPS point that we will show below.
Before showing this, it is worth mentioning that while performing this
analysis over the range of the parameters we noted that eq. (3.10) is
satisfied in two slightly different ways, depending on the value of R2

+.
As we described above, for sufficiently large R2

+, m is real; however
in this case β is purely imaginary, so that (3.10) holds true46. On the
other hand, when R2

+ is close to the extremal value, m is complex, and
so are the chemical potentials β, Ω, ΦI ; still (3.10) is satisfied.

We now display some perturbative expansions near the BPS point of
some relevant physical quantities, in order to make their near-extremal
behavior more explicit and to show that the constraint (3.10) is satisfied.
To obtain these expansions, we set R+ = R⋆ + ϵ and study the limit
ϵ → 0. We perform the computations choosing the upper sign in (3.8)
for simplicity. In this limit, the “inverse temperature” β diverges as:

β =
4S⋆ + i π2 [︁2µ2

1 − µ2 µ3 + µ1 (2 + µ2 + µ3)
]︁

4π ϵ√µ1 (1 + µ1 + µ2 + µ3)
+ O(ϵ0) , (3.11)

where S⋆ is the BPS entropy given in (2.87). Hence β is complex at
leading order near the BPS point. The same holds for the other chemical
potentials, which at first order in ϵ read

Ω = Ω⋆ − 4 S⋆ − i π2 (µ1µ2 + µ3µ1 − µ2µ3)

S⋆ √
µ1 (1 + µ1)

ϵ ,

Φ1 = Φ1 ⋆ +
4S⋆ [µ1µ2 + µ3µ1 − µ2µ3] − 2iπ2 [︁(1 + µ1)µ1µ2µ3 − 8(S⋆/π2)2]︁

2 S⋆ µ5/2
1 (1 + µ1)µ2 µ3

ϵ

(3.12)

with Φ2, Φ3 being obtained from Φ1 by a cyclic permutation of the µI .
It follows that

1+Ω−
∑︂
I

ΦI =
−4µ2

1 + 2µ2 µ3 − 2µ1 (2 + µ2 + µ3)− 8 i S⋆/π2

µ3/2
1 (1 + µ1)

ϵ + O(ϵ2) .

46 We recall that β is given by the expression in (2.36), so it is purely imaginary when
f1 is negative. We find that this happens precisely in the regime where m is real. In
this discussion we are assuming that R2

+ is real.
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(3.13)

It is now easy to check that the constraint (3.10) holds in this near-
extremal limit: indeed multiplying the complex quantities (3.11) and
(3.13), the factors of ϵ cancel out and the finite result (3.10) is obtained.

Our next step is to introduce the variables

ω = β (Ω−Ω⋆) , ∆I = β
(︂

ΦI −ΦI ⋆
)︂

; (3.14)

these will prove to be the right chemical potentials for the supersym-
metric and BPS family of solutions. Furthermore, we introduce the
supersymmetric Hamiltonian, which reads

H = E −Ω⋆J −ΦI ⋆QI

= E − 2J −Q1 −Q2 −Q3 . (3.15)

There are crucial differences between E and H: the former is the
charge for translations generated by ∂

∂t , while the latter is the charge
for translations generated by the Killing vector K = ∂

∂t + Ω⋆ ∂
∂ψ that

arises as a bilinear of the Killing spinor, covariantized by the term
ιKA

I |∞QI = −ΦI ⋆QI . There is a relation between the supersymmet-
ric Hamiltonian and the anticommutator of the supercharges: this is
given by {Q,Q} = H −E0, where E0 is the anomalous term induced
by the supercurrent anomaly [122, 123]. With respect to the new vari-
ables, the quantum statistical relation (2.42) can be expressed as:

I = βH − S − ω J − ∆I QI , (3.16)

from the relation above, one can see that ω and ∆I are the chemical
potentials conjugate to J and QI , respectively, when the time trans-
lations are generated by the supersymmetric Hamiltonian H. We are
considering a supersymmetric family of solutions, therefore the anti-
commutator {Q,Q} evaluates to zero and thus H = E0. Consequently,
the quantum statistical relation becomes the supersymmetric quantum
statistical relation

I − I0 = −S − ω J − ∆I QI , (3.17)

where we used I0 = βE0. Using the new variables, the constraint (3.10)
can be written as

ω− ∆1 − ∆2 − ∆3 = ∓ 2π i . (3.18)

This is promising since it presents the same form of (3.1); although we
must recall that here we are still considering a supersymmetric (and not
BPS) family of solutions. Varying the supersymmetry relation between
the charges and subtracting this from the first law (2.40), we obtain a
supersymmetric form of the first law:

dS + ω dJ + ∆I dQI = 0 . (3.19)
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Moreover, plugging the supersymmetric condition (2.96) and the ex-
pression (3.8) for m into the on-shell action (2.45), we find that the
latter takes the simple form:

I − I0 = π
∆1∆2∆3

(ω)2 . (3.20)

Notice that the right hand side of (3.20) is independent of β. Once again,
this is promising since it has exactly the same form of the BPS entropy
function, even though we are looking at a family of only supersymmetric
solutions.

Before taking the limit to extremality, it is worth noting that the
supersymmetric charges E, J and QI can be evaluated by substitut-
ing the supersymmetry condition (2.96) and the formula (3.8) for m
in (2.38). We do not display the expressions so obtained, since they are
quite cumbersome; however we checked that, although they are gener-
ically complex, they satisfy the supersymmetry relation H = E0. In
the same fashion we obtain a complex expression for the entropy. The
fact that the entropy (that is the area of the horizon) is complex is re-
lated to the fact that when continued back to Lorentzian signature, the
supersymmetric but non-extremal solution presents a pseudo-horizon
rather than a horizon [110].

Now we proceed to take the limit to extremality by sending R+ → R⋆.
Doing this, our complexified family of supersymmetric solutions reaches
the real, BPS solution of [42]. All the main physical quantities become
real; in particular the entropy and the charges take the values (2.87),
(2.89). In the extremal limit R+ → R⋆, the chemical potentials ω and
∆I stay finite; this is possible because even if the temperature vanishes,
and therefore β diverges, at the same time Ω → Ω⋆, ΦI → ΦI ⋆. We
denote the BPS values of the redefined chemical potentials as

ω⋆ = lim
R+→R⋆

ω , ∆I ⋆ = lim
R+→R⋆

∆I . (3.21)

By evaluating these limits we obtain

ω⋆ =
−2π∑︁

I µI + 1

[︃
µ1 µ2 + µ2 µ3 + µ3 µ1√︂

4µ1µ2µ3
(︁∑︁

I µI + 1
)︁

− (µ1µ2 + µ2µ3 + µ3µ1)2
± i

]︃
,

∆1 ⋆ =
π∑︁

I µI + 1

[︃
µ1(µ

2
2 + µ2

3) − µ2 µ3(µ2 + µ3 + 2)√︂
4µ1µ2µ3

(︁∑︁
I µI + 1

)︁
− (µ1µ2 + µ2µ3 + µ3µ1)2

± i (µ2 + µ3)

]︃
, (3.22)

with the expressions for ∆2 ⋆ and ∆3 ⋆ being obtained from the one for
∆1 ⋆ through straightforward permutations of the indices 1, 2, 3. As it is
evident from the expressions above, the supersymmetirc chemical po-
tentials remain complex even after the BPS limit is taken47. Therefore,

47 Note that the argument of the square roots in (3.22) is positive due to assumption
(2.86), and proportional to the BPS entropy (2.87).



80 the bps limit of rotating ads black hole thermodynamics

the non-trivial BPS chemical potentials providing interesting thermo-
dynamical relations are not the leading order terms (2.88) in the ex-
pansion of the chemical potentials Ω and ΦI around their BPS value,
but rather the next-to-leading-order terms:

Ω = Ω⋆ +
1
β
ω⋆ + . . . , ΦI = ΦI ⋆ +

1
β

∆I ⋆ + . . . . (3.23)

The BPS limit we have presented is totally smooth, so the BPS chemical
potentials still satisfy the constraint

ω⋆ − ∆1 ⋆ − ∆2 ⋆ − ∆3 ⋆ = ∓ 2π i , (3.24)

and the on-shell action can still be written as

(I − I0)
⋆ = π

∆1 ⋆∆2 ⋆∆3 ⋆

(ω⋆) 2 . (3.25)

As we have mentioned in Chapter 2, the supersymmetric on-shell
action I − I0, seen as a function of the chemical potentials (3.14),
should be regarded as minus the logarithm of the supersymmetric
grand-canonical partition function in the semi-classical approximation
to the quantum gravity path integral, in the spirit of [118]. Therefore,
its Legendre transform must be the logarithm of the microcanonical
partition function, that is the entropy. This gives a physical derivation
of the extremization principle proposed in [65].

However, because of the constraint (3.18), the Legendre transforma-
tion is not completely straightforward and it is worth recalling here the
main steps one has to follow in order to obtain it48. We consider the
supersymmetric quantum statistical relation (3.17) and we enforce the
constraint (3.18) through a Lagrange multiplier Λ, as follows

I − I0 = −S−ω J −∆I QI −Λ
(︂
ω− ∆1 − ∆2 − ∆3 ± 2π i

)︂
. (3.26)

One may be confused by the fact that the constraint is identically
satisfied in the supersymmetric solution, but at this stage we are not
assuming any explicit expression for ω, ∆I , since we want to treat them
as the basic variables to be varied. The next step is to extremize (3.26)
with respect to Λ,ω, ∆I ; doing so we retrieve the constraint (3.18) and
the equations

−∂(I − I0)

∂ω
= J +Λ , −∂(I − I0)

∂∆I
= QI +Λ , I = 1, 2, 3 . (3.27)

These state the conjugacy relations between supersymmetric charges
and chemical potentials which we have already mentioned above. Now

48 The Legendre transformation for black holes in the U(1)3 theory has been described
in detail in [66]. In [67] a further generalization has been provided by illustrating
the Legendre transformation for black holes in N = 2 Fayet Iliopoulos gauged
supergravity with nV arbitrary. We explicitly discuss this Legendre transformation
in sec. 3.1.1.
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we have to solve the five equations we have obtained for ω, ∆I and
Λ in terms of the charges J ,QI . The explicit solutions are reported
in [66]. Once these equations are solved, the solution must be plugged
into (3.26); doing so, one obtains a formula for the entropy S that is a
complex function of the charges. Further demanding reality of S, as well
as of J ,QI , one obtains precisely the non-linear relation (2.91) between
the BPS charges, together with the expression (2.92) for the Bekenstein-
Hawking entropy of the BPS black hole. The reality condition on S may
be understood as a well-definiteness condition for the horizon area, and
this is what leads to (2.91) in the extremization procedure.

As a check, we verified in [99] that this extremization is indeed re-
alized in the black hole solutions, verifying in particular that the BPS
chemical potentials (3.22) match the saddle point values of ω, ∆I ob-
tained by solving the extremization equations (3.27) in terms of the
charges J ,QI , demanding reality of the entropy, and substituting the
parameterization (2.89) of the BPS charges. We also checked that this
match still holds true when one compares the supersymmetric but non-
extremal values of ω, ∆I , even if in this case the entropy and the charges
are generically complex.

3.1.1 Entropy function for general AdS5 black holes with arbitrary nV

We would like to go beyond S5 compactification of type IIB super-
gravity, analyzing more general AdS5 black holes. As we have already
mentioned in sec. 2.1.1, the imprint of S5 in the five-dimensional su-
pergravity considered in this section is found in the specific number of
vector multiplets (three, gauging the U(1)3 ⊂ SO(6) isometry group
of S5) and in the form of the CIJK tensor controlling the matter cou-
plings, which is given by (2.18). However, multi-charge, supersymmetric
AdS5 black holes are known more generally in five-dimensional Fayet-
Iliopoulos gauged supergravity with an arbitrary number nV of vec-
tor multiplets and an arbitrary choice of the tensor CIJK , I, J ,K =

1, . . . ,nV + 1; some examples are provided by the family of black holes
constructed in [42], which we have introduced in sec. 2.1.3.1, and by the
more general solutions with two independent angular momenta found
in [45]. The most general set of independent conserved charges car-
ried by these solutions is composed by two angular momenta J⋆1 , J⋆2
and nV + 1 electric charges Q⋆I .49 An entropy function whose Legendre
transform should reproduce the Bekenstein-Hawking entropy of these
black holes has been conjectured in [68] and reads

I =
π

24
CIJK∆I∆J∆K

ω1 ω2
; (3.28)

49 Here we do not mention the energy E since we eliminated it by using the linear
relation between the charges that holds as a consequence of supersymmetry algebra.



82 the bps limit of rotating ads black hole thermodynamics

following [67], here we prove that this is the correct entropy function
and that the entropy is indeed reproduced, provided the chemical po-
tentials satisfy the constraint

ω1 + ω2 − 3 X̄I ∆I = ∓ 2π i , (3.29)

and in addition one demands reality of the Legendre transform.
We start from the function (3.28) of the rotational and electric chem-

ical potentials ωi, i = 1, 2, and ∆K , K = 1, . . . ,nV + 1; we want to com-
pute the Legendre transform, subject to the more general constraint

ω1 + ω2 − 3X̄K∆K = 2πin , (3.30)

where n is a real number. We set up the extremization problem by
writing the entropy using the quantum statistical relation and enforcing
the constraint

S(QK , Ji) = ext{∆K ,ωi, Λ}

[︂
− I − ∆KQK − ωiJi

−Λ(ω1 + ω2 − 3X̄K∆K − 2πin)
]︂

,
(3.31)

with Λ being a Lagrange multiplier and ωi = ωi. As we have done
for the U(1)3 case, we vary (3.31) with respect to the chemical poten-
tials and the Lagrange multiplier Λ, thus obtaining the extremization
equations

− ∂I

∂∆K
= QK − 3X̄K Λ , − ∂I

∂ωi
= Ji + Λ , (3.32)

together with the constraint (3.30). The supergravity black hole so-
lutions with arbitrary nV constructed in [42, 45] present a symmetric
scalar manifold, namely the CIJK tensor satisfy the property (2.3);
therefore we are allowed to use the same property in this derivation.
Using (2.3), it is not hard to see that the equations above imply

0 =
1
6 CIJK (−QI + 3X̄I Λ)(−QJ + 3X̄J Λ)(−QK + 3X̄K Λ)− π

4 (J1 +Λ)(J2 +Λ) ,

(3.33)

the above condition can be written as a cubic equation for Λ in the
following fashion

0 = p0 + p1Λ + p2Λ2 + Λ3 , (3.34)

with

p0 = −1
6 C

IJKQIQJQK −
π

4J1J2 ,

p1 =
3
2 C

IJKX̄IQJQK −
π

4 (J1 + J2) ,

p2 = −9
2 C

IJKX̄IX̄JQK −
π

4 . (3.35)
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Being a cubic equation, (3.34) can be straightforwardly solved for Λ;
we denote by “Roots” the set of three solutions of the equation above.
The next step is to solve the rest of the equations (3.32), together with
the constraint (3.30); in this way the saddle point values of the chem-
ical potentials ωi, ∆I will be determined. Solving the above mentioned
equations and the constraint, we find

ωi =
1
6 ΞCIJKQ̃IQ̃J Q̃K |ϵij |J̃j , ∆I = −1

2 ΞCIJKQ̃J Q̃K J̃1J̃2 ,
(3.36)

where we introduced Q̃I = QI − 3X̄IΛ, J̃ i = Ji + Λ, along with

Ξ =
4πin

3J̃1J̃2CIJKX̄IQ̃JQ̃K + 1
3 (J̃1 + J̃2)CIJKQ̃IQ̃JQ̃K

, (3.37)

and it is understood that Λ ∈ Roots.
It is possible to exploit the same argument used in [66] to show that

the Legendre transform reads

S = extΛ ∈ Roots (2πinΛ) , (3.38)

and that S is real and positive if and only if one imposes

p0 = p1 p2 , (3.39)

and picks the purely imaginary root Λ = i
√
p1 if n < 0, or Λ = −i√p1

if n > 0. From the explicit expressions of the pi, given in (3.35), we see
that (3.39) is a constraint on the charges. Assuming the condition (3.39)
to be satisfied, the Legendre transform (3.38) becomes

S = 2π|n|√p1

= π|n|
√︂

6CIJKX̄IQJQK − π (J1 + J2) . (3.40)

For n = ∓1, this is the Bekenstein-Hawking entropy of the black
holes of [42, 45], in the form first given in [132]. Thus we have in-
deed proved that the Legendre transform of the entropy function (3.28)
leads to the entropy of the asymptotically AdS5 black holes of [42, 45].
However, in order to carry out the computation we presented so far
for the explicit black hole solution, we would need to start from the
non-supersymmetric finite temperature black hole solution which cor-
responds to the BPS one of [45] in the BPS limit. Unfortunately, this
solution has not been found yet. The same problem holds in principle
for the multi-charge solution of [42]; however in this latter case we will
be able to infer the BPS chemical potentials from the ones we have
found for the U(1)3 solution, which have been given in eq. (3.22).

We can specialize the expressions above to the U(1)3 model, so as to
perform a consistency check with the results obtained in [66] for this
theory. It is easy to see that indeed all the expressions we have presented
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reduce to those given in the above mentioned paper, upon identifying
Qhere
I = −Qthere

I , ∆Ihere = −∆I there and µthere = −π
4 . Moreover, for

n = ∓1 the constraint (3.30) is perfectly consistent with (3.18).
Consider now the multi-charge black hole solution of [42], that we

have introduced in sec. 2.1.3.1, where the two angular momenta are set
equal. We recall that this solution is controlled by the real parameters
qGR
I , αGR

1 , αGR
2 , αGR

3 , with the αGR
i given in eq. (2.64). Generalizing

our formulae (3.22), we infer that the BPS chemical potentials for this
general solution read

ω⋆1 = ω⋆2 ≡ 1
2 ω

⋆ = − π

1 + αGR
1

[︄
αGR

2√︂
4
(︁
1 + αGR

1
)︁
αGR

3 −
(︁
αGR

2
)︁2 ± i

]︄
,

∆I ⋆ =
9π

1 + αGR
1

CIJKqGR
J

[︄
αGR

2 X̄K − (1 + αGR
1 ) qGR

K√︂
4
(︁
1 + αGR

1
)︁
αGR

3 −
(︁
αGR

2
)︁2 ± i X̄K

]︄
.

(3.41)

We now show that the explicit expressions for the chemical poten-
tials above satisfy the saddle point expressions (3.36). The entropy
and charges for the BPS black hole of [42] are given by (2.74), (2.77)
and (2.79), respectively. The charges satisfy the relation (3.39); corre-
spondingly, the BPS solution has just nV + 1 independent parameters,
though there are nV + 2 charges J⋆,Q⋆I . In order to compare (3.36)
with (3.41), we need to evaluate CIJKQ̃JQ̃K , CIJKQ̃IQ̃JQ̃K and
CIJKX̄IQ̃JQ̃K in terms of the parameters. Straightforward though te-
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dious computations making repeated use of the identity (2.3) lead us
to:50

CIJKQ̃
⋆
JQ̃

⋆
K =

1
8
[︂
π2
(︂
(1 + α1)α3 − 1

4α
2
2

)︂
+ 16 Λ2

]︂
X̄
I

+
9
16
[︂
π2
(︂
1 + α1 +

1
2α2

)︂
− 4πΛ

]︂
CIJKqGR

J qGR
K

− 9
16
[︂
π2 (α2 + 2α3) + 8πΛ

]︂
CIJKX̄Jq

GR
K ,

CIJKQ̃
⋆
IQ̃

⋆
JQ̃

⋆
K =

3π3

32

[︄ (︂
1 + 2α1 + α2

1 − α3
)︂
α3

+
1
2 (α1 − 1)α2α3 −

1
4 (2 + α1)α

2
2 −

1
8α

3
2

]︄

− 3π2

8

(︃
α1α3 + α2 + 3α3 −

1
4α

2
2

)︃
Λ

+
3π
4 (2α1 + α2)Λ2 − 6Λ3 ,

CIJKX̄IQ̃
⋆
JQ̃

⋆
K =

π2

24
(︂
α1α3 + α2 + 3α3 − 1

4α
2
2

)︂
− π

6 (2α1 + α2)Λ + 2Λ2 . (3.42)

For the purposes of this section, we are interested in the case where
the Legendre transform is real and positive, and n = ∓1. Accordingly,
we substitute Λ = ±i√p1 = ± i

2πS
⋆ in the formulae above. Note that

then the term proportional to X̄
I in the first line of (3.42) vanishes.

Plugging (2.77), (2.79), (3.42) into (3.36), (3.37), we obtain precisely
the expressions for the chemical potentials given in (3.41). As a final
consistency check, we also verified that the thermodynamical quanti-
ties given in (3.28), (3.41), (2.77), (2.79) satisfy the supersymmetric
quantum statistical relation I⋆ = −S⋆ − ω⋆J⋆ − ∆I⋆Q⋆I .

It is important to mention that the entropy function (3.28) has been
reproduced from a dual SCFT4 viewpoint by taking the Cardy-like limit
of the superconformal index in [85]. There is the possibility that some
of the black hole solutions of [42, 45] uplit to to type IIB supergravity
on Sasaki-Einstein manifolds and thus have an SCFT4 dual; however,
at the time this thesis is written, the uplift is only known for the case of
S5, or in a single-charge limit where the black holes are solutions to min-
imal gauged supergravity. Furthermore, there is no known consistent
truncation of type IIB supergravity on five-dimensional Sasaki-Einstein
manifolds including all Kaluza-Klein vector fields gauging the relevant
internal symmetries; therefore it is not completely clear how to match
with the dual SCFT.

Another important remark is that the starting point of the BPS
limit we have proposed is constituted by a finite-temperature solu-

50 These expressions also hold for the solution of [45], where the two angular momenta
are different.
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tion and these are only known within the U(1)3 theory discussed here;
this means that there is no known finite-temperature black solution in
N = 2 Fayet-Iliopoulos gauged supergravity with nV ̸= 2. Clearly, it
would be interesting to construct new asymptotically AdS black holes
in five-dimensional supergravity (for instance relaxing the assumption
that the scalar manifold is symmetric), study their uplift to type IIB
supergravity on different Sasaki-Einstein manifolds, and extend the re-
sults, originally presented in [67], we have review in this thesis by in-
vestigating their BPS limit. At this regard, it is worth mentioning that
the near-horizon geometry of a black hole in type IIB on T 1,1 has been
recently constructed in [78].

3.2 bps limit for ads4 black holes

Here we describe our BPS limit for the AdS4 finite-temperature family
of black holes presented in sec. 2.2.1. This proceeds similarly to the
five-dimensional case.

Since, as a first step, we want to reach the supersymmetric but
not extremal family of solutions, we impose the supersymmetry con-
dition (2.138) without requiring (2.139) for the moment. This last con-
dition would imply extremality and ∆r(r) = 0, with ∆r being given
in (2.127). However, the equation ∆r(r) = 0 can be solved in a more
general way than (2.139), (2.140) if we allow for complex values of the
parameter m. In fact, ∆r(r) = 0 can be seen as an equation for m,
where the solution depends on δ1, δ2 and on the position of the outer
horizon, r+. It turns out that ∆r(r) is a quartic polynomial in m, there-
fore the solutions would be rather cumbersome; as we have already done
in the five-dimensional case it is better to change the radial coordinate
r into a new coordinate R so that the analysis is simplified. A good
change of radial coordinate turns out to be

r = R− 2ms2
1 , (3.43)

indeed, the equation for the horizon now becomes ∆r(R) = 0 and it is
only quadratic in m. The solution of this equation is given by:

m =
R2

+ + 1− (1± i R+) coth (δ1 + δ2)

R+ (c2
1 + s2

1 − c2
2 − s2

2)∓ 2 i s1 c1
, (3.44)

where we have denoted as R+ the position of the outer horizon. Now,
R+ is treated as a parameter, on the same footing as δ1, δ2.

We now plug the expression (3.44) for m, together with the super-
symmetry condition (2.138), into the different quantities summarized
in sec. 2.2.1. The conditions we have imposed imply supersymmetry
but not extremality, so we land on a complexified supersymmetric but
not extremal family of solutions. After these manipulations, we find
that the chemical potentials in (2.133) satisfy the relation

β(1 + Ω−Φ1 −Φ3) = ∓ 2π i , (3.45)
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which is completely analogous to the constraint we have found in five
dimensions. Therefore, we can argue that it has the same interpreta-
tion as an anti-periodicity condition for the Killing spinor when this is
translated around the Euclidean time circle.

We proceed in analogy with the five-dimensional case by introducing
the variables

ω = β (Ω−Ω⋆) , ∆I = β (ΦI −Φ⋆
I) , (3.46)

where the BPS values Ω⋆, Φ⋆
I were given in (2.141). Using these vari-

ables, the constraint (3.45) can be written as

ω− ∆1 − ∆3 = ∓ 2π i . (3.47)

These variables are the right supersymmetric chemical potentials pro-
viding non trivial thermodynamical relations. Their explicit expressions
are:

ω =
4π

Υ
[c1 (c2 − 2 s2) + s1(s2 − 2 c2)]

[︁
R+(c

2
1 − c2

2 + s2
1 − s2

2) ∓ 2 i c1 s1
]︁

,

∆1 = ∆2 =
4π

Υ

(︁
−c2

1 + 2 c1 s1 + c2
2 − s2

1 + s2
2
)︁ [︂

R+(c1 s2 + c2 s1) ∓ i e−δ1−δ2
]︂

,

∆3 = ∆4 =
4π

Υ

[︁
R+(c

2
1 − c2

2 + s2
1 − s2

2) ∓ 2i c1s1
]︁

[(c1c2 + s1s2) − (1 ∓ i R+)(c1s2 + c2s1)] ,
(3.48)

where we introduced:

Υ = 2R+ (c1 s2 + c2 s1)
[︂
R+

(︂
c2

1 − c2
2 + s2

1 − s2
2

)︂
∓ 4 i c1 s1

]︂
− c1 s2 + c2 s1 − 2 sinh (3δ1 + δ2) + sinh (δ1 + 3δ2)

+ cosh (3δ1 + δ2)− cosh (δ1 + 3δ2) . (3.49)

The conserved charges in (2.134) satisfy the linear relation

E −Ω⋆J − 2 Φ⋆
1Q1 − 2 Φ⋆

3Q3 = 0 , (3.50)

which as already remarked is purely a consequence of supersymmetry.
For this supersymmetric family of complexified solutions, the expres-
sions for the charges, as well as the one for the entropy, are complex.
We need them to become real when we perform the limit to the BPS
solution.

