
Play it again! A Natural Experiment on Definitivity
Avoidance∗

Thomas Bassetti†

Stefano Bonini‡

Fausto Pacicco§

Filippo Pavesi¶

Abstract
In this paper we introduce Definitivity Avoidance, a behavioral bias that induces indi-
viduals to inefficiently shy away from choices that involve a final judgment. We model
its effects and explore how the introduction of explicit exposure mechanisms can con-
tribute to attenuate them. Using a unique natural experiment - the introduction of a
technology assisted review system in professional tennis - we test the model predictions
and confirm the relevance of this behavioral bias in a competitive setting. Possible
instances of definitivity avoidance can be identified in multiple contexts such as debt
roll-over decisions, inefficient asset allocations, court rulings, and child adoptions. The
broad applicability of our model carries relevant policy implications as it provides a con-
ceptual framework for the design of institutions to alleviate the welfare costs associated
with definitivity avoidance.
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1. Introduction

A number of behavioral explanations have been identified to account for the empirical

observation that individuals tend to inefficiently shy away from making certain decisions. We

focus on a bias that we refer to as definitivity avoidance that denotes situations in which an

agent prefers to avoid making definitive decisions (i.e., those that involve a final judgment).

This behavior may play an essential role in several applications in economics and finance. For

instance, a bank’s choice of rolling over debt for a poorly performing firm involves postponing

a final decision, as opposed to forcing the firm to file for bankruptcy. Indeed, numerous

finance papers (e.g., Bernanke, 1989; Carey et al., 2012) have identified inefficiently high

rates of debt rollover which could be hinting at the existence of a bias. Similarly, closing

an investment position even in the presence of noisy signals definitively precludes capturing

a possible upside, as opposed to leaving it open and closing it when uncertainty might be

reduced.1 Also, in judicial systems with ’double jeopardy’ provisions, acquittals are more

definitive as they cannot be appealed. Consistent with a possible bias, anecdotal evidence by

legal scholars (e.g., Leipold, 2005) highlights surprisingly high conviction rates in jury trials.

Similarly, Westman (1991) has highlighted the social costs of the puzzling length of foster

care for children arguing that this is due to the reluctance of court official to make "definitive

decisions".2

In light of the negative welfare effects that these behaviors may determine, in isolation or

in conjunction with other determinants, gathering a better understanding of the instances in

which they can arise, may also provide guidance for the design of policies that can attenuate

their negative consequences.

We show that, if decision making is characterized by definitivity avoidance, introducing a

review system that allows interested parties to call for an ex-post verification of the correctness

of the evaluation, may attenuate (or eliminate) the effect of the bias leading to tangible welfare
1The widespread exposure to ABS securities during the great financial crisis offers possible support to

this implication.
2See Westman (1991), p 47.
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gains. So, for example, allowing individuals that were judged guilty to invoke a formal review

process of judges’ decisions with the potential to undo haphazard decisions may lead to more

impartial judgments. In a similar spirit, a stronger empowerment of independence and scope

of internal audit committees in financial institutions may prevent excessive risk taking.3

The literature has identified four main sources of decision avoidance: status quo bias,

omission bias, inaction inertia, and choice deferral (Anderson, 2003). Status quo bias (Samuel-

son and Zeeckhauser, 1998) is based on the idea that agents may suffer a cost of change. Aver-

sion to action, instead, may be at the root of either omission bias (Ritov and Baron, 1998)

or inaction inertia (Tykocinski et al., 1995), as well as possibly affecting the cost of making

timely decisions under uncertainty, which may result in choice deferral or procrastination.

With respect to these documented sources of decision avoidance, definitivity avoidance is

based on the distinctive feature that decision-makers have a strict preference for choices that

are non-definitive with respect to those that are definitive. By definitive decisions, we intend

those that involve making a final judgment, while non-definitive choices imply a suspension

of the final judgment. Our work is related with Gilbert and Ebert (2002) that show that

individuals expect more satisfaction from reversible decisions than they do from irreversible

ones.4 Yet, there is a subtle distinction between definitive and reversible decisions. Namely,

in the absence of reversibility, some decisions may be more definitive than others, while

when decisions are reversible, by definition, they are no longer definitive. This is precisely

the feature that we exploit to identify the existence of definitivity avoidance through the

introduction of a decision review system.

Our paper is also related to the literature that exploits sports markets as ideal quasi-

experimental settings to study decision making behavior (Garicano et al., 2005; Romer,

2006; Bar-Eli et al., 2007; Massey and Thaler, 2013; Pope and Schweitzer, 2011; Green and
3Interestingly, this is one provision recommended by the Dodd-Frank act that however has not been

implemented Dodd-Frank (2010).
4It is worth mentioning that the psychology literature has shown that reversible decisions are also associ-

ated with less anticipated regret (Zeelenberg et al., 1996; Tsiros and Mittal, 2000) Also, Gilbert and Ebert
(2002) show that individuals display a dynamic inconsistency in that while anticipated satisfaction is greater
for changeable decisions, ex-post satisfaction actually tends to be lower.
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Daniels, 2018). In this respect, the present paper is closely related to Pope and Schweitzer

(2011) that provide evidence that loss aversion persists even in contests characterized by

high stakes such as professional golf tournaments.5 However, our analysis is characterized

by the following distinctive features. First, we introduce a novel bias that, to the best of

our knowledge, has not been previously documented in the extant literature and show that

it is consistent with the main features of prospect theory (Kahneman and Tversky, 1979).

We then devise an accurate quasi-experimental design that allows us to empirically identify

the bias. Finally, we provide welfare implications by analyzing in which cases introducing a

review system that allows the interested parties to call on a third party to review decisions,

can improve efficiency by attenuating the negative effects of definitivity avoidance.

To develop our claim, we introduce a simple formal model that delivers clear empirical

predictions on the effect that the introduction of a review system will have on those decisions

that we denote as definitive. The model involves a decision maker that must make a sequence

of binary choices, each of which produces a loss for one agent (and may produce gains for

a non-empty set of agents). Although only one of the two choices is correct, each decision

contains an asymmetry since one of the two alternatives, that we refer to as the definitive

choice, involves making a final judgment while opting for the non-definitive choice involves

suspending the final judgment. Regardless of whether decisions are definitive or not, they

cannot be undone or reversed in case of error unless a specific procedure is in place. Such a

procedure, which we refer to as a review system, allows the agent that suffers a loss from the

judgment to challenge the decision-maker’s ruling. A challenged decision is then reviewed by

an impartial third party and possibly overturned if found to be incorrect. The model delivers

a positive result allowing us to state that the introduction of a review system will lead to

a significant variation in the expected share of definitive decisions, if and only if, decision

makers are characterized by definitivity avoidance.

As a second step, we then test the model’s predictions by exploiting a natural experiment
5Although the paper tackles a more general question, our analysis is also related to the sports literature

that addresses potentially biased behavior by judges or referees (Sacheti et al., 2015; Kovalchik et al., 2017).
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provided by the introduction of a decision review system in professional tennis tournaments.

This system is based on a new rule that allows players to challenge an official’s decision and to

verify the correctness of a call through the use of a ball-bounce tracking technology known as

Hawk-Eye.6 We consider the judges’ decisions before and after the introduction of the Hawk-

Eye technology, which occurred in three of the four major professional tennis tournaments

(i.e., the Grand Slam tournaments): the US Open (since 2006), the Australian Open and the

Wimbledon Championships (since 2007). As part of our identification strategy, we choose as

our unit of analysis points that are commonly referred to in tennis jargon as "aces" (i.e., a

valid serve that is not touched by the receiver and therefore attributes a point to the server

unless called out by the officiating umpires). This choice is motivated by a distinctive feature

of these points that allows us to clearly classify the choice as either definitive, when the

serve is judged valid and a point attributed to the serving player, or non-definitive if the

ball is called out leading the point to be replayed through a second serve. This decision is

permanent unless a review system is in place.

