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20 The frequency of extreme storm events has significantly increased in the 
21 past decades, causing significant  damage to European forests. To mitigate 
22 the impacts of extreme events a rapid assessment of forest damage is 
23 crucial, and satellite data are an optimal candidate for this task. The 
24 integration of satellite data in the operational phase of monitoring forest 
25 damage can be exploit the complementarity of optical and Synthetic 
26 Aperture Radar open datasets from the Copernicus programme. This study 
27 illustrates the testing of Sentinel 1 and Sentinel 2 data for the detection of 
28 areas impacted by the Vaia storm in Northern Italy. The use of multispectral 
29 Sentinel 2 provided the best performance, with classification Overall 
30 Accuracy values up to 86%; however optical data use are seriously 
31 hampered by cloud cover that can persist for months after the event and in 
32 most cases cannot be considered an appropriate tool if a  fast response is 
33 required. The results obtained using Synthetic Aperture Radar Sentinel 1 
34 were slightly less accurate (Overall Accuracy up to 68%), but the method 
35 was able to provide  valuable information rapidly, mainly because  the 
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36 acquisition of this dataset is weather independent. Overall, for a fast 
37 assessment Sentinel 1 is the better of the two methods  where  multispectral 
38 and ground data are able to further refine the initial SAR-based assessment.

39

40 Introduction

41 In recent years, extreme climate-induced events have caused significant  damage to European 
42 forests. The occurrence of strong storms has significantly increased in the past decades 
43 (Usbeck et al. 2010), and the frequency of these events is expected to increase further in 
44 future years due to changing climate dynamics (Saadet al. 2017; Seidl et al. 2014). 
45 Windthrow has a major impact on forest dynamics. Forests affected by repeated damage may 
46 not have enough time to recover and are more vulnerable to other threats. The forest 
47 regeneration in areas damaged by storms can alter the overall ecosystem succession, with 
48 consequences on biodiversity (Ellison et al. 2005). The way in which the windthrown timber 
49 is managed has an impact on biodiversity (Duelli et al. 2019). After a storm, the fungal 
50 infections over deadwood can increase and expand, promoting  stand degradation (McCarthy 
51 et al. 2012); similarly, the expansion of outbreaks of bark beetles from damaged to healthy 
52 stands, that commonly occur from one to three years after  windthrow, is known to 
53 additionally impact conifer forests (Havašová  et al. 2017). Civil security issues can also be 
54 very relevant in windthrow areas (Gardiner et al. 2010). 

55 Rapid assessment of forest damage is crucial for decision support regarding actions to be 
56 taken to prevent further damage and to mitigate the impacts of future extreme events. Field 
57 operations  are commonly the first response from forest authorities for human security, timber 
58 management, and ecosystem conservation. The planning and execution of forest operations 
59 takes advantage from the  availability of rapid information regarding spatial characteristics of 
60 the strongly impacted sites and also regarding the extent and severity of damage. 
61 Accessibility of remote forest areas is also a key factor that influences efforts that are 
62 required to collect this type of data. Remote sensing (RS) has  frequently been employed to 
63 monitor different forest hazards and it has been previously used also in the case of the 
64 detection of storm-damaged trees. Various RS data can be used for post-event forest damage 
65 assessment, each having specific advantages and disadvantages, with their selection driven by 
66 site characteristics, imagery and resources availability, and the question being answered 
67 (Schwarz et al. 2003). Several case studies are needed, considering the variety of instruments 
68 and environmental conditions, to understand how to better support the integration of remote 
69 sensing tools in forest management practice.

70 With airborne or UAVs surveys, very detailed information up to single tree level can be 
71 produced using digital cameras (Duan et al. 2017; Hamdi et al. 2019; Honkavaara  et al. 
72 2013; Mokroš et al. 2017; Pirotti et al. 2016), or laser scanning instruments (Marchi et al. 
73 2017; Chirici et al. 2018), or commercial multispectral sensors (Jackson et al. 2000). But on-
74 demand airborne or UAVs surveys are costly, suited for areas of limited extent, and flights 
75 can be hampered for weeks after the event by bad weather conditions, such as heavy rain or 
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76 post-fire smoke. Natural hazards often affect  large areas and cause diffuse impacts, 
77 consequently the mapping and monitoring of the area can take advantage of  the use of data 
78 from satellite platforms, that can cover broad extents repeatedly in time (Poursanidis and 
79 Chrysoulakis 2017). For this purpose, on-demand multispectral satellite images at very high 
80 spatial resolution (< 5 m) were previously successfully used in Russian (Kislov et al. 2020), 
81 and in German forests (Einzmann et al. 2017; Schwarz et al. 2003). Several forest damage 
82 assessments were conducted using medium spatial resolution multispectral data, particularly 
83 the Landsat open archive that offers free data at 30 m pixel size. As an example, with Landsat 
84 data an old diffusive windthrow caused by a storm was detected in a French  forest by Haidu 
85 et al. (2019); disturbance due to intensive harvesting and strong windthrow was mapped in 
86 Western Siberia forests by Dyukarev et al. (2011); damage caused by a wind storm were 
87 assessed in Lithuania forests by Jonikavičius and Mozgeris (2013); windthrow  disturbance 
88 was mapped in the temperate forest zone of European Russia and the southern boreal forest 
89 zone of the United States by Baumann et al. (2014). Recently, a Pan-European mapping of 
90 windthrow was generated through a model based on Landsat images, plus ancillary forest 
91 data from other satellites and national inventory data (Pecchi et al. 2019). Overall, optical-
92 based studies have demonstrated  the feasibility of detecting  windthrow in forests using 
93 satellite images and that the  accuracy of results depends mainly on the spatial and spectral 
94 resolutions of the datasets. However, the use of optical data for the rapid assessment of forest 
95 windthrows is not encouraged due to different factors, including the purchase cost and time in 
96 the case of on-demand images, and, importantly,  the presence of clouds that in most cases 
97 persists for weeks after weather-related events and hamper the use of satellite data. 

98 To cope with these limits, the use of Synthetic Aperture Radar (SAR) satellite data are 
99 recommended for a faster response. SAR data are independent from solar illumination and 

100 weather. They are therefore available right after the event only depending on the revisit time 
101 of the carrier, even when adverse weather conditions persist. Different SAR missions are 
102 available  at present, each with specific configurations in terms of the frequency of the active 
103 signal, the polarization, and the spatial resolution. In forests, the energy backscattered by 
104 SAR systems at higher frequencies (e.g. X and C-band) mainly comes from the crowns and 
105 the upper forest strata, while at lower frequencies (e.g. L and P-bands) the contribution from 
106 branches and trunks increases, together with the signal penetration through the canopy 
107 (Solimini et al. 2016). The SAR backscatter is also influenced by the water content and the 
108 geometric features of the target object, thus in the  case of forests by the moisture levels (in 
109 vegetation and soil) and the vegetation structure, including stem, branches and leaf  
110 characteristics and architecture (Woodhouse 2005). In severely damaged forest areas the 
111 geometric features suddenly change, as well as the surface roughness, making SAR data 
112 potentially suitable for forest damage assessment, and specifically for detection of windthrow 
113 (Eriksson et al. 2012). SAR datasets can bring additional and complementary information 
114 with respect to optical data (e.g. on canopy roughness, water content, and volume) (Green 
115 1998). Few studies proved the value of SAR data in the context of detection of forest 
116 windthrows including: a multisensor based research conducted by Schwarz et al. (2003), who 
117 compared the results obtained with SAR data against those from optical data; the detection of 
118 areas affected by wind and insect outbreaks performed with L-band data (Tanase et al. 2018); 
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119 and the detection of windthrow in Germany and Switzerland based on Sentinel 1 C-band data 
120 (Rüetschi et al. 2019). 

121 Considering the different characteristics of satellite data, their integration into operational 
122 forest monitoring after extreme events seeks to  exploit the complementary features of optical 
123 and SAR data. At present, this is feasible using the Copernicus European satellite missions, 
124 specifically the Sentinel 1 C-band SAR data and the Sentinel 2 optical multispectral data 
125 (Drusch et al. 2012; Torres et al. 2012). More relevant, these datasets are also available as 
126 preprocessed products in Google Earth Engine (GEE), an integrated platform designed to 
127 empower not only traditional remote sensing scientists but also a wider audience with limited 
128 technical image processing skills (Gorelick et al. 2017). With its dense time series of optical 
129 and SAR data provided  free, already preprocessed, the Copernicus datasets represent an 
130 optimal tool for the rapid assessment of land processes, including large scale  forest damage 
131 and windthrow, as in this specific case study. 

132 The Vaia storm hit the North-Eastern part of Italy on the 29th October 2018; with winds 
133 exceeding 200 km/h and strong rainfall it caused extensive  forest damage in 494 
134 municipalities, destroying or severely damaging forests of  about 42,500 ha, with an 
135 estimated stock of fallen trees of  85 million of cubic metres (Chirici et el. 2019). The 
136 Copernicus Emergency Mapping system reports only about 4000 ha of damaged areas, about 
137 10% of the affected area, due to cloud cover presence in the optical images used for mapping 
138 (data available at: https://emergency.copernicus.eu/mapping/list-of-components/EMSR334). 
139 Following the Vaia storm, the impacted regions assessed  the forest damage by means of the 
140 integration of aerial photographs or very high-resolution optical satellite images with data 
141 from field surveys.

142 The present research tests Sentinel 1 and Sentinel 2 data for the detection of areas impacted 
143 by the Vaia storm. To classify healthy and damaged areas, different algorithms were 
144 evaluated , including a Bayesian Generalized Linear Model, a k-Nearest Neighbors approach, 
145 and Random Forest, using ground data provided by the regional authorities for model 
146 calibration and validation. Change detection approaches based on pre and post event image 
147 differencing were frequently used in previous research (Dalponte et al. 2020; Ruetschi et al. 
148 2019; Tanase et al. 2018). In this work we evaluated the impact of algorithm selection on 
149 results, to support the selection of proper methods in operational forest monitoring. The 
150 present research expands on the common monitoring of forest windthrow based on optical 
151 data, which is ineffective in case of adverse atmospheric conditions, and it introduces testing 
152 of Sentinel 1 SAR C-band.  Sentinel 2 optical data are here tested for the first time, according 
153 to our knowledge, in the context of the detection of forest damages by storms. Even if the 
154 sensitivity of SAR signal to forest damages was previously illustrated by various authors 
155 (Eriksson et al. 2012; Thiele et al. 2012; Ulander et al. 2005), only very few studies exploited 
156 SAR for windthrow mapping (Ruetschi et al. 2019; Tanase et al. 2018), possibly due to data 
157 complexities and limited access to user-friendly processing tools. Thus, the present study can 
158 be of help to understand how SAR can support forestry practice, also considering that these 
159 data and related tools are increasingly available by different space agencies, and preprocessed 
160 Sentinel 1 datasets are delivered by GEE. 
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161 The aim of this research is to contribute to forestry practice, developing knowledge useful to 
162 operational management to  exploit satellite open-data, and defining  a strategy for the rapid 
163 detection of  forest damage  and the further refinement of information. Remote sensing has 
164 great  potential to cost-efficiently map storm-affected regions, but previous research has been  
165 somewhat  limited, as Sentinel 2 imagery was not previously exploited with this aim; and 
166 Sentinel 1 was only partially examined. Thus, further investigation to assess the potential of 
167 integrating satellite open-data into forest practical workflows is needed. Here the focus is on 
168 open-data from the Copernicus programme, exploiting the GEE platform for fast processing, 
169 demonstrating that this approach can significantly support decision makers with remote 
170 sensing-based assessment of windthrow damaged areas. 