After using (2.138), (3.43), the on-shell action (2.137) can be written
in terms of the chemical potentials ω, ∆1, ∆3 as:

I =
1
2 i

∆1 ∆3
ω

. (3.51)

Notice that this is independent of β, as also found in the five-dimensional
analysis. The expression (3.51) is promising since the form of the right-
hand side matches with the one of the entropy function for these black
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holes proposed in [70]; however it is important to remark that we are
not yet considering BPS black holes, but just supersymmetric ones.
The natural expectation that we have to verify is that eq. (3.51) will
still hold for the BPS black hole solution. Using (3.50), the quantum
statistical relation (2.136) takes the supersymmetric form:

I = −S − ω J − 2 ∆1Q1 − 2 ∆3Q3 . (3.52)

Having fully analyzed the supersymmetric complexified solutions, we
are ready to take the BPS limit by sending R+ → R⋆, where R⋆ is the
map of the BPS horizon position r⋆ in (2.140) under the change of
coordinate (3.43), that is:

R⋆ = 2 s1 c1m⋆ tanh (δ1 + δ2) . (3.53)

As it appears clear by looking at (3.44), when R+ → R⋆ the complex
expression for m becomes real and gives m → m⋆. Accordingly, the
original chemical potentials are trivially fixed to the BPS values (2.141).
Instead, the BPS limit of the redefined chemical potentials ω, ∆1, ∆3
appears to be more interesting, since β is going to infinity but at the
same time the parenthesis in (3.46) vanish. We define the BPS chemical
potentials as

ω⋆ = lim
R+→R⋆

ω , ∆⋆I = lim
R+→R⋆

∆I . (3.54)

By evaluating them explicitly from (3.48), we find that they stay finite
and that their explicit expressions are given by

ω⋆ = − 16π
Θ

(︂
e2(δ1+δ2) − 3

)︂ [︂
4R (s1 c1 + s2 c2)

± 4 i s1 s2 c1 c2 (c1 c2 + s1 s2) eδ1+δ2
]︂

,

∆⋆1 = − 16π
Θ

{︂
R
[︂
(e4δ2 − 3) e2δ1 − 4s2 c2 + 2 e−2δ1

]︂
∓2 i s2 c2

[︂
e2(δ1+δ2)

(︁
c2

1 + s2
1 + 2s1 c1 + 2s2 c2

)︁
− c2

2 − s2
2 − 4s2 c2

]︂}︂
,

(3.55)

where ∆⋆3 is obtained from ∆⋆1 by switching δ1 and δ2, and

Θ = e2(δ1+δ2)
(︂

e4δ1 + e4δ2 − 10
)︂
+ 6 e4(δ1+δ2) + e6(δ1+δ2)

− 2
(︂

e−4δ1 + e−4δ2
)︂
− 2

[︂
4
(︂

e4δ1 + e4δ2
)︂
− 7
]︂

+ e−2(δ1+δ2)
[︂
5
(︂

e4δ1 + e4δ2
)︂
− 3
]︂

,

R =
√︂
s1 s2 c1 c2 (s1 c2 + s2 c1) eδ1+δ2 . (3.56)

Therefore, the chemical potentials ω, ∆1, ∆3 remain complex even after
the BPS limit is taken; moreover, since the BPS limit is entirely smooth,
they still satisfy the constraint (3.47)

ω⋆ − ∆⋆1 − ∆⋆3 = ∓ 2 i π . (3.57)
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The on-shell action at the BPS point retains the form of (3.51) and it
is thus given by

I⋆ =
1
2 i

∆⋆1 ∆⋆3
ω⋆

, (3.58)

moreover it satisfies

I⋆ = −S⋆ − ω⋆J⋆ − 2 ∆⋆1Q
⋆
1 − 2 ∆⋆3Q

⋆
3 . (3.59)

The supersymmetric on-shell action (3.51) matches the entropy func-
tion proposed in [70]. There, it was shown that the BPS entropy follows
from Legendre transforming this entropy function and demanding re-
ality of the Legendre transform. Here we have shown a derivation of
the entropy function from imposing supersymmetry in the black hole
thermodynamics. This derivation has been provided for the first time
in [67]. The relation with the entropy is clear from (3.58). The expres-
sions (3.55) for the BPS chemical potentials match the saddle point
values obtained from Legendre transforming the entropy function, as it
can be checked by plugging the formulae (2.142) for the BPS charges
in the saddles given in [70], and comparing with (3.55).

3.3 bps limit for ads6 black holes

We now turn to show how our BPS limit can be applied to the six-
dimensional black holes we have introduced in sec. 2.3.1. The procedure
is very similar to the one illustrated for the four- and five-dimensional
cases.

The complexified family of supersymmetric solutions is obtained by
imposing the supersymmetry condition (2.155) and by solving the equa-
tion R(r+) = 0, with R given by eq. (2.150), for the parameter m, so
that this is traded for the position of the outer horizon r+. Here there
is no need to change the radial coordinate as in the previous cases,
since the equation is already of quadratic order in m. The solutions of
R(r+) = 0 are given by

m =
1
2 (r+ ∓ i) (a± i r+) (b± i r+) (a+ b) (a+ b+ 2) , (3.60)

therefore m is complex for real values of a, b, r+. Plugging this expres-
sion for m in the chemical potentials (2.151), we find that these are
complex and non trivially fixed as in the BPS case; furthermore they
satisfy the constraint

β (1 + Ωa + Ωb − 3 Φ) = ∓ 2π i . (3.61)

As for the previous cases, we introduce the new chemical potentials

ωa = β (Ωa −Ω⋆
a) , ωb = β (Ωb −Ω⋆

b) , ∆ = β (Φ−Φ⋆) ,
(3.62)
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which satisfy

ωa + ωb − 3 ∆ = ∓ 2π i . (3.63)

As a consequence of the supersymmetry algebra, the complex black
hole charges satisfy the supersymmetry condition

E −Ω⋆
a Ja −Ω⋆

b Jb −Φ⋆Q = 0 . (3.64)

Using (3.62), (3.64) in (2.154), we obtain the supersymmetric quantum
statistical relation for these black holes

I = −S − ωa Ja − ωb Jb − ∆Q . (3.65)

For the AdS6 case we did not evaluate the on-shell action explicitly,
therefore we have to compute it from the expression above. Doing so,
we find

I =
π i

3
∆3

ωa ωb
, (3.66)

the right-hand side has the same form of the entropy function proposed
in [70]. However, this result is referred to the complexified family of
supersymmetric but non extremal solutions; we want to show that this
also holds for the BPS black hole.

To do so, we take the extremal limit by sending r+ → r⋆. As in the
previous cases, the BPS chemical potentials stay finite and take the
limiting values

ω⋆a =
2 i π (a− 1) (b+ i r⋆)

2 i a b r−1
⋆ + a b+ a+ b− 3 r2

⋆

,

ω⋆b =
2 i π (b− 1) (a+ i r⋆)

2 i a b r−1
⋆ + a b+ a+ b− 3 r2

⋆

,

∆⋆ =
2 i π (a+ i r⋆) (b+ i r⋆)

2 i a b r−1
⋆ + a b+ a+ b− 3 r2

⋆

. (3.67)

Since the limit is smooth, the constraint

ω⋆a + ω⋆b − 3 ∆⋆ = ∓2π i (3.68)

is still satisfied by the BPS chemical potentials (3.67); moreover, the
BPS on-shell action results to be

I⋆ =
π i

3
(∆⋆)3

ω⋆a ω
⋆
b

, (3.69)

so that it coincides with the entropy function proposed in [70]. We
obtained in this way a derivation of the BPS AdS6 black hole entropy
function.
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3.4 bps limit for ads7 black holes

The final case we discuss is the one of AdS7 black holes. In this section
we illustrate the BPS limit for the family of finite-temperature solutions
we have introduced in sec. 2.4.2. The BPS limit for the AdS7 black hole
we examine has also been discussed in [96].

The procedure is totally analogous to the previous cases, therefore
we will keep the presentation a bit shorter with respect to the previ-
ous sections. The first step is to obtain the the complexified family of
supersymmetric solutions; to land on them, we impose the supersym-
metry condition (2.170) and we solve the equation Y (r+) = 0 for the
parameter m, thus trading it for the position of the outer horizon r+.
This equation is of quadratic order in m, therefore it is immediately
solved as:

m =− c+ 2 s
648 s6

{︃[︂
3 r2

+

(︁
c2 − 8 c s+ s2 + 1

)︁
+ 8 e−2δ

]︂
R+ 16 e−3δ

+ r2
+ (4 s− c)

[︂
2 r2

+

(︁
7
(︁
c2 + s2)︁+ 4 c s− 9

)︁
− 2e−2 δ − 18

]︂}︃
,

(3.70)

where

R =
√︂

4 e−2δ − 2 r2
+ [7 (c2 + s2) + 4 c s− 9] . (3.71)

We would like to establish whether the argument of this square root is
positive or negative. Using the expression for r⋆ given in (2.172), we
can write

R =

⌜⃓⃓⎷4−
16 r2

+

(︂
r2
⋆ − r⋆

√︁
r2
⋆ + 1 + 1

)︂
r2
⋆

, (3.72)

and using the physical condition r+ > r⋆ it is easy to see that the
argument satisfies the inequality

4−
16 r2

+

(︂
r2
⋆ − r⋆

√︁
r2
⋆ + 1 + 1

)︂
r2
⋆

< 4− 8 r2
+

r2
⋆

< 0 , (3.73)

so that it is negative for all the permitted values of r+. Consequently,
the square root is always imaginary and the expression for m given
in (3.70) is therefore complex. This identifies our complexified family
of solutions.

Plugging the above expression for m in the chemical potentials, we
find that these are complex as expected and that they satisfy the con-
straint

β (1 + 3 Ω− 2 Φ) = ∓ 2π i . (3.74)

As for the previous cases, we introduce the redefined chemical potentials

ω = β (Ω−Ω⋆) , ∆ = β (Φ−Φ⋆) ; (3.75)
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with respect to which the constraint (3.74) is written as:

3ω− 2 ∆ = ∓ 2π i . (3.76)

The on-shell action can be obtained by the quantum statistical rela-
tion (2.169), as for the six-dimensional case. We checked that it is given
in terms of the supersymmetric chemical potentials by

I = − π3

128
∆4

ω3 . (3.77)

Although we are considering a supersymmetric but not extremal family
of solutions, this is very promising since the form of the right-hand side
matches with the one of the entropy function proposed in [68]. Further-
more, the supersymmetric on-shell action and the chemical potentials
satisfy the supersymmetric quantum statistical relation

I = −S − 3ω J − 2 ∆Q . (3.78)

We are ready to take the extremal limit by sending r+ → r⋆. The
limiting values of the chemical potentials are:

ω⋆ = −
6π
√︁

2 (16 c s+ c2 + s2 + 1) (c− 4 s)
(c+ 8 s) Θ

×

×
[︃
c
(︂√

3−
√
−8 tanh δ− 1

)︂
+ 4 s

(︂√
−8 tanh δ− 1 + 2

√
3
)︂]︃

,

∆⋆ = −
64π

(︁√
3 e−δ (c+ 8 s) + 9 c s

√
−8 tanh δ− 1

)︁
Θ eδ

√︁
2 (c2 + 16 c s+ s2 + 1)

, (3.79)

where we have defined

Θ = 8 c s
(︃√︂
−3 (8 tanh δ + 1)− 18

)︃
− 9

(︃√︂
−3 (8 tanh δ + 1) + 1

)︃
+

(︃
23
√︂
−3 (8 tanh δ + 1)− 9

)︃(︁
c2 + s2)︁ . (3.80)

Since the limit towards extremality is smooth, the BPS chemical po-
tentials satisfy the constraint

3ω⋆ − 2 ∆⋆ = ∓ 2π i , (3.81)

which is completely analogous to what we have found in lower dimen-
sions. In terms of these chemical potentials, the BPS n-shell action
reads

I⋆ = − π3

128
(∆⋆)4

(ω⋆)3 , (3.82)

therefore it matches exactly with the entropy function proposed in [68].
This completes our derivation of the BPS entropy function from black
hole thermodynamics.
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d Charges BPS entropy Entropy function

4 J , Q1 = Q2, Q3 = Q4
π J⋆

2(Q⋆1+Q⋆3)
I⋆ = 1

2 i
∆⋆1 ∆⋆3
ω⋆

5 J1 = J2, Q1, Q2, Q3 2π
√︂∑︁

I<J Q
⋆
I Q

⋆
J −

π
2J

⋆ I⋆ = π ∆1 ⋆∆2 ⋆∆3 ⋆

(ω⋆)2

6 J1, J2, Q
−3π2(

∑︁
i
Ji)

2
+π

√︂
9π2 (

∑︁
i
Ji)

2
+12Q4

9Q I⋆ = π i
3

(∆⋆)3

ω⋆1 ω
⋆
2

7 J1 = J2 = J3, Q1 = Q2 2π
√︃

32 (Q⋆)3−3π2 (J⋆)2

32Q⋆−π2 I⋆ = − π3

128
(∆⋆)4

(ω⋆)3

Table 3.1: For each spacetime dimension d, we have reported the set of con-
served charges, the BPS entropy and the on-shell action matching
the entropy function of the AdSd black hole solutions we have an-
alyzed.

3.5 recap and discussion

The main result of this section has been to provide a derivation of the
extremization principle leading to the Bekenstein-Hawking entropy of
AdSd black holes, by showing that the entropy functions of [65, 68, 70]
are the supergravity on-shell action I = I(ωi, ∆I) evaluated on a com-
plexified family of supersymmetric solutions. The BPS chemical poten-
tials ωi, ∆I indeed satisfy the corresponding extremization equations
and they fulfil a linear complex constraint analogous to (3.1). The cor-
rect BPS chemical potentials and the on-shell actions exactly reproduc-
ing the entropy functions are obtained by taking the particular BPS
limit of AdS rotating black hole thermodynamics we have presented in
this section. The analysis of several examples across different spacetime
dimensions demonstrates that this approach is general and should play
a role towards understanding the thermodynamics of BPS black holes
in AdS.

We report in tab. 3.1 a summary of all the different cases we have
studied throughout this section: the set of conserved charges, the ex-
pression for the entropy and the one for the on-shell action match-
ing the entropy functions are reported for each black hole. For each
dimension, the solutions we have analyzed are not the most general
ones, as it is evident from the table since there are conserved charges
which are assumed to be equal; therefore there are some generalizations
that it would be interesting to consider. The analysis of the solutions
of [110, 139] we have provided strongly indicates that the same BPS
limit will work when the most general set of electric charges and an-
gular momenta is turned on in each spacetime dimension, although in
many cases the corresponding asymptotically AdS black hole solutions
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d Known uplift Most general set of black hole conserved charges
4 AdS4 × S7 J ∈ SU(2) ⊂ SO(2, 3) , Q1,Q2,Q3,Q4 ∈ U(4) ⊂ SO(8)
5 AdS5 × S5 J1, J2 ∈ U(2) ⊂ SO(2, 4) , Q1,Q2,Q3 ∈ U(3) ⊂ SO(6)
6 AdS6 × S4/Z2 J1, J2 ∈ SO(4) ⊂ SO(2, 5) , Q

7 AdS7 × S4 J1, J2, J3 ∈ SO(6) ⊂ SO(2, 6) , Q1,Q2 ∈ U(2) ⊂ SO(4)

Table 3.2: For each spacetime dimension d, we have reported the known uplifts
and the most general sets of conserved charges a black hole solution
can present.

are still to be constructed, and the explicit check may be technically
hard to perform. We display in tab. 3.2 the known uplifts and the most
general sets of conserved charges a black hole solution can present. Here
below we briefly discuss each case in few details.

Starting from the context of eleven-dimensional supergravity on S7,
one could relax the condition of pairwise equal electric charges within
the U(1)4 consistent truncation of SO(8) maximal supergravity, though
the finite-temperature asymptotically AdS4 solution with four indepen-
dent electric charges in addition to the angular momentum has not
been found yet51. In four dimensions, one could also switch on mag-
netic charges. For type IIB supergravity on S5, one could analyze the
solution carrying two independent angular momenta and three indepen-
dent electric charges given in [108]. For massive type IIA supergravity
on S4/Z2, the solution of [139] discussed here already carries all possi-
ble independent electric charges and angular momenta available within
known consistent truncations, although one may still search for asymp-
totically AdS6 black holes carrying a non-vanishing electric charge for
the additional U(1) ⊂ SU(2) isometry of S4 working directly in ten
dimensions (this charge would be dual to a flavor charge of the D4-
D8-O8 SCFT5). For eleven-dimensional supergravity on S4, a solution
carrying two independent electric charges and three independent an-
gular momenta is likely to exist within the U(1)2 truncation of seven-
dimensional SO(5) maximal supergravity, but has not been found yet.
Nevertheless, the known solutions allow to partially relax the condi-
tion of equal electric charges and equal angular momenta we imposed:
one could take the two electric charges in the solution of [110] to be
independent, or consider the solution with equal electric charges but
independent angular momenta given in [143].

For all the cases where the most general solution has still to be
constructed, although constructing the full asymptotically AdSd black
hole would be desirable, for the purpose of studying the extremization
principle it may be sufficient to focus on the simpler near-horizon geom-
etry, upon identifying the near-horizon counterpart of our BPS limit.
This approach, once promoted to the full ten- or eleven-dimensional

51 Very recently, the corresponding BPS solution has been constructed in [135].
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supergravity theory, may also lead to a generalization of the extremiza-
tion principle of [57, 58, 153] to the case of rotating horizons with no
magnetic charge. However, an important issue that must be remarked
is that if we only have the near-horizon at our disposal, we cannot
evaluate the various thermodynamical quantities by using holographic
renormalization, since there would no longer be an asymptotically AdS
region to perform this technique in. Therefore, we must seek for another
approach in order to obtain them. There are several possibilities to be
explored: one is using Sen’s formalism, in the spirit of [154], another
one could be exploiting the isolated horizon formalism defined in [11]
and extended to the rotating case in [12].

There is a large class of new black hole solutions in five-dimensional
minimal ungauged supergravity which has been recently found in [155].
The black holes of the family are supersymmetric, stationary and asymp-
totically flat. They contain non-trivial topology outside the event hori-
zon and have the same conserved charges at infinity as the famous
BMPV solution found in [156]. The most striking feature of this family
of solutions is that there are some black holes which have greater en-
tropy than the BMPV solution. This is a surprising fact since it poses
a puzzle about why the the original counting of states [156] reproduces
the the BMPV entropy. This seemed like a perfect agreement at the
time, since the BMPV black hole was the only known solution with
such charges. It would be interesting to search for asymptotically AdS5
solutions of similar kind to the ones found in [155]. If these solutions
turn out to exist, then it would be worth to study them applying an
appropriate version of the BPS limit studied in this chapter.

In the next chapter, we are going to focus on black holes that are
just asymptotically locally AdS5, the S3 spatial part of the conformal
boundary being squashed. These black holes have been constructed
in [99–101]; in particular in the first paper the minimal gauged super-
gravity black hole was presented, while in the others black hole solu-
tions to N = 2 Fayet-Iliopoulos supergravity are introduced. It has
been shown in [99,100] that the expression of the Bekenstein-Hawking
entropy of these black holes in terms of the charges is the same as in the
round S3 case, provided one uses the Page electric charges of the solu-
tion. Hence the entropy function should also be the same, provided the
electric potentials ∆I are those conjugate to the Page charges. It would
be interesting to show this from the on-shell action by implementing
the BPS limit discussed here. Likewise, it would be worth performing
the same analysis for asymptotically locally AdS black hole solutions
in dimensions different than five.





4
A L A D S 5 B L AC K H O L E S
W I T H S Q U A S H E D
B O U N DA RY

In Chapter 1 we have discussed how the entropy of supersymmetric
asymptotically AdSd black holes can be reproduced via a CFTd−1 com-
putation. Furthermore, we have introduced the extremization principle
for rotating AdSd black holes, which states that the entropy of these
solutions can be reproduced by Legendre transforming an entropy func-
tion which is function of some BPS chemical potentials satisfying a lin-
ear, complex constraint. In Chapter 3 we have described the BPS limit
originally proposed in [66] and generalized in [67] that, when applied
to a finite-temperature AdSd black hole solution, is able to provide
the BPS chemical potentials above mentioned and the entropy func-
tion, which coincides with the on-shell action. By introducing this BPS
limit, we provided a physical interpretation to the extremization prin-
ciple, by showing that the entropy function can be identified with the
on-shell action of the solution.

One question which might be interesting to answer is whether the pic-
ture above changes when one considers solutions which are not asymp-
totically AdSd, but only asymptotically locally AdSd. In order to avoid
confusion, it is worth spending some words to define AlAdS spacetimes.
To this aim, we recall that AdSd is the maximally symmetric solution of
Einstein’s equations with negative cosmological constant. Its curvature
tensor is given by

Rµνρσ = gµσgνρ − gµρgνσ , (4.1)

and it has a conformal boundary with topology R×Sd−2. AAdS space-
times are solutions of Einstein’s equations which asymptotically become
exactly AdS spacetimes. AlAdS spacetimes are characterized instead by
the fact that the Riemann tensor approaches (4.1) asymptotically. For
more details on this definitions we refer the reader to [116,117].

For instance, such solutions might be obtained by trying to deform
the geometry of an AdSd black hole at the conformal boundary; if
the solution continues to exist it would be interesting to study how the
deformation affects the thermodynamics of the black hole. Furthermore,
constructing this solution might also shed some light on which field
theory states contribute to the black hole entropy.
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In five-dimensions, this question has been firstly investigated in [101,
157]52.

Working in minimal five-dimensional gauged supergravity and using
a cohomogeneity-one ansatz with local SU(2)×U(1)×U(1) symmetry,
the authors constructed both supersymmetric and non-supersymmetric
black holes where the three-sphere sitting at the conformal boundary
of global AdS5 is squashed. Since the boundary is non conformally-
flat, the solutions are indeed AlAdS5. The supersymmetric black hole
presents an arbitrary squashing at the boundary; however the event
horizon geometry turns out to be completely frozen and therefore the
entropy takes a fixed value. This behaviour is different from the mini-
mal gauged supergravity black hole of Gutowski-Reall, originally con-
structed in [41] and presented in detail in sec. 2.1.3.1, which presents
the same symmetry: indeed for this solution the entropy depends on
one parameter controlling the horizon geometry.

It is natural to look for more general solutions in a more general the-
ory which do not present a frozen horizon geometry and would be thus
more interesting. This is what we have done in [99,100]: we constructed
more general supersymmetric black holes having a local SU(2)× U(1)×
U(1) symmetry and displaying a squashed three-sphere at the bound-
ary in the context of the five-dimensional Fayet-Iliopoulos gauged su-
pergravity theory we have introduced in sec. 2.1.1. In the solutions
we will look for, one of the Abelian Killing vectors is timelike while
the remaining SU(2)× U(1) symmetry acts on a three-sphere. The a
priori non-vanishing, conserved charges carried by the solutions thus
are the energy, one angular momentum and nV + 1 electric charges.
Previously known supersymmetric solutions with the same symmetry
include the black holes of [41,42], the black hole with a squashed bound-
ary of [101,157] and a solitonic deformation of AdS found in [133]. Apart
for the solution of [42], these were obtained by restricting to minimal
gauged supergravity and thus have just one electric charge.

The difference between the approaches taken in [99] and in [100] is
the following. In the former paper we insisted on constructing a so-
lution in the general theory with arbitrary nV , this was possible by
imposing an ansatz on the scalar fields. Instead, in the latter paper we
searched for AlAdS black holes in the U(1)3 theory, i.e. in the theory
with nV = 2; as we have already mentioned, these solutions are particu-
larly interesting since they can be uplifted to type IIB ten-dimensional
string theory [104] in the fashion of sec. 2.1.1.2. The black holes found
in [100] are totally general, i.e. no arbitrary ansatz has been imposed to
solve the supersymmetry equations. For both general theory with nV
arbitrary and the U(1)3 one, we found that the equations to be solved
in order to find a solution are very complicated and we could not find
new analytic solutions in both cases. Therefore, we rather construct

52 See also [158] for a non-supersymmetric study.
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the near-horizon and near-boundary solutions perturbatively and then
interpolate numerically.

In [99] a two-parameter family of supersymmetric black holes dis-
playing both running gauge fields and scalar fields is obtained, while
the solutions of [100] present three arbitrary parameters; both the fam-
ilies of solutions generalize the one-parameter solution of [101,157]. For
both cases, we will show that for a certain range of the parameters the
solution is regular on and outside the horizon.

For both families of solutions, we find that of the total set of param-
eters one controls the event horizon geometry as well as the angular
momentum and the Page electric charges of the solution, while the re-
maining ones are responsible for the squashing at the boundary and do
not affect the horizon. This means that whatever is the squashing at
the boundary, the radial flow towards the horizon acts as an attractor
that brings the transverse geometry into a form which only depends
on the remaining parameter(s). Still, the horizon is not frozen and the
entropy is a non-trivial function of the parameters.

In both cases, we set up holographic renormalization for Fayet-Iliopoulos
gauged supergravity, providing the needed counterterms. This allows us
to compute the holographic one-point function for the SCFT energy-
momentum tensor, R-current, flavour currents and the scalar super-
partners of the latter. These in turn provide the holographic energy,
the angular momentum and the R- and flavour charges. While these
conserved quantities are naturally interpreted as expectation values of
the corresponding SCFT operators in the state dual to the black holes,
they also make sense in the gravitational solution, independently of
holography. In addition we compute the renormalized on-shell actions
for both families and verify that they satisfy the quantum statistical re-
lation. Finally, we find in both cases that the black hole entropy can be
expressed as simple functions of the angular momentum and the Page
electric charges, but apparently not the holographic electric charges.

This chapter is organized as follows. In section 4.1 we partially solve
the supersymmetry conditions given in sec. 2.1.3.1, originally derived
in [42], so to reduce the problem to a few coupled ordinary differential
equations in both cases. In section 4.2 we present our families of solu-
tions. In section 4.3 we discuss holographic renormalization in Fayet-
Iliopoulos supergravity and apply it to the evaluation of the holographic
charges as well as the on-shell action. We also discuss the entropy of
the solutions. We devote section 4.4 to recap and discuss the results we
have shown in the chapter.
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4.1 supersymmetry conditions for alads5 solutions

4.1.1 Equations for the theory with nV arbitrary

We are working in the same setting of [42], so we are still assuming for
our solution the form (2.49) for the metric and the one given in (2.51)
for the gauge fields. Therefore, supersymmetric solutions can be still
obtained by solving the set of supersymmetry equations (2.52)- (2.56).
In [42], the above system was solved by making the guess (2.60), while
here we would like to proceed with no loss of generality as much as
possible. We can express the lower-index scalars XI(ρ) by separating
the component along the constant vector X̄I and the orthogonal ones:

f−1XI = f−1
minX̄I + hI , (4.2)

where hI are functions of ρ satisfying

X̄
I
hI = 0 , (4.3)

while the component along X̄I has already been fixed using (2.52).
Plugging (4.55) in the constraint (2.8), we find that f is expressed as:

f =

(︃
f−3

min +
27
2 f

−1
minC

IJKX̄IhJhK +
9
2C

IJKhIhJhK

)︃−1/3
. (4.4)

Using the identity (2.59), equation (2.53) for U I becomes(︂
a2U I

)︂′
=
ϵℓ

3 X̄
I
(︂
a2p

)︂′
+

36ϵ
ℓ
a3a′CIJKX̄JhK . (4.5)

The right-hand side of the above equation becomes a total derivative
if we trade hI for some new functions, HI(ρ), defined as

hI =
H ′
I

a3a′ . (4.6)

Exploiting the replacement above, we can solve the equation for U I as

U I =
ϵℓ

3 X̄
I
p+

36ϵ
ℓa2C

IJKX̄JHK +
U I0
a2 , (4.7)

where U I0 are integration constants. In the following we will choose
U I0 = 0 53 and thus require that

X̄
I
HI = 0 . (4.8)

We have started solving the system of supersymmetry conditions by
expressing XI , f and U I in terms of a and HI . Our next step is to use

53 A preliminary analysis with UI
0 ̸= 0 was performed in [99] and no regular solutions

has been found due to a divergence appearing in the perturbative expansion at small
ρ.
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the above results to manipulate eq. (2.54) containing w and the Maxwell
equation (2.56), as we have already done for the Gutowski-Reall mini-
mal black hole solution in sec. 2.1.3.1. Recalling the expression of the
g function given in (2.103) and observing that the following identity
holds (︂

a−2p
)︂′

= −2a′g

a
, (4.9)

we are able to write eq. (2.54) as

a

2a′ (a
−2w)′ ≡ w′

2aa′ −
w

a2 = ϵ

[︄
ℓ

2f
−1
min g−

27a
ℓ a′ X̄IC

IJK H ′
J

a3a′

(︃
HK

a4

)︃′ ]︄
.