The intuition is that when calls are close, umpires that suffer from definitivity avoidance

will tend to refrain from reporting what they saw (i.e., making a call that is more likely

of being correct), if doing so definitively assigns a point to one player or the other. If this

is the case, according to our model, the introduction of the decision review system should

lead the share of overturned calls to be skewed in one direction or the other. Indeed, our

empirical analysis provides robust evidence in favor of the fact that the introduction of such

a system increased the share of decisive calls. This allows us to claim that judges are subject

to definitivity avoidance, as implied by the model.

Exploiting the results of the empirical analysis subsequently permits us to derive welfare

implications. In particular, we show that a review system that increases the share of definitive

decisions always leads to a welfare improvement, unless it more than offsets a decision maker’s

initial definitivity avoidance by inducing her to become excessively definitivity loving (i.e.,
6Throughout the paper we use the terms challenge rule and Hawk-Eye technology as synonyms to refer

to the decision review system.
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having a strict preference for definitive decisions over non-definitive ones). Even in this latter

case, welfare can improve as long as the precision of the information received by the agents

that are affected by the decision is sufficiently high, and the cost of invoking a challenge is

sufficiently low in relation to the accuracy of the review technology.

The remainder of the paper is organized as follows: Section 2 presents the model and

the testable prediction; Section 3 outlines the empirical setting; Section 4 describes the data;

Section 5 introduces the empirical methodology; Section 6 presents the results and Section

7 addresses welfare implications. Section 8 provides a discussion of the results and Section 9

concludes.

2. Theoretical Framework

We develop a model in which a decision maker must make a sequence of binary choices,

each of which affects the payoffs of a non-empty set of agents and produces negative conse-

quences for one specific agent. Although only one of the two choices is correct, each decision

contains an asymmetry since one of the two alternatives, that we denote as the definitive

choice, involves making a final judgment while opting for the non-definitive choice involves

suspending the final judgment. Regardless of whether decisions are definitive or not, they

cannot be undone or reversed in case of error unless a specific procedure is in place. Such

a procedure, which we refer to as a review system allows the negatively affected agent to

challenge the decision (at a cost) A challenged decision is then reviewed by an impartial

third party and possibly overturned if found to be incorrect.

Given the scope of our analysis, we concentrate on modeling the subset of dubious deci-

sions that could have been challenged had the review system been in place. Dubious decisions

are defined as those for which the decision maker and agents do not observe the state, but

each player observes an independent signal, s ∈ [0, 1] that is imperfectly informative on the

true state ω ∈ {0, 1}, before the binary decision d ∈ {0, 1} is made. Here d = 0 and d = 1
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respectively represent the non-definitive and the definitive choices. Signals are distributed

according to a continuous density function fω(s) with cumulative distribution function Fω(s).

This information structure represents a setting characterized by binary signals with different

degrees of precision. To simplify exposition, we assume that the signals of the decision maker

and the agents are independent and follow the same distribution, since assuming different

distributions would make the notation cumbersome without affecting the results.

Before observing a signal on the state, the decision maker is assumed to have a fair prior,

so that Pr(ω = 1) = 1/2.7 We assume that the signal is informative on the state, meaning

that it satisfies MLRP (Marginal Likelihood Ratio Property) so that
f1(s)

f0(s)
is increasing in s.

This implies that the higher (lower) is the signal, the more likely it is that the state of the

world is higher (lower). Moreover, the signal structure is assumed to be symmetric, so that

f1(s) = f0(1− s) for every s. By Bayes’ rule we therefore have that:

Pr(ω = 1 | s) =
f1(s)

f1(s) + f0(s)
.

We introduce a bias parameter b ∈ {DA,NB} where DA denotes definitivity avoidance

meaning that the judge obtains a higher net benefit from providing a correct evaluation

when ω = 0 with respect to when ω = 1, while in the absence of a bias (NB) the net benefit

of a correct decision is equal in both states. We also introduce a regime variable r ∈ [H,NH]

that denotes whether a decision review system is present (H) or whether such a system is

not in place (NH).

The review system is entirely characterized by two features. The first is the precision of

the review technology p ∈ (1/2, 1] which denotes the probability that the true state of the

world is discovered once the review system is invoked. The second is the probability that a

decision maker’s decision is not challenged when an agent’s private information contradicts

that of the decision maker, that we denote with c ∈ [0, 1), and is a reduced form to account for
7Considering the specific application to tennis officials, given that challenges occur mainly for balls bounc-

ing close to the line (Mather, 2008), it is straightforward to assume that in these cases, the probability of the
ball being in or out prior to observing a signal is close to 1/2.
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the agent’s cost of making a challenge. Given that the bias applies to those in the position to

make decisions, we naturally assume that the agents are not subject to definitivity avoidance.

The utility of the decision maker of making decision d if the bias is b in regime r after

receiving signal s is given by the following expression:

U(d, b, r | s) = Pr(ω = 1 | s)v(d, 1, b, r) + Pr(ω = 0 | s)v(d, 0, b, r),

where v(d, w, b, r) represents the value function for the decision maker of choosing d when

the state of the world is ω, the bias is b, and the regime is r.

It is relevant to point out that definitivity avoidance (DA) may be derived from the

following standard properties of prospect theory (Kahneman and Tversky, 1979): 1) utility

is defined in terms of gains and losses with respect to a reference point; 2) utility is steeper

in losses than gains which implies loss aversion; 3) utility is convex in losses and concave in

gains (i.e., the value function exhibits diminishing sensitivity).

INSERT FIGURE 1 HERE

We provide a description of the role of each of these properties, which are graphically

represented in Figure 1. First, notice that the reference point for gains or losses is the single

decision and not the complete set of decisions made by the decision maker over a longer time

frame (or the course of her/his career), which is consistent with property 1.8 Since previous

decisions do not play a role, making a correct current choice naturally leads to a gain, while

getting it wrong leads to a loss with respect to the reference point, which is zero before the

decision is made. We represent this with the indicator function x ∈ {−1, 1}, where x(d 6=

ω) = −1 and x(d = ω) = 1. Property 2 implies that 0 < v(d = ω, b, r) < −v(d 6= ω, b.r),

in other words, the utility from a correct call is less than the disutility from an incorrect

call. Now notice that, in the absence of a review system, getting it wrong when choosing
8In the tennis setting, the single decision represents the current point as opposed to the complete set

of calls made throughout the match. Although within a match some crucial points may be more salient
than others, we abstract from this heterogeneity. Indeed the impact of definitivity avoidance should be more
pronounced if we were to consider only these salient points.
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d = 1 is a definitive mistake, meaning that it involves assigning a negative payoff to a specific

agent. By property 3, the convexity of the value function in the negative domain implies

that making a mistake when choosing d = 0 is strictly better than when d = 1, because

the final decision is suspended and therefore equivalent to a lottery in which the loss is not

certain. The opposite holds for the positive domain, since a sure gain is always preferable

to an uncertain one in the presence of risk aversion. These considerations lead us to define

the following relations relative to the decision maker’s value function in the different states

in the presence of definitivity avoidance and in the absence of a review system:

0 < v(1, 1, DA,NH)− v(0, 0, DA,NH) < v(0, 1, DA,NH)− v(1, 0, DA,NH). (1)

When a review system is introduced, it will make the definitiveness of the decision weakly

less relevant, making correctness the salient attribute. More specifically, when an incorrect

decision is made, since it becomes reversible, the disutility of the choice will depend (weakly)

less on which was made. On the other hand, the greater public exposure provided by the

review system makes the correctness of the decision (weakly) more salient even if one is less

definitive than the other. These properties are more formally represented by the following

two expressions:

0 ≤ v(1, 1, DA,H)− v(0, 0, DA,H) ≤ v(1, 1, DA,NH)− v(0, 0, DA,NH), (2)

and

0 ≤ v(0, 1, DA,H)− v(1, 0, DA,H) ≤ v(0, 1, DA,NH)− v(1, 0, DA,NH). (3)

In other words, in the presence of a bias, the introduction of the review system weakly

reduces the distance between the gains (losses) of providing a correct (incorrect) evaluation

with d = 1 with respect d = 0. Naturally, if the decision maker is unbiased, the introduction

8
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of the review system should have no impact on the value assigned to correct versus incorrect

decisions since definitivity does not play a role. We, therefore, have that:

0 = v(1, 1, NB, r)− v(0, 0, NB, r) = v(0, 1, NB, r)− v(1, 0, NB, r). (4)

We make the standard assumption that information has an impact on decisions, which

implies that signals are persuasive regardless of the bias. In other words, the utility functions

of decision makers and the informativeness of signals are such that there always exists a

threshold s∗ ∈ (0, 1), for which a decision maker will set d = 1(d = 0) for s > s∗ (s < s∗).

This threshold value is defined by the value of s for which the decision maker is indifferent

between taking either action, implying that U(1, b, r | s∗) = U(0, b, r | s∗). We therefore have

that:
Pr(ω = 1 | s∗)

[1− Pr(ω = 1 | s∗)]
=
v(0, 0, b, r)− v(1, 0, b, r)

v(1, 1, b, r)− v(0, 1, b, r)
.

We denote s∗r as the threshold value of s∗ in regime r, and s∗NB as the corresponding bench-

mark threshold in the absence of a bias. Given relations (1), (2), (3) and (4), then the

following proposition follows directly:

Proposition 1. If b = NB then s∗H = s∗NH = s∗NB, while if b = DA then s∗NH > s∗NB and

s∗H Q s∗NB.

Intuitively, whenever there is DA, expressions (1) and (4) imply that s∗NH > s∗NB, while

in the absence of a bias (4) implies that s∗H = s∗NH = s∗NB. However, in the presence of DA

the introduction of the review system could lead to a share of definitive decisions that is

either above, below (or equal) to the unbiased share, based on whether the distance between

the gains of providing a correct evaluation with d = 1 with respect d = 0 is greater that the

loss of providing an incorrect evaluation with d = 1 with respect to d = 0. More formally, if

v(1, 1, DA,H)− v(0, 0, DA,H) < (≥)v(0, 1, DA,H)− v(1, 0, DA,H) then s∗H > (≤)s∗NB.

Notice that the symmetric signal structure implies that (1−F1(s
∗
NB)) = F0(s

∗
NB), so that

in the absence of a reporting bias the probability of providing a correct evaluation is equal
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in both states.

In terms of agent behavior, based on the signal observed, a given agent believes state

ω = 1(ω = 0) is more likely to be the true state whenever Pr(ω = 1 | s) > 0(< 0). We

assume that in the presence of the review system, the decision is challenged with probability

(1 − c) by the agent that incurs in a loss from the decision and disagrees with the decision

maker, meaning that the decision maker’s decision does not correspond to the state the agent

believes is more likely to be true.9 Whenever a judgment is challenged, with probability p,

which defines the precision of the review technology, the decision is overturned if it does not

match the true state.

We denote the decision maker’s decision conditional on the bias, the regime and the signal

observed with d(b, r, s) ∈ [0, 1] and the expected decision before observing the signal with

E[d(b, r)]. The difference between the expected decision before and after the introduction of

the review system when the bias is b is given by ∆d(b) ≡ E[d(b,H)]−E[d(b,NH)], which is

equal to10:

∆d(b) = 1/2[
∑

(Fω(s∗NH)− Fω(s∗H))]+

+ [(F0(s
∗
H) + F1(s

∗
H)− 1)(1− c)(F1(s

∗
NB)(1− p) + (F0(s

∗
NB)p)] .

Considering Proposition 1, it can be shown that ∆d(NB) = 0 and ∆d(DA) R 0, which

leads to the following empirical prediction:

Prediction 1. The introduction of the review system leads to a significant variation in the

expected share of definitive decisions if and only if decision makers are subject to defini-

tivity avoidance (DA) (proof in the appendix).
9In order to simplify the analysis, we abstract from strategic challenges that may arise even when an

agent’s private information does not contradict that of the decision maker.
10A formal derivation of ∆d(b) is provided in Appendix A.
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3. Empirical Setting

3.1. Motivation

In order to test our model implications, we need to identify a setting characterized by

the existence of decisions that can have definitive effects on the outcome, the possibility to

observe the results of a review system, and a sufficient number of observations to ensure

robust inferences. We believe that professional tennis matches represent an ideal setting for

the following reasons. First, in most played points, a judge decision is required to deter-

mine the validity of the shot. These decisions can be definitive because they may result in

the attribution of a point to one of the two players. Second, in 2006, professional tennis

tournaments started introducing a review system called Hawk-Eye, whereby players have the

opportunity of "challenging" a judge’s call if they have reason to believe that it is incorrect.

Crucially, the review is done by a mechanical tool that does not involve human intervention

and ensures "fair" decisions. Finally, the staggered introduction of the review system across

courts allows employing a set of DD estimators to precisely identify the effect of the bias, if

any.

3.2. Tennis game features and structural break

In professional tennis, officials can be on or off-court. Off-court officials are responsible

for ensuring that the rules of tennis are correctly enforced and act as the final authority on all

questions related to tennis norms. On-court officials decide on all issues during the match. A

team of on-court officials consists of a chair umpire and some line judges. The chair umpire

has the last word on all questions relating to on-court facts, for example, whether a ball was

"in" or "out," a service touched the net, a player had committed foot fault, etc. Line judges

call all shots related to their assigned line and help the chair umpire in guaranteeing a fair

match. On-court officials must be in good physical condition with a natural or corrected vision

of 20-20 and normal hearing. International chair umpires must submit a completed eye test
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form each year to ITF Officiating, while all other certified officials must submit a completed

eye test form every three years. The chair umpire may overrule a line judge only in the case of

a clear mistake (i.e., beyond any reasonable doubt) by the line judge and only if the overrule is

made promptly (i.e., almost simultaneously) after the error is made. A full line team consists

of ten line judges, but other configurations are possible.11 However, the improved physical

performance of players together with the evolution of equipment have substantially increased

the speed of the game, thus making judges’ calls increasingly contested. To address this

issue, in 2006 the Association of Tennis Professionals (ATP) introduced at the US Open a

rule allowing players to challenge a decision made by the officials, invoking ex-post verification

of the correctness of a call through a technology known as Hawk-Eye. This rule was first

extended to the Australian Open and the Wimbledon Championships in 2007 and then

gradually rolled out to the other competitions. The Hawk-Eye technology is a ball-tracking

system used to reconstruct a four-dimensional position of the ball. This technology is based on

six or more computer-linked cameras situated around the court. The videos from the cameras

are triangulated and combined to create a three-dimensional representation of the ball’s

trajectory. Once a player challenges a line judge’s call, the system accurately reconstructs

the path of the ball and its landing point with high precision.12

Given its substantial cost, the Hawk-Eye system has been only gradually adopted by

main tournaments. This allows us to adopt a difference-in-differences (DD) approach where

the treatment group will be given by matches in courts that, at some point, introduced

the system, while the control group will be characterized by courts in which the Hawk-Eye

technology has not been implemented during the period of analysis.

A possible concern with our identification strategy is that judges may exhibit idiosyncratic
11For instance, at the Wimbledon Championships 2008, line teams worked on a timed rotation (75 minutes

on, 75 minutes off), with nine line judges per team on the main four courts and seven line judges on the
others.