171 Methods

172 Study area and ground data

173 The research was conducted in Northern Italy, in areas affected by the windthrow and 
174 included in two selected Sentinel-2 tiles for which ground truth data were made available by 
175 local administrations encompassing three regions: Friuli Venezia Giulia, Trentino Alto 
176 Adige, and Veneto (fig. 1). These regions host important forest resources, and different local 
177 agencies in charge of their census and management were involved in assessing the Vaia 
178 impacts. These data can also by found in open databases (Forzieri et al. 2020).

179 Insert fig.1

180 For the Trentino Alto Adige region, ground data for the Trento Autonomous Province were 
181 provided by the local forest service, and for the Autonomous Province of Bozen by the 
182 Province authority; in both cases the area of damaged forest  were detected on the basis of 
183 photointerpretation of aerial orthophotos, and integrated with data from field surveys. 
184 Overall,  in Trentino Alto Adige there were  1463 discrete areas, covering 5913 ha, and with 
185 a mean area of  4 ha. For the Friuli Venezia Giulia region, ground data on forest damage were 
186 provided  by the local forest service using aerial orthophotos and ground surveys; there were 
187 499 damaged areas for this region, covering 3693 ha, with mean area of  7.4 ha. For the 
188 Veneto region, the ground data were provided by the Veneto Agency for agriculture 
189 payments (AVEPA), who are  responsible to provide economic help in case of natural 
190 disasters. AVEPA provided  a shapefile of the affected areas based on photointerpretation of 
191 very high resolution orthophotos (20 cm spatial resolution) and SPOT 6/7 satellite pre and 
192 post event images at 1.5 m spatial resolution. The dataset included information on area 
193 borders and estimation of percentage of damaged trees in each area. In total, there were 1588 
194 damaged areas detected in Veneto, covering 4020 ha, and having a mean surface of 2.5 ha.

195 The data provided for these Italian regions included 3550 polygons that identify any area 
196 affected by the windthrow. These polygons were filtered out to create a subset for testing and 
197 validation purposes, according to the following inclusion criteria: (i) polygons >2 ha, to 
198 include areas compatible with the spatial resolution and the detection capability of the remote 
199 sensing data used in this study;  (ii) polygons in which the average terrain slope was below 
200 20% in at least 85% of the surface, to exclude areas of unreliable SAR signal, according to 
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201 distortion; (iii) for the Veneto region only, polygons in which the amount of damaged trees 
202 resulted > 80%, that were more than 40% of the total Veneto polygons; (iv) polygons 
203 included in two Sentinel tiles, to test the methods in the most affected area (3218 polygons). 
204 For classification purposes, polygons in forest not impacted by the Vaia storm were also 
205 drawn in proximity of the impacted polygons, by on-screen photointerpretation of post-event 
206 Google imagery.

207 In particular, the first criterion  was guided by the imagery spatial resolution and allowed to 
208 retain the larger damaged areas. The second criterion was derived after exploring the SAR 
209 distortion masks based on local incidence angle. These maps are a by-product of SAR data 
210 processing, that was additionally performed as these layers are not included in the GEE 
211 available datasets. The maps indicated frequent distortions above the 20% slope; to facilitate 
212 the analysis using GEE data, this single threshold was selected. The third criterion was 
213 applied in Veneto, and was introduced due to the different ways the Italian regions assessed 
214 damage. In fact, it was noted that Trentino and Friuli Venezia Giulia reported only areas 
215 where damage was very significant, while Veneto Region also digitized areas that were 
216 partially impacted. The dataset was standardized by keeping only the polygons with damage 
217 degree above 80% in Veneto.  The application of the mentioned criteria resulted in a 
218 standardized dataset including the larger and most affected areas, where SAR data had the 
219 higher signal to noise ratio and the forest impacts were similar. The damaged and non-
220 damaged datasets included a total of 209 polygons, 104 from healthy forest stands, and 105 
221 from damaged forest areas; the corresponding pixels were extracted from the imagery and 
222 averaged at polygon level. In total 90%  of the  209 polygons were  used to calibrate  and 
223 validate with the k-fold approach  classification algorithms. The remaining 22 polygons were 
224 used as independent test set for further evaluation of the overall accuracy. The total  area used 
225 for calibration, validation and testing the methods was considerable: in Trentino Alto Adige it 
226 was equal to 622 ha; in Veneto to 533 ha; and  in Friuli 237 ha, representing the different 
227 forest types and environmental conditions occurring in the area of interest.

228 Copernicus Sentinel data 

229 The Sentinel 2 (S2) multispectral images were downloaded from Google Earth Engine as 
230 Level-2A orthorectified atmospherically corrected surface reflectance. The S2 Multispectral 
231 Instrument (MSI) samples 13 spectral bands: visible and NIR at 10 meters, red edge and 
232 SWIR at 20 meters, and atmospheric bands at 60 meters spatial resolution. Only bands at 10 - 
233 20 m spatial resolution were used for tests (bands # 2, 3, 4, 5, 6, 7, 8, 8A, 11, 12), resampling 
234 at 10 m the 20 m bands with a nearest neighbor approach. The vegetation indices included in 
235 Table 1 were also computed. 

236 Insert Table 1

237 To evaluate the hypothesis that Sentinel 2 data can detect the damaged forest  areas with 
238 significant accuracy, post-event Sentinel 2 images were used. The possibility to use also a 
239 pre-damage image and focus the analysis on the variations in reflectance was also evaluated, 
240 but confounding factors such as day-specific atmospheric conditions, including cloud cover, 

Page 6 of 50

http://mc.manuscriptcentral.com/forest

Manuscripts submitted to Forestry:  An International Journal of Forest Research

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Review Only

241 and plant phenology stage at different dates were considered relevant causes of increased 
242 uncertainty in results and leading to uncertainty. Therefore, we  preferred to work only on 
243 post-damage optical images using a binary classification approach (healthy forest/damaged 
244 areas). 

245 The first available post-event Sentinel 2 imagery is dated June 2019 (7 months after the 
246 event). The predictor set named S2_Set1 (set of image bands) was used to evaluate the 
247 contribution of each single band, and the S2_Set2 (vegetation indices)  to evaluate the 
248 contribution of the derived vegetation indices. The latter combination is preferable in case 
249 different images are used (predictor sets in Table 2).

250 The Sentinel 1 SAR images were downloaded from Google Earth Engine as Ground Range 
251 Detected (GRD) scenes, already pre-processed using the Sentinel-1 Toolbox to generate a 
252 calibrated, ortho-corrected product at 10 m spatial resolution in dual-band cross polarization 
253 mode (VV – VH). Preprocessing included thermal noise removal, radiometric calibration, and 
254 terrain correction using a digital terrain model (SRTM 30 m). Five pre-event scenes were 
255 collected from the period 26 September - 3 October 2018 (pre-event period without frost or 
256 snow), and 5 post-event scenes were from the period 7 - 15 December 2018. The pre and post 
257 event scenes were averaged at pixel level, and band ratios (VV/VH, VH/VV), and band 
258 normalized differences were also computed (VV-VH, VH -VV). In fact, with  respect to the 
259 optical images, the SAR data are less affected by atmospheric condition and vegetation 
260 phenology and for this reason the use of differences between pre and post event was also 
261 evaluated to detect forest damaged areas.

262 Thus, the set of predictors named S1_Set3 (based only on post-event bands), and the S1_Set4 
263 (based on pre-post event scenes differences) were used in tests (predictor sets in Table 2).

264 Insert Table 2

265 Classification approaches

266 Three different approaches were tested for the classification task: a generalized linear 
267 Bayesian model and two machine learning models, the k-Nearest Neighbors and Random 
268 Forest. Using the three models and the four sets of available predictors (Table 2), a total of 12 
269 models-predictors combinations were developed. The tests were conducted using the 
270 RFTrainer, KNN, and Bayesglm R packages in R environment (R Core Team 2013). 

271 Bayesian inference is a method of statistical inference in which Bayes' theorem is used to 
272 update the probability for a hypothesis as more evidence or information becomes available. It 
273 facilitates representing and taking full account of the uncertainties related to models and 
274 parameter values. The Bayesian generalized linear model (BGLM) is based on Bayesian 
275 functions that finds an approximate posterior mode and variance using extensions of the 
276 classical generalized linear model computations. The Bayesian function allows the user to 
277 specify independent prior distributions for the coefficients in the t family, with the default 
278 being Cauchy distributions with center 0 and scale set to 10 (for the regression intercept), 2.5 
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279 (for binary predictors), or 2.5/(2 · sd), where sd is the standard deviation of the predictor in 
280 the data (for other numerical predictors) (Berrett and Calder 2016; Gelman et al. 2008) 

281 The k-Nearest Neighbors (KNN) technique is a popular method for producing spatially 
282 contiguous predictions of forest attributes by combining field and remotely sensed data. KNN 
283 are appealing as they can be used for both univariate and multivariate prediction, no 
284 assumptions regarding the distributions of response or auxiliary variables are necessary and 
285 they can be used with a wide variety of datasets (Chirici et al 2016). The k nearest vectors, 
286 used to perform the classification, are found according to Minkowski distance and the 
287 classification is performed by means of the maximum of summed kernel densities; both 
288 ordinal and continuous variables can be predicted (Wu et al. 2002).

289 Random Forest (RF) is an ensemble of decision trees that learns through a supervised 
290 approach and produces multiple models that are aggregated, using a bootstrap aggregating 
291 procedure, to produce the result. The models are built using different training subsets, 
292 generated by bootstrapping, that are used to build the “forest”. RF is able to reduce the output 
293 variance and the overfitting problem with respect to other machine learning approaches, 
294 improving model stability and accuracy (Breiman 2001).