(4.10)

It remains to massage the Maxwell equation (2.56). After some compu-
tations involving the identity (2.3), we find that

CIJKU
JUK =

2ℓ2

3 X̄I p
2 +

8p
a2HI +

288
ℓ2a4 Q̄IJ (CHH)J , (4.11)

where we used the shorthand notation (CHH)J = CJKLHKHL, while
by Q̄IJ we denote the kinetic matrix (2.10) evaluated on X = X̄. Then,
eq. (2.56) becomes[︄

a3a′
(︃
f−1

minX̄I +
H ′
I

a3a′

)︃′
+ X̄I

(︄
ϵ

ℓ
a2w+

ℓ2p2

18

)︄

+
2p
3a2HI +

24
ℓ2a4 Q̄IJ (CHH)J

]︄′

= 0 .

(4.12)

The component along X̄I , which is obtained by contracting with X̄
I ,

reads[︄
a3a′

(︂
f−1

min

)︂′
+
ϵ

ℓ
a2w+

ℓ2p2

18 +
36
ℓ2a4C

IJKX̄IHJHK

]︄′

= 0 . (4.13)

The components having vanishing contraction with X̄I , which are given
by MaxwI − X̄IX̄

JMaxwJ , where MaxwI is eq. (4.12), read instead[︄
H ′′
I −

(︃3a′

a
+
a′′

a′

)︃
H ′
I +

2p
3a2HI

+
24
ℓ2a4

(︃
Q̄IJ −

3
2X̄IX̄J

)︃
(CHH)J

]︄′

= 0 .

(4.14)

We can rearrange eq. (4.13) as follows

w′

2aa′ +
w

a2 = −ϵℓ2

[︄
∇2(f−1

min) + 8ℓ−2f−2
min −

ℓ2g2

18

+
36

ℓ2a3a′ X̄IC
IJK

(︃
HJHK

a4

)︃′
]︄

,

(4.15)
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where

∇2f−1
min =

1
a3a′

(︃
a3a′

(︂
f−1

min

)︂′
)︃′

(4.16)

is the Laplacian of f−1
min on the Kähler base B.

Now we can follow the strategy we have announced above, i.e. we
combine (4.15) with (4.10) in order to eliminate w′ and solve for w as

w = −ϵℓa
2

4

{︄
∇2(f−1

min) +
8
ℓ2
f−2

min −
ℓ2g2

18 + f−1
min g

+
36

ℓ2a3a′ X̄IC
IJK

[︄(︃
HJHK

a4

)︃′
− 3a

2a′H
′
J

(︃
HK

a4

)︃′
]︄}︄

,

(4.17)

the final step is to plug this back into either (4.10) or (4.13), doing this
we finally arrive at(︄

∇2f−1
min +

8
ℓ2
f−2

min −
ℓ2g2

18 + f−1
min g

)︄′

+
4a′g

afmin

+X̄IC
IJK

{︄
36

ℓ2a3a′

[︄(︃
HJHK

a4

)︃′
− 3a

2a′H
′
J

(︃
HK

a4

)︃′
]︄}︄′

− 216
ℓ2
X̄IC

IJK H ′
J

a3a′

(︃
HK

a4

)︃′
= 0 . (4.18)

The main result we have obtained for now is that we have partially
solved the system of equations (2.52)– (2.56) for a, f , w, U I , XI and
we have reduced the problem of finding new solutions into solving the
equations (4.14), (4.18) involving just the unknown functions HI and
a. Eq. (4.14) is third order in the variable ρ, while eq. (4.18) contains
up to six derivatives.

The equations above reduce to the supersymmetry conditions for the
minimal gauged supergravity theory [41] when HI = 0. Indeed, in this
case (4.4) yields f = fmin while from (4.55) we see that the scalars are
set to the constant value taken in the AdS5 solution, XI = X̄

I . The
expression (2.51) for the gauge fields becomes

AI = X̄
I
A , with A = f (dy+w σ̂3) +

ϵℓ

3 p σ̂3 (4.19)

being the graviphoton of minimal gauged supergravity. Moreover, (4.14)
trivializes while eqs. (4.10), (4.13), (4.17), (4.18) reduce to those of the
minimal case given in [41].

4.1.1.1 Imposing an ansatz

So far we have manipulated the original supersymmetry equations of [42]
without any restriction,54 arriving at eqs. (4.14), (4.18). Although study-
ing the solutions of the two equations above in the general case of ar-
bitrary nV without imposing any ansatz would be very interesting and

54 Apart for fixing the integration constants UI
0 = 0 when solving for UI .
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desirable, this appears to be a very complicated task. There are two
possibilities to simplify the analysis: the first one is to choose a partic-
ular value for nV , the second one is to impose an ansatz which helps us
to solve the equations. Here we choose the second road and search for
solutions with arbitrary nV ; in the next section we will instead follow
the first strategy and fix nV = 2, looking for solutions of the U(1)3

theory.
We find it convenient to impose the ansatz

HI = qI H , I = 0, . . . ,nV , (4.20)

where H(ρ) is a real function and qI is a constant vector, which for
consistency with (4.8) must be orthogonal to X̄I ,

X̄
I
qI = 0 . (4.21)

Although this ansatz will not be enough for solving the equations an-
alytically, it will reduce the number of independent equations we have
to study and will be helpful while performing the perturbative and
numerical analysis in the next sections.

Plugging our ansatz in, eq. (4.14) becomes

qI

[︃
H ′′ −

(︃3a′

a
+
a′′

a′

)︃
H ′ +

2p
3a2H

]︃′
− 4
ℓ2
WI

(︄
H2

a4

)︄′

= 0 , (4.22)

where the constant vector WI is defined as

WI = (−6Q̄IJ + 9X̄IX̄J )C
JKLqKqL . (4.23)

There are now some different cases we have to analyze:

• The case when WI = 0, then one can see that necessarily qI = 0.
Indeed multiplying (−6Q̄IJ + 9X̄IX̄J ) (Cqq)J = 0 by Q̄

−1 and
using (2.11) we obtain (Cqq)I = (CX̄qq)X̄I . Contracting (2.3)
with four q’s one finds that this implies (CX̄qq) = 0. This in turn
means that qI = 0;

• The case when the constant vectors qI and WI are linearly in-
dependent. Then, their coefficients in (4.22) have to vanish sepa-
rately. In this case, from the term proportional to WI we obtain

H = const a2 , (4.24)

while the rest of (4.22) has, up to trivial symmetries involving
shifts and rescalings of the coordinate ρ, the general solution:

a = αℓ sinh(ρ/ℓ) , (4.25)

where α is a parameter. This automatically satisfies (4.18) with-
out imposing further conditions; it is not a new solution, but just
the AdS black hole found in [42] and described in sec. 2.1.3.1
which presents a conformally flat boundary;
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• The case when the vectors WI and qI are parallel to each other.
Since the overall scale of qI is immaterial (as it can always be
reabsorbed in the function H), there is no loss of generality in
assuming WI = qI . Recalling the definition of WI , we conclude
that we have to impose the condition

(−6Q̄IJ + 9X̄IX̄J )C
JKLqKqL = qI . (4.26)

Note that this implies (4.21). Thus we have a system of nV + 1
equations for nV + 1 unknowns qI , which in general determines
the qI .

From the above analysis, we conclude that new solutions within the
ansatz (4.20) may only be found if we assume that the vectors WI and
qI are parallel to each other. It can be shown that (4.26) also implies
(see [99] for a detailed proof of the identities below)

CIJKqJqK = − 1
18X̄

I + Ȳ
I , where Ȳ

I = CIJKX̄JqK ,
(4.27)

CIJKX̄IqJqK = CIJKqIqJqK = − 1
18 . (4.28)

(4.29)

With these relations at disposal, we can simplify the supersymmetry
conditions we have introduced in this section in such a way that one
can look for solutions independently of the specific values taken by the
qI . Indeed, we find that a solution is obtained by solving the following
coupled ODE’s for the functions a(ρ), H(ρ):[︄

H ′′ −
(︃3a′

a
+
a′′

a′

)︃
H ′ +

2p
3a2H −

4
ℓ2
H2

a4

]︄′

= 0 , (4.30)

(︄
∇2f−1

min +
8
ℓ2
f−2

min −
ℓ2g2

18 + f−1
min g

)︄′

+
4a′g

afmin

−
{︄

2
ℓ2a3a′

[︄(︄
H2

a4

)︄′

− 3a
2a′H

′
(︃
H

a4

)︃′
]︄}︄′

+
12
ℓ2

H ′

a3a′

(︃
H

a4

)︃′
= 0 ,

(4.31)

where we recall that fmin, p and g are the functions of a and its deriva-
tives given in (2.57), (2.58), and (2.103), respectively. Once a solution
for a and H is obtained, the five-dimensional supergravity fields are
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fully determined. The metric and the gauge fields take the form (2.49),
(2.51), where the functions f , w and U I read:

f =

[︄
f−1/3

min − 3
4f

−1
min

(︄
H ′

a3a′

)︄2

− 1
4

(︄
H ′

a3a′

)︄3 ]︄−3

, (4.32)

w = −ϵℓa
2

4

{︄
∇2(f−1

min) +
8
ℓ2
f−2

min −
ℓ2g2

18 + f−1
min g

− 1
2ℓ2a3a′

[︄(︄
H2

a4

)︄′

− 3a
2a′H

(︄
H

a4

)︄′ ]︄}︄
, (4.33)

U I =
ϵℓ

3 X̄
I
p+

36ϵ
ℓ
Ȳ
I H

a2 . (4.34)

From (4.20) we obtain the expression of the lower-index scalars XI

XI = X̄Iff
−1
min + qIf

H ′

a3a′ , (4.35)

while the scalars XI can be obtained from these by using (2.6), and
read

XI = X̄
I
f2
[︄
f−2

min −
1
4

(︄
H ′

a3 a′

)︄2 ]︄
+ 9 Ȳ I

f2
[︃
f−1

min +
H ′

2a3 a′

]︃
H ′

a3 a′ .

(4.36)

Note that all the quantities that carry an upper index I split into a part
aligned to X̄I and one aligned to Ȳ I . We recall that Ȳ I = CIJKX̄JqK ,
with the constants qK being in general determined by condition (4.26).
In the U(1)3 theory, the only allowed choices for the qI are either q1 =

q2 = 1
6 , q3 = −1

3 , or the similar expressions obtained by cyclically
permuting the indices 1, 2, 3. This implies that the Ȳ I take the values
Ȳ

1 = Ȳ
2 = − 1

18 , Ȳ 3 = 1
9 (or their cyclic permutations).

4.1.1.2 First integrals and conserved charges

Here we discuss some conserved charges and we introduce some first
integrals of the equations of motion. Both of them will play an impor-
tant role in the following. The analysis we report has been performed
in [99,100], generalizing to Fayet-Iliopoulos gauged supergravity similar
considerations made in [101,133] for minimal gauged supergravity.

We begin by considering a Cauchy surface (that is, a hypersurface of
constant time). This is foliated by three-dimensional spacelike, compact
hypersurfaces of constant ρ, that we denote by Σρ. By considering the
hypersurface Σ∞ at ρ =∞, we introduce the Page electric charges [159]:

PI =
1
κ2

∫︂
Σ∞

(︃
QIJ ⋆ F

J +
1
4CIJKA

J ∧ FK
)︃

. (4.37)

Since by the Maxwell equation (2.14) the integrand is a closed three-
form, it follows from the Stokes theorem that PI is a constant of the



106 alads5 black holes with squashed boundary

flow along the radial direction and can equally well be evaluated on any
other hypersurface Σρ (moreover it should be quantized in appropriate
units). In particular, it can be measured at the horizon, that is on Σρ=0.

In a similar fashion, we can associate a conserved angular momentum
to the symmetry generated by the vector K = ∂

∂ψ by considering the
following generalization of the Komar integral:

J =
1

2κ2

∫︂
Σ∞

[︃
⋆ dK + 2 ιKAI

(︃
QIJ ⋆ F

J +
1
6CIJLA

J ∧ FL
)︃]︃

. (4.38)

Using both the Einstein and the Maxwell equation, one can show that
the integrand is closed on the Cauchy surface and thus J can also be
evaluated on any Σρ. We emphasize that in general the standard Ko-
mar integral

∫︁
Σ∞

⋆dK would not satisfy this property, because of the
gauge field energy-momentum tensor in the Einstein equation. These
conserved charges are strictly connected to the first integrals we intro-
duce below, as we shall see in the following.

The analysis performed in [100] is able to find a total number of nV +

3 first integrals for the general case of arbitrary nV . One of them come
from the component of the Maxwell equation parallel to X̄I , nV + 1
comes from the orthogonal components and finally the last one can be
derived by manipulating the t

ψ component of the Einstein equations
using the Maxwell equation and the supersymmetry conditions. These
first integrals are given by

K1 = a3a′
(︂
f−1

min

)︂′
+

1
ℓ
a2w+

ℓ2p2

18 +
36
ℓ2a4C

IJKX̄IHJHK ,

(4.39a)

K(I)
2 = H ′′

I −
(︃3a′

a
+
a′′

a′

)︃
H ′
I +

2p
3a2HI

+
24
ℓ2a4

(︃
Q̄IJ −

3
2X̄IX̄J

)︃
(CHH)J , (4.39b)

K3 =
a

a′f3

(︂
f3w2 − 4a2(a′)2

)︂2
[︄

f3w

f3w2 − 4a2(a′)2

]︄′

− 12AIψ
(︂
K1X̄I +K

(I)
2 qI

)︂
+

1
3 CIJKA

I
ψA

J
ψA

K
ψ , (4.39c)

where the qI are defined such that X̄I
qI = 0 and they have to satisfy

eq. (4.26). Note that in the general nV case, the HI functions satisfy
the constraint X̄I

HI = 0, therefore one of the above first integrals is
dependent from the others and thus there are nV + 2 independent first
integrals.

By manipulating the definitions of the conserved charges (4.37) and
(4.38), it is possible to show that the Page charges PI decompose in
a term proportional to X̄I and a term proportional to qI , and that it
results

PI = −
48π2ℓ2

κ2

(︂
K1X̄I +K

(I)
2 qI

)︂
, (4.40)
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with the overall factor introduced for convenience. The Page charges
are therefore described by all the first integrals which derive from the
Maxwell equation. Furthermore, evaluating the angular momentum J ,
given in (4.38), on the supergravity background we are considering, we
find

J =
4π2ℓ3

κ2 K3 . (4.41)

so that J is proportional to the last first integral.
Imposing the special ansatz (4.20), all the HI functions are equal (up

to a constant) and therefore all the components of the Maxwell equation
orthogonal to XI¯ are also equal (up to a constant), so they globally
provide only one non-trivial first integral. Thus a total number of three
first integrals is obtained: two coming from the Maxwell equation and
one from the Einstein equations. These first integrals read

K1 = a3a′
(︂
f−1

min

)︂′
+

1
ℓ
a2w+

ℓ2p2

18 −
2

ℓ2a4 H
2 , (4.42)

K2 = H ′′ −
(︃3a′

a
+
a′′

a′

)︃
H ′ +

2p
3a2H −

4
ℓ2a4H

2 , (4.43)

K3 =
a

a′f3

(︂
f3w2 − 4a2(a′)2

)︂2
(︄

f3w

f3w2 − 4a2(a′)2

)︄′

− 12AIψ (K1X̄I +K2 qI) +
1
3CIJKA

I
ψA

J
ψA

K
ψ . (4.44)

Using the special ansatz, the conserved charges PI and J can be written
as

PI = −
48π2ℓ2

κ2 (K1X̄I +K2 qI) , (4.45)

J =
4π2ℓ3

κ2 K3 . (4.46)

The Page charges PI and the quantity J defined by a Komar inte-
gral can be regarded as the electric charges and the angular momentum
of the solution. However the procedure of holographic renormalization,
which we will employ later in this thesis, gives the possibility to define
in a different manner analogous conserved quantities playing the same
role; we will therefore compare them with the conserved Page charges
and angular momentum we have defined in the present section. In par-
ticular, since the contribution provided by the Chern-Simons term to
the holographic charges is different to the one for the Page charges, we
should expect that those conserved quantities are not equal.

One might be confused by the term holographic charges: this may
seem ambiguous since also the Page charges can be obtained by holo-
graphic renormalization adding suitable finite counterterms. In this the-
sis, we denote as holographic charges the ones which are obtained by
using holographic renormalization in a minimal subtraction scheme, i.e.
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without adding any finite counterterm except those coming from the
usual divergent ones. We refer to sec. 4.3.1 and to app. A for more
details.

4.1.2 Equations for the U(1)3 theory

In the previous section, we have obtained the nV + 1 independent super-
symmetry equations one has to solve in order to find a supersymmetric
solution to the N = 2 Fayet-Iliopoulos gauged supergravity theory we
are considering. These equations are given by (4.14), (4.18). Given the
fact that it is pretty difficult to find a solution of these equations in
the case of arbitrary nV , we have imposed the ansatz (4.20) so as to
simplify the analysis. Here, we choose another strategy: we focus on
the theory with nV = 2; as we already know, this is the U(1)3 theory
introduced in sec. 2.1.1.2, which is particularly interesting since it can
be uplifted to type IIB supergravity on AdS5 × S5 as we have seen in
the same section.

Our aim is thus to explicitly rewrite the supersymmetry equations
(4.14), (4.18) and all the various objects defined in the section above
for the case nV = 2. Since we have the index I running from 1 to
3, we will have three functions H1(ρ), H2(ρ), H3(ρ) which control the
scalars. The equations will depend on these three functions and on a(ρ).
However from eq. (4.8) we have the constraint

H1 +H2 +H3 = 0 . (4.47)

This implies that we can eliminate one of the HI functions. For example
we choose to use this constraint to replace H3 with

H3 = −H1 −H2 , (4.48)

so that H3 will never appear anymore throughout the thesis. It is con-
venient to define two particular combinations of H1 and H2 which will
appear in the supersymmetry equations:

Σ(H1,H2) = −
(︂
H2

1 +H2
2 +H1H2

)︂
, (4.49a)

Λ(H1,H2) = −
[︄
2H ′

1

(︃
H1
a4

)︃′
+ 2H ′

2

(︃
H2
a4

)︃′

+ H ′
1

(︃
H2
a4

)︃′
+H ′

2

(︃
H1
a4

)︃′
]︄
. (4.49b)

In order to obtain these equations, we start from (4.14), (4.18), we let
the index I run from 1 to 3, we use (4.48) to eliminate H3 whenever it



4.1 supersymmetry conditions for alads5 solutions 109

appears and we perform all the necessary contractions recalling (2.18).
Doing so we obtain the following three equations[︄

H ′′
1 −

(︃3a′

a
+
a′′

a′

)︃
H ′

1 +
2p
3a2H1

+
8

ℓ2a4

(︂
H2

1 − 2H2
2 − 2H1H2

)︂ ]︄′

= 0 ,

(4.50)[︄
H ′′

2 −
(︃3a′

a
+
a′′

a′

)︃
H ′

2 +
2p
3a2H2

+
8

ℓ2a4

(︂
−2H2

1 +H2
2 − 2H1H2

)︂ ]︄′

= 0 ,

(4.51)(︄
∇2f−1

min +
8
ℓ2
f−2

min −
ℓ2g2

18 + f−1
ming

)︄′

+
4a′g

afmin

+

{︄
12

ℓ2 a3 a′

[︄
2
(︃

Σ
a4

)︃′
− 3 a

2 a′ Λ

]︄}︄′

− 72 Λ
ℓ2 a3 a′ = 0 .

(4.52)

The problem of finding new solutions in the U(1)3 theory is thus re-
duced into solving these three equations (4.50), (4.51) and (4.52)

Once a, H1 and H2 are determined, all the other functions are fixed
in terms of these. The explicit expressions of them are straightforwardly
obtained by the general relations reported in sec. 4.1 by setting nV = 2
and performing the necessary contractions. Starting with the function
f , it is easy to show that it is given by

f =
[︂
f−3

min − 9 f−1
min

(︂
h2

1 + h2
2 + h1 h2

)︂
− 27

(︂
h2

1 h2 + h1 h
2
2

)︂]︂−1/3
,

(4.53)

with the hI being given in terms of HI as

hI =
H ′
I

a3a′ , (4.54)

so that

f−1XI = f−1
minX̄I + hI . (4.55)

The three hI functions obviously satisfy the constraint h1 +h2 +h3 = 0
as the HI do. The function w can be written as

w = −ℓ a
2

4

⎧⎨⎩∇2(f−1
min) +

8
ℓ2
f−2

min −
ℓ2g2

18 + f−1
min g

+
12

ℓ a3 a′

[︄
2
(︃

Σ (H1,H2)

a4

)︃′
− 3 a

2 a′ Λ (H1,H2)

]︄⎫⎬⎭.
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(4.56)

The functions U1, U2 and U3 are given in terms of HI by

U1 =
ℓ

3 p−
12
ℓ a2 H1 , (4.57)

U2 =
ℓ

3 p−
12
ℓ a2 H2 , (4.58)

U3 =
ℓ

3 p+
12
ℓ a2 (H1 +H2) , (4.59)

and it is immediate to see that they satisfy

U1 + U2 + U3 = ℓ p , (4.60)

so that only U1 and U2 are independent. Finally let us consider the
scalars; the lower-index scalars XI we have can be computed from equa-
tion (4.55) and they result to be

X1 =
f f−1

min
3 + h1 f , (4.61)

X2 =
f f−1

min
3 + h2 f , (4.62)

X3 =
f f−1

min
3 − (h1 + h2) f . (4.63)

Note that only X1 and X2 are independent since it holds the following
constraint

X1 +X2 +X3 = f f−1
min . (4.64)

For the upper-index scalars XI it is easy to show that the following
relations hold

X1 =
(︂
f f−1

min

)︂2
− 3 f2 f−1

min h1 − 9 f2 (h1 + h2) h2 , (4.65)

X2 =
(︂
f f−1

min

)︂2
− 3 f2 f−1

min h2 − 9 f2 (h1 + h2) h1 , (4.66)

X3 =
(︂
f f−1

min

)︂2
+ 3 f2 f−1

min (h1 + h2) + 9 f2 h1 h2 , (4.67)

and we have that only X1 and X2 are independent, since it results

X1 +X2 +X3 = 3
(︂
f f−1

min

)︂2
− 9 f2

(︂
h2

1 + h2
2 + h1 h2

)︂
. (4.68)

We conclude this subsection by briefly discussing which conditions
one should impose to reduce to previously known solutions of the N =

2, D = 5 Fayet-Iliopoulos gauged supergravity and to minimal gauged
supergravity. To obtain the latter it is sufficient to take H1 = H2 = 0.
Indeed, in this case the equations for H1 and H2 (4.30), (4.51) are triv-
ially satisfied, while the equation for a (4.52) becomes the same given
in [41]. All the physical relevant functions become the ones of minimal
gauged supergravity. Indeed equation (4.53) gives f = fmin, therefore
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the scalars (4.65) become just constants, the U1,2 functions are equal
and provide the same gauge field of [41] and equations (4.56), (4.61)
reduce to the same form they take in minimal gauged supergravity. We
can also easily obtain the U(1)3 version of the general family of solu-
tions given in [99], which we will introduce and analyze below. Indeed,
as we have already seen, the solutions of that paper are obtained by
taking the simplifying ansatz HI (ρ) = qI H (ρ) and fixing the charges
qI to assume in the U(1)3 theory the values q1 = q2 = 1

6 , q3 = −1
3 (or

cyclic permutations). Therefore to reduce to this class of solutions we
have to take the limit H1 = H2 = 1

6 H, H3 = −1
3 H (or cyclic permuta-

tions). Doing so, equations (4.50) and (4.51) become equal and become
the same as equation (2.58) of [99], which is nothing but (4.30), while
equation (4.52) reduces to (2.59) of the same paper, which coincides
with (4.31). The Gutowski-Reall solution [42] is also recovered, since it
is just a particular limit of the more general solutions of [99].

We conclude this section by noting that the supersymmetry equa-
tions (4.50), (4.51) and (4.52) possess a scaling symmetry [99]: in-
deed rescaling the coordinates such that ρ = λ−1ρ̃, y = λ2ỹ, the
functions a(ρ), H1(ρ) and H2(ρ) become ã(ρ̃) = λa(λ−1ρ̃), H1˜ (ρ̃) =

λ2H1(λ−1ρ̃), H2˜ (ρ̃) = λ2H2(λ−1ρ̃) which still provide a solution for the
supersymmetry equations. We shall use this scaling symmetry later to
eliminate unphysical parameters and to help us interpolating the near-
boundary and near-horizon perturbative solutions we will construct.

4.1.2.1 First integrals and conserverd charges for the nV = 2 case

The first integrals (4.39) we have introduced in sec. 4.1.1.2 are defined
for an arbitrary number of vector multiplets nV , therefore we can use
these general definitions to obtain their expressions for the U(1)3 theory
case with nV = 2.
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By setting nV = 2 in (4.39) and performing the needed contractions,
we find

K1 = a3a′
(︂
f−1

min

)︂′
+

1
ℓ
a2w+

ℓ2p2

18 +
24
ℓ2a4 Σ , (4.69a)

K
(1)
2 = H ′′

1 −
(︃3a′

a
+
a′′

a′

)︃
H ′

1 +
2p
3a2H1

+
8

ℓ2a4

(︂
H2

1 − 2H1H2 − 2H2
2

)︂
, (4.69b)

K
(2)
2 = H ′′

2 −
(︃3a′

a
+
a′′

a′

)︃
H ′

2 +
2p
3a2H2

+
8

ℓ2a4

(︂
−2H2

1 − 2H1H2 +H2
2

)︂
, (4.69c)

K
(3)
2 = −(H ′′

1 +H2)
′′ +

(︃3a′

a
+
a′′

a′

)︃
(H ′

1 +H ′
2)

− 2p
3a2 (H1 +H2) +

8
ℓ2a4

(︂
H2

1 + 4H1H2 +H2
2

)︂
, (4.69d)

K3 =
a

a′f3

(︂
f3w2 − 4a2(a′)2

)︂2
[︄

f3w

f3w2 − 4a2(a′)2

]︄′

− 12
(︃
K1A

I
ψX̄I +

1
6 (K

(1)
2 A1

ψ +K
(2)
2 A2

ψ)−
1
3 K

(3)
2 A3

ψ

)︃
+ 2A1

ψA
2
ψA

3
ψ , (4.69e)

where we have renamed KI as KI so as to distinguish between the first
integrals for the general theory with arbitrary nV and the ones for the
U(1)3 theory. For this theory, the qI are fixed to be q1 = q2 = 1

6 , q3 =

−1
3 , as it is for the U(1)3 version of the solution of [99]. Moreover,

equations (4.40) and (4.41) are still valid with the I index which runs
from 1 to 3. In (4.69) we already used the constraint (4.47) to eliminate
H3 in favour of H1 and H2. As a consequence, we immediately see that
K

(1)
2 , K(2)

2 and K(3)
2 are not independent, but they satisfy the relation

K
(1)
2 +K

(2)
2 +K

(3)
2 = 0 , (4.70)

so that we have 4 independent first integrals in total. We will always
use (4.70) to trade K(3)

2 with K(1)
2 and K(2)

2 , so the set of independent
first integrals we choose is (K1,K(1)

2 ,K(2)
2 ,K3). As we shall see later

in the thesis, and as it is shown in [100], these first integrals will also
help us to connect the parameters of the perturbative near-boundary
solution we will construct with the parameters of the near-horizon one.