12The Hawk-Eye Innovations website (https://www.hawkeyeinnovations.com/) reports that the ball po-
sition is exact within a 3.6 mm average margin of error. Since the standard diameter of a ball is 67 mm,
the error is 5.37% of the ball diameter. According to the International Tennis Federation (ITF), this is an
acceptable margin since the ball maximum stretch can be longer.
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biases in their officiating, thus potentially affecting our results. However, several arguments

moderate this concern. First, challenges are a relatively low-frequency event; therefore,

the impact on the overall outcome of the game is limited. According to Mather (2008)

and Whitney et al. (2008), the average number of challenges in the top three tournaments

following the introduction of the system has been 6.85 for men, and 4.14 for women, with

only 27% of these challenges that overturned the line judge decision. Second, as highlighted,

judges rotate frequently during a match, thus minimizing the impact of any judge-specific

noise on the calls. In light of these arguments, it would be implausible to attribute any

significant result to the idiosyncratic effect of judge-specific behaviors or characteristics, thus

ensuring a reliable setting for our study.

3.3. Unit of analysis

Challenges can be invoked by players on any point during the match, under the challenge

quota constraint.13 In this respect, players may engage in strategic behavior when choosing

whether to challenge points. In order to minimize, if not altogether eliminate, this possi-

ble confounding effect in our identification strategy, we select as unit of analysis what are

commonly denoted as "aces" in the tennis lingo.14 Tennis matches are characterized by two

players that alternate in initiating the play by "serving" the ball to the opponent. Players are

given two chances to initiate the game with a valid serve. If the serving player fails both, a

point is awarded to the opponent. An ace is a valid serve that is not touched by the receiver.

Typically aces are scored in the first of the two allotted opportunities to initiate the game

as the serving player can take more risks in serving more powerfully and/or seeking more

extreme ball placements. This implies that, if the line judge does not intervene by calling

the ball "out" of the service box, the serve will be an ace, and a point will be assigned to

the server. In this respect, aces identify a situation where a third party decision may have
13A player can invoke a review a maximum of three incorrect challenges per set, after which they are not

permitted to challenge again in the set. However, if a set goes to a tiebreak, this limit increases from three
to four incorrect challenges for the set.

14By definition, an ace is a legal serve that is not touched by the receiver.
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definitive effects: if a judge chooses to intervene s/he avoids assigning the point which would

otherwise permanently affect the players’ scores. Because the absolute number of aces may

be affected by the match length, we standardize it computing an "ace ratio" variable given by

the total number of aces over the total number of served points that we use as our dependent

variable.

A possible confounding factor in our tests is the endogenous change in players’ charac-

teristics and in the equipment technology. Over time, tennis has become substantially more

muscular and players’ characteristics have changed significantly, also in response to the intro-

duction of new materials, designs, and construction techniques for rackets. We mitigate this

issue in several ways. First, we constrain the length of the estimation window to matches

played between 2002 and 2010 (i.e., 4 years before and after the introduction of the challenge

system). Second, if players changed their strategies because of the Hawk-Eye technology,

they should rationally use the same strategies also on clay courts, where the ball leaves a

mark on the surface that generally is accurate enough to establish whether the ball bounced

in or out. We exploit this feature to estimate a triple difference model in which matches

played on a clay court constitute a placebo control group. Third, the lack of experience on

clay, which embeds this natural review system, should translate into a steeper learning curve

for less clay-experienced players as they would need time to change both style and strategies.

We, therefore, classify players according to their experience on clay courts and test whether

the Hawk-Eye effect on the ace ratio is higher for matches with players having a lower expe-

rience. Finally, we further check the robustness of our results, carrying out a double robust

treatment effect analysis in which each year is considered as a separate experiment.

4. Data

Our dataset is derived from the tennis ATP data published by Jeff Sackmann15. This

dataset contains detailed statistics and results on most of the professional tennis matches
15https://github.com/JeffSackmann/tennis_atp
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from the beginning of the Open Era (1968) until now, for both the Association of Tennis

Professionals (ATP) and Women’s Tennis Association (WTA). While for older tournaments

the coverage is slightly less detailed, Sackmann validated these results to avoid the inclusion

of wrong ones. The resulting dataset is recognized as highly accurate and reliable enough

to have been used in several prior studies (e.g Rodenberg et al., 2016; Kovalchik et al.,

2017; Cohen-Zada et al., 2018; Antoniou and Mavis, 2019). As discussed in Section 3, in

order to mitigate possible concerns about endogenous changes in players and/or equipment

characteristics, we constrain our data to a 9-year window centered around the 2006 first

introduction of the HawkEye system. Despite the richness of the tennis ATP dataset, it does

not include the court name on which the match was played: as the Hawk-Eye was initially

adopted only on a selected number of courts, we need to unequivocally identify for each match

and at any given point in time whether the court was treated (i.e., whether the review system

was operative and officially used). We retrieve this information by consulting the archived

versions of the official tournament websites available through Wayback Machine, scraping the

court name for each match from the initial Hawk-Eye introduction. For the tournaments in

our treatment group, the US Open, the Australian Open and Wimbledon, the US Open was

the first Grand Slam tournament to adopt the Hawk-Eye technology in 2006, precisely on the

Arthur Ashe and Louis Armstrong stadiums, followed by the adoption on two Wimbledon

courts (Centre Court and Court 1) and the Rod Laver Arena in the Australian Open, both

in 2007. Out of 508 matches played after 2006, we were able to identify the name of the

court for 499 matches, or 98.2%, a result that allows us to confidently state that there is an

absence of sampling bias.

Table 1 reports the number of matches played in treated and untreated courts before and

after the introduction of the Hawk-Eye technology. The first part of the table refers to our

baseline sample (i.e., matches played only on grass and hard surface), whereas the second

part of the table also includes French Open matches, played on clay surfaces, a natural review

system that, as indicated, we use as a control in robustness tests. Since our analysis considers
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couples of players that played at least two times, the number of matches played with and

without Hawk-Eye technology increases because now they are coupled with matches on the

clay surface. Notice that in 2006 the Hawk-Eye system was used only in 16 matches and

was fully implemented in 2007 when all treated courts had the new monitoring system. The

time distribution of treated matches supports the strategy of including data relative to 9

years centered around 2006 to identify systematic differences in referees’ behaviors before

and after the introduction of Hawk-Eye.16 We restrict the sample to matches played by the

same paired couple of players before and after the introduction of the Hawk-Eye system. The

rationale is that such constraint allows us to minimize unobserved heterogeneity that might

affect tests on the whole sample. Accordingly, we model the treatment variable as a dummy

set to 1 if the Hawk-Eye system is used on the match court.

INSERT TABLE 1 HERE

Our dependent variable is the ratio of aces in a match (i.e., the total number of aces over

the total number of served points). Figure 2 provides a box plot showing the distribution of

ace ratios (in percentage points) for matches played in control and treatment courts where

whiskers identify the minimum and maximum contiguous observations without outliers. As

expected, since our experiment has a crossover design (i.e., the same couple of players may

play in both types of courts every year), the two distributions tend to overlap, suggesting

caution in the visual identification of a pattern.