295 When a model is trained with data there is the risk of overfitting, i.e. that the parameters are 
296 estimated to reproduce closely the training data used, losing the capacity to generalize outside 
297 the calibration  examples. To avoid overfitting one of the most useful method is k-fold cross 
298 validation (k-fold CV) that splits the training set into K number of subsets, called folds: the 
299 models are then iteratively fitted K times each time training the data on data from K-1 of the 
300 folds and evaluating the performances on data from the Kth fold. At the end of calibration, 
301 the performance on each of the K folds are evaluated in term of Overall Accuracy (OA), i.e. 
302 the percentage of cases where the classification as damaged or not damaged was correct. The 
303 Overall Accuracy from Cross Validation - OAcv and the relative standard deviation sd(OAcv) 
304 are finally computed averaging the K folds and calculating their standard deviation. This 
305 provides more information over how stable the model is by testing it over multiple sets of 
306 data.
307

308 RF and kNN models require the calibration of hyperparameters- The hyperparameters are 
309 calculated using the training datasets. BGLM instead does not require hyperparameters 
310 calibration. A procedure based on a random search grid was used for the optimization 
311 (Bergstra and Bengio, 2012). The procedure defines a grid of hyperparameter ranges, as those 
312 defined above. One hundred combinations were randomly sampled from the grid and for each 
313 combination a k-Fold CV was performed. For both KNN and RF the optimal 
314 hyperparameters combination with the greater OAcv was finally selected. In the RF case, the 
315 hyperparameters that were tuned include the maximum depth of each tree (max_depth) in the 
316 forest and the number of features (max_features) considered by each tree when splitting a 
317 node. The number of trees in the forest was set equal to 400, while the minimum number of 
318 samples required to split an internal node was set equal to 1.
319 In the kNN case the three hyperparameters that were optimized are: the number of neighbours 
320 considered (k), the Minkosky distance, and the kernel to use. The max_features ranged 
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321 between 2 and n, where n equals the number of predictors used in input; the max_depth 
322 ranges between 1 and 40. k ranged between 1 and 60, the Minkosky distance was equal to the 
323 Euclidean and Manhattan distances, and the kernel to use were Unweighted, Weighted, 
324 Inverse, Reciprocal. 
325

326 The models, once optimized and validated with k-fold approach, were further independently 
327 evaluated in terms of accuracy using the test set that includes 10% of the polygons never used 
328 during the optimization procedure. For the evaluation of the classification results, different 
329 statistics are reported, including overall accuracy, users accuracy, producers accuracy, and 
330 the percentage of omission and commission errors. User's accuracy represents how reliable 
331 the classification is in terms of actually finding damage in the real world over an area that 
332 was classified as “damaged” in the map. Producer's accuracy reports how often a damage that 
333 is found in the real world is reported in the final classified map (Cohen 1968; Congalton 
334 1991).

335 Results

336 In table 3 we present for each model and for each of the four sets of predictors the averaged 
337 OAcv obtained with a 9-fold cross validation procedure and the related standard deviation 
338 obtained averaging the different iterations. For the KNN and RF models the best 
339 hyperparameters combination, identified using a RandomSearch algorithm are also presented.

340 Insert Table 3

341 The results in Table 3, also graphically shown in fig. 2, show consistency in different models, 
342 with negligible differences among the considered approaches and limited variance from 
343 different iterations. 

344 The best results are obtained with S2 images, with OAcv always > 0.8 and included in the 0.8-
345 0.85 range for either bands or vegetation indices, with the latter reaching a slightly higher 
346 accuracy. The standard deviation values resulted were always small with a maximum value of 
347 0.102. This confirms the ability of S2 to detect impacted forest areas.

348 Lower accuracy results –in the 0.6-0.7 OAcv range- are obtained when using SAR data with a 
349 slightly better scores obtained when using the S1_Set3, that includes only data from post-
350 event scene. 

351 Insert fig. 2

352 The three models were also applied to the independent test set (n = 22) to evaluate their final 
353 performance on new and unseen data and the results are shown in Table 4.

354 Insert Table 4

355 The results obtained using the independent test set are similar to those obtained with 9-fold 
356 CV but span, as expected, over a slightly higher range, considering the limited number of 
357 samples in the test set (n=22).
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358 For sets 1 and 2, based on S2 data, the accuracy is included in the 0.77-0.86 range, and is 
359 similar across the three different models. For sets 3 and 4, based on S1 data, the accuracy 
360 range is 0.5-0.68, with higher results obtained using Random Forest model. 

361 Overall, results in Table 4 confirm the higher accuracies obtained with the use of Sentinel 2 
362 data with respect to those obtained with SAR data. 

363 Discussion

364 The availability of satellite open-data that is also partly preprocessed adds significant value to 
365 the procedure of the assessment of forest damages, from windthrow or other sources of 
366 damage that change the landscape. The final product is a classified damage map that supports 
367 rapid responses in terms of forest management. The results indicate that data from the 
368 Copernicus Sentinel 1 and 2 missions are suited for the detection of damaged forest areas. 
369 SAR is especially useful for a fast evaluation, providing useful information for  
370 immediate/short-term response actions for risk mitigation. Sentinel 2 can be used to refine the 
371 SAR initial information unless post event data are immediately available. The use of cloud-
372 based platforms like Google Earth Engine helps to reduce the time that operators need for 
373 image download and standard pre-processing. A pre-defined workflow over ready-to-use 
374 imagery can avoid requiring highly skilled operators for processing imagery. The workflow 
375 can be partly automatic, providing maps useful to multiple end-users, even those less familiar 
376 with image processing techniques. 

377 Focusing on applications, the present research suggests that the sequential use of GEE 
378 Sentinel 1 and 2 data for better windthrow information provision is an optimal combination. 
379 Specifically, the testing of the different predictors from S1 and S2 data provided useful 
380 insights on the advantages and limits of these datasets. 

381 The best detection of the forest areas impacted by the Vaia storm is always obtained using 
382 Sentinel 2 images. Using a 9-fold cross validation approach and either S2 bands or vegetation 
383 indices as input, the obtained overall accuracies were > 80%, with limited differences among 
384 modeling approaches, low variance from iterations, and results included in the 80-85% range. 
385 The use of vegetation indices with KNN and RF approaches provided the higher OACV 
386 values, equal to 85 and 84 %, respectively.  

387 Very similar results are obtained when the parameterized models were validated against the 
388 independent test set, represented by 22 samples not used to calibrate  the models. The 
389 obtained results, although the number of test samples is relatively low, are in a very similar 
390 OA range (77- 86%) compared with  those reported for 9-fold cross validation. The highest 
391 OA score (86%) is obtained either using S2 bands with KNN model or using VIs with 
392 Random Forest. User accuracies were over 90% whereas producer’s accuracies were in the 
393 71-83% range, with higher scores obtained with RF and VIs. This indicates that commission 
394 errors where lower then omission errors, in other words some damaged areas where not 
395 correctly detected by the classifier, thus leaving out some areas from the final map, but most 
396 of the areas classified as damaged where really damaged. It might be due to canopy of felled 
397 trees still significantly showing in the image, or also reflectance from water vapor, that 
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398 commonly rises in the morning in mountainous areas, mixing with the reflectance values 
399 from the tree trunks.

400 It should be considered that the post-event S2 imagery employed in the study were from a 
401 single date and about 7 months after the Vaia event. The time gap between the storm and the 
402 S2 imagery allows the greening of the ground in damaged areas, from herbal and shrubs 
403 vegetation regrowth that can produce a change in reflectance values and a consequent 
404 negative impact in the classification accuracy. The results are however in line with what has 
405 been already found in the past with Landsat data, thus at 30 m spatial resolution (30 m): an 
406 OA equal to 86% was reached in the detection of windthrows in Voges mountains in France 
407 (Haidu et al. 2019); in European Russia and United States the OA was about 75%, with more 
408 accurate results reported for larger areas (Baumann et al. 2014); and with an automatic 
409 algorithm based on Landsat time series, historical disturbance from windthrow and logging 
410 was detected in United States forest with an accuracy about 80%. According to our 
411 knowledge, there are no studies based on the use of S2 data for forest windthrow detection, 
412 except two abstracts where the accuracy of the obtained results is not reported (Cenci et al. 
413 2019; Valt et al. 2019).

414 Vegetation indices are especially useful when multiple images are used (as in the case of 
415 change detection analysis), or when the study area is large and covered by different image 
416 tiles, or even when a mosaic from different dates is composed to mitigate cloud cover issues. 
417 In fact, VIs are designed to maximize sensitivity to the vegetation characteristics while 
418 minimizing confounding factors such as soil background reflectance, directional, or 
419 atmospheric effects, that change among different acquisitions (Fang and Liang 2008). 
420 According to this and based on the reported classification results, the use of VIs from S2 data, 
421 fitting the model with the RF method, appears the best solution to detect damaged forest area 
422 in this case study. An improvement in accuracy is expected if optical imagery becomes 
423 available in dates close to the time of the damage event.  

424 The use of SAR inputs produced lower accuracies compared to S2 inputs with an OA values 
425 in the range 0.66-0.71 according to 9-fold cross validation and a low standard deviation score 
426 (< 0.14). Differences among the three models are minor, as well as those when using post-
427 event data only or pre-post event backscattering difference. The highest OAcv score is 
428 obtained with pre-event data and KNN approach (OAcv = 0.71).

429 According to results from the independent test set, the OAs slightly decrease and the 
430 variability in values increases, being included in the 0.5-0.68 range. The best scores are 
431 obtained using RF: 64% and 68% in OA with post-event data and pre-post event difference, 
432 respectively. With RF, the user’s accuracy is low (54%) when using S1 pre-post event scenes 
433 differences, but the producer’s accuracy is in line with the one obtained using the S2 data 
434 (75%). When using post-event data, the user’s and producer’s accuracies are on the same 
435 order (63%). The results suggest the use of RF as classification model, and the combination 
436 of pre- and post-event SAR scenes to better meet the user’s needs. 
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437 Previous studies conducted with C-band ERS 1/2 and RADARSAT 1 at 30 m spatial 
438 resolution were not successful for the detection of forest windthrows (Schwarz et al. 2003; 
439 Ulander et al. 2005). However, with L-band data - that better penetrates into the forest - OAs 
440 included in the 69-84% range were obtained in the Bavarian Forest National Park, with 
441 accuracy values depending on the acquisition date and environmental conditions (Tanase et 
442 al. 2018). Using C-band S1 and a change detection approach, the producer’s accuracy 
443 reached 88% in a German validation site, but the user’s accuracy was quite low (21%) and 
444 limitations consisted in a minimum area of 0.5 ha and the requirement of 10 post-event 
445 images (Rüetschi et al. 2019). Positive results were also obtained using X-band data with 
446 very high spatial resolution (Thiele et al. 2012). 