4.2 perturbative and numerical solutions

The ODE’s we have obtained, both for the arbitrary nV case and the
U(1)3 theory one, are difficult to solve analytically, therefore we resort
to a numerical method to find new solutions. The strategy we adopt
is the following. The first step is to series-expand the fields both in
the near-boundary region ρ → ∞ and in the near-horizon one ρ → 0,
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and to fix the series coefficients by solving the ODE’s order by order.
The second one is to build the numerical solution by matching the two
expansions in the bulk. For both the general theory and the U(1)3 one,
in the near-boundary region we find expansions that are compatible
with AlAdS solutions, in the near-horizon one we note that there are
solutions which possess the characteristics of black holes and, using a
numerical procedure, we establish that there are well-behaved solutions
interpolating between these two regimes. For ease of notations, we will
set ℓ = 1 in the whole section. We divide this section in two main parts:
in the first one we construct the solution for the case of arbitrary nV ,
while in the second one we turn to the U(1)3 theory case.

4.2.1 The solution with arbitrary nV

4.2.1.1 Near-boundary solution

We study our equations (4.30) and (4.31) perturbatively around ρ→∞,
which as we will see corresponds to a limit where a conformal boundary
is approached. We assume the following asymptotic expansions for the
unknown functions a and H:

a(ρ) = a0e
ρ

[︄
1 +

∑︂
k≥1

∑︂
0≤n≤k

a2k,n ρ
n (a0 e

ρ)−2k
]︄

= a0e
ρ

[︄
1 + (a2,0 + a2,1ρ)

e−2ρ

a2
0

+
(︂
a4,0 + a4,1 ρ+ a4,2 ρ

2
)︂ e−4ρ

a4
0

+ . . .

]︄
,

(4.71)

H(ρ) = a4
0e

4ρ∑︂
k≥0

∑︂
0≤n≤k

H2k,n ρ
n (a0 e

ρ)−2k

= a4
0e

4ρ
[︄
H0,0 + (H2,0 +H2,1ρ)

e−2ρ

a2
0

+
(︂
H4,0 +H4,1 ρ+H4,2 ρ

2
)︂ e−4ρ

a4
0

+ . . .

]︄
,

(4.72)

with a0 ̸= 0. The reason why the expansion of a only involves odd
powers of eρ is that terms involving even powers would have been set
to zero by the equations. For the same reason the expansion of H only
involves even powers of eρ. We have obtained a perturbative solution for
the two equations (4.30) and (4.31) which is valid up to order O(e−10ρ)

and is controlled by the following eight parameters

a0 , a2 ≡ a2,0 , c ≡ a2,1 , a4 ≡ a4,0 , a6 ≡ a6,0 ,

H2 ≡ H2,0 , H4 ≡ H4,0 , H̃ ≡ H2,1 . (4.73)
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We report here the first terms in the expansion of H and a:

a(ρ) = a0 e
ρ + (a2 + cρ)

e−ρ

a0

+

[︄
a4 +

2− 16a2 − 5c
12 cρ+

3
8
(︂
2H2 + 3H̃

)︂
H̃ρ

− 2
3c

2ρ2 +
3
8H̃

2
ρ2
]︄
e−3ρ

a3
0

+O(e−4ρ) ,

(4.74)

H(ρ) =
(︂
H2 + H̃ρ

)︂
a2

0e
2ρ +H4 + 2

(︂
H2 + H̃

)︂
H̃ρ

+

(︃2
3cH̃ + H̃

2
)︃
ρ2 +

1
6
(︂
4a2H̃ + 4cH2 − 2cH̃ + H̃

)︂
ρ+O(e−2ρ) .

(4.75)

Notice that the backreaction of the fields in the supergravity vector
multiplets introduces a dependence on H4, H2, H̃ in the metric func-
tions.55

Using the near-boundary solution we found, we can perturbatively
evaluate all the other relevant functions. However before computing
them, we introduce the following parameter

v2 = 1− 4c , (4.76)

which will be related to the squashing of the three-sphere at the bound-
ary. We will trade the parameter c for v2 when writing the main results
of the present section, since the latter has a clearer physical interpre-
tation. We also change the coordinates y, ψ̂ into new coordinates t, ψ,
defined as:

y = t , ψ̂ = ψ− 2
v2 t . (4.77)

These lead to a static (rather than stationary) metric on the conformal
boundary. In these coordinates, the supersymmetric Killing vector V
reads

V =
∂

∂y
=

∂

∂t
+

2
v2

∂

∂ψ
. (4.78)

In the new set of coordinates, the metric and the gauge fields turn to:

ds2 = gρρdρ2 + gθθ(σ
2
1 + σ2

2) + gψψσ
2
3 + gttdt2 + 2gtψ σ3 dt , (4.79)

AI = AIt dt+AIψ σ3 , (4.80)

55 We also found a different solution for H(ρ), having H0,0 = 1 (while H0,0 = 0 in
(4.75)) and governed by the free parameter H4,0. However the leading term of the
corresponding metric turns out to be of order O(e4ρ), indicating that the latter is
not AlAdS. For this reason we will not discuss this other solution in the following.



4.2 perturbative and numerical solutions 115

where the one-form σ’s are defined as the σ̂’s in (2.48), but using ψ

instead of ψ̂.
The functions f and w, which are independent on the change of co-

ordinates (4.77), can be easily evaluated using (4.32) and (4.33). From
their explicit expansions, we see that f goes to 1 in the near-boundary
limit, while the w function has a e2 ρ leading term56. Both of these two
near-boundary behaviours are fully consistent with an AlAdS solution.

We find that at leading order the five-dimensional metric reads:

ds2 = dρ2 + e2ρ ds2
bdry + . . . , (4.81)

where the metric on the conformal boundary is:

ds2
bdry = (2a0)

2
[︃
− 1
v2 dt2 + 1

4
(︂
σ 2

1 + σ 2
2 + v2σ 2

3

)︂]︃
. (4.82)

As anticipated this is static in the chosen coordinates. The three-dimensional
part of the metric involving the σ’s is locally the metric on a Berger
three-sphere, with v controlling the SU(2)× U(1) invariant squashing
of the Hopf fiber.

The gauge fields AI have a part along X̄I and a part along Ȳ I . At
leading order, these are given by:

X̄IA
I =

v2 + 2
3 v2 dt+ 1

3 (v
2 − 1) σ3 +O(e−ρ) (4.83)

and

Ȳ IA
I = 36 H̃

v2 dt− 18 H̃ σ3 +O(e−ρ) . (4.84)

Note that both X̄IA
I and Ȳ IA

I have a non-trivial boundary field-
strength proportional to σ1 ∧ σ2.

For the scalar fields XI we find the following expressions

XI = X̄
I + 9 Ȳ I (︁2H2 + H̃ + 2H̃ ρ

)︁ e−2ρ

a2
0

+O(e−3ρ) . (4.85)

We recall that in the AdS5 solution, our scalar fields have mass m2ℓ2 =

−4, hence the conformal dimension of the dual operator, following from
the well-known formula m2ℓ2 = ∆(∆ − 4), is ∆ = 2. This is also re-
flected in the asymptotic behavior displayed above.

For AlAdS solutions, there are natural coordinates which are prefer-
able to use; these are the Fefferman-Graham ones. The analysis of the
near-boundary solution we displayed above in these coordinates has
been performed in [99]. There, it has been shown that the free parame-
ters a0, c and H̃ specify the boundary conditions of the bulk fields and
are thus associated to sources in the dual field theory. As already ap-
parent from the expressions above, a0 and c determine both the metric

56 Since they are quite long and cumbersome, here we do not report the explicit ex-
pressions of the expansions for f and w. They can be found in [99].
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and the value of X̄IA
I at the conformal boundary, while H̃ fixes the

asymptotic mode of the scalar fields. The three parameters a0, c and
H̃ together also determine Ȳ IA

I . The remaining parameters a2, a4, a6,
H2, H4 instead control dual field theory one-point functions. In partic-
ular, H2 controls the normalizable mode of the scalar fields. We will
return on the holographic interpretation of our solution in sec. 4.3.1

We recall that in sec. 4.1.1.2 we have introduced the three indepen-
dent first integrals for this theory with nV arbitrary but the ansatz (4.20)
imposed. These first integrals are given by K1, K2 and K3 and are re-
ported in eq. (4.39). Since they are constants, we can evaluate them in
the near-boundary region using the expansions (4.71), (4.72) we have
found. Doing so, we find that the two first integrals coming from the
Maxwell equation, K1, K2 depend on the various near-boundary free
parameters, among which the most subleading are a4 and H4. We might
use these relations to express the latter free parameters with respect
to the others and the first integrals. Furthermore, we also find that
the first integral coming from the Einstein equations, K3, depends on
a6; therefore we also get an expression for a6 with respect the other
near-boundary free parameters and the first integrals. These relations
for a4, H4 and a6 are given by

a4 = 5
384 + 1

6a2 − 2
3a

2
2 + (1− 5a2)

c
12 −

13
48c

2

+ 3
8H

2
2 + 9

8H2H̃ + 51
64H̃

2 − 3
8K1 ,

(4.86)

H4 = 1
6 (4a2H2 +H2 − 2H̃a2 − 4H̃c+ H̃)

+H2
2 + 2H2H̃ + 3

2H̃
2
+ 1

4K2 , (4.87)

a6 = 1
1296 −

5
18a

2
2 +

70
81a

3
2 +

(︂
1913
3888a2 − 125

1944

)︂
c2 + 1105

11664c
3

+ 1
16H

2
2 + 1

6H
3
2 +

(︂
169
144H2 +

557
3456

)︂
H̃

2
+ 1229

1728H̃
3

+ c
(︂

25
3456 + 197a2−61

324 a2 − 13
72H

2
2 − 137

216H2H̃ − 971
1728H̃

2
+ 19

216K1
)︂

+ a2
(︂
− 29

3456 −
17
24H

2
2 − 137

72 H2H̃ − 2129
1728H̃

2
+ 43

72K1
)︂

+ H̃
(︂

7
36H2 +

17
24H

2
2 + 29

288K2
)︂
− 5

288K1 +
1
12H2K2 − 1

384K3 .
(4.88)

The advantage we get from these equations is the following: we are
able to evaluate all the first integrals both in the near-boundary re-
gion as well as in the near-horizon region, obtaining them as functions
of, respectively, the near-boundary and the near-horizon parameters;
combining the relations obtained in the near-horizon with the ones
obtained in the near-boundary we will be able to express a4, H4, a6
as functions of only the remaining near-boundary parameters and the
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near-horizon ones. This will allow us to replace the most subleading
parameters a4, H4, a6 with the others.

4.2.1.2 Near-horizon solution

In the previous section we have shown that solutions compatible with
an AlAdS5 behaviour exist in the near-boundary, now we proceed to
solve the ODEs (4.30), (4.31) near to ρ = 0, which we identify with the
interior region of our solution. It is natural to assume that both the a
and H functions can be Taylor expanded as:

a(ρ) = α0 + α1 ρ+ α2 ρ
2 + . . . ,

H(ρ) = η0 + η1 ρ+ η2 ρ
2 + . . . . (4.89)

We are interested a priori in two different types of solutions, either clos-
ing off regularly or meeting an event horizon when ρ→ 0. Solutions of
first kind have been constructed for example in [133]. They are globally
equivalent to AdS5, with topology R×R4, with the first factor being a
time direction and the second one arising from the three-sphere of the
boundary which shrinks smoothly to zero size in the interior. This solu-
tion does not present any horizon, therefore around ρ = 0 the solution
is non-singular. Solutions of second kind are quite different and have
been constructed for example in [101]. In a neighbourhood of ρ = 0, the
radial component blows up, revealing the presence of a horizon; there-
fore these are indeed black hole solutions, as we have already stated
before in this thesis.

In both cases, given the form (2.49) of the metric we should take
α0 = 0 in the expansion above. Moreover, due to the symmetries of
the ODE’s, we can take α1 > 0 with no loss of generality (we are not
interested in solutions with α1 = 0).

In order to construct the perturbative solution in the interior re-
gion, we solved equations (4.30), (4.31) order by order in powers of ρ,
up to O(ρ18). We found different branches of solutions, most of them
corresponding to the small-ρ expansion of (4.24), (4.25), that is the
well-known solution of [42] we have presented in sec. 2.1.3.1. However
we also obtain one interesting branch of solutions to (4.30), yielding
the following expression for H:

H(ρ) = η α2ρ2 +
2αα2 η (2− 3α2 + 24 η)

2 + α2 + 24η ρ3

+
η

81

[︄
81(α2

2 + 2αα3)−
16(−2 + 17α2)α2

2
1− 4α2 + 12 η

− 288α2 α2
2 (2 + α2)

(2 + α2 + 24η)2 −
8(8 + 175α2)α2

2
2 + α2 + 24η

]︄
ρ4 +O(ρ5)

(4.90)
where we defined

α ≡ α1 , η ≡ η2
α2

1
, (4.91)



118 alads5 black holes with squashed boundary

Therefore, the function H(ρ) is entirely determined by η and the coef-
ficients of a(ρ); these latter in turn are controlled by eq. (4.31). The
next step is thus to solve this equation perturbatively order by order.
The first non-trivial order of yields:

α2

(︄
8 + 13α2 +

576 η2

2 + α2 + 24 η

)︄
= 0 , (4.92)

so we have two possibility, namely to set either α2 or the parenthesis
to zero. In this thesis we will choose α2 = 0 and will not discuss the
other option. In minimal gauged supergravity, the analogous analysis
for equation (2.102) has been performed in [133]. This can be recov-
ered by setting H = 0, which, due to (4.90), is equivalent to set η = 0.
In [133], the above condition corresponded to α2

(︁
8 + 13α2)︁ = 0, hence

the choice α2 = 0 was the only possible. We conclude that only solu-
tions with α2 = 0 admit a minimal gauged supergravity limit; this is
one more reason to make this choice, since we want our new solutions
to have a minimal limit. At the next order we get:

α4

(︄
−8 + 11α2 − 576 η2

2− 23α2 + 24η

)︄
= 0 . (4.93)

This equation can be satisfied if α4 = 0 or the parenthesis vanishes.
When η = 0 this reduces to α4

(︁
−8 + 11α2)︁ = 0, that is the equation

found in [133] for the minimal theory. In [133], the choice α4 = 0 led
to either the solution of [41] (given by (4.25) above) or to a regular
soliton that was identified as the gravity dual of the vacuum state
of four-dimensional superconformal field theories on a squashed S3 ×
R. The choice α2 = 8

11 led to the near-horizon expansion of a new
supersymmetric black hole, as later confirmed and studied in greater
detail in [101, 157]. We can expect the situation in the more general
theory we are looking at to be similar, however this is not the case.
Indeed, setting α4 = 0 leads to either (again) the solution of [42],
or to a new solution, but this latter is not the generalization of the
regular soliton found in [133], but rather a singular solution. In order
to establish this, we have integrated numerically this new solution and
found that it develops a singularity in the bulk for all initial conditions
we tried. So we could not find a counterpart of the regular soliton
of [133] in the presence of running scalars, neither we could find new
regular solution with the choice α4 = 0. Thus we choose the second
option to solve (4.93), that is we fix η in terms of α as:

η =
1
48

(︄
− 8 + 11α2 ± 9α

√︁
8− 11α2

)︄
, (4.94)

implying that we must take 0 < α ≤
√︂

8
11 . There are two possible values

of η, depending on the sign we choose in the equation above; for now we
keep this choice unspecified and continue further. Proceeding with the
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perturbative approach to solving the supersymmetry equation (4.31)
near ρ = 0, we find that the coefficients α3 and α4 in the expansion of
a(ρ) remain free together with α, while all the others are determined
in terms of these ones. The first terms in the expansion of a and H

read:

a = αρ+ α3 ρ
3 + α4 ρ

4 +
3α3
10αρ

5 +
α3α4
4α ρ6 +O(ρ7) ,

H = η α2ρ2 + 2η αα3ρ
4 +

2αα4(−2 + 15α2 − 24η)η
−2 + 23α2 − 24η ρ5

+
8α2

3η

5 ρ6 +O(ρ7) .
(4.95)

We would like to establish which of our three free parameters α, α3
and α4 are physical. We note that it is possible to rescale at will one
of the parameters without changing the five-dimensional solution. This
is because eqs. (4.14), (4.18) imply that under a rescaling of the co-
ordinates ρ = λ−1ρ̃, y = λ2 ỹ , a solution a(ρ), HI(ρ) is transformed
into another solution ã(ρ̃) = λ a(λ−1ρ̃), H̃I(ρ̃) = λ2HI(λ−1ρ̃). This
leaves the parameters α and η invariant, while it rescales α3, α4. We
choose to rescale α3 and we therefore regard this as an unphysical pa-
rameter. In the large-ρ solution of the previous subsection, this freedom
has been fixed by assuming that for ρ → ∞ the function a goes like
eρ. Even though for now we will keep this arbitrary, when later on we
will construct an interpolation between the small-ρ and the large-ρ so-
lution we will need to tune it so that the assumed large-ρ asymptotics
are matched. Furthermore, we find convenient to trade α4 for a new
parameter ξ, which is invariant under such symmetry transformation
and is thus physical

α4 = ξ α3/2
3 . (4.96)

We will always use the definition above to replace α4 with ξ wherever
the former appears.

Due to the form of η given in (4.94), imposing α =
√︂

8
11 corresponds

to η = 0, that is H = 0. In this case, it is possible to check that the near-
horizon expansion of the superymmetric black hole studied in [101,157]
is recovered. So we can expect that choosing η as in (4.94), but with
α ̸=

√︂
8
11 , will lead to a generalization of such black hole, where the

scalars will be running. In the remainder of this section and the next
ones we will show that this is indeed the case.

We now provide the first terms in the small-ρ expansion of the metric,
the gauge fields and the scalar fields. Although these depend on the free
parameters α, α3, ξ only, for convenience in the expressions below we
also employ η, being understood that this is fixed in terms of α as
in (4.94). Our main purpose will be to show that our small-ρ solution
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has a regular horizon at ρ = 0. We begin with the functions f and w,
which can be evaluated by using (4.32), (4.33) and result to be

f =
12α2

∆
ρ2 +

1
∆4

{︄
24αα3

(︂
4α2 + 12η− 1

)︂
[︂
128α4 − (1− 12η) (1 + 24η)− 4α2 (7 + 96η)

]︂}︄
ρ4

w = −
(︁
1− 4α2)︁2 − 144 η2

48α2
1
ρ2

+
α3
(︁
−272α4 + 64α2 − 144 η2 + 1

)︁
24α3 +O(ρ) ,

(4.97)

where we have defined the quantity:

∆ =
(︂
4α2 − 24η− 1

)︂1/3 (︂
4α2 + 12η− 1

)︂2/3
. (4.98)

Keeping only the leading order terms in a small ρ expansion, the five
dimensional metric reads:

ds2 = −48α6

∆2Θ
ρ4 dt2 +∆

[︄
dρ2

12α2ρ2 +
1
12 (σ

2
1 +σ2

2)+Θ
(︃
σ3−

2
v2 dt

)︃2
]︄

,

(4.99)

where

Θ =
16α4 + α2(8− 96 η)− 3(12 η+ 1)2

48 (4α2 − 24 η− 1)
. (4.100)

The scalar fields can be computed by (4.36) and they result to be

XI=

[︄(︁
4α2 − 1

)︁2 − 144η2

∆2 − 20736αα3 η
2 (︁4α2 + 12η− 1

)︁2
∆5 ρ2

]︄
X̄
I

+

[︄
216η

(︁
4α2 + 12η− 1

)︁
∆2

− 15552αα3η
(︁
4α2 − 1

)︁ (︁
4α2 + 12η− 1

)︁2
∆5 ρ2

]︄
Ȳ
I+O(ρ3).

(4.101)

Finally, the perturbative expansion for the gauge fields around ρ = 0
is

AIψ =

(︁
4α2 − 36η− 1

)︁ (︁
4α2 + 12η− 1

)︁
12 (4α2 − 24η− 1)

X̄
I

− 18η
(︁
4α2 + 12η− 1

)︁
4α2 − 24η− 1 Ȳ

I +O(ρ2) ,

AIt = −
2
v2A

I
ψ(ρ = 0) +O(ρ2) . (4.102)
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We can argue that the solution above describes the vicinity of an
event horizon of finite size situated at ρ = 0. Indeed the elsewhere
timelike supersymmetric Killing vector V , whose norm is −f2, becomes
null as ρ → 0. Moreover the metric has a divergent term O(ρ−2)dρ2,
while the remaining spatial part remains finite. In addition, both the
scalar fields and the gauge fields have a regular behaviour as ρ→ 0. In
particular, note that in the gauge we are using the gauge fields at the
horizon are transverse to the supersymmetric Killing vector V ,

V µAIµ = AIy = AIt +
2
v2A

I
ψ = 0 for ρ = 0 . (4.103)

In order to better describe the geometry of the horizon, we introduce
gaussian null coordinates adapted to the supersymmetric Killing vector
field V [41, 42]. This is done by the transformation:

dy = du+
(︄

fw2

(2aa′)2 −
1
f2

)︄
dρ̃ ,

dψ̂ = dψ̃− f w

(2aa′)2 dρ̃ ,

dρ =
√︄

1
f
− f2w2

(2aa′)2 dρ̃ . (4.104)

Note that this is the same coordinate transformation of eq. (2.70), there-
fore the form assumed by the five-dimensional metric is also the same
as (2.71). We report this latter explicitly here below for convenience

ds2 = −f2du2 + 2 dudρ̃− 2f2w du σ̃3

+ f−1a2(σ2
1 + σ2

2) +
(︂
f−1(2aa′)2 − f2w2

)︂
σ̃2

3 .
(4.105)

Plugging our near-horizon solution in, we obtain that the metric at the
horizon is

ds2
horizon = 2 dudρ̃+ ∆

12 (σ
2
1 + σ2

2) + ∆ Θ σ̃2
3 , (4.106)

which is manifestly well-definite and regular provided ∆ > 0 and Θ > 0.
We have plotted these quantities in Figure 4.1, choosing the minus sign
in the determination (4.94) for η. We note that ∆ is positive for every
value of the parameter α except for α =

√
2/3 ≃ 0.816, while Θ is

real and positive for 0.657 < α <
√

8/11 ≃ 0.853. Regularity of the
horizon however does not guarantee regularity outward the horizon. In
the next section, we will see that that regularity in the bulk in fact
further constrains the allowed range of α.57

57 Similarly, we find a narrow regularity range for the horizon geometry when the plus
sign is chosen in the formula (4.94) for η. This is also further reduced when regularity
away from the horizon is imposed.
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Figure 4.1: The two functions ∆(α) and Θ(α) whose positiveness is needed
to have a regular horizon. We observe that ∆ is always positive
except in the cusp point at α =

√
2/3, while Θ is positive only for

α ≳ 0.657.

From (4.106), we can compute the area of the horizon, which results
to be

Area =
π2

3
√

3

(︂
4α2 + 12η− 1

)︂ [︂
16α4 + α2(8− 96η)− 3(12η+ 1)2

]︂1/2
,

(4.107)

note that this is finite in the allowed range of the parameters.
By everything we have shown above, it is demonstrated that our

small-ρ solution describes the vicinity of the horizon of a new two-
parameter family of black holes with running scalars, controlled by the
parameters α and ξ (recall that in general our qI are not free parameters
as they are fixed by condition (4.26)).

Three concluding remarks are in order.
The first is that ξ is sufficiently subleading in the small-ρ expansion

of a not to appear in the leading terms of the supergravity fields as
ρ→ 0. In other words, the horizon is not affected by ξ. We will confirm
later that this parameter is anyway physical, as when it is non-zero it
leads to a squashing of the conformal boundary, making the solution
asymptotically locally AdS (as opposed to asymptotically AdS).

The second fact to point out is that when ξ = 0 we can resum
the perturbative series and obtain the exact solution H = η a2, a =

α sinh ρ, where η is fixed in terms of α as discussed above. This solution
matches the one of [42], with our parameter α being mapped into the
three parameters αGR

1 ,αGR
2 ,αGR

3 appearing in that paper. The precise
relation between the parameters is worked out in [99] and results to be

αGR
1 = (4α2 − 1)ℓ2 ,

αGR
2 = 1

3 (4α
2 − 1)2ℓ4 − 48 η2 ,

αGR
3 = 1

27 (4α
2 − 1)3ℓ6 − 16 η2(4α2 − 1)ℓ2 − 128 η3 , (4.108)

where we have reinstated the AdS radius ℓ for completeness. Further-
more, the following relation between our qI and the qGR

I of [42] is found:

qGR
I = 1

3 (4α
2 − 1)ℓ2X̄I + 8 η qI , (4.109)



4.2 perturbative and numerical solutions 123

Therefore, for ξ = 0 our solution is equivalent to a one-parameter sub-
family of the black hole of [42]. Instead, when ξ ̸= 0 we have a new
branch of solutions. Nevertheless, since ξ does not affect the horizon
geometry, the latter remains the same as in the black hole of [42], with
the identification of the parameters above. In particular, using this
dictionary the area of the horizon (4.107) matches the expression given
in [42].

The third and final remark is about the minimal limit, obtained by
taking α =

√︂
8
11 . In this case, the scalars are constant and the pertur-

bative near-horizon solution reduces to the one of [101, 157], which is
controlled by the parameter ξ only and presents a frozen horizon geom-
etry. We have thus demonstrated that by allowing for running scalars
one can introduce a new parameter so that the horizon geometry gets
unfrozen.

We conclude this subsection by evaluating the first integrals (4.39) in
the near-horizon region. We find that in the limit ρ→ 0 they evaluate
to:

K1 = −1
9
(︂
α2 + 1

)︂
α2 + η2 +

5
144 , (4.110)

K2 = −2
3η
(︂
2α2 + 6η+ 1

)︂
, (4.111)

K3 = −4
(︂
8α2 + 1

)︂
η2 +

1
108

(︂
8α2 + 7

)︂ (︂
1− 4α2

)︂2
− 64η3 .

(4.112)

Recalling that η is fixed as in (4.94), these are functions of the near-
horizon parameter α only. Combining these relations with the one we
have obtained by evaluating the first integrals in the near-boundary
region, given by eq. (4.86), (4.87), (4.88), we can determine a4, a6, H4
in terms of the other near-boundary parameters a0, a2, v, H̃, H2 and
the near-horizon parameter α. On the other hand, in order to determine
the relation of the remaining near-boundary parameters with the only
two physical near-horizon parameters α and ξ we will have to resort to
numerics.

As a cross-check, we can evaluate the relations above in the limit
leading to minimal gauged supergravity and compare with the ex-
pressions previously found within this theory [101, 133]. We thus take
H2 = H4 = H̃ = 0. Then (4.87) merely gives K2 = 0, while (4.86),
(4.88) reduce to expressions that are in agreement with eqs. (4.21),
(4.22) of [101].58 The values of K1, K3 specific to the black hole solution
of minimal gauged supergravity studied in [101] are correctly retrieved
by sending α→

√︂
8
11 in (4.110), (4.112). We can also compare with the

expressions for a4 and a6 given in eq. (B.1) of [133]: we find agreement
upon setting K1 = K2 = K3 = 0, which are the appropriate values
for a solution capping off smoothly such as the one presented in that
paper.