INSERT FIGURE 2 HERE

We complement these variables with a set of time-varying covariates potentially affecting

the ace ratio: players ages, ranking, and home-field advantage as well as the match length in

minutes. Finally, we also include court, time and pair of players’ fixed effects,

We present descriptive statistics in Table 2.
16Table B1 in Appendix B reports the number of matches played in each treated court over time (i.e.,

before and after the treatment).
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INSERT TABLE 2 HERE

The total number of observations, including French Open matches, is 1,010, the average

ace ratio is 7.529%, and the fraction of matches played with the Hawk-Eye system is 36.2%. In

addition, 52.7% of the matches are played on hard surfaces (the US Open and the Australian

Open), a 23.7% on clay (French Open) and a 23.6% on grass (Wimbledon). The total number

of observations is almost equally divided into pre- and post-treatment period. On average,

the favorite, (i.e., the player with the lowest rank in the match) is 17th in the World ranking,

whereas the average rank of the challenger (i.e., the player with the highest rank) is about

66th. Looking at age, the favorite and the opponent do not differ significantly, both averaging

at about 25-years of age. The fraction of matches in which at least one of the two players

comes from the country organizing the tournament is 14.3%, while on average matches last

148.3 minutes. Finally, we also proxy players’ clay experience (CE), accumulated in the four

years before the introduction of the Hawk-Eye, with the average share of matches that a pair

played on clay courts. On average, the CE is 0.26.

We present pairwise correlation coefficients for all our variables in Table 3.

INSERT TABLE 3 HERE

There is a positive unconditional correlation between the ace ratio and the matches dis-

puted with the support of the Hawk-Eye technology. The ace ratio is also positively correlated

with the challenger’s age. Vice versa, there exists a negative correlation between the ace ratio

and the total number of minutes, that is, the performance seems to decrease with the length

of the match. As expected, home players and those with the lowest rank are also more likely

to play with the Hawk-Eye technology. Finally, younger players tend to have better positions

in the ranking, independently of whether they are favorites or challengers.
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5. Methodology

To identify a line judge behavioral bias, we consider matches disputed with and without

the Hawk-Eye technology. Although the ITF system is designed to avoid line judges’ idiosyn-

cratic effects, we must account for the fact that some pre-treatment variables might affect

both the outcome variable and the probability of being treated. Therefore, we estimate the

average treatment effect of the Hawk-Eye technology on the treated, using two different tech-

niques: a fixed-effect difference-in-differences (FE-DD) estimator for the longitudinal analysis

and a doubly robust estimator for cross-sectional studies. This approach is helpful in tackling

the assumption that points are i.i.d. that is underlying our model and that, empirically, char-

acterizes most of the articles on professional tennis (see, e.g., George, 1973; Gillman, 1985;

Walker and Wooders, 2001; Klaassen and Magnus, 2009; Ely et al., 2017). Klaassen and

Magnus (2001) provide a seminal discussion of this assumption. In their contribution, the

authors conclude that points are neither independent nor identically distributed. However,

they also show that, controlling for players’ quality, the i.i.d. property is reasonably holding

(i.e., the deviation from a perfect i.i.d. hypothesis is small). Additionally, in a subsequent

article, the same authors assume an independent, identical distribution of points and justify

their choice as follows: "we do not use the points themselves but summary statistics (aver-

ages) so that any possible harm caused by the wrong assumption is much reduced" (Klaassen

and Magnus, 2009, p. 78). Since our analysis refers to averages and - as further illustrated

below - we control for both time-varying players’ quality (proxied with the current ranking)

and time-invariant players’ quality (absorbed by pairs fixed effects), we assume without loss

of generality that points are i.i.d. as in previous studies.

With longitudinal data, a FE-DD estimator represents a natural choice to control for

potential confounders (see, e.g., Arellano, 2003; Angrist and Pischke, 2008; Wooldridge, 2010;

Hsiao et al., 2012). This is because a FE approach effectively restricts matches to within a

pair of players, while pairs without a change in treatment status do not affect results (see,

e.g., Wooldridge, 2010).
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Formally, we proceed as follows: we first divide courts into those affected by the intro-

duction of the Hawk-Eye system at some point in time (Treated = 1) and those that never

experienced the Hawk-Eye technology during the sample period (Treated = 0). Then, we

also distinguish time periods in terms of years before the introduction of the monitoring

system (Break = 0) and years after the introduction of the new technology (Break = 1).

Clearly, in a FE specification, the direct effects of these two dummy variables will be ab-

sorbed by the vector of fixed effects. However, we are interested in the interaction term

between Treated and Break. Using the notation adopted in the theoretical model, we have

that: H ≡ Treated ·Break. This interaction term indicates whether a match is played with

the support of the Hawk-Eye technology (H = 1) or without (H = 0) and captures the

average treatment effect of the Hawk-Eye technology on the treated. Formally, we estimate

the following FE-DD model:

Ypct = αc + αt + β ·Hct + γ ·Xpct + δp + epct, (5)

where Ypct is the aces to points ratio measured for pair p, in court c at time t, αc and αt are

court and time dummies absorbing the direct effects of the treatment group and the Hawk-Eye

introduction period, Hct is a dummy variable indicating whether the Hawk-Eye technology

was available in court c at time t, Xpct is a matrix of time-court varying pair’s characteristics,

namely rank, age, match duration, and home advantage (whenever applicable). Finally δp

are pairs fixed effects, and epct is the error term. We account for pairs time-series dependence

using clustered-robust standard errors and use different time breaks to properly identify the

treatment period.17

In Equation (5), the treatment is assumed to be strictly exogenous conditionally on ob-

served and unobserved heterogeneity. This approach is equivalent to a matching estimator

restricting matches to within a pair of players, where pairs without a change in the treatment
17Since we have a crossover design, pairs are not nested within courts and, therefore, we cannot cluster

errors at the court level.
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status do not affect estimation (see Wooldridge, 2010). Although the treatment indicator,

Hct, exhibits enough within variability and the treatment assignment is likely to depend on

pairs’ observable and unobservable characteristics, one may argue that our specification is

rather demanding in terms of both FE vector and clustered standard errors. Therefore, we

also estimate a difference-in-differences model with only court and time fixed effects. Assum-

ing that estimators based on data from courts are approximately independent, unbiased, and

Gaussian, but not necessarily of equal variance, we adopt the approach proposed in Ibragi-

mov and Müller (2010). This methodology leads to robust inference even when the data is

heterogeneous and correlated in a largely unknown way. Equation (5) becomes:

Ypct = αc + αt + β ·Hct + γ ·Xpct + epct, (6)

The only difference between (5) and (6) is the lack of pair FEs in the second specification.

Now, using a wild bootstrap-t, we can cluster standard errors at the court level (see Cameron

et al., 2008).18

We cannot exclude a priori that, after the introduction of the Hawk-Eye, players have

changed their strategies, acquiring specific skills such as a different way of serving or chal-

lenging the judges’ calls. Similarly, officials might have learned how to umpire with the

Hawk-Eye system. While this second case would not be a problem since a learning effect

would represent an additional correction mechanism revealing the existence of a previous

bias, a change in players’ strategies constitutes a potential confounding factor. Now, if this

change affects both courts, with and without the Hawk-Eye, time fixed effects will control for

this effect; vice versa, if this change only happened in the presence of Hawk-Eye technology,

it would weaken our identification strategy. We address this issue in three different ways.
18With respect to other residual, cluster-bootstrap techniques, this approach does not assume a priori that

regression errors are i.i.d and we do not need a balanced data set where all clusters are equally represented.
Indeed, in differences-in-differences analyses with few clusters, traditional bootstrap resampling methods may
lead to inestimable coefficients. This happens because the regressors of interest are indicator variables, and
some bootstrap samples may generate too little within variability. In general, as proved in Cameron et al.
(2008), a wild cluster bootstrap-t procedure outperforms other bootstrap methods.
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First, we estimate a triple difference model in which clay courts constitute a placebo control

group. Our specification can be modified as follows:

Ypct = αc + αt + β1 ·Hct + β2 · Cct + γ ·Xpct + δp + epct, (7)

where Cct indicates clay courts after the treatment period. In the presence of a definitivity

bias, we expect the estimate of β2 to be statistically insignificant. As before, we estimate

Equation 7 with and without pair FE, δp. Second, we classify matches according to players’

experience on clay courts. Because players with less experience on clay courts need more time

to adapt their style and strategies to the new system, immediately after the introduction of

the challenge rule, the Hawk-Eye effect should be higher for those players that are less used

to play on clay courts. Accordingly, we modify Equation (5) as follows:

(8)Ypct = αc + αt + β1 ·Hct + β2 ·Break · CEp + β3 · Treated
· CEp + β4 ·Hct · CEp + γ ·Xpct + δp + epct,

where CEp denotes pairs’ clay experience and is proxied by the average share of matches

played by pair p on clay courts before the introduction of the Hawk-Eye. If our estimates of

β1 are statistically significant, this will be a convincing sign of treatment effect. Notice that

the direct effect of CEp is absorbed by δp.