447 The results here presented outline the relevance of SAR spatial resolution for forest 
448 windthrow detection, and confirm the ability of S1 data to produce fast preliminary 
449 information on impacted areas, with the obtained OA and user’s accuracy included in a range 
450 of values similar to those reported by other studies. 

451 It is important to note the limitations of the present study in terms of suitability in certain 
452 cases. First, the areas tested were all above 2 ha, to cope with the 10 m spatial resolution of 
453 both S1 and S2 datasets; however the average size of damaged areas in the three considered 
454 regions resulted higher than 2 ha. Then, the ground truth was filtered out to exclude slopes 
455 using a low threshold (> 20°) where the first SAR distortion effects were observed. Producing 
456 the distortion masks to filter out data, instead of a fixed threshold that excluded most slopes 
457 for easiness of analysis in GEE, could results in a detailed mapping of unreliable SAR pixels 
458 and a larger availability of reliable data over slopes. Similarly, the use of temporal series can 
459 improve the amount of area with reliable SAR data, as at each pass the acquisition angle may 
460 vary. When SAR data are used, it is also important to detect and mask pixels with wet or dry 
461 snow over the canopy, as it changes the backscatter values (Koskinen et al. 1997). This 
462 implies an added complexity of the method in areas seasonally covered by snow. 

463 For future operational use, the application of a pre-disturbance forest/non-forest map can help 
464 to perform semi-automatic classification. Further tests are also needed to understand the 
465 response of satellite data over less impacted forests, where a mixture of healthy and damaged 
466 trees is present, and how to minimize the impact of SAR distortion areas. 

467 The combined  use of S1 and S2 was not investigated  here, as for data integration the optical 
468 and radar imagery should be from same period. The S2 images used in this investigation were 
469 dated months after the storm, when the herbal and shrub vegetation renovation influence both 
470 the optical reflectance and the backscattering in C-band SAR. These are confounding factors, 
471 but a data integration approach is feasible if optical data are available soon after the event. 
472 Higher accuracy in classification is known to occur from combining SAR with optical with 
473 respect to use single sensor type (Clerici et al. 2017; Vaglio Laurin et al. 2012), so this might 
474 be another strategy to improve the information accuracy. 

475 Conclusion
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476 This study showed the suitability of Copernicus S1 and S2 data for the detection of areas 
477 affected by windthrow. Sentinel 2 provided the best performance for detection of windthrow 
478 areas, but its use was seriously hampered by cloud cover. For events occurring  in winter, 
479 Sentinel 2 data might only be available  after several months. In those cases, the use of 
480 Sentinel 1 data, being independent with respect to atmospheric condition and with a fast 
481 return  time, becomes the best option  for a first and rapid evaluation of the forest damage, to 
482 support field operations and the formation of management response plans. 

483 Thus, for operational monitoring, the results suggest a sequential approach, based initially on 
484 S1 for fast response. This initial SAR assessment can be refined in later dates, integrating S2 
485 imagery when available and data from ground or aerial surveys, for a more accurate mapping 
486 also over steep slopes.
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677 Table and Figure captions

678 Figure 1 Study area, Northern Italy; in red the 209 polygons used for calibration, cross 
679 validation and testing; in orange the rectangles of Sentinel 2 tiles. Image prepared using 
680 Google Earth Pro Landsat/Copernicus @2020 GeoBasis-DE/BKG US Dept of State 
681 Geographer @2020 Google.

682 Figure 2 Classification results using three algorithms (BGLM = Bayesian Generalized Linear 
683 Model; KNN = K-Nearest Neighbor; RF = Random Forests) with four sets of predictors as 
684 input (Set 1 = Sentinel 2 bands; Set 2 = Sentinel 2 vegetation indices; Set 3 = Sentinel 1 post 
685 event data; Set 4 = Sentinel 1 pre-post event difference data). The models were validated with 
686 a 9-fold cross validation approach.
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707 Table 1. List of vegetation indices used for tests.

 Vis Index name Bands

1 NDVI_id
x  

Normalized Difference Veg index (b8-b4)/(b8+b4)

2 NBr_idx  Normalized Burn Ratio (b8 – b12)/(b8 + b12)

3 NDVI_2  Normalized Difference Veg index 2 (b12-b8)/(b12+b8)

4 SR  Simple Ratio b8/b4

5 ARI1  Anthocyanin Reflectance Index 1 
(ARI1)

1/b3-1/b5

6 EVI  Enhanced Vegetation Index 2.5*(b8−b4)/(b8+ 
6*b4−7.5*b2)+1000

7 NDMI  Normal difference moisture index (b8−b11)/(b8+b11)

8 MSI  Moisture soil index b11/b8

9 BAI  Burn Area Index 1/(0.1-b4)2 +(0.06-b8)2

10 DVI  Difference Veg Index b8-b4

11 GDVI  Green Difference Vegetation Index b8 – b3

12 GARI  Green Atmospherically Resistant 
Index

b8-(b3- (b2-b4)/b8+(b3- (b2-b4)

13 GRVI  Green Ratio Vegetation Index b8/b3

14 IPVI  Infrared Percentage Vegetation Index b8/b8+b4
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716 Table 2. Set of S2 and S1 predictors used in classification models.

Set Predictors Image date

S2_Set1 Sentinel 2 (post event) bands 28/06/2019

S2_Set2 Sentinel 2 (post event) Vegetation Indices 28/06/2019

Sentinel 1 (post event) bands VH, VV 07-15/12/2018

Sentinel 1 (post event) band ratios VV/VH, VH/VV 07-15/12/2018

S1_Set3

Sentinel 1 (post event) normalized difference VV-VH, 
VH-VV

07-15/12/2018

Sentinel 1 (pre-post event difference) bands VH, VV 26/09- 03/10/2018 

07-15/12/2018

Sentinel 1 (post event difference) band ratios VV/VH, 
VH/VV

26/09- 03/10/2018 

07-15/12/2018

S1_Set4

Sentinel 1 (pre-post event difference) normalized 
difference VV-VH, VH-VV

26/09- 03/10/2018 

07-15/12/2018
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729 Table 3. Overall accuracy for classification models validated with 9-fold cross validation 
730 (OAcv), with related standard deviation sd(OAcv) and best hyperparameters combination. 
731 The  highest Accuracy for each model is shown in bold.

Best 
hyperparameters

9-fold-cross validation

Predictors

set

OAcv sd(OAcv) 

S2_Set1 0.80 0.086

S2_Set2 0.82 0.073

S1_Set3 0.68 0.072

BGLM

S1_Set4 0.67 0.096

kmax Distance

S2_Set1 15 2 0.82 0.081

S2_Set2 20 1 0.85 0.102

S1_Set3 53 2 0.71 0.138

KNN

S1_Set4 12 2 0.66 0.085

Max.

features

Max.

depth

S2_Set1 4 11 0.83 0.070

S2_Set2 8 27 0.84 0.064

S1_Set3 3 40 0.66 0.075

RF

S1_Set4 4 35 0.66 0.089
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736

737 Table 4. Accuracy statistics for the three classification models and the four set of predictors 
738 obtained on the Test set (10% of samples). In bold the highest OA obtained.

Predictor 
set

Overall 
accuracy

Producers 
accuracy 
Healthy 
forest %

Producers 
accuracy 
Damaged 
areas %

Users 
accuracy 
Healthy 
forest %

Users 
accuracy 
Damaged 
areas %

S2_Set1 0.77 87.50 71.43 63.64 90.91

S2_Set2 0.82 100.00 73.33 63.64 100.00

S1_Set3 0.50 50.00 50.00 27.27 72.73
BGLM

S1_Set4 0.55 54.55 54.55 54.55 54.55

S2_Set1 0.86 100.00 78.57 72.73 100.00

S2_Set2 0.82 88.89 76.92 72.73 90.91

S1_Set3 0.50 50.00 50.00 45.45 54.55
KNN

S1_Set4 0.64 61.54 66.67 72.73 54.55

S2_Set1 0.82 88.89 76.92 72.73 90.91

S2_Set2 0.86 90.00 83.33 81.82 90.91

S1_Set3 0.64 63.64 63.64 63.64 63.64
RF

S1_Set4 0.68 64.29 75.00 81.82 54.55

739
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Study area, Northern Italy; in red the 209 polygons used for calibration, cross validation and testing; in 
orange the rectangles of Sentinel 2 tiles. Image prepared using Google Earth Pro Landsat/Copernicus @2020 

GeoBasis-DE/BKG US Dept of State Geographer @2020 Google. 
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Classification results using three algorithms (BGLM = Bayesian Generalized Linear Model; KNN = K-Nearest 
Neighbor; RF = Random Forests) with four sets of predictors as input (Set 1 = Sentinel 2 bands; Set 2 = 

Sentinel 2 vegetation indices; Set 3 = Sentinel 1 post event data; Set 4 = Sentinel 1 pre-post event 
difference data). The models were validated with a 9-fold cross validation approach. 
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Response to reviewer #2

Many thanks for the positive evaluation of this revised version. We implemented 
the minor suggested changes as follows:

L 137-156: please revise: Revision has been made

L 358-360: please revise: Revision has been made

Figure 1: The figure has been improved and the polygons are now well visible.
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3 Satellite open data to monitor forest damage caused by extreme 
4 climate-induced events: a case study  of the Vaia storm in 
5 Northern Italy
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19

20 The occurrencefrequency of  strong stormsextreme storm events has 
21 significantly increased in the past decades, causing significant  damage to 
22 European forests. To mitigate the impacts of extreme events a rapid 
23 assessment of forest damage is crucial, and satellite data are an optimal 
24 candidate for this task. The integration of satellite data in the operational 
25 phase of monitoring of forest damage can be promoted exploitingexploit the 
26 complementarity of optical and Synthetic Aperture Radar open datasets 
27 from the Copernicus free of cost datasetsprogramme. This study illustrates 
28 the testing of Sentinel 1 and Sentinel 2 data for the detection of areas 
29 impacted by the Vaia storm in Northern Italy. The use of multispectral 
30 Sentinel 2 provided the best performance, with classification Overall 
31 Accuracy values up to 86%; however optical data use are seriously 
32 hampered by cloud cover that can persist for months after the event and in 
33 most cases cannot be considered an appropriate tool if a  fast response is 
34 required. The results obtained using Synthetic Aperture Radar Sentinel 1 
35 were slightly less accurate (Overall Accuracy up to 68%), but the method 
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36 was able to provide  valuable information rapidly, mainly because  the 
37 acquisition of this dataset is weather independent. Overall, for a fast 
38 assessment Sentinel 1 is the better of the two methods  where  multispectral 
39 and ground data are able to further refine the initial SAR-based assessment.