58 Upon identifying the constants ct, cW appearing there as ct = −4
√

3K1, cW = −K3.
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4.2.1.3 The numerical solution

Our aim is now to interpolate the near-horizon solution and the near-
boundary one by a numerical approach, thus showing there is indeed a
black hole solution which is regular for every ρ > 0. This happens only
in a certain region of the parameter space, that we will determine.

We begin by describing our strategy to perform the numerical anal-
ysis.

(a) The solution a. (b) The solution H.

(c) The function f = g−1
ρρ . (d) The component gtt.

(e) The component gψψ. (f) The component gθθ.

Figure 4.2: Relevant functions and metric components of our solution, rescaled
by their asymptotic behaviour at large ρ. The different values of
the near-horizon parameter ξ are indicated in the label. We em-
phasize that although this is not immediately recognized from the
plots, gθθ and gψψ go to a small but positive constant, leading to
an even horizon of finite size. This is clear from (4.99).

We fix the initial conditions at ρ ≃ 0 using the expressions in sec. 4.2.1.2
and integrate equations (4.30), (4.31) numerically towards larger values
of ρ. It is obvious that in order to do this we need to assign a numeri-
cal value to the two physical parameters ξ and α; in particular we will
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(a) The component of AIt along X̄I . (b) The component of AIt along Ȳ I .

(c) The component of AIψ along X̄I . (d) The component AIψ along Ȳ I .

(e) Scalar fields XI along X̄I . (f) Scalar fields XI along Ȳ I .

Figure 4.3: Components of the gauge fields AI and of the scalar fields XI

along X̄I and Ȳ
I .

choose for α numerical values that are in the range 0.657 ≤ α ≤
√︂

8
11 ,

with α ̸=
√︂

2
3 , so as to meet the regularity conditions for the horizon

we have found in sec. 4.2.1.2. Moreover we rescale the unphysical pa-
rameter α3 in such a way that the assumed AlAdS behaviour of a for
ρ→∞ holds.59

From the numerical analysis we have performed emerges that that
the solution is regular only in the range:√︃

2
3 < α ≤

√︃
8
11 , (4.113)

59 In order to achieve this we exploit the rescaling properties we have described in
sec. 4.2.1.2. We integrate a first time choosing α3 = 1, then we look at the large-ρ
behaviour of the solution and determine the rescaling factor λ2 by requiring that
f → 1 asymptotically. This is equivalent to impose a ∼ eρ as ρ → ∞. Then we fix
α3 = 1/λ2 and repeat the integration.
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Figure 4.4: Relation between the near-horizon parameter ξ and the squashing
v2 of the boundary metric, for α = 0.82. v2 is positive and finite
for −0.7 ≲ ξ ≲ 1.6. The black dots represent the values effectively
calculated by means of the numerical analysis. The larger dot at
(ξ = 0, v = 1) represents the solution of [42].

(a) The parameter a0.
(b) The parameter a2.

(c) The parameter a4. (d) The parameter a6.

Figure 4.5: The near-boundary parameters a0, a2, a4, a6 in terms of the
squashing v2, for α = 0.82 (red) and α =

√
8/11 (black).
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(a) The parameter H2. (b) The parameter H4.

(c) The parameter H̃.

Figure 4.6: The parameters of H2,H4, H̃ in terms of the squashing v2, for
α = 0.82 (red). For α =

√︂
8
11 they vanish identically (black).

while outside of this the function f presents a divergence at finite ρ
and the same do other components of the metric and the gauge fields.
Instead, when α takes a values within this range, all the components
of the metric and the gauge fields should be regular. We have checked
for several values of α within this range that this indeed happens, pro-
vided ξ lies in a certain range that depends on α and is determined by
regularity of the boundary geometry.

In order to provide an illustrative example, we report here all the rel-
evant physical functions for the value α = 0.82 and for different choices
of ξ. In Figure 4.2 we display the functions a and H and the compo-
nents of the metric (4.118), while Figure 4.9 shows the components of
the gauge field (4.119) and of the scalar fields XI . The plots demon-
strate that the solution is smooth on and outside the event horizon.

In the previous subsections, we have underlined how the free param-
eters appearing in the general near-boundary solution (a0, a2, a4, a6,
v, H2, H4, H̃) can be in principle expressed as functions of the only
two near-horizon parameters α, ξ characterizing the black hole solution;
however this has been proven impossible to do analytically. Instead, we
can do this here by following a numerical approach. In order to do this
we compare the numerical solution for the functions a and H with the
near-boundary expansion discussed in sec. 4.2.1.1 at some reasonably
large values of the radial coordinate ρ (we find it sufficient to use sev-
eral points in the interval 3 < ρ < 6), and evaluate the near-boundary
parameters using a best-fit technique. In Figures 4.4, 4.5, 4.6 we present
the results obtained using this method for the two values α = 0.82 and
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α1 =
√︂

8
11 and for about 20 values of ξ. Figure 4.4 shows the relation

between the squashing parameter v2 and the near-horizon parameter ξ,
with α = 0.82 (we are not presenting the plot for α =

√︂
8
11 as it is not

significantly different from the displayed one). Notice that for ξ running
between ξ ∼ 1.6 and ξ ∼ −0.7 the squashing v2 spans the whole pos-
itive line. From an AdS/CFT perspective, the squashing parameter v
of the boundary geometry seems to play a more significant role than ξ,
so once α has been fixed, we choose to regard the family of solutions as
parametrized by v2 rather than ξ. Consequently, in the Figures 4.5 and
4.6 we plot the near-boundary parameters as function of v2. Recall that
the solution with α =

√︂
8
11 fits into minimal gauged supergravity and

coincides with the black hole of [101], so with the plots of Figures 4.5
and 4.6 we are comparing our new family of solutions with that one.

Guided and helped by the figures, let now discuss some physical prop-
erties of our solution. From Figure 4.2 we can exclude the presence of
closed timelike curves, which would appear whenever the gψψ compo-
nent of the metric becomes negative. Although the figure displays just
the behavior for α = 0.82, we have verified that closed timelike curves
are also absent for different values of α in the range (4.113). Further-
more we should note from Figure 4.2 that in the near-horizon region gtt
becomes positive, implying that the vector ∂

∂t becomes spacelike. This
means that if this vector is regarded as the generator of time transla-
tions, then our solution presents an ergoregion for all the values of ξ
and α in the allowed range (4.113). However we may also take as gener-
ator of time translations the supersymmetric Killing vector field (4.78),
which corresponds to working in a frame that is co-rotating with the
event horizon. In this case there is no ergoregion as this vector is time-
like everywhere outside the horizon. This feature is common in rotating,
asymptotically AdS black holes and in the supersymmetric context it
was noted in [41].

4.2.2 The solution with nV = 2

4.2.2.1 Near-boundary solution

We now move to the U(1)3 theory case and we construct the near-
boundary perturbative solution by solving the equations (4.50), (4.51)
and (4.52) around ρ → ∞. The strategy we follow is the same of the
arbitrary nV case presented in the previous section and the physical
concept which will emerge are basically the same; therefore we will
keep the presentation shorter. First of all, we change the labels of the
functions H1 and H2 to:

H1 (ρ)→ Z (ρ) , H2 (ρ)→ K (ρ) . (4.114)
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Then, we assume for the unknown functions the following asymptotic
expansion

a(ρ) = a0e
ρ

⎡⎣1 +
∑︂
k≥1

∑︂
0≤n≤k

a2k,n ρ
n (a0 e

ρ)−2k

⎤⎦
= a0e

ρ

[︄
1 + (a2,0 + a2,1ρ)

e−2ρ

a2
0

+
(︂
a4,0 + a4,1 ρ+ a4,2 ρ

2
)︂ e−4ρ

a4
0

+ . . .

]︄
, (4.115)

Z(ρ) = a4
0e

4ρ

⎡⎣∑︂
k≥0

∑︂
0≤n≤k

Z2k,n ρ
n (a0 e

ρ)−2k

⎤⎦
= a4

0e
4ρ
[︄
Z0,0 + (Z2,0 + Z2,1ρ)

e−2ρ

a2
0

+
(︂
Z4,0 + Z4,1 ρ+ Z4,2 ρ

2
)︂ e−4ρ

a4
0

+ . . .

]︄
,

(4.116)

K(ρ) = a4
0e

4ρ

⎡⎣∑︂
k≥0

∑︂
0≤n≤k

K2k,n ρ
n (a0 e

ρ)−2k

⎤⎦
= a4

0e
4ρ
[︄
K0,0 + (K2,0 +K2,1ρ)

e−2ρ

a2
0

+
(︂
K4,0 +K4,1 ρ+K4,2 ρ

2
)︂ e−4ρ

a4
0

+ . . .

]︄
.

(4.117)

As for the previous case, we assume a0 ̸= 0. Note that in the expansion
for a there are only odd powers of eρ: that is exactly for the same reason
as the arbitrary nV case. The same argument applies to the other two
expansions, in which only even powers of eρ appear.

We have obtained a perturbative solution for the three equations (4.30),
(4.51) and (4.52) which is valid up to order O

(︁
e−10 ρ)︁ and is controlled

by the following eleven parameters60:

a0 , a2 = a2,0 , c = a2,1 , a4 = a4,0 , a6 = a6,0 ,
Z2 = Z2,0 , Z4 = Z4,0 , Z̃ = Z2,1 ,
K2 = K2,0 , K4 = K4,0 , K̃ = K2,1 .

60 In principle, other solutions are possible. They have Z0,0 ̸= 0 or K0,0 ̸= 0, so the Z

and K functions have a different leading behaviour. However these solutions present
metrics which are not AlAdS, since their leading term is of order O

(︁
e4 ρ
)︁
. We are

interested only in AlAdS behaviours, therefore we will not discuss these solutions in
the following.
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Since they are quite long and cumbersome, we do not provide the ex-
plicit expressions of the perturbative solutions for a, Z and K; these
can be found in [100].

The parameter v is defined exactly as for the previous case, i.e. is
again given by eq. (4.76). Also for this solution it is convenient to
always trade the parameter c for v2 so as to eliminate the former. We
also apply the same change of coordinates used in the previous section,
given by eq. (4.77), to this solution; doing so we obtain the following
form for the metric and the gauge fields:

ds2 = gρρdρ2 + gθθ(σ
2
1 + σ2

2) + gψψσ
2
3 + gttdt2 + 2gtψ σ3 dt ,

(4.118)
AI = AIt dt+AIψ σ3 , (4.119)

the σi being defined in the same way as the σ̂i with ψ replacing ψ̂.
The near-boundary behaviors of the functions f and w are consistent

with an AlAdS5 solution; indeed f goes to 1 as ρ → ∞ while the
function w presents a e2ρ leading term.

The metric (4.118) results to be static, as it was in the previous case.
Indeed, we find that it can be rewritten as

ds2 = dρ2 + e2ρ ds2
bdry + . . . , (4.120)

with ds2
bdry being the metric at the boundary, which reads

ds2
bdry = (2a0)

2
[︃
− 1
v2 dt2 + 1

4
(︂
σ 2

1 + σ 2
2 + v2σ 2

3

)︂]︃
. (4.121)

Here we do not display the explicit expressions for the metric and
gauge fields components, neither the ones for the scalars XI , since they
are quite cumbersome and we do not want to burden the discussion.
These expressions can be found in [100]. In the same paper, the analy-
sis of the near-boundary solution in Fefferman-Graham coordinates is
performed.

The possibility to write the solution in Fefferman-Graham form con-
firms once more that it is indeed AlAdS5 and the analysis of [100] shows
that four of the eleven free parameters, a0, c, Z̃ and K̃ determine the
bulk fields at the boundary and therefore play the role of a source in
the dual quantum field theory. In particular, looking at (4.121) and re-
calling that v2 is related to c as in (4.76), it is possible to predict that
a0 and c would control the metric at the conformal boundary, while Z̃
and K̃ should determine the scalar fields. The analysis in Fefferman-
Graham coordinates of [100] reveals that this is indeed the case and we
refer to this paper for further details.

As for the arbitrary nV case, we can evaluate the first integrals for
the U(1)3 theory, given in eq. (4.69), in the near-boundary and, doing
so, we can obtain relations between them and the free parameters. In
particular we find relations between the most subleading parameters
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a4, Z4, K4, a6 and the first integrals, which involve also the other pa-
rameters of the solution. We use these relations to trade the subleading
parameters above with the first integrals, so that they will never ap-
pear into the equations anymore. Later, we will evaluate all the first
integrals also in the near-horizon region, obtaining them as functions
of the near-horizon parameters; therefore we will be able to express the
subleading parameters a4, Z4, K4, a6 with respect to the near-horizon
ones and the remaining near-boundary ones.

4.2.2.2 Near-horizon solution

In this subsection we construct the solution perturbatively in the inte-
rior region, near ρ → 0. The procedure is very similar to the one we
followed in sec. 4.2.1.2 and the emerging physical concepts will be basi-
cally the same, therefore we will proceed faster keeping the presentation
shorter.

In order to solve the three ODEs (4.30), (4.51) and (4.52) in the
desired region, we assume that a, Z and K can be Taylor-expanded as

a(ρ) = α0 + α1 ρ+ α2 ρ
2 + . . . ,

Z(ρ) = η0 + η1 ρ+ η2 ρ
2 + . . . ,

K(ρ) = ι0 + ι1 ρ+ ι2 ρ
2 + . . . . (4.122)

Here we call the coefficients of Z as ηi, while in sec. 4.2.1.2 we used the
same notation for the coefficients of H; however this would be not con-
fusing since we will never use the old coefficients anymore. Furthermore,
keeping this notation allows to compare with [100] much more easily.
We want to search for either new black hole solutions or new soliton
solutions. Looking at the metric (2.49), we see that both the types of
solutions require α0 = 0, which we therefore assume. Moreover, due
to the symmetries of the ODE’s we can take α1 > 0 with no loss of
generality.

Solving (4.30), (4.51) and (4.52) perturbatively up to O(ρ13), we
find that equations (4.30) and (4.51) fix uniquely the form of K and
Z with the coefficients ι0, η0, ι1, η1 forced to vanish and all the others
determined by the free parameters ι2, η2 and by the coefficients of a.
As for the previous case of the solution with arbitrary nV , we find it
convenient to define the new parameters

α ≡ α1 , η ≡ η2
α2

1
, ι ≡ ι2

α2
1

(4.123)
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with respect which the expansions of Z and K can be written as

Z(ρ) ≃ η α2 ρ2 − 2αα2
α4 + 4α2 − 6912 (η2 + η ι+ ι2) + 4×

×
[︃
192 η2 (︁α2 + 36 ι

)︁
− 384α2 ι2

+ η
(︁
3α4 + α2(4− 384 ι) + 6912 ι2 − 4

)︁
+ 6912 η3

]︃
ρ3,

(4.124)

K(ρ) ≃ ι α2 ρ2 − 2αα2
α4 + 4α2 − 6912 (ι2 + ι η+ η2) + 4×

×
[︃
192 ι2

(︁
α2 + 36 η

)︁
− 384α2 η2

+ ι
(︁
3α4 + α2(4− 384 η) + 6912 η2 − 4

)︁
+ 6912 ι3

]︃
ρ3.

(4.125)

Note that switching the parameters η ↔ ι we have that Z ↔ K, as
expected.

Plugging the expansions (4.124), (4.72) into the equations (4.50), (4.51),
we find that these are solved without imposing any condition on a. This
function will then be constrained by the remaining equation (4.52) on
which we now focus. The solution process of the latter equation brings
us to distinguish between different cases. To solve the first non-trivial
order of (4.52) we must satisfy the condition:

α2

[︃
13α6 + 60α4 − 12α2

(︂
6912

(︂
η2 + η ι+ ι2

)︂
− 7

)︂
− 32(36 η+ 1)(36 ι+ 1)(36 η+ 36 ι− 1)

]︃
= 0 ,

(4.126)

which means that either α2 = 0 or the parenthesis vanishes. This condi-
tion is analogous to the one in (4.92) that we have found in the previous
section. As before, we are interested in solutions with a minimal super-
gravity limit and therefore we have to choose α2 = 0. At the next non
trivial order we then find the condition

α4

[︄
5819α6 − 5244α4 + 12α2

(︂
6912

(︂
η2 + η ι+ ι2

)︂
+ 65

)︂
+ 32(36 η+ 1)(36 ι+ 1)(36 η+ 36 ι− 1)

]︄
= 0 , (4.127)

this equation can be satisfied if α4 = 0 or the parenthesis vanishes. In
the case of the previous section, which was originally discussed in [99],
setting the corresponding parenthesis to zero led to the black hole so-
lution studied there, while setting α4 to zero the only regular solution
obtained was the one of [42]. In the minimal theory it is possible to
obtain the black hole of [101] by setting α =

√︂
8
11 while the choice

α4 = 0 leads either to the regular soliton of [133] or to the black hole
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of [41]. In [100] it has been shown that there is no possibility of finding
a regular soliton solution which presents running scalars, i.e. with at
least one of the two functions Z and K which does not vanish. We now
briefly report this proof here. First of all, we consider the expression
for f (4.53) and we rewrite it as

f(ρ) =
12 a3 a′

[(36Z ′ +P) (36K ′ +P) (−36(Z +K)′ +P)]1/3 , (4.128)

in order to describe a soliton, the f function must start with a con-
stant term in a small ρ-expansion, so that the solution closes smoothly.
However from (4.128) we can argue that this is possible only if the
numerator and the denominator have the same leading behaviour at
small ρ. Plugging the expansions (4.122) in (4.128), we can easily check
whether this is possible or not; in particular we note that the numerator
goes as ρ3 at small ρ, so we have to impose the same behaviour to the
denominator. In the minimal case Z = K = 0 this is easily achieved
by taking α = ±1

2 , since

P = a′′′ a3 + a a′
(︂
7 a a′′ + 4 (a′)

2 − 1
)︂

, (4.129)

indeed starts with a ρ3 term if and only if α = 1
2 . This choice for α is

the one taken in [133] and leads the author to find a soliton solution.
In the general case we are considering in this paper, Z and K are non
vanishing, therefore recalling (4.122) it is evident that the denominator
of (4.128) goes always as ρ, while the numerator begins with ρ3. We
then conclude that there is no possibility to find a soliton solution in
the U(1)3 theory with non trivial scalars. We have furthermore verified
that, even in our general framework where we do not have imposed any
ansatz on the scalar fields, the choice α4 = 0 leads only to the solution
of [42] or to a singular solution61.

The only new solution we find is thus obtained by setting the paren-
thesis in (4.127) to zero. This can be achieved by imposing that the
parameter ι assumes the following value

ι = −η2 ±
1

144
√

2 (2α2 + 36 η+ 1)

{︃(︁
72 η− 23α2 + 2

)︁ (︁
2α2 + 36 η+ 1

)︁
[︁
253α4 + α2(792 η− 206) + 16(1− 18 η)2]︁}︃1/2

.

(4.130)

Here one has the possibility to choose either the plus or the minus sign;
we leave this choice unspecified for now and proceed further. Setting ι
as in (4.130), we continue to perturbatively solve the equation (4.52)

61 Indeed, setting α4 = 0 we find a near-horizon expansion which is compatible with
a new black hole, but when integrated numerically towards ρ → ∞ this solution
presents divergences in the interior region for all the different initial integration
conditions we tried.
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finding that the solution is uniquely determined in terms of the free
parameters α, η,α3 and α4. We do not report here the expansions of
the functions a, Z and K; they can be found in [100] together with
further details on the near-horizon solution. One important remark is
that, due to the fact that we have fixed ι as in (4.130), the symmetry
between Z and K is now broken since ι is not a free parameter anymore.

It is important to discuss how we can reduce our general solution
to the We now briefly show how to reduce our general solution to the
U(1)3 version of the one constructed in [99] and analyzed in sec. 4.2.1.2.
As discussed at the end of sec. 4.1.2, we need to impose Z = K, which
means η = ι. The condition (4.130) then becomes an equation for η
which gives:

η limit =
1

288

(︄
− 8 + 11α2 ± 9α

√︁
8− 11α2

)︄
=
η there

6 , (4.131)

which is consistent with the fact that it must be Zlimit =
1
6 H as already

stated above. As consequence, all the expansions reproduce the one
of [99], as it has been shown in [100].

As it was for the solution of the general theory with arbitrary nV ,
also here we have unphysical parameters and we can use the scaling
symmetry discussed at the end of sec. 4.1.2. In particular we note that
α and η are left invariant under the action of these symmetries, while
α3 and α4 can be rescaled. We can therefore argue that only three of
the free parameters we found are physical and we choose to consider
α3 as an unphysical parameter. We will explicitly use the possibility
to rescale α3 to numerically match our small-ρ behaviour with the
near-boundary one discussed in the previous section, showing that an
interpolating solution indeed exists for different values of the remaining
physical free parameters. Furthermore, we also introduce the parameter
ξ, which is defined as in (4.96); we will trade α4 with this parameter
wherever the former appears. From now on, our set of independent
near-horizon free parameters will then be (α, η, ξ).

We report the explicit near-horizon form of the metric, of the gauge
feilds and the scalars, so that it will be manifest that they are compat-
ible with a black hole which is a generalization of the U(1)3 version of
the solution presented in [99]. At leading order, in the small ρ expansion,
the metric assumes the following form

ds2 = −48α6

∆2 Θ
ρ4 dt2 +∆

[︄
dρ2

12α2 ρ2 +
1
12
(︂
σ2

1 + σ2
2

)︂
+ Θ

(︃
σ3 −

2
v2 dt

)︃2
]︄

,

(4.132)
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where we have defined as ∆ and Θ the two following quantities

∆ =
[︂(︂

4α2 + 72η− 1
)︂ (︂

4α2 + 72ι− 1
)︂ (︂

4α2 − 72(η+ ι)− 1
)︂]︂1/3

,

(4.133)

Θ =
1

48 ∆3

{︄
256α8 − 96α4

[︂
1728

(︂
η2 + η ι+ ι2

)︂
+ 1

]︂
− 32α2 [186624 η ι (η+ ι)− 1]

− 3
[︂
1− 1728

(︂
η2 + η ι+ ι2

)︂]︂2}︄
.

(4.134)

The scalar fields are given by

X1 =
∆

4α2 + 72 η − 1
+

1
∆5

{︃
5184 α α3

(︁
4α2 + 72ι − 1

)︁
[︁
4α2 − 72 (η + ι) − 1

]︁ [︁
η
(︁
4α2 − 24η − 1

)︁
+ 48 η ι + 48ι2]︁}︃ ρ2 + O(ρ4) ,

(4.135)

X2 =
∆

4α2 + 72 ι − 1
+

1
∆5

{︃
5184 α α3

(︁
4α2 + 72η − 1

)︁
[︁
ι
(︁
4α2 − 24ι − 1

)︁
+ 48 η2 + 48 η ι

]︁ (︁
4α2 − 72 [η + ι) − 1

]︁}︃
ρ2 + O(ρ4)

(4.136)

with the last scalar field X3 that can be easily determined using the
constraint between them, given by eq (4.68). Finally the gauge fields
in the near-horizon result to be

A1 = − 2
v2 A

1
ψ(ρ = 0) dt

+
16α4 + 8α2(72η− 1) + 5184

(︁
ι2 + ι η− η2)︁− 144η+ 1

12 (4α2 + 72η− 1)
σ3 +O(ρ2),

(4.137)

A2 = − 2
v2 A

2
ψ(ρ = 0) dt

+
16α4 + 8α2(72ι− 1) + 5184

(︁
η2 + η ι− ι2

)︁
− 144ι+ 1

12 (4α2 + 72ι− 1)
σ3 +O(ρ2) ,

(4.138)

and, again, the third gauge field A3 can be easily determined by the
other two and will not be presented here. The perturbative solution
we have found can indeed be regarded as the near-horizon expansion
of a black hole whose horizon is located at ρ = 0. Indeed, the metric
has a divergent radial component which is O(ρ−2) while its spatial
part stays finite as the limit ρ → 0 is approached. Furthermore, the
supersymmetric Killing vector V , given by eq. (4.78), is everywhere
timelike but on the horizon, where its norm −f2 vanishes62. All the

62 In order to explicitly see this, one can consider the explicit form of f in the near-
horizon, which is reported in [100].
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scalar fields stay regular as the limit ρ → 0 towards the horizon is
approached and the same do the gauge fields, which are furthermore
transverse to V in the gauge we have chosen63.

Our next step is to identify for which choice of parameters the solu-
tion has a well defined horizon at ρ = 0. In order to ensure regularity
of the horizon we need that all the spatial diagonal metric components
in eq. (4.132) retain their sign for every value of the radial coordi-
nate ρ. This means we must assure that gii > 0 for i = ρ, θ, ϕ, ψ64.
From (4.132) it is easy to see that this translates into imposing the
conditions ∆ > 0 and Θ > 0. Indeed, this ensures the positivity of gii
for every value of ρ. We are still left with the possible sign choice in
eq. (4.130); both choices give a well defined black hole solution and
we will analyze the parameter space for both of them, even if in the
following we will report the numerical results only for the minus sign
choice, which is the choice that leads to the largest space of regular
solutions. In fig. 4.7 we report the parameter space in terms of α and
ϵ, with the latter defined via

η =
1

288

(︄
− 8 + 11α2 ± 9α

√︁
8− 11α2

)︄
+ ϵ = η limit + ϵ , (4.139)

so that the limit to Z = K case of [99] is simply reproduced by the
choice ϵ = 0. Note that we can trade η with ϵ using (4.139) only if
α ≤

√︂
8
11 , that is the maximum value considered for α in fig. 4.7; we

have analyzed the parameter space for α >
√︂

8
11 and for generic values

of η finding that no regular black hole horizon with real coefficients
appears in this region65.

In fig. 4.7 we have reported the parameter space for both the sign
choices. The region colored in red is the region where gψψ > 0, while the
region in blue is where gθθ > 0. We have colored in yellow the regions
where we managed to find numerically a regular black hole solution
with real coefficients, by interpolating the near-horizon solution of the
present section with the near-boundary one of the previous section.
In particular, the yellow dots are the point characterized by the most
extreme values for the parameters α , ϵ for which we found a regular
numerical solution. The points in the purple region that are not in
the yellow one represent values of α , ϵ for which the horizon is well
behaved but a full solutions seems not to exist. This is because we
find divergences in the bulk when we try to numerically interpolate

63 Indeed, it results V µ AI
µ = 0 as it is easy to verify using eq. (4.137).

64 Actually to ensure regularity of the horizon we should also require that gyy ≤ 0,
where the equal sign holds only at the horizon ρ = 0. However this is already
guaranteed by the fact that gyy = −f2 with f being, as already stated, a real
function which vanishes at the horizon.

65 Note that the regularity conditions ∆ > 0 and Θ > 0 must be combined with the
existence condition of the square root in (4.130). We found that these three requests

are never simultaneously verified when α >

√︂
8

11 .
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(a) Parameter space for − sign. (b) Parameter space for + sign.

Figure 4.7: On the left we show the parameter space with the minus sign
choice in eq. (4.130), while on the right we show the parameter
space for the plus sign choice. We shaded in yellow the region
where regular black hole solutions are found.

the near-horizon region with the near-boundary one. Notice that we
have reproduced the results of [99] on the axis ϵ = 0. We have a nice
explanation for the peculiar behaviour appearing at the point (α , ϵ) =
(
√︂

2
3 , 0), reported in fig. 4.7 with a green dot, where in [99] it emerges

a non-analytic behaviour of ∆: this is due to the peculiar structure of
the ∆ function in the (α , ϵ) plane.