Finally, we use a sequential approach in which every cross-section is considered as a sep-

arate experiment. This allows us to relax the parallel trend assumption embedded in DD

models. Moreover, if the Hawk-Eye effect remains stable over time, then it would mean that

players did not change their way of serving after the introduction of the Hawk Eye. In partic-

ular, we use an inverse-probability-weighted regression-adjustment (IPWRA) estimator. This

methodology requires both a model for estimating the probability to be treated (propensity

score) and a regression model for the outcome. The IPWRA estimator provides unbiased re-

sults of the treatment effect when either one or both models are correctly specified. In other

words, it is a doubly robust estimator (see Wooldridge, 2007). We assess the association

between the exposure to the Hawk-Eye and the outcome, controlling for a set of covariates.
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In particular, for any t = 2006, . . . , 2010, we first estimate a logistic selection model, and

then we use the predicted probability scores to adjust our linear estimates. Formally, our

selection equation is:

p(xi) = Pr(H = 1 Xi) =
1

1 + e−δ·Xi
, (9)

where i denotes the i-th cross-sectional observation characterized by pair p playing in a

specific tournament. Assuming p(xi) > 0, xi ∈ Xi, the expected average treatment effect on

the treated (ATT) is simply

τATT =
N∑
i=1

·Hi · Yi −
N∑
i=1

p(xi)

1− p(xi)
· (1−Hi) · Yi. (10)

where p(xi)
1−p(xi) is the corresponding odds, reflecting the likelihood that a pair will be as-

signed to a court equipped with the Hawk-Eye technology. An alternative double-robust

estimator would be an augmented inverse-probability weighting (AIPW) estimator. How-

ever, the AIPW approach is sensitive to extreme values of the propensity score and can

produce unreliable estimates when the outcome is bounded in some way (see, e.g., Kang and

Schafer, 2007; Robins et al., 2007; Słoczyński and Wooldridge, 2018). Moreover, as shown in

Wooldridge (2007), an IPWRA approach is particularly suitable when the propensity score

model is more likely to be correctly specified. Indeed, in our case, the informal rules to

assign a match to the main courts are fairly standard and straightforward: the assignment

is inversely related to the rank of the players and home players are generally favored.

Finally, since tennis players usually prefer to play on specific surfaces and in specific

tournaments, as additional robustness check, we re-estimate Equations (5) and (7) taking

into account pairs-tournament specific effects.
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6. Results

6.1. Main results

Table 4 shows the estimates of Equations (5) and (6) for different time breaks.

INSERT TABLE 4 HERE

Results suggest that most of the Hawk-Eye effect is observed in 2007 and 2008 when three out

of four tournaments adopted the Hawk-Eye technology. In these two years, prudent estimates

indicate that the average treatment effect on the treated was about 0.979% (Column 3 of

Panel B) and 1.508% (Column 4 of Panel A), and it is statistically significant at a 5%

confidence level.

Our results are consistent with stylized facts that can be inferred from the analysis of

overturned decisions: the average number of challenges per match was 6.5 at the 2008 US

Open, 6.7 at 2009 Wimbledon, and 4.88 and 8.02 at the 2007 and 2010 Australian Open

tournaments. Since challenges are more likely to happen on serve than other shots (49.8%

vs. 27.3%, for men) and that these are challenged 3-4 times per match (Kovalchik et al.,

2017), it can be expected that the maximum number of reversed serves per match should be

between 1 and 1.6 (Mather, 2008), as the average rate of correct calls is around 30%-40%.

By using our data and multiplying the Hawk-Eye effect by the average number of points in

a match (i.e., 221), we get a correction of 2 serves per match, a value compatible with the

average treatment effect discussed above.

Notice that, in both specifications, the limited number of observations for matches played

with the Hawk-Eye system at the US Open in 2006 reduces both the magnitude of the effect

as well as the statistical significance. Similarly, if we restrict the treatment period to 2009 and

2010 and include 2006, 2007, and 2009 in the control group, the Hawk-Eye effect decreases,

showing that the break took place before 2009. In the cross-section analysis, we examine

the Hawk-Eye effect year-by-year. This will allow us to determine whether the Hawk-Eye

effect persists over time or not. Among control variables, in the pair-FE specification, the
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challenger’s ranking exhibits the only additional significant within-estimate; whereas, in the

specification without pair FEs, the home-field advantage has a positive and statistically

significant effect on the ace ratio.

Table 5 reports the estimates of Equation (7) with and without pair FEs. With respect

to Table 4, here, we have added a third group represented by matches played on a clay court

(the French Open) as a placebo treatment. For the sake of space, hereafter, we do not report

the estimated coefficients of our additional control variables.19

INSERT TABLE 5 HERE

This exercise represents an important robustness test for our previous results. Although

we are now introducing more unobserved heterogeneity related to the fact that some players

systematically prefer to play on specific surfaces, results confirm the main conclusions drawn

in Table 4: in 2007 and 2008, when for the first time the Hawk-Eye was fully operative, the

within effect of the system is positive (about 1.1-1.2%) and statistically significant. Moreover,

if we only consider court FEs, the magnitude of the treatment effect becomes larger and more

significant (Panel B of Table 5).

While in the additional robustness section we re-estimate Equations (5) and (7) taking

into account tournament-pairs interaction effects, here we test whether our previous results

depend on the fact that, even before the implementation of the Hawk-Eye technology, some

tennis players experienced a sort of natural Hawk-Eye technology represented by the clay

surface. In this case, we cannot exclude a priori the possibility that these players already

have experience in playing with a verification system and therefore may have changed their

service strategy immediately after the introduction of the Hawk-Eye. In this respect, Table 6

reports the estimated coefficients of Equation (8) for different time breaks, with and without

pair FEs.

INSERT TABLE 6 HERE
19These coefficients are available in the supplementary material available online.
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The Hawk-Eye coefficient (i.e., β1) is large and statistically significant when we consider

the periods 2006-2010 and 2007-2010. This means that, after the introduction of the Hawk-

Eye, matches involving tennis players with no experience on clay courts (CE = 0) exhibited

a significant increase in the ace ratio. In contrast, by looking at the coefficient of Hawk

Eye·CE, it seems that the new technology has initially penalized (in 2006 and 2007) tennis

players characterized by a specific experience on the clay surface. This temporary result is

consistent with the idea that service skills are particularly useful for players preferring hard

and grass surfaces and allows us to rule out the hypothesis of a preexisting service strategy

suitable for the Hawk-Eye technology. If we consider that the average CE reported in Table

2 is about 0.26, it is easy to link the results reported in Table 6 with the estimates of the

Hawk-Eye effect presented in Table 4.20 Interestingly, it now emerges a negative impact of

challenger’s rank on the ace ratio. In other words, weaker opponents reduce the overall ace

ratio.

Table 7 provides an alternative method to estimate the average treatment effect on the

treated in case of panel data.