40

41 Introduction

42 In recent years, extreme climate-induced events have caused significant  damage to European 
43 forests. The occurrence of strong storms has significantly increased in the past decades 
44 (Usbeck et al. 2010), and the frequency of these events is expected to increase even 
45 morefurther in future years due to the changing climate dynamics (Saadet al. 2017; Seidl et 
46 al. 2014). Windthrown isWindthrow has a major driver ofimpact on forest dynamics. Forests 
47 affected by repeated damage may not have enough time to recover and are exposedmore 
48 vulnerable to additional impacts.other threats. The regrowthforest regeneration in areas 
49 damaged by storms can alter the overall ecosystem succession, with consequences on 
50 biodiversity (Ellison et al. 2005). The way in which the windthrown timber is managed  also 
51 has an impact on biodiversity (Duelli et al. 2019). After a storm, the fungal infections over 
52 deadwood can increase and expand, promoting  stand degradation (McCarthy et al. 2012); 
53 similarly, the expansion of outbreaks of bark beetles outbreaks from damaged to healthy 
54 stands, that commonly occur from one to three years after  windthrow, is known to 
55 additionally impact conifer forests (Havašová  et al. 2017). Civil security issues can also be 
56 very relevant in windthrow areas (Gardiner et al. 2010). 

57 For operational planning, fast intervention,Rapid assessment of forest damage is crucial for 
58 decision support regarding actions to be taken to prevent further damage and to mitigate the 
59 impacts of future extreme events, a rapid assessment of forest damage is crucial.. Field 
60 operations  conducted in a timely way byare commonly the first response from forest 
61 authorities are fundamental for human security, for timber management, and for ecosystem 
62 conservation. The planning and execution of forest operations needs to take takes advantage 
63 offrom the  availability of rapid information, locating the most regarding spatial 
64 characteristics of the strongly impacted sites and also regarding the extent and severity of 
65 damage, also considering the difficulty to work in. Accessibility of remote forest areas is also 
66 a key factor that influences efforts that are required to collect this type of data. Remote 
67 sensing (RS) has  frequently been employed to monitor different forest hazards and it has 
68 been previously used also in the case of withdrawn damagethe detection of storm-damaged 
69 trees. Various RS data can be used for post-event forest damage assessment, each having 
70 specific advantages and disadvantages, with their selection driven by site characteristics, 
71 imagery and resources availability, and the question being answered (Schwarz et al. 2003). 
72 Several case studies are needed, considering the variety of instruments and environmental 
73 conditions, to understand how to better support the integration of remote sensing tools in 
74 forest management practice.
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75 With airborne or UAVs surveys, very detailed information up to single tree level can be 
76 produced using digital cameras (Duan et al. 2017; Hamdi et al. 2019; Honkavaara  et al. 
77 2013; Mokroš et al. 2017; Pirotti et al. 2016), or laser scanning instruments (Marchi et al. 
78 2017; Chirici et al. 2018), or commercial multispectral sensors (Jackson et al. 2000). But on -
79 demand airborne or UAVs surveys are costly, suited for areas of limited extent, and flights 
80 can be hampered for weeks after the event by bad weather conditions, such as heavy rain or 
81 post-fire smoke. As naturalNatural hazards are usually phenomena affectingoften affect  large 
82 areas and causingcause diffuse impacts, consequently the mapping and monitoring of 
83 damagethe area can take advantage of  the use of data from satellite platforms, that can cover 
84 broad extents repeatedly in time (Poursanidis and Chrysoulakis 2017). For this purpose, on-
85 demand multispectral satellite images at very high spatial resolution (< 5 m) were previously 
86 successfully used in Russian (Kislov et al. 2020), and in German forests (Einzmann et al. 
87 2017; Schwarz et al. 2003). Several forest damage assessments were conducted using 
88 medium spatial resolution multispectral data, particularly the Landsat open archive that offers 
89 free data at 30 m pixel size. As an example, with Landsat data an old diffusive windthrow 
90 caused by a storm was detected in a French  forest by Haidu et al. (2019); disturbance due to 
91 intensive harvesting and strong windthrow was mapped in Western Siberia forests by 
92 Dyukarev et al. (2011); damage caused by a wind storm were assessed in Lithuania forests by 
93 Jonikavičius and Mozgeris (2013); windthrow  disturbance was mapped in the temperate 
94 forest zone of European Russia and the southern boreal forest zone of the United States by 
95 Baumann et al. (2014); and recently). Recently, a Pan-European mapping of windthrow was 
96 generated through a model based on Landsat images, plus ancillary forest data from other 
97 satellites and national inventory data (Pecchi et al. 2019). Overall, optical-based studies have 
98 demonstrated  the feasibility of detecting  windthrow in forests using satellite images and that 
99 the  accuracy of results depends mainly on the spatial and spectral resolutions of the datasets. 

100 However, the use of optical data for the rapid assessment of forest windthrows is not 
101 encouraged due to different factors, including the purchase cost and time in the case of on-
102 demand images, and, importantly,  the presence of clouds that in most cases persists for 
103 weeks after weather-related events and hamper the use of satellite data. 

104 To cope with these limits, the use of Synthetic Aperture Radar (SAR) satellite data isare 
105 recommended for a fastfaster response, it is  daylight and weather. SAR data are independent 
106 data, that in principle are from solar illumination and weather. They are therefore available 
107 soonright after the event only depending on the revisit time of the carrier, even when adverse 
108 weather conditions persist. Different SAR missions are available  at present, each with 
109 specific configurations in terms of the frequency of the active signal, the polarization, and the 
110 spatial resolution. In forests, the energy backscattered by SAR systems at higher frequencies 
111 (e.g. X and C-band) mainly comes from the crowns and the upper forest strata, while at lower 
112 frequencies (e.g. L and P-bands) the contribution from branches and trunks increases, 
113 together with the signal penetration through the canopy (Solimini et al. 2016). The SAR 
114 backscatter is also influenced by the water content and the geometric features of the target 
115 object, thus in the  case of forests by the moisture levels (in vegetation and soil) and the 
116 vegetation structure, including stem, branches and leaf  characteristics and architecture 
117 (Woodhouse 2005). In severely damaged forest areas the geometric features suddenly 
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118 change, as well as the surface roughness, making SAR data potentially suitable for forest 
119 damage assessment, and specifically for detection of windthrow (Eriksson et al. 2012). SAR 
120 datasets can bring additional and complementary information with respect to optical data (e.g. 
121 on canopy roughness, water content, and volume) (Green 1998). Few studies proved the 
122 value of SAR data in the context of detection of forest windthrows including: a multisensor 
123 based research conducted by Schwarz et al. (2003), who compared the results obtained with 
124 SAR data against those from optical data; the detection of areas affected by wind and insect 
125 outbreaks performed with L-band data (Tanase et al. 2018); and the detection of windthrow 
126 in Germany and Switzerland based on Sentinel 1 C-band data (Rüetschi et al. 2019). 

127 Considering the different characteristics of satellite data, their integration into operational 
128 forest monitoring after extreme events seeks to  exploit the complementary features of optical 
129 and SAR data. At present, this is feasible using the Copernicus European satellite 
130 facilitiesmissions, specifically the Sentinel 1 C-band SAR data and the Sentinel 2 optical 
131 multispectral data (Drusch et al. 2012; Torres et al. 2012). More relevant, these datasets are 
132 also available as preprocessed products in Google Earth Engine (GEE), an integrated 
133 platform designed to empower not only traditional remote sensing scientists but also a wider 
134 audience with limited technical image processing skills (Gorelick et al. 2017). With its dense 
135 time series of optical and SAR data provided  free, already preprocessed, the Copernicus 
136 datasets represent an optimal tool for the rapid assessment of land processes, including large 
137 scale  forest damage and windthrow, as in this specific case study. 

138 The Vaia storm hit the North-Eastern part of Italy on the 29th October 2018; with winds 
139 exceeding 200 km/h and strong rainfall it caused extensive  forest damage in 494 
140 municipalities, destroying or severely damaging forests of  about 42,500 ha, with an 
141 estimated stock of fallen trees of  85 million of cubic metres (Chirici et el. 2019). The 
142 Copernicus Emergency Mapping system reports only about 4000 ha of damaged areas, about 
143 10% of the affected area, due to cloud cover presence in the optical images used for mapping 
144 (data available at: https://emergency.copernicus.eu/mapping/list-of-components/EMSR334). 
145 Following the Vaia storm, the impacted regions assessed  the forest damage by means of the 
146 integration of aerial photographs or very high-resolution optical satellite images with data 
147 from field surveys.

148 The present research examines  the testing oftests Sentinel 1 and Sentinel 2 data for the 
149 detection of areas impacted by the Vaia storm. Different algorithms were exploited for the 
150 classification ofTo classify healthy and damaged areas, different algorithms were evaluated , 
151 including a Bayesian Generalized Linear Model, a k-Nearest Neighbors approach, and 
152 Random Forest, using ground truthingdata provided by the regional authorities for model 
153 calibration and validation. With respect to sensorsChange detection approaches based on pre 
154 and post event image differencing were frequently used in previous studies,research 
155 (Dalponte et al. 2020; Ruetschi et al. 2019; Tanase et al. 2018). In this work we evaluated the 
156 impact of algorithm selection on results, to support the selection of proper methods in 
157 operational forest monitoring. The present research expands on the classicalcommon 
158 monitoring of forest windthrow monitoring based on optical data, which is ineffective in case 
159 of adverse atmospheric conditions, and it introduces testing of Sentinel 1 SAR C-band; 
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160 furthermore,.  Sentinel 2 optical data are here tested for the first time, according to our 
161 knowledge., in the context of the detection of forest damages by storms. Even if the 
162 sensitivity of SAR signal to forest damagedamages was previously illustrated by various 
163 authors (Eriksson et al. 2012; Thiele et al. 2012; Ulander et al. 2005), only very few studies 
164 exploited SAR for windthrow mapping (Ruetschi et al. 2019; Tanase et al. 2018), possibly 
165 due to data complexities and limited access to user-friendly processing tools. Thus, the 
166 present study can be of help to understand how SAR can support forestry practice, also 
167 considering that these data and related tools are increasingly available by different space 
168 agencies, and preprocessed S1 datasets are delivered by GEE. With respect to algorithms, 
169 change detection approaches based on pre and post event image differencing were frequently 
170 used in previous research (Dalponte et al. 2020; Ruetschi et al. 2019; Tanase et al. 2018). 
171 Here we experimented with three different supervised classification algorithms, evaluating 
172 the impact of algorithm choice on results, to provided additional knowledge that can guide 
173 the selection of proper methods in  operational forest monitoring.Sentinel 1 datasets are 
174 delivered by GEE. 