Notice that, as it can be easily seen in fig. 4.7, the region of existence
of regular black hole solutions with the plus choice in eq. (4.130) is
smaller than the one obtained with the minus choice; this is clearly
visible from the form of the “yellow triangle” of solutions in the two
cases. This is what is also found in the case ϵ = 0 of [99]. We also stress
the fact that both gθθ and gψψ quickly drop to be negative outside
the region of the parameter space we have shown in the figure, so no
regular horizon can be found there. There is a possible exception only
for α ∈ (0, 1

2 ), where instead we have found a region of regular positive
gθθ and gψψ, but there H and K becomes complex.

As we have done for the solution of the general theory with arbitrary
nV , we conclude this section by observing that we can use the near-
horizon solution to obtain the dependence of the first integrals (4.69)
on the near-horizon parameters α and η 66. In order to do this, we have
just to plug our near-horizon expansions for the supergravity functions
into (4.69) and perform the computations. For conciseness we do not
report the expressions such obtained here, but they are given in [100],
together with the relations between the near-boundary parameters and
theKI . As we mentioned at the end of sec. 4.2.2, and as we have already
done for the previous solution in sec. 4.2.1.1, 4.2.1.2, confronting the
near-boundary and the near-horizon expressions for the first integrals,

66 In principle also the parameter ξ could appear in such relations, but it turns out
that, since it is quite subleading, it is instead absent.
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we are able to write the most subleading near-boundary parameters
a4, Z4, K4 and a6 in terms of the remaining near-boundary ones and
the near horizon ones. This allows us to eliminate these four parameters
in all the expressions and we will proceed by doing it throughout the
paper, as it simplifies many expressions.

4.2.2.3 The numerical solution

In this section we construct the full numerical solution by interpolating
the near-horizon and the near-boundary expansions, as we have already
done for the general solution with arbitrary nV in sec. 4.2.1.3. The
numerical approach we take and the strategy we follow are basically the
same and are extensively described in [100], therefore here we present
only the essential details and we refer to this paper for further details.

We recall that we found in the near-horizon an unphysical parameter,
α3, which may be rescaled at will; we use this possibility to set the
appropriate rescaling such that the AlAdS behaviour of a holds in the
near-boundary region. Obviously, in order to integrate the equations,
we need to give numerical values to the near-horizon parameters α, ϵ
and ξ. We tried many different values for the parameters α and ϵ in
the whole possible region of regularity of the solution (which coincides
with the region colored in purple in fig. 4.7) finding regularity in the
interior only in the points (α, ϵ) inside the yellow region. This means
that for every point in the yellow region there is an interval of allowed
values of ξ for which all the components of the metric, the scalars and
the gauge fields are regular. The allowed interval of ξ depends on α and
ϵ and is determined by regularity of the boundary geometry. All the
points outside the yellow region lead to solutions which present fields
that are not regular in the bulk; in particular for such solutions the
function f turns out to have always a divergence at finite ρ. We shall
therefore discard such solutions.

In particular, the region of regularity of the solution corresponding
to the minus sign choice in (4.130) is inside√︃

2
3 ≤ α ≤

√︃
8
11 and − 0.005 ≤ ϵ ≤ 0.008 , (4.140)

while a similar, but smaller, range is found for the plus sign solution.
From now on we will specialize on the minus sign choice, but all the
characteristics of the solutions we will discuss are present also in the
ones obtained choosing the plus sign.

We constructed the full interpolating solution for many values of the
near-horizon parameters inside the bounds reported in (4.140). As il-
lustrative examples, we discuss in the following two different analyses
performed on the solution: the first is made by fixing α and ξ and
studying solutions with different ϵ, the second one is made by fixing α
and ϵ and studying solutions for various values of ξ. The first analysis
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gives us the possibility to compare the characteristics of the new solu-
tions we have found with the ones of [99], which are obtained by setting
ϵ = 0. These are the solutions that we have presented in sec. 4.2.1.3.
Since, as we know from [99,101,133], the parameter ξ is related to the
squashing at the boundary, the second analysis allows us to study the
new solutions (which present ϵ ̸= 0) with different squashed boundary
geometries.

We begin by presenting the solutions with different ϵ. We choose
α = 0.84 and ξ = −1

4 .
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Figure 4.8: Relevant functions and metric components of our solution for α =
0.84, ξ = −1

4 and different values of ϵ, reported in the label. Each
function is rescaled by its asymptotic behaviour at large ρ. We
emphasize that both gθθ and gψψ are positive in all the ρ ≥ 0
region, so our solution does not have any CTCs. Since instead gtt
assumes positive values near the horizon, our solution does have
an ergoregion.

In fig. 4.8 we show the numerical behaviour of the metric components.
It is easy to see that in the near-horizon region their behaviour is in
general different for the various choices of ϵ; an exception is the f

function for which the differences are very small. We should notice that
gθθ and gψψ tend to a positive non-zero value for ρ = 0 and are always
positive; this means that our solution has no Closed Timelike Curves
in the whole region ρ ≥ 0. We have verified that the same happens
for many different values of the parameters in the yellow region of
regularity of fig. 4.7. Also, since our solutions are rotating solutions, it
is clear from the plot of gtt that an ergoregion emerges.

In fig. 4.9 we show the numerical solutions for the scalar and gauge
fields. From this picture is quite evident how the change in ϵ affects
the global structure of the solution, since in the near-horizon region
the fields get attracted to different asymptotic values, while, as for the
metric components, they are all attracted to the same large ρ value.
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Figure 4.9: Components of the gauge fields AI and scalar fields XI at α =
0.84, ξ = −1

4 for various ε. It is evident that in the near-horizon
region the differences among the fields for the various ϵ are quite
large.

Next, we perform the other study we have announced before: we fix
α and ϵ to be certain values and we study the particular solution so
obtained for some different values of ξ. We choose the values α = 0.84
and ϵ = 0.008.

We reported in fig. 4.10 the metric components of the solutions. As
opposed to the fixed ξ case, here the components go for ρ → ∞ to
different values. Furthermore, their behaviour is very similar in the
near-horizon region. This is because the effect of having a different ξ
is almost negligible in the near-horizon, since the horizon geometry is
controlled by α and ϵ, while in the near-boundary region the same
effect is relevant, being the ξ parameter related to the squashing at the
boundary. Again, we have an ergoregion, where gtt becomes positive,
and no CTCs, since both gθθ and gψψ are positive everywhere.

We then show fig. 4.11 where we reported the gauge and scalar fields
for various ξ; again, we see that, in contrast with the fixed ξ case, their
behaviour in the near-horizon region is similar for all the ξ, while they
go to different values in the near-boundary region. The only exception
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Figure 4.10: Relevant functions and metric components of our solution for
α = 0.84, ε = +0.008 and different values of ξ, reported in the
label. Each function is rescaled by its asymptotic behaviour at
large ρ. We emphasize that both gθθ and gψψ are positive in all
the ρ ≥ 0 region, so our solution does not have any CTCs. Since
instead gtt assumes positive values near the horizon, our solution
does have an ergoregion.

is the value of AIt , that also differs in the near-horizon region. This is
due to the fact that in the coordinates (t, ψ) we are using the time
component of the gauge fields explicitly depends on the squashing v,
as it is clearly visible by (4.137). If we had used instead the coordinates
(y, ψ̂), the time component AIt would vanish at the horizon and would
not be influenced by ξ.

We end this section by summarizing the main characteristics of the
family of solutions we have constructed. Both the near-horizon analysis
and the numerical one prove that our solutions are black hole solutions
whose horizon geometry is controlled by two of the three near-horizon
parameters, α and η. Therefore this family of solutions presents an
horizon geometry which is described by one parameter more compared
with the U(1)3 version of the solution presented in the previous section.
The last near-horizon parameter, ξ, is related to the squashing at the
boundary, and is therefore related with the parameter v2 controlling
the squashing of the boundary three-sphere. Both the near-boundary
analysis and the numerical one show that our solutions are AlAdS, a
conformally flat boundary being obtained only when the S3 is round
(v2 = 1). We have numerically shown that the near-boundary and near-
horizon behaviours we have found interpolate smoothly in the bulk,
giving rise to regular solutions which are free from CTCs.
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Figure 4.11: Components of the gauge fields AI and scalar fields XI at α =
0.84, ε = +0.008 for various ξ.

4.3 physical properties and holographic renormal-
ization

We now compute the relevant physical quantities that characterize the
family of solutions built in sec. 4.2. These are the energy, the angular
momentum, the holographic and Page charges, which can be computed
using the near-boundary perturbative solution, the chemical potentials
and the entropy, which instead can be derived by means of the near-
horizon expansions. Once these quantities are known, we can perform
some consistency checks, for example by verifying the quantum statis-
tical relation.

In order to compute some of the above physical properties, we will
use the technology of holographic renormalization [30,114,115,160–162].
We perform such computations using the Fefferman-Graham radial co-
ordiante r, introduced in app. A67, instead of the usual one ρ. This

67 For further details on how to express the solutions we have built in Fefferman-
Graham coordinates we refer the reader to [99,100,133].
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is because the use of the Fefferman-Graham coordinate is standard in
holography and may help to compare our results with other references.
The general form that the metric assumes in Fefferman-Graham coor-
dinats is

ds2 = ℓ2
dr2

r2 + hij dxi dxj , (4.141)

where the five-dimensional coordinates split as xµ = (r,xi) with xi =

{t, θ,ϕ,ψ} and where hij is the induced metric at the boundary of
the spacetime. The boundary gauge fields AIi and the boundary field
strengths F Iij are similarly defined.

In the two following sections we report the results we got using holo-
graphic renormalization, for the general solutions with arbitrary nV
and for the one with nV = 2, respectively. We refer to app. A and
to [99,100] for a more detailed discussions about how these results are
obtained. We remark that we performed holographic renormalization
using a minimal subtraction scheme; all the physical quantities evalu-
ated by means of this formalism refer to this renormalization scheme.

4.3.1 The solution with arbitrary nV

We start by computing via holographic renormalization the stress-energy
tensor of the family of solutions under consideration. This is given by
the following expression68

⟨Tij⟩ = −
1
κ2 lim

r0→∞
r2

0
ℓ2

[︄
Kij −K hij +W hij −

W − 3ℓ−1

log r2
0
ℓ2

hij

− 2 Ξ
(︃
Rij −

1
2 Rhij

)︃
− ℓ3

4 log r
2
0
ℓ2

(︄
− 1

2 Bij

− 2
ℓ2
QIJF

I
ikF

J
j
k +

1
2ℓ2 hij QIJF

I
klF

J kl

)︄]︄
,

(4.142)

where the Ricci tensor Rij , the Ricci scalar R and the Bach tensor69 Bij
are those of the induced metric hij . The other ingredients appearing
in the expression (4.142) for the stress-energy tensor are the extrinsic
curvature Kij of the induced metric hij , its trace K, the superpotential
W and the function Ξ70. The superpotential can be read from the
supersymmetry variation of the gravitino field and satisfies

V =
1
2

(︃
QIJ − 2

3X
IXJ

)︃
∂IW ∂JW −

2
3W

2 , (4.143)

68 In the stress-energy tensor formula, as well as in all the formulae below, the quantity
r0 is the cutoff we used to regulate the large-distance divergences which appear. At
the end of the computation it is removed by sending it to infinity.

69 See e.g. [133] for more details on the Bach tensor and how it arises here.
70 This must not be confused with the function introduced in (3.37): there is no relation

between the two, although we are using the same notation. Confusion will be avoided
anyway since we will not consider the function defined in (3.37) anymore.
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where V is the scalar potential. For our Fayet-Iliopoulos gauging with
scalar potential (2.17), the superpotential reads:

W = 3 ℓ−1X̄IX
I . (4.144)

The function Ξ instead appears in the counterterms necessary to renor-
malize the bulk action; we will introduce them below and review them
in much details in app. A. We find that Ξ is given by the following
expression

Ξ =
ℓ

4 X̄
I
XI . (4.145)

We find that the energy momentum tensor (4.142) can be expressed in
Fefferman-Graham coordinates as:

⟨Tij⟩dxi dxj = ⟨Ttt⟩dt2 + ⟨Tθθ⟩
(︂
σ2

1 + σ2
2

)︂
+ ⟨Tψψ⟩σ2

3 + 2⟨Ttψ⟩ dt σ3 ,
(4.146)

where the components read:

⟨Ttt⟩ =
1

κ2a2
0 v

4ℓ

(︂(︂
1
9 − H̃

2 − 2K1
)︂
v2 − 7

36v
4 + 89

864v
6

+ 2H̃
(︂
2H̃2 − H̃ + 6K2

)︂
+ 1

27

(︂
2− 108K1 + 27K3

)︂)︃
,

⟨Tθθ⟩ =
ℓ

384κ2 a2
0

(︄
16(16a2 − 5)v2 + 67 v4

+ 288 H̃ (4H2 + H̃) + 32− 576K1

)︄
,

⟨Tψψ⟩ =
ℓ

3456κ2a2
0

(︃
4320 v2H̃

2 − 480 (1− 18K1) v
2

− 24 (192 a2 − 53) v4 − 1117v6

+ 1728 H̃ (2H̃2 − H̃ + 6K2)

+ 32 (2− 108K1 + 27K3)

)︃
,

⟨Ttψ⟩ =
1

κ2a2
0 v

2

(︄
1
27 (v

2 − 1)3 − (v2 − 1)H̃2 − 2H̃3

2K1(v
2 − 1)− 6H̃K2 − 1

2K3

)︄
. (4.147)

Note that in the expressions above the first integrals K1, K2, K3 do
appear; this is because we have traded a4, a6,H4 for them so as to
considerably simplify the expressions. The trace of the stress-energy
tensor is

⟨Tii⟩ =
3

κ2a4
0
H̃
(︁
2H2 + H̃

)︁
. (4.148)
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Next, we evaluate the conserved electric current. This arises from
holographic renormalization and it is given by [99,100]

⟨jiI⟩ = −
1
κ2 lim

r0→∞
r4

0
ℓ4

[︄
1
6ϵ
ijkl

(︂
QIJ ⋆F

J + 1
6CIJKA

J ∧ FK
)︂
jkl

+ ℓ∇j
(︂
QIJF

J ji
)︂

log r0
ℓ

]︄
. (4.149)

Its non-vanishing components read

⟨jtI⟩ =
−1

36κ2ℓ2a4
0

[︄(︃
54K1 −

(︂
v2 − 1

)︂2
+ 9H̃2

)︃
X̄I

+ 6
(︂
9K2 +

(︂
v2 − 1

)︂
H̃ + 3H̃2)︂

qI

]︄
,

⟨jψI ⟩ =
1

72κ2ℓ2a4
0v

2

{︄[︄
4
(︂
36a2 − 5

)︂
v2 − 36 H̃2

− 216K1 + 25 v4 + 4
]︄
X̄I

− 12
[︄
18
(︂
H2 v

2 +K2
)︂

+ H̃
(︂
6 H̃ + 5 v2 − 2

)︂]︄
qI

}︄
.

(4.150)

In the limit H̃ = H2 = K1 = K2 = K3 = 0 , (4.147) and (4.150) are
consistent with the energy-momentum tensor and current for minimal
gauged supergravity solutions presented in [133].

Once both the stress-energy tensor and the electric current are evalu-
ated, we are in the position to compute the energy and the angular mo-
mentum, which are visible as the charges associated to the two Killing
vectors of the metric ∂

∂t and − ∂
∂ψ

E = Q ∂
∂t

= +
∫︂

Σ∞
volΣ ui

(︂
⟨T it⟩+AIt ⟨jiI⟩

)︂
, (4.151)

J = Q− ∂
∂ψ

= −
∫︂

Σ∞
volΣ ui

(︂
⟨T iψ⟩+AIψ⟨jiI⟩

)︂
, (4.152)

where ui ∂i = v
2 a0

∂t is a unit timelike vector for the metric on the con-
formal boundary. By using our expressions for the energy-momentum
tensor and the electric currents, we find:

E =
π2ℓ2

κ2

(︃16
9 −

14
9 v

2 +
19
36v

4 − 16 H̃2
+

8
v2K3

)︃
(4.153)

J =
4π2ℓ3

κ2 K3 (4.154)



146 alads5 black holes with squashed boundary

where for the last equality we used (4.46). This shows that the holo-
graphic angular momentum coincides with the generalized Komar inte-
gral (4.38). Since the holographic electric currents ⟨jiI⟩ are conserved,
we can introduce holographic electric charges QI as:

QI =
∫︂

Σ∞
volΣ ui⟨jiI⟩ . (4.155)

Using (4.149) it is not hard to show that this is the same as:71

QI = −
1
κ2

∫︂
Σ∞

(︃
QIJ ⋆ F

J +
1
6CIJK A

J ∧ FK
)︃

. (4.156)

It is fundamental for our discussion to remark that these differ on our
solutions from the Page charges

PI =
1
κ2

∫︂
Σ∞

(︃
QIJ ⋆ F

J +
1
4 CIJKA

J ∧ FK
)︃

. (4.157)

In fact, on our solutions, we have

QI =
16π2ℓ2

κ2

[︄(︃
3K1 − 1

18

(︂
v2 − 1

)︂2
+ 1

2H̃
2
)︃
X̄I

+
(︂
3K2 +

1
3 (v

2 − 1) H̃ + H̃
2)︂
qI

]︄
,

(4.158)

while

PI = −
48π2ℓ2

κ2 (K1X̄I +K2 qI) , (4.159)

so that the following relation does hold

QI = −PI +
1

12κ2

∫︂
Σ∞

CIJKA
J ∧ FK . (4.160)

We want to stress that this fact is a consequence of the squashing
of the boundary: it is trivial to see from eqs. (4.156), (4.157) that the
difference between holographic and Page charges is related to the Chern-
Simons term which gives a different contribution to the two quantities.
In usual non-squashed solutions like [41, 42] the same term gives no
contribution, since the field strength F I vanishes asymptotically, and
the two different types of charges are therefore equal. This implies that
we may have some relevant departure from the equation of [132] that
relates the entropy and the charges, since we have no unique way to
choose which charge is the correct one for reproducing the entropy; in
fact, it will turn out later that the entropy is indeed reproduced in
terms of the Page charges, instead of the holographic charges obtained
in (4.184).

71 The overall minus sign can be traced back to the fact that our choice of orientation
for the bulk and the boundary is such that vol(M) = − dr

r ∧ vol(∂M).
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These results for the electric charges QI , the energy E and the an-
gular momentum J hold for any AlAdS solution to Fayet-Iliopoulos
gauged supergravity satisfying the supersymmetry equations (4.30),
(4.31). The expressions depend only on the squashing at the bound-
ary v, on the scalar source H̃ and on the constants K1,K2,K3. As
explained in sec. 4.2.1.2, the latter can be fixed by studying how the
solution caps off in the interior.

Our next focus is on the near-horizon properties of the solution. The
entropy can be computed by looking at the horizon metric (4.106):

S =
2π
κ2 Area =

8π3ℓ3

κ2

√︂
48K2

1 − 12K2
2 −K3

= 2πℓ

√︄
3
2C

IJKX̄IPJPK −
4π2ℓ

κ2 J . (4.161)

This is the anticipated result: the entropy of the black hole solutions
with squashed boundary can be reproduced by a simple formula contain-
ing only the conserved charges; however the formula does not involve
the usual holographic electric charges but rather the Page charges, sig-
naling a relevance for the entropy counting of the Chern-Simons term
that was previously unnoticed by the non-squashed solutions of [41,42].
Therefore, the entropy formula found for example in [132] for asymptot-
ically AdS5 black holes retains its validity for these AlAdS5 solutions if
we identify the charges appearing therein with the Page ones instead of
the holographic ones. This result has been obtained for the first time
in [99] and, as we shall see in the following section, it does hold also for
the more general solutions of [100]. This result is somewhat anticipated
by the explicit form the different types of charges take: indeed the QI
depend on both the squashing v and the scalar source H̃ on which the
horizon geometry is independent and therefore appear to be inadequate
to describe an horizon quantity like the entropy. The Page charges PI ,
instead, depend only on the first integrals which are immediately re-
lated to the horizon geometry only and seem thus the right charges to
describe the entropy.

From the supersymmetric Killing vector (4.78), it is easy to evaluate
the angular velocity Ω of our family of solutions. This results (4.78)
and is:

Ω =
2
ℓv2 , (4.162)

while the electrostatic potential is given by:72

ΦI ≡ V µAIµ |hor = 0 , (4.163)

72 Here we are using the definitions of [117], where the electric potential is measured just
at the horizon, ΦI = V µAI

µ |hor and E, J are those introduced in (4.151), (4.152).
In another possible definition, the electric potential also receives a contribution from
the gauge field at infinity, ΦI = V µAI

µ |hor − V µAI
µ |∞, while E and J are computed

just from the energy-momentum tensor (if conserved), without the term involving
the gauge field. In any case the combination E − ΩJ − ΦIQI remains the same.
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Now we want to use all the quantities we have evaluated in this
section to verify the extremal limit of the quantum statistical relation
which we have already introduced in Chapter 2 and discussed in Chap-
ter 3. We recall that the quantum statistical relation is given by

I

β
= E − T S −Ω J −ΦI QI , (4.164)

where, as we have already explained in the previous chapters, I is the
Euclidean on-shell action, T is the temperature of the black hole and
β = 1

T . We can take the extremal limit of this relation by recalling that
for extremal black holes we have T = 0. Sending the temperature to
zero, we obtain at the leading order the relation:

I

β
= E −Ω J −ΦI QI , (4.165)

which is valid for extremal black holes and should therefore be satisfied
by our family of solutions.

To verify eq. (4.165) we are missing the Euclidean on-shell action.
This can be computed using again holographic renormalization. Within
this framework, renormalized Lorentzian on-shell action can be defined
as

Sren = lim
r0→∞

Sreg , (4.166)

where the regularized action is

Sreg = Sbulk + SGH + Sct . (4.167)

There are various terms in the equation above: Sbulk is the bulk ac-
tion (2.2), while SGH and Sct are the Gibbons-Hawking term and the
counterterms piece respectively. We show them explicitly in app. A
and we refer the reader to [99, 100, 133] for further details. In app. A
we also show how the whole computation of the renormalized action is
performed; here we report only the final result, which is

Sren = −π
2ℓ2

κ2

[︃16
9 −

14
9 v2 +

19
36 v

4 − 16 H̃2
]︃ ∫︂

dt . (4.168)

This depends only on the squashing at the boundary v2 and on the
scalar source term H̃. Moreover, we should remark that the regular-
ized action is gauge-dependent due to the Chern-Simons term in the
bulk action (2.2); the result we reported above is valid when the gauge
condition V µAIµ = 0 is imposed at the horizon. This particular gauge
is justified since it ensures regularity of the solution by avoiding diver-
gences in the square norm of the gauge fields. It should be noted that
when taking the minimal limit H̃ → 0, this gauge choice leads to an
expression for the on-shell action that is different from the one given
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in [133, eq. (4.13)]. Indeed in [133] a different gauge choice was made,73

ensuring that the Killing spinor is instead preserved by the vector ∂
∂t .

The Euclidean continuation of the Lorentzian regularized action can
now be obtained by performing a Wick rotation on the time and by
making the latter periodic of period β, so that we have

I

β
= −Sren∫︁

dt . (4.169)

Thus, we have obtained I, i.e. the last quantity involved in the quantum
statistical relation. Plugging all these quantities into eq. (4.165), we see
that it is indeed verified. Note also that by recalling that ΦI = 0 for our
family of solutions and by defining the holographic charge associated
to the Killing vector (4.78) as:

QV = E − 2
ℓ v2 J , (4.170)

the quantum statistical relation assumes the form:

I

β
= QV , (4.171)

which can also be seen as the BPS relation between the holographic
charges, the anomalous contribution of [122,123] being already included.

Now we finally computed the last quantity involved in the quantum
statistical relation. Plugging all the ingredients into eq. (4.165), we see
that it is indeed verified. Note also that by recalling that ΦI = 0 for our
family of solutions and by defining the holographic charge associated
to the Killing vector (4.78) as:

QV = E − 2
ℓ v2 J , (4.172)

the quantum statistical relation assumes the form:

I

β
= QV , (4.173)

which can also be seen as the BPS relation between the holographic
charges, the anomalous contribution of [122,123] being already included.

4.3.2 The solution with nV = 2

Here we compute and collect the main physical properties of the solu-
tions with nV = 2 constructed in 4.2.2.3. The approach and the logic
we follow is the same as the previous case, as well as most of the for-
mulae we use to compute the various quantities; for these reasons the
presentation will be shorter.

73 From (4.83) we see that the present gauge satisfies limr→∞ V µAI
µX̄I = 1, while the

gauge chosen in [133] corresponds to limr→∞ V µAI
µX̄I = 1 − 2

3v2 .
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The stress-energy tensor for this family of solutions is still given
by (4.142) and, when evaluated in Fefferman-Graham coordinates, it
assumes the form (4.146). The explicit components are given by We
find that the stress-energy tensor can be written as

⟨Tij⟩ dxi dxj = ⟨Ttt⟩ dt2 + ⟨Tθθ⟩
(︂
σ2

1 + σ2
2

)︂
+ ⟨Tψψ⟩σ2

3 + 2 ⟨Ttψ⟩ dt σ3 ,
(4.174)

where the components explicitly read

⟨Ttt⟩ =
1

κ2a2
0v

4ℓ

[︄
2
27 +

v2

9 −
7v4

36 +
89v6

864 − 4K1 +K3

+ 24
(︃
Z̃

2
(18K̃ − 1) + Z̃(3K(2)

2 + 6K(1)
2 + K̃(18K̃ − 1))+

K̃(6K(2)
2 + 3K(1)

2 − K̃)

)︃
− 2v2

(︂
6
(︂
Z̃

2
+ Z̃K̃ + K̃

2
)︂
+K1

)︂]︄
,

(4.175)

⟨Ttψ⟩ =
1

κ2a2
0v

2

[︄
1
54

(︂
−108K1

(︁
v2 − 1

)︁
− 27K3 + 2

(︁
v2 − 1

)︁3)︂
− 12

(︄
Z̃

2 (︁18K̃ + v2 − 1
)︁
+ Z̃

(︂
3K(2)

2 + 6K(1)
2 + K̃

(︁
18K̃ + v2 − 1

)︁)︂
+ K̃

(︂
6K(2)

2 + 3K(1)
2 + K̃

(︁
v2 − 1

)︁)︂)︄]︄
,

(4.176)

⟨Tψψ⟩ =
ℓ

3456κ2a2
0

[︄
24(53− 192a2)v

4 + 1728K1
(︁
5v2 − 2

)︁
+ 864K3 − 1117v6 − 480v2 + 64 + 10368

(︂
5v2

(︂
Z̃

2
+ Z̃K̃ + K̃

2
)︂
+ Z̃

2
(36K̃ − 2)

+ 2Z̃(3K(2)
2 + 6K(1)

2 + K̃(18K̃ − 1)) + 2K̃(6K(2)
2 + 3K(1)

2 − K̃)
)︂]︄

,

(4.177)

⟨Tθθ⟩ =
ℓ

384κ2a2
0

[︄
16(16a2 − 5)v2 − 576K1 + 67v4 + 32

+ 3456
(︂
K̃(2Z2 + Z̃ + 4K2) + Z̃(4Z2 + Z̃ + 2K2) + K̃

2
)︂]︄

,

(4.178)

and the trace of the stress-energy tensor is

⟨T ii⟩ =
3

κ2a4
0

12
(︂
K̃(Z2 + Z̃ + 2K2) + Z̃(2Z2 + Z̃ +K2) + K̃

2)︂ .
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(4.179)

The three electric conserved currents can be determined again using (4.149).
Their non-vanishing components are given by

⟨jt1⟩ = −
1

36κ2ℓ2a4
0

⎡⎣6Z̃
(︂
18K̃ + v2 − 1

)︂

+
1
3

(︃
54K1 + 162K(1)

2 + 324K̃2 −
(︂
v2 − 1

)︂2
)︃⎤⎦,

⟨jψ1 ⟩ = +
1

54κ2ℓ2a4
0v

2

⎡⎣v2(36a2 − 162Z2 − 5)− 9Z̃
(︂
36K̃ + 5v2 − 2

)︂

− 54K1 − 162K(1)
2 − 324K̃2

+
25v4

4 + 1

⎤⎦,

(4.180)

⟨jt2⟩ = −
1

36κ2ℓ2a4
0

⎡⎣6K̃
(︂
18Z̃ + v2 − 1

)︂

+
1
3

(︃
54K1 + 162K(2)

2 + 324Z̃2 −
(︂
v2 − 1

)︂2
)︃⎤⎦,

⟨jψ2 ⟩ = +
1

54κ2ℓ2a4
0v

2

⎡⎣v2(36a2 − 162K2 − 5)− 9K̃
(︂
36Z̃ + 5v2 − 2

)︂

− 54K1 − 162K(2)
2 − 324Z̃2

+
25v4

4 + 1

⎤⎦,

(4.181)

⟨jt3⟩ = −⟨jt1⟩ − ⟨jt2⟩ −
1

36κ2ℓ2a4
0

⎡⎣54K1 + 108(Z̃2
+ Z̃K̃ + K̃

2
)−

(︂
v2 − 1

)︂2
⎤⎦,

⟨jψ3 ⟩ = −⟨j
ψ
1 ⟩ − ⟨j

ψ
2 ⟩

+
1

54κ2ℓ2a4
0v

2

⎡⎣3− 162K1 − 324(Z̃2
+ Z̃K̃ + K̃

2
)

+ 3(36a2 − 5)v2 +
75v4

4

⎤⎦.