INSERT TABLE 7 HERE

This method consists of considering a panel as a sequence of cross-sectional natural exper-

iments (see, e.g., Wooldridge, 2010). In particular, in Table 7, we estimate the double-robust

estimator proposed in Wooldridge (2007) for each year separately. Given the small number

of treated observations in 2006, we restrict our estimates to tournaments with the same sur-

face of the US Open; otherwise, Wooldridge’s algorithm would not converge. In line with

Tables 4 and 5 , the sequence of IPWRA estimators shows a significant treatment effect for

years 2007, 2008 and 2009. This effect remains around 1.4-1.5% and indicates that before

the introduction of the Hawk-Eye technology, line judges systematically called fewer aces. In
20By summing the Hawk-Eye coefficient in Column 2 of Table 5, 5.738, with the coefficient ofHawkEye·CE

(−18.481) times 0.26, we get an impact of the Hawk-Eye on the ace ratio of 0.933. This value is close to the
estimates reported in Table 4. Notice that, in Table 6, two additional interaction terms dissipate part of the
data variability, i.e., Break · CE and Treated · CE
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contrast, by looking at the 2010 matches, we can notice that the ace ratio in treated courts

does not significantly differ from the ace ratio in untreated courts. However, this happens

because untreated courts experienced a significant increase in the number of assigned aces.

Therefore, we cannot exclude that umpires learned from the use of the Hawk-Eye technol-

ogy and translated their experience in untreated courts. Yet, the possibility that correction

mechanisms generate learning effects and that these new abilities can be transferred to other

situations is an interesting implication of the results that we leave for future research.

6.2. Additional robustness tests

Since tennis players usually prefer to play on specific surfaces and in specific tournaments,

we re-estimate Equations (5) and (7) taking into account pairs-tournament specific effects.

Formally, we estimate the following models:

Ypct = αc + αt + β ·Hct + γ ·Xpct + δps + epct, (11)

and

Ypct = αc + αt + β1 ·Hct + β2 · Cct + γ ·Xpct + δps + epct, (12)

where s denotes the Grand Slam tournaments. Both specifications restrict the number of

non-singleton observations to pairs that played at least two times in the same tournament.

For this reason, we consider them as a further robustness check. Panel A of Table 8 provides

the coefficients of Equation (11), where we control for possible interactions between pairs

of players and tournaments unobserved characteristics. Results are consistent with those

presented in Table 3, and the treatment effect is even larger. As a final robustness test, in

Panel B of Table 8, we estimate Equation (12), jointly controlling for possible interactions

between pairs of players and tournaments unobserved characteristics and placebo court type.

Again, results are in line with those presented in Tables 4 and 5, and the magnitude of the
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treatment effect is larger than the base specification estimates, similarly to results in Table

8.

INSERT TABLE 8 HERE

7. Welfare Implications

In section 2, we established that the introduction of a review system leads to an increase

in definitive decisions if and only if the decision maker is characterized by DA. Our natural

experiment provides evidence that there is indeed a significant variation in definitive deci-

sions after the introduction of the review system, and this variation is positive, implying

that 4d(DA) > 0. Based on this last result, we now establish under which conditions the

introduction of a review system can lead to a welfare improvement by increasing the expected

correctness of a decision. This may provide valid policy applications to real-world settings

in which the revision technology is likely to be less accurate with respect to the Hawk-Eye

system employed in professional sports.

Recalling our theoretical framework, we do not make any specific assumptions on the

impact that the review system may have on the decision maker’s behavior, beyond stating

that it will weakly reduce the salience of definitive decisions. This is formally stated by

expressions (2) and (3), that respectively state that the distance between the utility of correct

definitive and non-definitive decisions weakly decreases, as does the distance between the

disutility of incorrect definitive and non-definitive decisions. Depending on whether the

magnitude of this variation is stronger for correct decisions versus incorrect decisions, this

may either attenuate the bias, increase the decision maker’s definitivity avoidance, or on the

contrary, lead to an opposite bias inducing the decision maker to become definitivity loving.

Whenever the review system increases the decision maker’s bias by either making her more

definitivity avoidant or definitivity loving, this negative effect may offset the positive effect

that comes from reviewing potentially incorrect decisions, implying that the overall effect on
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welfare is indeterminate. We purposely avoid to add structure to the model leaving these

two potential avenues open, guided by the observation that the impact of the review system

on the actual behavior is not observable in our experimental setting.

In order to address this issue, we introduce a parameter B that denotes the percentage

increase in the magnitude of the decision maker’s bias caused by the introduction of the

review system, and is defined by the following expression:

B =
|F1(s

∗
H) + F0(s

∗
H)− 1| − |F1(s

∗
NH) + Fω(s∗H)− 1|

|[F1(s∗H) + F0(s∗H)− 1]|
,

where B > 0 denotes an increase in the magnitude of the bias after the introduction of the

review system, and B < 0 denotes a decrease in the bias. We therefore establish a general

proposition on the impact of the review system on welfare:

Proposition 2. A review system that leads to an increase in definitive decisions (i.e.,

4d(DA) > 0) is always welfare improving unless it induces the decision maker to become

significantly definitivity loving (i.e., for s∗H < sNB < s∗NH and B > 0). In this later case,

the introduction of the review system is welfare improving if and only if the following two

conditions are jointly satisfied: i) p− F1(2p− 1) > B, and; ii) c < 1− B
p−F1(2p−1)

= c (Proof

in the Appendix).

The first part of the proposition comes from the observation that if the review system

leads to an increase in the decision maker’s definitivity avoidance bias, this increase cannot

be too strong if it also leads to an increase in definitive decisions. Moreover, even if the review

system induces an opposite bias leading the decision maker to become definitivity loving, as

long as the magnitude of this bias is smaller than the initial one, implying that B < 0, the

review system is always welfare improving.

Thus, the only scenario in which welfare may not increase occurs when the review system

increases the magnitude of the bias leading the decision maker to become more definitivity

loving than she was definitivity avoidant, implying that B > 0 and s∗NH > s∗NB > s∗H . In
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this case, the necessary (but not sufficient) condition for the system to improve welfare is

that p − F1(2p − 1) > B, implying that given the precision of the unbiased signals received

by the agent that may potentially contest the decision (1− F1), the revision technology (p)

is sufficiently precise in relation to the increase in the bias (B). Intuitively, when the bias

increases, in order to improve the expected correctness of the decision, the review system

must be more accurate. Whenever this necessary condition is satisfied, it must also be that

the cost of invoking the challenge, c is smaller than a threshold value c, where this threshold

is increasing in p. This implies that the less precise is the review technology (for low p), the

less costly it must be to call upon the review system (c must be lower).

The above proposition suggests that, although reductions in efficiency may occur only in

the extreme circumstances in which the introduction of the system induces the decision maker

to become more biased in the opposite direction, some caution must be taken in adopting

such a system in the attempt to improve efficiency. Thus for example, in the case of financial

institutions, if there is a chance that introducing a rule that allows interested parties to invoke

an audit committee can lead decision makers to excessively increase definitive decisions (this

may, for instance, involve denying to roll over debt even when private information suggests

not to, thus engaging in too little risk), our welfare analysis suggests that the review system

should be introduced only if certain conditions are satisfied. First of all, the system should

be applied only to decisions for which the information available to audit committees involves

relatively little noise. So for instance, in periods of high volatility in which systemic risk is

muddled with individual business risk, adopting a review system may not be a valid option.

Moreover, the less precise is the information available to the audit committee to perform the

review, the less costly it must be for the financial institution’s shareholders to call on the

audit committee for the review.
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8. Discussion

8.1. Definitivity Avoidance and Other Biases

Psychologists and economists have identified relevant behavioral biases such as status quo

bias, omission bias, inaction inertia, and decision deferral, interpreting these biases in terms

of reluctance towards making a decision. Here, we briefly discuss the relationship between

these biases and our result, arguing that definitivity avoidance may generate situations in

which the mentioned biases are observed. For instance, when economic agents have to act

in order to make a definitive decision, we may observe an omission or a status quo bias as a

consequence of definitivity avoidance. Ritov and Baron (1998) show that people are reluctant

to vaccinate a (hypothetical) child, even when the probability of dying as a consequence of

the vaccination is lower than the probability of dying from the disease. According to Ritov

and Baron, the decision not to vaccinate may be the result of an omission; however, because

vaccination is a definitive decision, definitivity avoidance may explain the reluctance to act.