175 The aim of this research is to contribute to forestry practice, developing knowledge useful to 
176 operational management to  exploit freely available satellite open-data, and defining  a 
177 strategy for the rapid detection of  forest damage  and the further refinement of information. 
178 Remote sensing has great  potential to cost-efficiently map storm-affected regions, but 
179 previous research has been  somewhat  limited, as Sentinel 2 imagery was not previously 
180 exploited with this aim; and Sentinel 1 was only partially examined. Thus, more studies are 
181 neededfurther investigation to translateassess the remote sensing potential of integrating 
182 satellite open-data into actual practice.forest practical workflows is needed. Here the focus is 
183 on open-data from the Copernicus free data, preprocessed inprogramme, exploiting the GEE 
184 platform for easiness of application,fast processing, demonstrating that demonstrates to be an 
185 optimal choice for thethis approach can significantly support decision makers with remote 
186 sensing-based assessment of windthrow damaged areas. 

187 Methods

188 Study area and ground data
189

190 The research was conducted in Northern Italy, in areas affected by the windthrow and 
191 included in two selected Sentinel-2 tiles for which ground truth data were made available by 
192 local administrations encompassing three regions: Friuli Venezia Giulia, Trentino Alto 
193 Adige, and Veneto (fig. 1). These regions host important forest resources, and different local 
194 agencies in charge of their census and management were involved in assessing the Vaia 
195 impacts. These data can also by found in open databases (Forzieri et al. 2020).

196 Insert fig.1

197 For the Trentino Alto Adige region, ground data for the Trento Autonomous Province were 
198 provided by the local forest service, and for the Autonomous Province of Bozen by the 
199 Province authority; in both cases the area of damaged forest  were detected on the basis of 
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200 photointerpretation of aerial orthophotos, and integrated with data from field surveys. 
201 Overall,  in Trentino Alto Adige there were  1463 discrete areas, covering 5913 ha, and with 
202 a mean area of  4 ha. For the Friuli Venezia Giulia region, ground data on forest damage were 
203 provided  by the local forest service using aerial orthophotos and ground surveys; there were 
204 499 damaged areas for this region, covering 3693 ha, with mean area of  7.4 ha. For the 
205 Veneto region, the ground data were provided by the Veneto Agency for agriculture 
206 payments (AVEPA), who are  responsible to provide economic help in case of natural 
207 disasters. AVEPA provided  a shapefile of the affected areas based on photointerpretation of 
208 very high resolution orthophotos (20 cm spatial resolution) and SPOT 6/7 satellite pre and 
209 post event images at 1.5 m spatial resolution. The dataset included information on 
210 perimetersarea borders and estimation of percentage of damaged trees in each area. In total, 
211 there were 1588 damaged areas detected in Veneto, covering 4020 ha, and having a mean 
212 surface of  2.5 ha.

213 The data provided for these Italian regions wereincluded 3550 polygons that identify any area 
214 affected by the windthrow with an area greater than X.X ha. These polygons were filtered out 
215 to create a subset for testing and validation purposes, according to the following inclusion 
216 criteria: (i) polygons >2 ha, to include areas compatible with the spatial resolution and the 
217 detection capability of the remote sensing data used in this study;  (ii) polygons in which the 
218 average terrain slope was below 20% in at least 85% of the surface, to exclude areas of 
219 unreliable SAR signal, according to distortion; (iii) for the Veneto region only, polygons in 
220 which the amount of damaged trees resulted > 80% (representing >%, that were more than 
221 40% of the total Veneto polygons);; (iv) polygons included in two Sentinel tiles, to test the 
222 methods in the most affected area (3218 polygons). For classification purposes, polygons in 
223 forest not impacted by the Vaia storm were also drawn in proximity of the impacted 
224 polygons, by on-screen photointerpretation of post-event Google Earth imagery.

225 In particular, the first criterion  was guided by the imagery spatial resolution and allowed to 
226 retain the larger damaged areas. The second criterion was derived after exploring the SAR 
227 distortion masks based on local incidence angle. These maps are a by-product of SAR data 
228 processing, that was additionally performed as these layers are not included in the GEE 
229 available datasets; the. The maps indicated frequent distortions above the 20% slope:; to 
230 facilitate the analysis using GEE data, this single threshold was selected. The third criterion 
231 was applied in Veneto, and was introduced due to the different ways the Italian regions 
232 assessed damage. In fact, it was noted that in Trentino and Friuli Venezia Giulia assessed  
233 reported only areas were the mostly highly impactedwhere damage was very significant, 
234 while in Veneto Region also digitized areas that were partially impacted were included in the 
235 census, that reported the damage percentage. Retaining. The dataset was standardized by 
236 keeping only the polygons with damage >degree above 80% in Veneto allowed to standardize 
237 the dataset among regions, according to visual inspection of forest cover in Google Earth 
238 imagery.  The application of the mentioned criteria resulted in a standardized dataset 
239 including the larger and most affected areas, where SAR data were  robust and had the higher 
240 signal to noise ratio and the forest impacts were similar. The damagedamaged and 
241 undamagenon-damaged datasets included a total of 209 polygons, 104 from healthy forest 
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242 stands, and 105 from damaged forest areas; the corresponding pixels were extracted from the 
243 imagery and averaged at polygon level. In total 90%  of the  209 polygons (187, namely the 
244 calibration dataset) were  used to calibrate  and validate with the k-fold approach  
245 classification algorithms. The remaining 22 polygons were used as independent test set for 
246 doublefurther evaluation of the overall accuracy. The total  area used for calibration, 
247 validation and testing the methods was considerable: in Trentino Alto Adige it was equal to 
248 622 ha; in Veneto to 533 ha; and  in Friuli 237 ha, representing the different forest types and 
249 environmental conditions occurring in the area of interest.

250 Copernicus Sentinel data 

251 The Sentinel 2 (S2) multispectral images were downloaded from Google Earth Engine as 
252 Level-2A orthorectified atmospherically corrected surface reflectance. The S2 Multispectral 
253 Instrument (MSI) samples 13 spectral bands: visible and NIR at 10 meters, red edge and 
254 SWIR at 20 meters, and atmospheric bands at 60 meters spatial resolution. Only bands at 10 - 
255 20 m spatial resolution were used for tests (bands # 2, 3, 4, 5, 6, 7, 8, 8A, 11, 12), resampling 
256 at 10 m the 20 m bands with a nearest neighbor approach. The vegetation indices included in 
257 Table 1 were also computed. 

258 Insert Table 1

259 To evaluate the hypothesis concerning the ability ofthat Sentinel 2 data to correctlycan detect 
260 the damaged forest  areas with significant accuracy, post-event Sentinel 2 images were used. 
261 The possibility to use also a pre-damage image and focus the analysis on the variations in 
262 reflectance was also evaluated, but confounding factors such as day-specific atmospheric 
263 conditions, including cloud cover, and plant phenology stage at different dates were 
264 considered importantrelevant causes of increased uncertainty in results and leading to 
265 uncertainty. Therefore, we  preferred to work only on post-damage optical images using a 
266 binary classification approach (healthy forest/damaged areas). 

267 The first available post-event Sentinel 2 imagery is dated June 2019 (7 months after the 
268 event). The predictor set named S2_Set1 (set of image bands) was used to evaluate the 
269 contribution of bandseach single band, and the S2_Set2 (vegetation indices)  contributedto 
270 evaluate the contribution of the derived vegetation indices, that. The latter combination is 
271 preferable in case of usage of multipledifferent images is preferredare used (predictor sets in 
272 Table 2).

273 The Sentinel 1 SAR images were downloaded from Google Earth Engine as Ground Range 
274 Detected (GRD) scenes, already pre-processed using the Sentinel-1 Toolbox to generate a 
275 calibrated, ortho-corrected product at 10 m spatial resolution in dual-band cross polarization 
276 mode (VV – VH). Preprocessing included thermal noise removal, radiometric calibration, and 
277 terrain correction using a digital terrain model (SRTM 30 m). Five pre-event scenes were 
278 collected from the period 26 September - 3 October 2018 (pre-event period without frost or 
279 snow), and 5 post-event scenes were from the period 7 - 15 December 2018. The pre and post 
280 event scenes were averaged at pixel level, and band ratios (VV/VH, VH/VV), and band 
281 normalized differences were also computed (VV-VH, VH -VV). In fact, with  respect to the 
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282 optical images, the SAR data are less affected by atmospheric condition and vegetation 
283 phenology and for this reason the use of differences between pre and post event was also 
284 evaluated to detect forest damaged areas.

285 Thus, the set of predictors named S1_Set3 (based only on post-event bands), and the S1_Set4 
286 (based on pre-post event scenes differences) were used in tests (predictor sets in Table 2).

287 Insert Table 2

288 Classification approaches

289 Three different approaches were tested for the classification task: a generalized linear 
290 Bayesian model and two machine learning models, the k-Nearest Neighbors and Random 
291 Forest. Using the three models and the four sets of available predictors (Table 2), a total of 12 
292 models-predictors combinations were developed. The tests were conducted using the 
293 RFTrainer, KNN, and Bayesglm R packages in R environment (R Core Team 2013). 

294 Bayesian inference is a method of statistical inference in which Bayes' theorem is used to 
295 update the probability for a hypothesis as more evidence or information becomes available. It 
296 facilitates representing and taking full account of the uncertainties related to models and 
297 parameter values. The Bayesian generalized linear model (BGLM) is based on Bayesian 
298 functions that finds an approximate posterior mode and variance using extensions of the 
299 classical generalized linear model computations. The Bayesian function allows the user to 
300 specify independent prior distributions for the coefficients in the t family, with the default 
301 being Cauchy distributions with center 0 and scale set to 10 (for the regression intercept), 2.5 
302 (for binary predictors), or 2.5/(2 · sd), where sd is the standard deviation of the predictor in 
303 the data (for other numerical predictors) (Berrett and Calder 2016; Gelman et al. 2008) 

304 The k-Nearest Neighbors (KNN) technique is a popular method for producing spatially 
305 contiguous predictions of forest attributes by combining field and remotely sensed data. KNN 
306 are appealing as they can be used for both univariate and multivariate prediction, no 
307 assumptions regarding the distributions of response or auxiliary variables are necessary and 
308 they can be used with a wide variety of datasets (Chirici et al 2016). The k nearest vectors, 
309 used to perform the classification, are found according to Minkowski distance and the 
310 classification is performed by means of the maximum of summed kernel densities; both 
311 ordinal and continuous variables can be predicted (Wu et al. 2002).