(4.182)

We notice that ⟨jt1⟩ ↔ ⟨jt2⟩ if Z̃ ↔ K̃ and K(1)
2 ↔ K(2)

2 .
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Having at disposal both the stress-energy tensor and the conserved
electric currents, we can proceed to evaluate the conserved charges,
using the formulae given in (4.151), (4.152), (4.156). For the energy
and the angular momentum, we obtain:

E =
π2ℓ2

κ2

[︃16
9 −

14
9 v2 +

19
36 v

4 +
8
v2 K3 − 192(Z̃2

+ Z̃K̃ + K̃
2
)

]︃
,

J =
4π2ℓ3

κ2 K3 .

(4.183)

The holographic electric charges are instead given by:

Q1 = −P1 −
16π2ℓ2

κ2
1
54
[︂(︂

1− v2 − 18K̃
)︂ (︂

1− v2 + 18(Z̃ + K̃)
)︂]︂

,

Q2 = −P2 −
16π2ℓ2

κ2
1
54
[︂(︂

1− v2 − 18Z̃
)︂ (︂

1− v2 + 18(Z̃ + K̃)
)︂]︂

,

Q3 = −P3 −
16π2ℓ2

κ2
1
54
[︂(︂

1− v2 − 18Z̃
)︂ (︂

1− v2 − 18K̃
)︂]︂

,

(4.184)

while for the Page charges we find

P1 = −16π2ℓ2

κ2 (K1 + 3K(1)
2 ) ,

P2 = −16π2ℓ2

κ2 (K1 + 3K(2)
2 ) ,

P3 = −P1 − P2 −
48π2ℓ2

κ2 K1 .

(4.185)

The same considerations stated for the solutions with arbitrary nV of
the previous section about the differences between the Page and the
holographic charges apply also here in a completely analogous way.

Similarly, the entropy can still be computed by the general formula
containing the Page charges given in eq. (4.161). In particular, we have
that

S =
2π
κ2 Area =

8π3ℓ3

κ2

√︄
48K1 − 144

[︃(︂
K

(1)
2

)︂2
+K

(1)
2 K

(2)
2 +

(︂
K

(2)
2

)︂2
]︃
−K3

= 2πℓ
√︃

3
2 C

IJKX̄IPJPK −
4π2ℓ

κ2 J .

(4.186)

and comments completely analogous to the ones already reported for
the solutions of the previous section can be made about the appearence
of the Page charges in the formula, instead of the holographic ones.

The angular velocity Ω of this family of solutions is the still given
by eq. (4.162) and the same holds for the electrostatic potentials ΦI

which are still provided by eq. (4.163).
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Finally we would like to verify the extremal limit of the quantum
statistical relation we have given in eq. (4.165). In order to do this, we
need to evaluate the Euclidean on-shell action I. This can be evaluated
using holographic renormalization. Although we do not report the ex-
plicit computation in this thesis, this can be found in [100] and it is
very similar to the one performed for the solution with arbitrary nV
which we report in app. A. Instead, we report the final result for I,
which is

Sren = −π
2ℓ2

κ2

[︃16
9 −

14
9 v2 +

19
36 v

4 − 192(Z̃2
+ Z̃K̃ + K̃

2
)

]︃ ∫︂
dt .

(4.187)

This depends on the squashing at the boundary v and on the scalar
sources Z̃, K̃, as expected. It is now straightforward to verify that
the so obtained on-shell action satisfies the quantum statistical rela-
tion (4.165); furthermore the same considerations we have made at the
end of the previous section continue to hold for this solution.

4.4 recap and discussion

In this chapter, we have presented two new families of supersymmetric
AlAdS5 black holes with a boundary geometry containing a squashed
S3.

The first family of solutions presents an arbitrary number of vector
multiplets nV and it is controlled by two parameters: one controlling
the event horizon geometry as well as the angular momentum and the
Page electric charges, while the other which can be identified with the
squashing at the boundary. Suppose we fix the former. Then although
the squashing at the boundary is arbitrary, the S3 metric flows to a
fixed one at the horizon. This is reminiscent of the attractor mecha-
nism for scalar fields in four dimensions. This connection can be made
rigorous by reducing along the Hopf fiber of S3, as in the dimensional
reduction the component of the metric controlling the size of the Hopf
fiber becomes one of the scalar fields involved in the attractor mecha-
nism74.

The second family contains solutions of the U(1)3 theory, i.e. of the
theory obtained by setting nV = 2. These black holes generalize the
solutions previously found in minimal gauged supergravity [101, 157]
and also the first family of solutions we have discussed, originally con-
structed in [99], for nV = 2, since we have not imposed any ansatz
on the scalar fields. Furthermore, they can be uplifted to be solutions
of ten-dimensional type IIB supergravity. These solutions depend on
three-parameters of which two regulate the horizon geometry, the an-
gular momentum and the Page charges while the remaining one de-
termines the squashing at the boundary. Therefore, we can see that

74 See [65] for a related discussion in the case with no squashing.
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by removing the ansatz which it has been imposed for the first fam-
ily, we have obtained solutions with one free parameter more. As for
the previous family, also in this case the horizon properties are totally
independent of the squashing; therefore if we set a particular horizon
geometry by fixing the two former parameters, whatever the squashing
the S3 metric will flow to a fixed one at the horizon.

Let us compare the number of parameters describing the horizon ge-
ometry we obtained with the number one should expect by a theoretical
counting. For the nV = 2 model, we have five conserved charges, which
are the energy, one angular momentum and three electric charges; how-
ever only four of these five total charges are independent since super-
symmetry imposes one linear constraint among them. One can therefore
expect to find black hole solutions with four parameters regulating the
horizon geometry, but already in the solution of [42] one of these is
constrained by the requirements to be imposed to avoid causal patholo-
gies [110], so the independent parameters are three. This is totally in
agreement with what we have seen and discussed in Chapter 2, 3. We
should therefore expect to be possible to find squashing solutions with
three independent parameters regulating the horizon geometry, in ad-
dition to the one determining the squashing at the boundary. However,
our family of solutions for the U(1)3 case presents an horizon geome-
try described by two parameters, generalizing the solutions constructed
in [99] characterized by only one parameter regulating the horizon ge-
ometry due to the ansatz for the scalar fields adopted there. These black
holes are thus the most general squashed solutions found in the U(1)3

theory we are studying; however we are still missing squashed solutions
with an horizon geometry regulated by three parameters, which should
be the most possible general ones according to the theoretical counting
arguments reported above. It could be that the general three parameter
solution breaks the SU(2) × U(1)4 symmetry in the bulk and should
thus be searched in a more general setup than Fayet-Iliopoulos gauged
supergravity.

Another interesting avenue for future research will be to extend the
study of supersymmetric AlAdS black holes with a deformed boundary
done in this thesis to other dimensions, the seven-dimensional case
being perhaps the most promising.

We have seen in sec. 4.3 that the entropy of both our families of black
holes is reproduced using the Page charges instead of the holographic
charges. The two types of charges are different for AlAdS5 solutions
due to the presence of the Chern-Simons term, which does not vanish
asymptotically like in the case of non-squashed solutions. The formula
thus obtained for the entropy in terms of the conserved charges is in
agreement with the typical one for asymptotically AdS5 black holes re-
ported for example in [132], provided the fact that for AlAdS5 solutions
the charges appearing there must be identified with the Page charges
and not with the holographic ones. In Chapter 1 we have introduced the
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extremization principle proposed in [65] for AdS5 black holes, while
in Chapter 3 we have provided, following [67], a physical interpreta-
ton to this principle for every dimension 4 ≤ d ≤ 7. According to the
extremization principle, the entropy of supersymmetric asymptotically
AdS5 black holes can be obtained by Legendre-transforming a certain
function of chemical potentials conjugated to the black hole conserved
charges, called entropy function. We have shown that, in the particular
BPS limit defined in Chapter 3, this entropy function coincides with
the Euclidean on-shell action of the BPS solution. The results for the
entropy we have obtained in this chapter suggest that the same extrem-
ization principle may work for our families of black holes if one uses
the Page charges and their conjugate chemical potentials instead of
the electric holographic charges. This distinction cannot be established
looking at asymptotically globally AdS5 solutions since the holographic
charges and the Page charges coincide for them, due to the fact that
the Chern-Simons term vanishes at the boundary.





5
C O N C L U S I O N S A N D
O U T L O O K S

5.1 summary of results

In this thesis, we have reported the results of researches conducted
during the three years of the Ph. D. programme at the University of
Padova. These results are mainly collected in Chapters 3, 4.

The main result of Chapter 3, which is based on [67], has been to
extend the BPS limit of rotating AdS black hole thermodynamics, de-
fined in [66], to five-dimensional solutions with more than one electric
charge, as well as to other spacetime dimensions. For each black hole
we analyzed, in every dimension 4 ≤ d ≤ 7, we have:

• proposed a particular BPS limit that reaches the BPS locus fol-
lowing a supersymmetric trajectory in the space of complexified
solutions;

• shown that the BPS values of the chemical potentials ωi,∆I , which
are the non trivial potentials appearing in the entropy functions,
can be retrieved by the supergravity black hole solutions by per-
forming the proposed BPS limit;

• shown that the chemical potentials above indeed satisfy the linear
complex constraint (1.38) and the corresponding extremization
equations;

• proved that the entropy functions of [65,68,70] coincide with the
supergravity on-shell action I = I(ω, ∆) evaluated on a complex-
ified family of supersymmetric solutions.

These results provide a physical derivation of the extremization princi-
ples proposed in [65,68,70].

The main achievement we obtained in Chapter 4, which is mainly
based on the papers [99,100], has been to construct two new families of
supersymmetric AlAdS5 black holes with a boundary geometry contain-
ing a squashed S3. The solutions of the general theory with arbitrary
nV depend on two parameters, of which one controls the squashing
at the boundary and the other controls the horizon geometry; the solu-
tions of the U(1)3 theory are governed instead by three parameters: the
one controlling the squashing and the other two regulating the horizon
geometry. For the two families, we have obtained the following main
results:

157
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• the horizon properties are totally independent on the squashing: if
we set a particular horizon geometry by fixing the corresponding
parameters, whatever the squashing the S3 metric will flow to a
fixed one at the horizon;

• even though it should be possible to construct squashed solutions
in the U(1)3 theory which depend on four parameters (one regu-
lating the squashing and three controlling the horizon geometry),
we were not able to obtain them. Indeed, the black holes we have
presented in sec. 4.2.2.3, originally constructed in [100], which
are the most general squashed solutions found in the U(1)3 the-
ory, depend only on three parameters. It could be that this more
general solution must be searched in a more general setup than
Fayet-Iliopoulos gauged supergravity;

• the entropy of our families of black holes is reproduced by a simple
formula which involves the Page charges, rather than the holo-
graphic ones. Therefore, the formula is in agreement with the
typical one for asymptotically AdS5 black holes reported in [132],
provided that for AlAdS5 solutions the charges appearing there
are identified with the Page charges and not with the holographic
ones. This suggests that extremization principles for these AlAdS5
black holes should still work if one uses the Page charges and their
conjugate chemical potentials, instead of the electric holographic
charges.

5.2 future directions

One may wonder what are the possible future developments that rely
on the results presented in this thesis. To provide an answer, at least
partial, to this question, here we discuss some possible outlooks.

First of all, for what concerns the extremization principle and the
black hole solutions analyzed in Chapter 3, there are generalizations
that it would be interesting to consider. Indeed, apart from the six-
dimensional case, for each dimension we have not considered the most
general black holes present in literature, i.e. we have not worked with
the most general set of electric charges and angular momenta. The
reason is that the most general solutions proved to be very cumbersome
and complicated, therefore we required some charges to be equal in
order to simplify the computations. It would be interesting to apply
our limit to the most general cases in every dimension; our analysis
strongly indicates that the same BPS limit will work when the most
general set of electric charges and angular momenta is turned on.

In order to perform our BPS limit and retrieve the chemical poten-
tials and the entropy function, we need to start from a finite-temperature
black hole solution. This is not fully satisfying since there are BPS black
holes for which the corresponding finite-temperature solutions have not
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been constructed yet. For example, it would be interesting to apply our
BPS limit to the AdS5 black holes constructed in [163], which are so-
lutions of the theory with arbitrary nV ; however this is impossible at
the present state of the art since the corresponding finite-temperature
solution has not been found yet. It could be that there is a way to study
the extremization principle by only using the BPS black hole solution;
this problem would be very interesting to explore and analyze. Further-
more, it could be that there is no need of the full black hole solution,
but it might be sufficient to have the near-horizon geometry at disposal.
To investigate this problem, one should also identify which is the near-
horizon counterpart of our BPS limit. This approach, once promoted to
the full ten- or eleven-dimensional supergravity theory, may also lead
to a generalization of the extremization principle of [57,58,153] to the
case of rotating horizons with no magnetic charge.

For what concerns AlAdS black holes, there are some possible avenues
also in this direction. One is to extend the study of these black holes to
other dimensions, with the seven-dimensional case probably being the
most promising. It would be interesting to verify whether the physical
results we found for the five-dimensional case continue to hold also in
other dimensions; checking for example whether the horizon geometry
is always independent from the squashing at the boundary or not.

Furthermore, it would be interesting to explore how the BPS limit
described in Chapter 3 applies to the AlAdS black holes we have con-
structed. However, there are several difficulties one has to overcome
in order to do this; the most important one probably being the fact
that the finite-temperature solution is not known at the moment of
writing except for the case of minimal gauged supergravity. The finite-
temperature solution for this theory has been constructed in [101]; how-
ever this is a numerical solution and it is not clear how to evaluate the
on-shell action analytically. It would be worth studying this problem
so as to add a piece to the puzzle of the extremization principles for
AdS supergravity black holes.

5.3 some general comments

We would like to conclude with a less technical section, where we briefly
analyze which are the main lessons this thesis conveys and which are
the unclear points which should be investigated in further detail.

First of all, we have learned how it is possible to obtain the entropy
function, the BPS chemical potentials providing interesting thermody-
namical relations, and the entropy of many rotating BPS AdSd black
holes. The recipe is the following: one has to start from the correspond-
ing finite-temperature solution, take the BPS limit we have illustrated,
obtain the complexified family of supersymmetric solutions and the su-
persymmetric chemical potentials, and only at this point perform the
limit to extremality. The best part of the story is that there are many
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reasons to believe that our approach is totally general and therefore
that it can be applied for every rotating BPS AdSd black hole. Thus,
this result we have obtained is very relevant and important, as it should
be a totally general approach that manages to clarify the origin of all
the entropy functions proposed in the literature and provides a precise
way to obtain them from the supergravity black hole solution.

However, there is a weakness in the procedure we have proposed: it
is mandatory to have at disposal the finite-temperature version of the
BPS black hole we would like to study; otherwise, it is not possible to
apply our BPS limit. This is actually an important weakness, since not
for all the black holes which would be interesting to study the corre-
sponding finite-temperature solution has been constructed. Therefore,
one really important point, which it would be worth clarifying in the
future, is whether or not it is possible to recover the BPS chemical
potentials only using the BPS solution, without the need of the finite-
temperature one. It is reasonable to believe that in principle this should
be possible since it might be likely that there should be the possibility
to study the BPS black hole thermodynamic by only looking at the
BPS solution.

A related question is whether we do really need the full black hole
solutions in order to perform the limit or there is a way to do it having at
disposal the near-horizon solution only. Various results in the literature
point in the direction that, being the entropy influenced only by the
near-horizon geometry, the knowledge of only the near-horizon solution
should be sufficient. If this would be the case, then the task of finding
a near-horizon BPS limit corresponding to the one we have proposed
is very important, since constructing the near-horizon solution is much
simpler than constructing the full solution; the family of BPS AdSd
black holes for which we can compute the relevant thermodynamic
properties would therefore be enlarged.

The fact that the entropy depends only on the horizon properties
seems to be confirmed by our study on AlAdS black holes. Indeed,
apart from constructing two important examples of family of solutions
which are just AlAdS5 rather than AAdS5, the main lesson we have
learned from this part of the thesis is that the horizon properties do
not depend on the squashing at the boundary; in other words, the hori-
zon geometry of a black hole seems to not vary when the boundary is
deformed. However, in some sense, there is something which do change:
the formula of the entropy with respect to the charges is the same as for
AAdS5 black holes, but now holographic charges and Page charges are
different. Somehow, the presence of a non-trivial Chern-Simons term
at the boundary selects the charges we have to consider in order to
reproduce the entropy of an AlAdS5 black hole; this does not happen
for AAdS5 solutions for which the Chern-Simons term vanishes at the
boundary.
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It would be very interesting to verify whether the BPS limit ap-
plies also to these black holes by considering the electrostatic poten-
tials conjugate to the Page charges. However, this task is difficult to
be achieved because the non-supersymmetric solution is known only
numerically and is very complicated and cumbersome. Here we do see
how this problem intersects with the ones we have discussed before re-
garding the BPS limit. Indeed, the BPS solution is much simpler than
the finite-temperature one but we do need the finite-temperature solu-
tion for our BPS limit. At the same time, although the full solutions
are known only numerically, the near-horizon of the solutions is known
analytically; having a disposal a near-horizon version of the BPS limit
we have proposed would thus greatly simplify the task of analyzing
these AlAdS black holes.

At the end of our journey, we hope to have conveyed the main and
important lessons we have learned from this thesis and, at the same
time, made clear that what we have shown is by no means the end of
the story. Indeed, the story for AdS black holes has just begun.
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A
H O L O G R A P H I C
R E N O R M A L I Z AT I O N FO R
A D S 5 B L AC K H O L E S

In this appendix we describe the application of the general framework
of holographic renormalization to the N = 2, d = 5 Fayet-Iliopoulos
gauged supergravity of which the AdS5 black holes we have presented
in sec. 2.1, 4.2 are solutions. Here we will not provide a detailed review
starting from the basis and the spirit of holographic renormalization,
but rather we will present what we do need for the computations of
the on-shell actions and of the conserved charges; for more general
information and more extensive dissertations we refer the reader to [30,
115,117,160–162].

We will see that there are some differences in the application of
holographic renormalization for the AAdS5 solutions of Chapters 2, 3
and the AlAdS5 solutions of Chapter 4; the first being a much more
simple subcase of the second.

a.1 general framework

We start by providing some general formulae for holographic renormal-
ization in five-dimensional Fayet-Iliopoulos gauged supergravity. These
will be valid under the assumption that the fermion fields are set to
zero and that the scalar fields only depend on the radial coordinate.

We find it convenient to perform the computations and to present the
results using a Fefferman-Graham radial coordinate rFG. The AAdS5
black hole solutions of Chapters 2, 3 are written using the radial co-
ordinate r, which can be regarded as a Fefferman-Graham coordinate;
therefore for these solutions we have r = rFG, no coordinate transfor-
mation needs to be performed and we will perform the computations
retaining the original coordinate r. The situation is different for the
AlAdS5 solutions of Chapter 4: they are written with respect to ρ which
is not a good Fefferman-Graham coordinate and therefore we need to
switch from ρ to rFG. The proper coordinate transformations can be
found in [99,100] and we refer to these papers for further details. This
coordinate rFG is the same we have adopted in sec. 4.3.1, 4.3.2 to show
the results we obtained; there we have dubbed rFG = r since there was
no possibility of confusion between this coordinate and the radial one
used to describe the AAdS5 black holes of the previous chapters. Al-
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though for these AlAdS5 solutions we could equally well work with the
original coordinate ρ, the choice of rFG is more standard in holography
and may facilitate comparison with other references.

In the following, to ease the notation we will provide the general for-
mulae for holographic renormalization in Fayet-Iliopoulos supergravity
denoting rFG as just r, assuming that when we would like to apply the
formulae to the AAdS5 solutions r would be indeed their radial coor-
dinate, while for the case of AlAdS5 solutions r would be the rFG co-
ordinate obtained with the proper coordinate transformation reported
in [99,100].

We recall that the general Fefferman-Graham form of the five dimen-
sional metric is:

ds2 = ℓ2
dr2

r2 + hij(x, r) dxi dxj . (A.1)

The five-dimensional spacetime M is foliated by timelike hypersurfaces
of constant r, parameterized by coordinates xi, i = 0, . . . , 3. The asymp-
totic expansion of the induced metric hij and the other supergravity
fields is (see [99,100] for more details):

hij(x, r) =
r2

ℓ2
h
(0)
ij + . . . (A.2)

AIi (x, r) = A
I (0)
i +

A
I (2)
i + Ã

I (2)
i log r2

ℓ2

(r/ℓ)2 + . . . (A.3)

XI = X̄
I +

ϕI (0) + ϕ̃
I (0) log r2

ℓ2

(r/ℓ)2 + . . . , (A.4)

where the leading terms h(0)ij , AI (0)i , ϕ̃I (0) are the metric, gauge fields
and scalar fields induced on the conformal boundary ∂M . These are
interpreted holographically as background fields for the dual SCFT.

In the Fefferman-Graham gauge, the hypersurfaces of constant r are
homeomorphic to the conformal boundary, which is found at r → ∞.
In order to regulate the large-distance divergences that appear when
evaluating the supergravity action one imposes a cutoff r0, so that the
solution extends only up to r = r0. We denote by Mr0 the regulated
spacetime and by ∂Mr0 its boundary at r = r0. Holographic renormal-
ization consists of introducing appropriate local counterterms on ∂Mr0

such that the large-distance divergences are cancelled once the cutoff
is removed by sending r0 →∞. The renormalized action is defined as

Sren = lim
r0→∞

Sreg , (A.5)

where the regularized (and subtracted) action Sreg is

Sreg = Sbulk + SGH + Sct . (A.6)

Here, Sbulk denotes the bulk supergravity action (2.2) evaluated on Mr0 .
The second term is the Gibbons-Hawking boundary integral, which
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makes the Dirichlet variational problem for the metric well-defined. It
reads:

SGH =
1
κ2

∫︂
∂Mr0

d4x
√
hK , (A.7)

where K = hijKij is the trace of the extrinsic curvature Kij =
r
2ℓ
∂hij
∂r

of ∂Mr0 , and h = | dethij |. Finally, Sct consists of the counterterms
needed to cancel the divergences of Sbulk +SGH. These are local bound-
ary terms that should preserve the relevant symmetries and may con-
tain finite contributions in addition to divergent terms. The full set
of counterterms for AlAdS5 solutions to Fayet-Iliopoulos gauged super-
gravity where both the scalar and the gauge fields are running and have
their leading asymptotic modes turned on has been presented for the
first time in [99], generalizing various results previously available in the
literature. The counterterm action can be written as

Sct = −
1
κ2

∫︂
∂Mr0

d4x
√
h

[︄
W + ΞR−

(︁
W − 3ℓ−1)︁

log r2
0
ℓ2

+

+
ℓ3

16 log r
2
0
ℓ2

(︃
RijR

ij − 1
3R

2 − 2ℓ−2QIJF
I
ijF

J ij
)︃]︄

. (A.8)

In this formula, the Ricci tensor Rij and the Ricci scalar R are those
of the induced metric hij , which is also used to raise the indices. The
other ingredients are the field strengths F Iij on ∂Mr0 and two real func-
tions of the scalar fields: the superpotential W and the function Ξ; we
have already presented both these ingredients in sec. 4.3.1. Note that
all the logarithmic terms vanishes for AAdS5 solutions, therefore the
counterterm action for this kind of solutions is much more simple and
easy to compute.

The counterterms (A.8) cancel all divergences from Sbulk + SGH.
Specifically, the first two terms are local covariant expressions on ∂Mr0

which remove power-law divergences, while the other terms explicitly
depend on the cutoff and cancel logarithmic divergences (if they are
present). In addition, the first line of (A.8) yields finite terms that
play an important role in the evaluation of the holographic correlation
functions.

From the renormalized action one can obtain the holographic one-
point functions of the energy-momentum tensor, the electric currents
and the relevant scalar operators in the field theory states dual to the
supergravity solution of interest.

The holographic energy-momentum tensor is defined as:

⟨Tij⟩ = −
2√
h(0)

δSren

δhij(0)
= − lim

r0→∞
r2

0
ℓ2

2√
h

δSreg
δhij

. (A.9)
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Starting from the action defined above we obtain:

⟨Tij⟩ = −
1
κ2 lim

r0→∞
r2

0
ℓ2

[︄
Kij −K hij +W hij −

W − 3ℓ−1

log r2
0
ℓ2

hij

− 2 Ξ
(︃
Rij −

1
2 Rhij

)︃
− ℓ3

4 log r
2
0
ℓ2

(︄
− 1

2 Bij

− 2
ℓ2
QIJF

I
ikF

J
j
k +

1
2ℓ2 hij QIJF

I
klF

J kl

)︄]︄
, (A.10)

which coincides with (4.142), as it should. Note that the contributions
from the variation of the counterterm action cancel all divergences,
including the logarithmic ones, so that ⟨Tij⟩ is finite in the limit.

The holographic electric current is defined by varying the action with
respect to the gauge field at the boundary:

⟨jiI⟩ =
1√
h(0)

δSren

δA
I(0)
i

= lim
r0→∞

r4
0
ℓ4

1√
h

δSreg
δAIi

. (A.11)

We obtain:

⟨jiI⟩ = −
1
κ2 lim

r0→∞
r4

0
ℓ4

[︄
1
6ϵ
ijkl

(︂
QIJ ⋆F

J + 1
6CIJKA

J ∧ FK
)︂
jkl

+ ℓ∇j
(︂
QIJF

J ji
)︂

log r0
ℓ

]︄
. (A.12)

coinciding with (4.149). From a dualN = 1 superconformal field theory
perspective, X̄I

jI corresponds to the R-current while the orthogonal
projections correspond to nV Abelian flavour currents.

Finally, the one-point function of the scalar operators is defined as

⟨OI⟩ =
1√
h(0)

δSren

δϕ̃
I(0) = lim

r0→∞

(︄
r2

0
ℓ2

log r
2
0
ℓ2

1√
h

δSreg
δXI

)︄
, (A.13)

where it is understood that the variation respects the constraint (2.1),
which implies X̄I δϕ̃

I(0)
= 0. By going through the computation, we

arrive at:

⟨OI⟩ =
2
κ2 Q̄IJ ϕ

J (0) , (A.14)

where we recall that ϕ(0) is the O(r−2) term in the Fefferman-Graham
expansion (A.4) of the scalar fields. As anticipated, this term describes
the expectation value of the dual field theory operators, and here we
have provided the precise relation between the two.

We remark that the formulae (4.142), (4.149), (A.14) hold for any
AlAdS solution (and therefore in particular for any AAdS solution)
to five-dimensional Fayet-Iliopoulos gauged supergravity, under the as-
sumption that the fermion fields are set to zero and the scalars are
independent of the boundary coordinates (otherwise we would have
additional terms).
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a.2 holographic renormalization for aads5 black holes

In this section we apply the general formulae we have reported above
to the AAdS5 finite-temperature black hole solution we have discussed
in sec. 2.1.2.

We begin by recalling that this is a solution of the U(1)3 theory,
therefore we have to set nV = 2 and CIJK = |ϵIJK | in all the formulae
of the previous section. Moreover the Fayet-Iliopoulos gauging parame-
ters are fixed by stating that in the supersymmetric AdS5 vacuum the
scalars take the equal values:

X̄
I = 1 ⇒ X̄I =

1
3 . (A.15)

With these choices, we have:

X1X2X3 = 1 ,

XI =
1
3
(︂
XI
)︂−1

,

QIJ =
1
2 diag

(︃(︂
X1
)︂−2

,
(︂
X2
)︂−2

,
(︂
X3
)︂−2

)︃
,

V = −2 g2
3∑︂
I=1

(︂
XI
)︂−1

. (A.16)

Plugging these expressions in (2.2), we retrieve the action of the U(1)3

model given in (2.26). The superpotential (4.144) and the function
(4.145) entering in the holographic counterterms read:

W = g
(︂
X1 +X2 +X3

)︂
,

Ξ =
1

12 g

[︃(︂
X1
)︂−1

+
(︂
X2
)︂−1

+
(︂
X3
)︂−1

]︃
. (A.17)

a.2.1 Conserved charges

We are now in the position of computing the holographic quantities
for the solution reviewed in sec. 2.1.2. Due to the symmetries of the
solution, the holographic energy-momentum tensor can be written as

⟨Tij⟩ dxi dxj = ⟨Ttt⟩ dt2 + ⟨Tθθ⟩
(︂
σ2

1 + σ2
2

)︂
+ ⟨Tψψ⟩σ2

3 + 2 ⟨Ttψ⟩ dt σ3 ,
(A.18)
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and (A.10) gives for its components:

⟨Ttt⟩ =
8 g3m

(︁
a2g2 + 2 s2

1 + 2 s2
2 + 2 s2

3 + 3
)︁
+ 3g

64π ,

⟨Ttψ⟩ =
a g3m (s1 s2 s3 − c1 c2 c3)

4π ,

⟨Tθθ⟩ =
8 g2m

(︁
−3 a2g2 + 2 s2

1 + 2 s2
2 + 2 s2

3 + 3
)︁
+ 3

768π g ,

⟨Tψψ⟩ =
8 g2m

(︁
9 a2g2 + 2 s2

1 + 2 s2
2 + 2 s2

3 + 3
)︁
+ 3

768π g . (A.19)

Then we proceed to the holographic currents. Evaluating (A.12) we find
that the only non-vanishing components of the electric currents are

⟨jtI⟩ = −
mg3 cI sI

4π ,

⟨jψI ⟩ =
m a g5(cI sJ sK − sI cJ cK)

2π , (A.20)

where the indices I, J ,K are never equal. Finally, from (A.14) we obtain
for their scalar operator superpartners:

⟨OI⟩ =
m

12π
(︂
−2 s2

I + s2
J + s2

K

)︂
. (A.21)

The holographic energy-momentum tensor and the holographic cur-
rents are conserved,

∇i⟨Tij⟩ = 0 , ∇i⟨jiI⟩ = 0 , (A.22)

where ∇i is the Levi-Civita connection of the metric on the conformal
boundary. Next, we introduce the energy E and the angular momen-
tum J , defined as the conserved holographic charges associated with
the Killing vectors ∂

∂t and − ∂
∂ψ , respectively. These are obtained by inte-

grating the corresponding components of the energy-momentum tensor
on the boundary three-sphere S3

bdry. We find:

E =
∫︂
S3

bdry

ui ⟨Tit⟩ vol
(︂
S3

bdry

)︂
(A.23)

= E0 +
1
4 πm

(︂
a2g2 + 2 s2

1 + 2 s2
2 + 2 s2

3 + 3
)︂

,

J = −
∫︂
S3

bdry

ui ⟨Tiψ⟩ vol
(︂
S3

bdry

)︂
=

1
2π am (c1 c2 c3 − s1 s2 s3) ,

(A.24)

where

E0 =
3π

32 g2 , (A.25)
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The conserved holographic electric charges can be computed as:

QI =
∫︂
S3

bdry

vol(S3
bdry) ui⟨jiI⟩

= − 1
16π

∫︂
S3

bdry

(︂
X−2
I ⋆ F I + 1

6CIJK A
J ∧ FK

)︂
=

1
2 mπ sIcI ,

(A.26)

where it should be noted that the Chern-Simons term evaluates to zero,
implying that in this case the holographic charges are the same as the
standard Maxwell charges in (2.39). These expressions for E, J and QI
coincide with those obtained in [110] by other methods and reported
in sec. 2.1.2.

a.2.2 The renormalized on-shell action

Our final task is to evaluate the on-shell action. This should be com-
puted in a regular Euclidean section of the solution. We have already
described the Euclideanization and the regularity conditions to be im-
posed in the paragraph around eq. (2.44). Here we keep using the
Lorentzian notation until the last step, taking nevertheless into account
the conditions that make the Euclidean section regular. We start from
the bulk contribution. It is possible to show [99,100,133] that this can
be rearranged to be:

Sbulk = − 1
12π

∫︂
Mr̄

V ⋆ 1 +
1

24π

∫︂
∂Mr̄

QIJ A
I ∧ ⋆F J

− 1
24π

∫︂
∂Mr+

QIJ A
I ∧ ⋆F J ,

(A.27)

where the integral over the radial coordinate is performed from the
outer horizon r+ up to r̄. The first term is easily evaluated recalling
the expression for V in (A.16) and performing the bulk integral. We
obtain:

− 1
12π

∫︂
Mr̄

V ⋆ 1

=

[︃
−1

4πg
2
(︂
r̄4 − r4

+

)︂
− 1

3 πmg
2
(︂
s2

1 + s2
2 + s2

3

)︂ (︂
r̄2 − r2

+

)︂]︃ ∫︂
dt ,

(A.28)

where we displayed only the terms that do not vanish in the limit
r̄ →∞. The terms involving r̄ arise by evaluating the primitive function
at the boundary, while those involving r+ are the contribution of the
horizon. The second and third terms in (A.27) are harder to evaluate,
however the difficulties are only technical and not conceptual. For this
reason, we do not describe this computation in detail and we just report
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the final results. It is found that the horizon contribution vanishes,
while the boundary one gives the finite term:

1
24π

∫︂
∂Mr̄

(︂
QIJ A

I ∧ ⋆F J
)︂
=

=
1
6 πm

[︂(︂
c1 s1 Φ1 + c2 s2 Φ2 + c3 s3 Φ3

)︂]︂ ∫︂
dt .

(A.29)

For the computation above, it is crucial to notice that regularity of the
Euclidean section requires to choose the gauge as in (2.44). We refer the
reader to [67] for further details on this computation. The evaluation
of the Gibbons-Hawking term (A.7) is straightforward and gives:

SGH =

{︄
π g2 r̄4 +

π

12
[︂
9 + 16mg2

(︂
s2

1 + s2
2 + s2

3

)︂]︂
r̄2

+
πm

6

[︃
− (6 + s2

1 + s2
2 + s2

3)

+ 2g2
(︂
3a2 + 4m

(︂
s2

1 s
2
2 + s2

1 s
2
3 + s2

2 s
2
3

)︂)︂ ]︃}︄ ∫︂
dt .

(A.30)

Recalling (A.17), the counterterm action (A.8) evaluates to:

Sct =

{︄
− 3

4 π g
2 r̄4 +

1
4 π r̄

2
[︂
−4mg2

(︂
s2

1 + s2
2 + s2

3

)︂
− 3

]︂
− 3π

32 g2

+
3πm

4 (1− a2g2)− πm2g2
(︂
s2

1 s
2
2 + s2

1 s
2
3 + s2

2 s
2
3

)︂}︄ ∫︂
dt .

(A.31)

The regularized on-shell action Sreg is the sum of the four terms (A.28),
(A.29), (A.30) and (A.31). Adding these up, the divergences cancel out.
Taking r̄ →∞ yields:

Sren =

{︄
− 3π

32g2 +
π

12

[︃
2m

(︂
c1s1Φ1 + c2s2Φ2 + c3s3Φ3

)︂
+ 4m2g2

(︂
s2

1s
2
2 + s2

1s
2
3 + s2

2s
2
3

)︂
+ 3m(g2a2 − 1)

+ 3g2r4
+ + 2m

(︂
2g2r2

+ − 1
)︂ (︂
s2

1 + s2
2 + s2

3

)︂ ]︃}︄∫︂
dt .

(A.32)

The Euclidean action is obtained by performing the Wick rotation
t → −iτ and recalling that the Euclidean and the Lorentzian actions
are related as e−I = eiSren|t→−iτ in the gravitational path integral. Ef-
fectively this means that we just have to replace

∫︁
dt → −

∫︁
dτ in

the expression above. As usual, regularity of the Euclidean solution
as r → r+ fixes the circumference of the Euclidean time circle to be∫︁

dτ = β, where β is the inverse Hawking temperature given in (2.36).
In this way we reach the result reported in (2.45).
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a.3 holographic renormalization for alads5 black
holes

In this section we apply the general formulae we have reported above
to the AlAdS5 finite-temperature black hole solution we have discussed
in sec. 4.2. Since we have already computed the conserved charges for
both the solutions with arbitrary nV and the ones with nV = 2, here
we only describe the computation of the holographic on-shell actions.

a.3.1 The renormalized on-shell action

We begin by noting that the result we will get for the on-shell ac-
tion of the supersymmetric black hole solutions is somewhat formal: a
physically more meaningful way to compute the on-shell action of an
extremal solution would be to start from a non-extremal generalization
having a regular Euclidean section, evaluate the corresponding on-shell
action, and then take the extremal limit. This is exactly what we have
done for the AAdS black holes of secs. 2.1.2, 2.2.1 in five and four di-
mensions, respectively. Nevertheless we find it useful to proceed with a
direct evaluation of the action on our Lorentzian solution since in ad-
dition to exhibiting the cancellation of the large-distance divergences
for all asymptotic solutions of secs 4.2.1.1, 4.2.2, it will lead to a result
with a simple physical interpretation.

Our starting point is the bulk action (2.2). Using the trace of the Ein-
stein equation (2.13) and rewriting the Chern-Simons term by means
of the Maxwell equation (2.14), this can be expressed as:

Sbulk =
2

3κ2

∫︂
Mr0

V ⋆ 1 − 1
3κ2

∫︂
Mr0

d
(︂
QIJ A

I ∧ ⋆F J
)︂

. (A.33)

Since QIJ AI ∧ ⋆F J is globally well-defined and vanishes at the horizon
in the chosen gauge, the second term reduces by the Stokes theorem
to an integral over the boundary ∂Mr0 . The same is true for the first
term. This can be seen by noticing that using (2.52), the scalar potential
(2.17) reads:

V = −6 ℓ−2 X̄
I
XI = −6 ℓ−2ff−1

min , (A.34)

which implies

V ⋆ 1 = −12ℓ−2 f−1
min a

3a′ dt∧ dρ∧ σ1 ∧ σ2 ∧ σ3

=
1
2 d

(︂
a2p dt∧ σ1 ∧ σ2 ∧ σ3

)︂
, (A.35)

where in the last equality we used (2.59). The integral on Mr0 is now
trivially performed. For both the solutions, from the analysis of sec. 4.2,
it follows that a2p → 0 at the horizon; therefore we obtain that the
only contribution is from the upper limit of integration. Thus the bulk
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supergravity action can be expressed as a term evaluated at r = r0
as75:

Sbulk = −16π2

3κ2 a2p |r0

∫︂
dt+ 1

3κ2

∫︂
∂Mr0

QIJ A
I ∧ ⋆F J . (A.36)

The second term in (A.36) is less straightforward. Recalling that AI is
given by (2.51), we can write:

AI ∧ ⋆F J =

[︄
2a3a′f−1XI

(︂
fXJ

)︂′

− af

2a′U
I
(︃
fw′XJ +

(︂
UJ
)︂′
)︃]︄

dt∧ σ1 ∧ σ2 ∧ σ3 .

(A.37)

Having written this wedge product in the above fashion, we are now
able to evaluate the term under consideration for both the solutions.
The evaluation of the Gibbons-Hawking term (A.7) and of the coun-
terterm piece (A.8) is straightforward for both the solutions.

Everything we have reported here is valid for both the solutions with
arbitrary nV and with nV = 3; in the two following subsections we
perform all the computations for both the cases and we explicitly show
all the results.

a.3.1.1 The case of arbitrary nV

Using the asymptotic expansion of the a function obtained in sec. 4.2.1.1,
the first term in (A.36) evaluates to:

− 16π2

3κ2 (a2p)|r0

∫︂
dt ≈ −8π2ℓ2

κ2

[︃
4 a4

0

(︂r0
ℓ

)︂4
− 1

3 (4c+ 3) a2
0

(︂r0
ℓ

)︂2

− 32
9 c2 log r0

ℓ
+

1
36 (−128 a2 + 38 c+ 1) c− H̃2 − 2K1 +

3
32

]︃ ∫︂
dt ,

(A.38)

where the symbol ≈ means that the equality holds up to terms that
vanish as r0 →∞. The second piece of the bulk action (A.36) gives

1
3κ2

∫︂
∂Mr0

QIJ A
I ∧ ⋆F J ≈

− 8π2ℓ2

κ2

[︄
4
9
(︂
8 c2 + 9 H̃2)︂ log r0

ℓ
+

2
9 (1 + 16 a2 − 12 c) c

+
(︂
4H2 + H̃

)︂
H̃ + 2K1

]︄∫︂
dt ; (A.39)

75 The positive orientation on the five-dimensional spacetime is defined by dt ∧ dρ ∧
σ1 ∧ σ2 ∧ σ3, while we choose dt ∧ σ1 ∧ σ2 ∧ σ3 as the positive orientation on the
boundary. As a consequence, the Stokes theorem reads

∫︁
Mr0

dω = −
∫︁

∂Mr0
ω.
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note that in both expressions resulting from (A.36) the parameter a4
has been traded for the Page charge K1 using (4.86).

The Gibbons-Hawking term yields:

SGH ≈ −
8π2ℓ2

κ2

[︄
− 16a4

0

(︃
r0
ℓ

)︃4
+

(︃
1 + 4

3c
)︃
a2

0

(︃
r0
ℓ

)︃2

+ 8H̃2 log r0
ℓ
+ 8H2H̃ + 4H̃2

]︄∫︂
dt.

(A.40)

We finally evaluate the counterterm action (A.8). We obtain:

Sct ≈ −
8π2ℓ2

κ2

[︄
12 a4

0

(︃
r0
ℓ

)︃4
− 12 H̃2 log r0

ℓ
+

8
3c

2

− 6 H̃
(︁
2H2 + H̃

)︁ ]︄ ∫︂
dt . (A.41)

Notice that as long as H̃ ̸= 0, namely as long as the scalar source
term is non-vanishing, the counterterm action contains a logarithmic
divergence in addition to a power-law divergence. Adding up (A.38),
(A.39), (A.40), (A.41) and removing the cutoff, we arrive at our result
for the renormalized on-shell action:

Sren = −π
2ℓ2

κ2

[︃16
9 −

14
9 v2 +

19
36 v

4 − 16 H̃2
]︃ ∫︂

dt . (A.42)

This is exactly the same result given by (4.168) which we have reported
in sec. 4.3.1.

a.3.1.2 The case of nV = 2

The computation proceeds in a way totally analogous to the case we
have examined in the last subsection.

We start with the evaluation of the bulk action by plugging the
near-boundary expansions we presented in sec. 4.2.2 into the above
expression (A.27). We obtain for the first term

−16π2

3κ2 a2p
⃓⃓⃓
r0

∫︂
dt = −8π2ℓ2

κ2

[︃
4a4

0

(︃
r0
ℓ

)︃4
− 1

3 (4c+ 3)a2
0

(︃
r0
ℓ

)︃2

− 32
9 c2 log r0

ℓ
+

1
36c(38c− 128a2 + 1)

+
3
32 − 2K1 − 12(Z̃2

+ Z̃K̃ + K̃
2
)

]︃ ∫︂
dt ,

(A.43)
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while the second one evaluates to
1

3κ2

∫︂
∂Mr0

QIJ AI ∧ ⋆F J = −8π2ℓ2

κ2

{︂
− 2

9

[︂
8
(︃

2c2

+ 27
(︂

Z̃
2
+ Z̃K̃ + K̃

2
)︂)︃

log r0
ℓ
+ 16a2c − 12c2 + c

+ 9
(︂

6
(︂

K̃(2Z2 + Z̃ + 4K2) + Z̃(4Z2 + Z̃ + 2K2) + K̃
2
)︂
+K1

)︂]︂}︂∫︂
dt .

(A.44)

Once we plug the near-boundary expansions of the various quantities
in (A.7), the evaluation of the Gibbons-Hawking term is straightfor-
ward, and gives

SGH = −8π2ℓ2

κ2

[︃
− 16a4

0

(︃
r0
ℓ

)︃4
+

1
3 (4c+ 3)a2

0

(︃
r0
ℓ

)︃2

+ 96
(︂
Z̃

2
+ Z̃K̃ + K̃

2)︂ log r0
ℓ

(A.45)

+ 48
(︂
K̃(Z2 + Z̃ + 2K2) Z̃ (2Z2 + Z̃ +K2) + K̃

2)︂ ]︃ ∫︂ dt .

(A.46)

Evaluating the counterterm action (A.8), we obtain

Sct = −
8π2ℓ2

κ2

[︃
12a4

0

(︃
r0
ℓ

)︃4
− 144

(︂
Z̃

2
+ Z̃K̃ + K̃

2)︂ log r0
ℓ

+
8
3
(︂
c2 − 27

(︂
K̃(Z2 + Z̃ + 2K2) + Z̃(2a2 + Z̃ +K2) + K̃

2)︂)︂ ]︃ ∫︂ dt .

(A.47)

Adding up all the pieces of the action given by eqs. (A.43), (A.44),
(A.45), (A.47) we get the final result

Sren = −π
2ℓ2

κ2

[︃16
9 −

14
9 v2 +

19
36 v

4 − 192(Z̃2
+ Z̃K̃ + K̃

2
)

]︃ ∫︂
dt ,

(A.48)

which is the result (4.187) reported in the main text. All the power-law
and logarithmic divergences of the various pieces of the action cancel
non-trivially against themselves when we perform the sum.



B
H O L O G R A P H I C
R E N O R M A L I Z AT I O N FO R
A D S 4 B L AC K H O L E S

In this appendix we report and describe the strategies we followed to
compute the on-shell action and the conserved charges for the AdS4
black hole solution introduced in sec. 2.2.1, using holographic renor-
malization.

The general procedure is quite similar to the five-dimensional case
described in app A, therefore we will keep the presentation shorter with
respect to this case. We refer the reader to [67] for additional details.

b.1 the renormalized on-shell action

The four-dimensional metric has the same form as (A.1), where now
i, j = 0, . . . , 2. The renormalized action is again Sren = limr̄→∞ Sreg
with Sreg = Sbulk + SGH + Sct . Using the Einstein equation, the bulk
supergravity action (2.124) can be recast into

Sbulk = − 1
16π

∫︂
Mr̄

(︃
− 2V ⋆ 1− 1

2e−ξF3 ∧ ⋆F3

− 1
2 χF3 ∧ F3 +

χ e2ξ

2 (1 + χ2 e2ξ)
F1 ∧ F1

− 1
2 (1 + χ2 e2ξ)

eξF1 ∧ ⋆F1

)︃
. (B.1)

The Gibbons-Hawking boundary integral is defined as in five dimen-
sions:

SGH =
1

8π

∫︂
∂Mr̄

d3x
√
hK , (B.2)

while the counterterm action is given by

Sct = −
1

8π

∫︂
∂Mr̄

d3x
√
hW

(︃
1 + 1

4 g2 R

)︃
, (B.3)

with W being the following real superpotential

W = g eξ/2
√︂
χ2 + (e−ξ + 1)2 . (B.4)

This has been obtained in [67] by specializing the results of [146] to the
present case. We refer to [67] for further details on this. It should be
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noted that the counterterm (B.3) is compatible with supersymmetry
provided a combination of the scalar fields is given Neumann boundary
conditions [164]; this means that our renormalized action is a function
of vevs for the operators dual to these scalars, and of sources for the
other operators [146].

We have all the ingredients we need to evaluate the various pieces
of the on-shell action. Displaying only the contributions that do not
vanish in the limit r̄ →∞, the bulk action (B.1) yields

Sbulk =

∫︁
dt

2(a2g2 − 1)

{︄
g2(r̄3 − r3

+) + 3g2m(r̄2 − r2
+)(s

2
1 + s2

2)

+ (r̄− r+)
[︂
a2g2 + 2m2g2(s4

1 + 4 s2
1s

2
2 + s4

2)
]︂

− 2m2 [︁c2
1 s

2
1
(︁
2ms2

2 + r+
)︁
+ c2

2 s
2
2
(︁
2ms2

1 + r+
)︁]︁

a2 + (2ms2
1 + r+) (2ms2

2 + r+)

}︄
, (B.5)

the Gibbons-Hawking term gives:

SGH =

∫︁
dt

2 (1− a2g2)

{︄
3g2r̄3 + 9mg2r̄2(s2

1 + s2
2)

+
[︂

5
3a

2g2 + 6m2g2(s4
1 + 4s2

1s
2
2 + s4

2) + 2
]︂
r̄

+m
(︂

5
3 a

2g2 + 12m2g2s2
1s

2
2 − 1

)︂ (︂
s2

1 + s2
2

)︂
− 3m

}︄
,

(B.6)

while the counterterm action evaluates to:

Sct =

∫︁
dt

1− a2g2

{︄
− g2r̄3 − 3g2m r̄2

(︂
s2

1 + s2
2

)︂
−
[︂

1
3a

2g2 + 2m2g2
(︂
s4

1 + 4s2
1s

2
2 + s4

2

)︂
+ 1

]︂
r̄

−m
(︂

1
3a

2g2 + 4m2g2s2
1s

2
2

)︂ (︂
s2

1 + s2
2

)︂
+m

}︄
.

(B.7)

The renormalized action can be obtained by adding up these three
expressions and sending r̄ →∞. We get the following result:

Sren =

∫︁
dt

2(1− a2g2)

{︄
g2r3

+ + 3mg2r2
+

(︂
s2

1 + s2
2

)︂
+ r+

[︂
a2g2 + 2m2g2

(︂
s4

1 + 4s2
1s

2
2 + s4

2

)︂]︂
+m

(︂
a2g2 + 4m2g2s2

1s
2
2 − 1

)︂
(s2

1 + s2
2)−m

+
2m2 [︁c2

1s
2
1
(︁
2ms2

2 + r+
)︁
+ c2

2s
2
2
(︁
2ms2

1 + r+
)︁]︁

a2 + (2ms2
1 + r+) (2ms2

2 + r+)

}︄
.

(B.8)
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The Euclidean on-shell action I is obtained by Wick-rotating t = −iτ
and identifying τ ∼ τ + β, where β was given in (2.133). Differently
from the five-dimensional case we have examined in app. A, there is
no subtlety related to the choice of a regular gauge, because the four-
dimensional action is gauge-invariant. Therefore one simply has I =

−iSren|∫︁ dt→−iβ Our final result is displayed in (2.137).

b.2 conserved charges

We now proceed to evaluate the conserved charges of the AdS4 black
hole under consideration using holographic renormalization.

The holographic energy-momentum tensor is given by:

⟨Tij⟩ = − lim
r̄→∞

2 r̄ g√
h

δSreg
δhij

= − 1
8π lim

r̄→∞
r̄ g

[︃
Kij − (K −W) hij −

1
2 g2 W

(︃
Rij −

1
2 Rhij

)︃]︃
.

(B.9)

The charges appearing in (2.134) are evaluated in a frame which is
non-rotating at infinity, so in order to compare with those expressions
it is convenient to use the time and angular coordinates t′,ϕ′ defined
in (2.131). Here we report only the components ⟨Tt′t′⟩ and ⟨Tt′ϕ′⟩, since
these are the only ones needed to compute the energy and the angular
momentum:

⟨Tt′t′⟩ =
1

8π (a2g2 − 1)2

[︄
g2m

(︂
s2

1 + s2
2 + 1

)︂ (︂
1− a2g2 cos2 θ

)︂
(︂
2− 2a2g2 cos2 θ+ a2g2 sin2 θ

)︂ ]︄
,

⟨Tt′ϕ′⟩ = 3 a g2m
(︁
s2

1 + s2
2 + 1

)︁
sin2 θ

(︁
a2g2 cos2 θ− 1

)︁
8π (a2g2 − 1)2 . (B.10)

The asymptotic metric at r →∞ is

ds2 =
dr2

g2r2 + g2r2 ds2
bdry , (B.11)

where the metric on the conformal boundary reads in the non-rotating
frame

ds2
bdry = −∆θ

Ξ
dt′2 + dθ2

g2∆θ
+

sin2 θ dϕ′2

g2Ξ
, (B.12)
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and ∆θ, Ξ were given in (2.127).76 We have all the ingredients to eval-
uate the conserved charges E and J , associated with the symmetries
generated by ∂

∂t′ and − ∂
∂ϕ′ , respectively. These are given by:

E =
∫︂

Σbdry
ui ⟨Tit′⟩ vol (Σbdry) =

m

Ξ2

(︂
1 + s2

1 + s2
2

)︂
,

J = −
∫︂

Σbdry
ui ⟨Tiϕ′⟩ vol (Σbdry) =

am

Ξ2

(︂
1 + s2

1 + s2
2

)︂
. (B.13)

where u =
√︂

Ξ
∆θ

∂
∂t′ is the unit, outward-pointing timelike vector and

Σbdry is the two-dimensional Cauchy surface at the boundary, with met-
ric induced from (B.12). These expressions coincide with the ones com-
puted in [134] and reported in (2.134). The electric charges obtained
from the holographic currents ⟨ji⟩ also agree with those in (2.134).

76 The metric (B.12) is related by a Weyl transformation and a change of coordinate to
the canonical metric on R× S2: Ξ

∆θ
ds2

bdry = −dt2 + 1
g2

(︁
dθ′ 2 + sin2 θ′ dϕ′ 2)︁, with

tan θ =
√︁

1 − a2g2 tan θ′. We will not need to implement this transformation here.
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