312 Random Forest (RF) is an ensemble of decision trees that learns through a supervised 
313 approach and produces multiple models that are aggregated, using a bootstrap aggregating 
314 procedure, to produce the result. The models are built using different training subsets, 
315 generated by bootstrapping, that are used to build the “forest”. RF is able to reduce the output 
316 variance and the overfitting problem with respect to other machine learning approaches, 
317 improving model stability and accuracy (Breiman 2001).

318 When a model is fittrained with data there is always the risk of overfitting, i.e. that the 
319 parameters are estimated to reproduce closely the examplestraining data used, losing the 
320 capacity to generalize outside the calibration  examples. To avoid overfitting one of the most 
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321 useful method is k-fold cross validation (k-fold CV) that further splits the training set into K 
322 number of subsets, called folds: the models are then iteratively fitted K times each time 
323 training the data on data from K-1 of the folds and evaluating the performances on data from 
324 the Kth fold. At the end of calibration , the performance on each of the K folds are evaluated 
325 in term of Overall Accuracy (OA), i.e. the percentage of cases where the classification as 
326 damaged or not damaged was correct. The Overall Accuracy from Cross Validation Overall 
327 Accuracy- OAcv and the relative standard deviation sd(OAcv) are finally computed averaging 
328 the K folds and calculating their standard deviation. This provides more information over 
329 how stable the model is by testing it over multiple sets of data.
330

331 RF and kNN models require the calibration of hyperparameters, here performed- The 
332 hyperparameters are calculated using the training polygonsdatasets. BGLM instead does not 
333 require hyperparameters calibration. A procedure based on a random search grid was used for 
334 the optimization (Bergstra and Bengio, 2012). The procedure defines a grid of 
335 hyperparameter ranges, as those defined above; 100. One hundred combinations were 
336 randomly sampled from the grid and for each combination a k-Fold CV was performed. For 
337 both KNN and RF the optimal hyperparameters combination with the greater OAcv was 
338 finally selected. In the RF case, the hyperparameters that were tuned includesinclude the 
339 maximum depth of each tree (max_depth) in the forest and the number of features 
340 (max_features) considered by each tree when splitting a node. The number of trees in the 
341 forest was set equal to 400, while the minimum number of samples required to split an 
342 internal node was set equal to 1.
343 In the kNN case the three hyperparameters that were optimized are: the number of neighbours 
344 considered (k), the Minkosky distance, and the kernel to use. The max_features ranged 
345 between 2 and n, where n equals the number of predictors used in input; the max_depth 
346 ranges between 1 and 40. k ranged between 1 and 60, the Minkosky distance was equal to the 
347 Euclidean and Manhattan distances, and the kernel to use were Unweighted, Weighted, 
348 Inverse, Reciprocal. 
349

350 The models, once optimized and validated with k-fold approach, were further independently 
351 evaluated in terms of accuracy using the test set that includes 10% of the polygons never used 
352 during the optimization procedure. For the evaluation of the classification results, different 
353 statistics are reported, including overall accuracy, users accuracy, producers accuracy, and 
354 the percentage of omission and commission errors. User's accuracy represents how reliable 
355 the classification is in terms of actually finding damage in the real world over an area that 
356 was classified as “damaged” in the map. Producer's accuracy reports how often a damage that 
357 is found in the real world is reported in the final classified map (Cohen 1968; Congalton 
358 1991).

359 Results

360 In table 3 we present for each model and for each of the four sets of predictors the averaged 
361 OAcv obtained with a 9-fold cross validation procedure and the related standard deviation 
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362 obtained averaging the different iterations. For the KNN and RF models the best 
363 hyperparameters combination, identified using a RandomSearch algorithm are also presented.

364 Insert Table 3

365 The results in Table 3, also graphically shown in fig. 2, show consistency in different models, 
366 with negligible differences among the considered approaches and limited variance from 
367 different iterations. 

368 The best results are obtained with S2 images, with OAcv always > 0.8 and included in the 0.8-
369 0.85 range for either bands or vegetation indices, with the latter reaching a slightly higher 
370 accuracy. The standard deviation values resulted were always small with a maximum value of 
371 0.102. This confirms the ability of S2 to detect impacted forest areas.

372 Lower accuracy results –in the 0.6-0.7 OAcv range- are obtained when using SAR data with a 
373 slightly better scores obtained when using the S1_Set3, that includes only data from post-
374 event scene. 

375 Insert fig. 2

376 The three models were also applied to the independent test set (n = 22) to evaluate their final 
377 performance on new and unseen data and the results are shown in Table 4.

378 Insert Table 4

379 The results obtained using the independent test set are similar to those obtained with 9-fold 
380 CV but span, as expected, over a slightly higher range, as expected considering the limited 
381 number of samples in the test set (n=22).

382 For sets 1 and 2, based on S2 data, the accuracy is included in the 0.77-0.86 range, and is 
383 similar across the three different models. For sets 3 and 4, based on S1 data, the accuracy 
384 range is 0.5-0.68, with higher results obtained using Random Forest model. 

385 Overall, results in Table 4 confirm the higher accuracies obtained with the use of Sentinel 2 
386 data with respect to those obtained with SAR data. 

387

388

389

390 Discussion

391 The availability of satellite open and-data that is also partly preprocessed satellite data is 
392 crucial for adds significant value to the procedure of the assessment of forest damages, from 
393 windthrow, as well as of or other forestsources of damage, allowing  that change the 
394 landscape. The final product is a classified damage map that supports rapid responses in 
395 terms of forest management response. Overall, the. The results shownindicate that data from 
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396 the Copernicus Sentinel 1 and 2 datasetsmissions are suited for the detection of damaged 
397 forest areas. SAR is especially useful for a preliminaryfast evaluation aimed at fast 
398 intervention and, providing useful information for  immediate /short-term response actions 
399 for risk mitigation. Sentinel 2 can be used to refine the SAR initial information unless post 
400 event data are immediately available. The use of cloud-based platforms like Google Earth 
401 Engine resulted an optimal choice, allowing the user to avoid helps to reduce the long and 
402 often complex time that operators need for image download and standard pre-processing of . 
403 A pre-defined workflow over ready-to-use imagery, and providing data can avoid requiring 
404 highly skilled operators for processing imagery. The workflow can be partly automatic, 
405 providing maps useful to multiple end-users, even those less familiar with image processing 
406 techniques. 

407 Overall, focusingFocusing on applications, the present research suggests that the sequential 
408 use of GEE Sentinel 1 and 2 data for better windthrow information provision is an optimal 
409 combination. Specifically, the testing of the different predictors from S1 and S2 data 
410 provided useful insights on the advantages and limits of these datasets. 

411 The best detection of the forest areas impacted by the Vaia storm is always obtained using 
412 Sentinel 2 images. Using a 9-fold cross validation approach and either S2 bands or vegetation 
413 indices as input, the obtained overall accuracies were > 80%, with limited differences among 
414 modeling approaches, low variance from iterations, and results included in the 80-85% range. 
415 The use of vegetation indices with KNN and RF approaches provided the higher OACV 
416 values, equal to 85 and 84 %, respectively.  

417 Very similar results are obtained when the parameterized models were validated against the 
418 independent test set, represented by 22 samples not used to calibrate  the models. The 
419 obtained results, although the number of test samples is relatively low, are in a very similar 
420 OA range (77- 86%) compared with  those reported for 9-fold cross validation. The highest 
421 OA score (86%) is obtained either using S2 bands with KNN model or using VIs with 
422 Random Forest. From the user’s perspective, thus considering how often a given class 
423 predicted by the model will actually be present on the ground, over 90% of the damaged 
424 areas were  correctly classified in the different S2-based tests. From the producer’s 
425 perspective, thus considering how often the real features on the ground are correctly 
426 classified by the model, damaged areas accuracy is in the 71-83% range, with higher scores 
427 obtained with RF and VIs. User accuracies were over 90% whereas producer’s accuracies 
428 were in the 71-83% range, with higher scores obtained with RF and VIs. This indicates that 
429 commission errors where lower then omission errors, in other words some damaged areas 
430 where not correctly detected by the classifier, thus leaving out some areas from the final map, 
431 but most of the areas classified as damaged where really damaged. It might be due to canopy 
432 of felled trees still significantly showing in the image, or also reflectance from water vapor, 
433 that commonly rises in the morning in mountainous areas, mixing with the reflectance values 
434 from the tree trunks.

435 It should be considered that the post-event S2 imagery employed in the study were from a 
436 single date and about 7 months after the Vaia event. The time gap between the storm and the 
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437 S2 imagery allows the greening of the ground in damaged areas, from herbal and shrubs 
438 vegetation regrowth that can produce a change in reflectance values and a consequent 
439 negative impact in the classification accuracy. The results are however in line with what has 
440 been already found in the past with Landsat data, thus at 30 m spatial resolution (30 m): an 
441 OA equal to 86% was reached in the detection of windthrows in Voges mountains in France 
442 (Haidu et al. 2019); in European Russia and United States the OA was about 75%, with more 
443 accurate results reported for larger areas (Baumann et al. 2014); and with an automatic 
444 algorithm based on Landsat time series, historical disturbance from windthrow and logging 
445 was detected in United States forest with an accuracy about 80%. According to our 
446 knowledge, there are no studies based on the use of S2 data for forest windthrow detection, 
447 except two abstracts where the accuracy of the obtained results is not reported (Cenci et al. 
448 2019; Valt et al. 2019).

449 Vegetation indices are especially useful when multiple images are used (as in the case of 
450 change detection analysis), or when the study area is large and covered by different image 
451 tiles, or even when a mosaic from different dates is composed to mitigate cloud cover issues. 
452 In fact, VIs are designed to maximize sensitivity to the vegetation characteristics while 
453 minimizing confounding factors such as soil background reflectance, directional, or 
454 atmospheric effects, that change among different acquisitions (Fang and Liang 2008). 
455 According to this and based on the reported classification results, the use of VIs from S2 data, 
456 fitting the model with the RF model approachmethod, appears the best solution to detect 
457 damaged forest area in this case study. An improvement in accuracy is expected if optical 
458 imagery becomebecomes available in dates close to the time of the damage event.  

459 The use of SAR inputs produced lower accuracies compared to S2 inputs with an OA values 
460 in the range 0.66-0.71 according to 9-fold cross validation and a low standard deviation score 
461 (< 0.14). Differences among the three models are minor, as well as those when using post-
462 event data only or pre-post event backscattering difference. The highest OACVOAcv score is 
463 obtained with pre-event data and KNN approach (OAOAcv = 0.71).

464 According to results from the independent test set, the OAs slightly decrease and the 
465 variability in values increases, being included in the 0.5-0.68 range. The best scores are 
466 obtained using RF: 64% and 68% in OA with post-event data and pre-post event difference, 
467 respectively. With RF, the user’s accuracy is low (54%) when using S1 pre-post event scenes 
468 differences, but the producer’s accuracy is in line with the one obtained using the S2 data 
469 (75%). When using post-event data, the user’s and producer’s accuracies are on the same 
470 order (63%). The results suggest the use of RF as classification model, and the combination 
471 of pre- and post-event SAR scenes to better meet the user’s needs. 

472 Previous studies conducted with C-band ERS 1/2 and RADARSAT 1 at 30 m spatial 
473 resolution were not successful for the detection of forest windthrows (Schwarz et al. 2003; 
474 Ulander et al. 2005). However, with L-band data - that better penetrates into the forest - OAs 
475 included in the 69-84% range were obtained in the Bavarian Forest National Park, with 
476 accuracy values depending on the acquisition date and environmental conditions (Tanase et 
477 al. 2018). Using C-band S1 and a change detection approach, the producer’s accuracy 
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478 reached 88% in a German validation site, but the user’s accuracy was quite low (21%).%) 
479 and limitations consisted in a minimum area of 0.5 ha and the requirement of 10 post-event 
480 images (Rüetschi et al. 2019). Positive results were also obtained using X-band data with 
481 very high spatial resolution (Thiele et al. 2012). 

482 The results here presented outline the relevance of SAR spatial resolution for forest 
483 windthrow detection, and confirm the ability of S1 data to produce fast preliminary 
484 information on impacted areas, with the obtained OA and user’s accuracy included in a range 
485 of values similar to those reported by other studies. 

486 It is important to note that there are the limitations inof the present study. in terms of 
487 suitability in certain cases. First, the application of the models to areas tested were all above 2 
488 ha, to cope with the 10 m spatial resolution of both S1 and S2 datasets; however the average 
489 size of damaged areas in the three considered regions resulted higher than 2 ha. Then, the 
490 ground truth was filtered out to exclude slopes using a low threshold (> 20°) where the first 
491 SAR distortion effects were observed. Producing the distortion masks to filter out data, 
492 instead of a fixed threshold that excluded most slopes for easiness of analysis in GEE, could 
493 results in a detailed mapping of unreliable SAR pixels and a larger availability of 
494 goodreliable data over slopes. Similarly, the use of temporal series can improve the amount 
495 of area with reliable SAR data, as at each pass the acquisition angle may changevary. When 
496 SAR data are used, it is also important to evaluate the presence of detect and mask pixels 
497 with wet or dry snow over the canopy, as it impactschanges the backscatteringbackscatter 
498 values (Koskinen et al. 1997). This implies thatan added complexity of the method in areas 
499 seasonally covered by wet snow a data quality assessment has to be performed in certain 
500 periods. 

501 This study aimed at a first evaluation of GEE Copernicus S1 and S2 data for windthrow 
502 monitoring, to facilitate remote sensing data exploitation in applied forestry. For future 
503 operational use, the application of a pre-disturbance forest/non-forest map can help to 
504 perform semi-automatic classification. Further tests are also needed to understand the 
505 response of satellite data over less impacted forests, where a mixture of healthy and damaged 
506 trees is present, and how to minimize the impact of SAR distortion areas. 

507 The combined  use of S1 and S2 was not investigated  here, as for data integration the optical 
508 and radar imagery shallshould be from same period. InThe S2 images used in this 
509 investigation were dated months after the storm, when the herbal and shrubsshrub vegetation 
510 regrowthrenovation influence both the optical reflectance and the backscattering in C-band 
511 SAR: too many. These are confounding factors would have been present, but a data 
512 integration approach is feasible if optical data are available soon after the event. Higher 
513 accuracy in classification is known to occur from combining SAR –with optical joined use 
514 with respect to use single datasets usesensor type (Clerici et al. 2017; Vaglio Laurin et al. 
515 2012), so this might be another strategy to improve the information accuracy. 

516 Conclusion
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517 This study showed the suitability of GEE Copernicus S1 and S2 data for the detection of 
518 areas affected by windthrow. Sentinel 2 provided the best performance for detection of 
519 windthrow areas, but its use was seriously hampered by cloud cover. For events occurring  in 
520 winter, Sentinel 2 data might only be available  after several months. In those cases, the use 
521 of Sentinel 1 data, being independent with respect to atmospheric condition and with a fast 
522 return  time, becomes the best option  for a first and rapid evaluation of the forest damage, to 
523 support field operations and the formation of management response plans. 

524 Thus, for operational monitoring, the results suggest a sequential approach, based initially on 
525 S1 for fast response. This initial SAR assessment can be refined in later dates, integrating S2 
526 imagery when available and data from ground or aerial surveys, for a more accurate mapping 
527 also over steep slopes.

528 X
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719 Table and Figure captions

720 Figure 1 Study area, Northern Italy; in red the 209 polygons used for calibration, cross 
721 validation and testing; in orange the rectangles of Sentinel 2 tiles. Image prepared using 
722 Google Earth Pro Landsat/Copernicus @2020 GeoBasis-DE/BKG US Dept of State 
723 Geographer @2020 Google.

724 Figure 2 Classification results using three algorithms (BGLM = Bayesian Generalized Linear 
725 Model; KNN = K-Nearest Neighbor; RF = Random Forests) with four sets of predictors as 
726 input (Set 1 = Sentinel 2 bands; Set 2 = Sentinel 2 vegetation indices; Set 3 = Sentinel 1 post 
727 event data; Set 4 = Sentinel 1 pre-post event difference data). The models were validated with 
728 a 9-fold cross validation approach.
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749 Table 1. List of vegetation indices used for tests.

 Vis Index name Bands

1 NDVI_id
x  

Normalized Difference Veg index (b8-b4)/(b8+b4)

2 NBr_idx  Normalized Burn Ratio (b8 – b12)/(b8 + b12)

3 NDVI_2  Normalized Difference Veg index 2 (b12-b8)/(b12+b8)

4 SR  Simple Ratio b8/b4

5 ARI1  Anthocyanin Reflectance Index 1 
(ARI1)

1/b3-1/b5

6 EVI  Enhanced Vegetation Index 2.5*(b8−b4)/(b8+ 
6*b4−7.5*b2)+1000

7 NDMI  Normal difference moisture index (b8−b11)/(b8+b11)

8 MSI  Moisture soil index b11/b8

9 BAI  Burn Area Index 1/(0.1-b4)2 +(0.06-b8)2

10 DVI  Difference Veg Index b8-b4

11 GDVI  Green Difference Vegetation Index b8 – b3

12 GARI  Green Atmospherically Resistant 
Index

b8-(b3- (b2-b4)/b8+(b3- (b2-b4)

13 GRVI  Green Ratio Vegetation Index b8/b3

14 IPVI  Infrared Percentage Vegetation Index b8/b8+b4
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758 Table 2. Set of S2 and S1 predictors used in classification models.

Set Predictors Image date

S2_Set1 Sentinel 2 (post event) bands 28/06/2019

S2_Set2 Sentinel 2 (post event) Vegetation Indices 28/06/2019

Sentinel 1 (post event) bands VH, VV 07-15/12/2018

Sentinel 1 (post event) band ratios VV/VH, VH/VV 07-15/12/2018

S1_Set3

Sentinel 1 (post event) normalized difference VV-VH, 
VH-VV

07-15/12/2018

Sentinel 1 (pre-post event difference) bands VH, VV 26/09- 03/10/2018 

07-15/12/2018

Sentinel 1 (post event difference) band ratios VV/VH, 
VH/VV

26/09- 03/10/2018 

07-15/12/2018

S1_Set4

Sentinel 1 (pre-post event difference) normalized 
difference VV-VH, VH-VV

26/09- 03/10/2018 

07-15/12/2018
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771 Table 3. Overall accuracy for classification models validated with 9-fold cross validation 
772 (OAcv), with related standard deviation sd(OAcv) and best hyperparameters combination. 
773 The  highest Accuracy for each model is shown in bold.

Best 
hyperparameters

9-fold-cross validation

Predictors

set

OAcv sd(OAcv) 

S2_Set1 0.80 0.086

S2_Set2 0.82 0.073

S1_Set3 0.68 0.072

BGLM

S1_Set4 0.67 0.096

kmax Distance

S2_Set1 15 2 0.82 0.081

S2_Set2 20 1 0.85 0.102

S1_Set3 53 2 0.71 0.138

KNN

S1_Set4 12 2 0.66 0.085

Max.

features

Max.

depth

S2_Set1 4 11 0.83 0.070

S2_Set2 8 27 0.84 0.064

S1_Set3 3 40 0.66 0.075

RF

S1_Set4 4 35 0.66 0.089
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778

779 Table 4. Accuracy statistics for the three classification models and the four set of predictors 
780 obtained on the Test set (10% of samples). In bold the highest OA obtained.

Predictor 
set

Overall 
accuracy

Producers 
accuracy 
Healthy 
forest %

Producers 
accuracy 
Damaged 
areas %

Users 
accuracy 
Healthy 
forest %

Users 
accuracy 
Damaged 
areas %

S2_Set1 0.77 87.50 71.43 63.64 90.91

S2_Set2 0.82 100.00 73.33 63.64 100.00

S1_Set3 0.50 50.00 50.00 27.27 72.73
BGLM

S1_Set4 0.55 54.55 54.55 54.55 54.55

S2_Set1 0.86 100.00 78.57 72.73 100.00

S2_Set2 0.82 88.89 76.92 72.73 90.91

S1_Set3 0.50 50.00 50.00 45.45 54.55
KNN

S1_Set4 0.64 61.54 66.67 72.73 54.55

S2_Set1 0.82 88.89 76.92 72.73 90.91

S2_Set2 0.86 90.00 83.33 81.82 90.91

S1_Set3 0.64 63.64 63.64 63.64 63.64
RF

S1_Set4 0.68 64.29 75.00 81.82 54.55

781

Page 50 of 50

http://mc.manuscriptcentral.com/forest

Manuscripts submitted to Forestry:  An International Journal of Forest Research

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60