Similarly, managers that are subject to omission bias tend not to hedge losses even when the

probability of a loss is higher than derivatives losses (Hirshleifer, 2008); nonetheless, corporate

hedging may be perceived as a more definitive decision than not hedging, and therefore this

bias may be generated by definitivity avoidance. Another suitable example of status quo bias

that can be explained by definitivity avoidance is discussed in Westman (1991). According

to Westman, children’s rights in the United States began to emerge during the twentieth

century. However, the protection of children’s interests is still an issue: "Children can be

placed in foster care, and parental rights can be permanently terminated. The state exercises

responsibility for determining custody in divorce cases and for establishing a legal parent-

child relationship through adoption. Unfortunately, criteria for making these decisions are

not well-defined, so that the general practice is to exercise judicial restraint and perpetuate

the status quo rather than resolve issues in a timely and definitive manner for a child’s benefit.

For example, many youngsters spend years in foster care, because no one has assumed the
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responsibility for making the definitive decisions that are necessary in the legal pursuit of their

interests." (p. 47). All these examples clarify that at least part of the decision avoidance

behaviors may be related to the nature of the underlying decision instead of the modes

associated with decision making. In particular, when decisions differ in terms of definitiveness,

economic agents tend to prefer the less definitive choice independently of whether they have

to act or not in order to select it. Indeed, our experiment requires umpires to make an action

to reveal their bias, and this removes the emphasis on omission or inertia. That is, in many

situations, decision-makers do not avoid decisions per se but just those that involve making

a final judgment.

8.2. Strategic Behavior vs. Behavioral Bias

Our model assumes that points are independent and identically distributed. Empirically,

in Section 5, we have shown that this assumption holds reasonably well under some conditions

that are satisfied by our empirical design. However, strategic behavior by players may hinder

the validity of this assumption. Assuming that tennis players can modulate the speed of their

serves, where more rapid serves are also riskier, Gillman (1985) shows that a serving strategy

based on a risky serve first, and eventually, a safer second serve is optimal. Now, suppose that

players change their service strategy according to the importance of the point. For instance,

Anbarci et al. (2018) show that when behind in score, servers become loss averse and take

more risk than when they are ahead, increasing the speed of the service. By knowing this

fact, an umpire might formulate a prior probability that the ball is in and use the signal to

infer the posterior through Bayesian updating.21 Similarly, strategic players could anticipate

the umpire’s belief reducing the speed of the serve when the Hawk-Eye technology is absent,

and they cannot challenge the umpire’s call. Vice versa, with the availability of the Hawk-

Eye, rational servers should take a risk in difficult times more easily. This change in their
21Green and Daniels (2018) find that, in baseball matches, umpires adopt similar reasoning to identify the

strike zone. Indeed, with respect to the service box, the strike zone cannot be directly observed by umpires,
and therefore they use the current number of strikes and balls to formulate a prior on the probability of the
pitch being in or out and update this prior with the signal.
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service strategy could lead to an increase in the number of aces as well as in the number of

errors in the first serve. In this case, a deviation of the call from the signal would not be a

sign of psychological bias but the result of rational behavior.22 Therefore, to test whether the

introduction of the Hawk-Eye affected players’ serving strategy in this direction, we repeated

our analysis for the ratio of valid first serves. However, we did not find significant changes

in the fraction of first serves in when we use pair fixed effects and a positive effect when we

use court fixed effects. This result allows us to reject the hypothesis of a change in players’

strategy after the introduction of the Hawk-Eye.

8.3. Learning by exposure

Another relevant question concerns the introduction of the review system. In particular,

we might want to understand whether the review system simply neutralizes the effect of

the bias that continues to characterize behavior, or if the exposure to such a system may

actually make decision-makers more aware of their inefficient behavior, therefore inducing

them to attempt to overcome the bias and improve the quality of their decisions. Following

Tetlock and Gardner (2015), we may say that inducing experts to focus on the correctness

of their decisions might improve upon their ability to make better decisions. Although this

is beyond the scope of our analysis, the empirical evidence in Tables 7 and 8 suggests that

this may be the case. Notice indeed, that as shown in the last columns of Tables 7 and 8 the

treatment effect disappears, but the control group (those not exposed to the review system)

displays a number of aces that does not significantly differ from those of the treated group

when the technology was first introduced (i.e., 2006-07). This suggests that once decision-

makers have been exposed to a review system, this makes them aware of their bias and

induces them to correct their behavior even when the review system is absent.
22This prediction is consistent with Klaassen and Magnus (2001) that fined that, at important points, it

is more difficult for servers to win the point, although they do not specifically focus on the probability of
scoring an ace.
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9. Conclusion

In this paper, we propose that decision-makers may be subject to a definitivity avoidance

bias, which leads valuable information to be disregarded, therefore producing sub-optimal

decisions. More specifically, this bias leads agents that are called on to make decisions that

have material consequences for other parties to refrain from following their (imperfect) private

information when this involves making definitive decisions. By exploiting the introduction of

a review system that allows tennis players to challenge the decision of the officials by invoking

the use an impartial monitoring technology that can overturn incorrect calls, we are able to

identify the existence of the bias and establish that such a review system may lead to its

attenuation.

This natural experiment suggests that in all those contexts in which definitivity is salient,

welfare gains may arise from introducing a review system that allows an agent that is af-

fected by the consequence of the judgment to call for a revision of the decision by a neutral

third party. Nonetheless, our analysis shows that a review system may not always be welfare

improving if it induces agents to overreact, becoming definitivity lovers in very uncertain

decisions. An interesting avenue for future research is, therefore, to explore how the intro-

duction of review systems affects the behavior of decision makers in different contexts in

order to draw more accurate indications for the design of welfare-improving decision review

systems.

Moreover, identifying neutral third party reviewers in the real world that have the same

desirable features of the Hawk-Eye system, namely competence and neutrality, may not be

a simple task. In this respect, the growing use of artificial intelligence may provide a valid

tool for designing non-human review systems. For instance, the use of intelligent algorithms

to evaluate the ex-post correctness of decisions based on objective parameters combined with

vastly available datasets may serve the purpose of producing real-world equivalents of the

Hawk-Eye system in professional tennis.23

23 Along these lines, Chen (2019) suggests how to create decision support systems for judges that combine
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Table 1: Matches in treated courts before and after the treatment
2002 2003 2004 2005 2006 2007 2008 2009 2010 Total

Baseline sample (only matches on grass and hard surface)
Without Hawk Eye 31 56 63 79 70 42 33 41 30 445
With Hawk Eye 0 0 0 0 16 48 48 45 37 194
Total 31 56 63 79 86 90 81 86 67 639

Enlarged sample (with matches on clay surface)
Without Hawk Eye 38 66 69 99 85 55 47 55 38 552
With Hawk Eye 0 0 0 0 17 52 55 51 43 218
Clay surface 18 16 20 29 33 32 26 36 30 240
Total 56 82 89 128 135 139 128 142 111 1,010

Notes: This table shows the number of matches played in treated and untreated courts before and after the
introduction of the Hawk-Eye technology.
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Table 2: Descriptive Statistics
Mean SD Min 25% 50% 75% Max

Ace ratio 7.529 3.870 0 4.663 7.041 9.934 33.333
Hawk Eye 0.362 0.481 0 0 0 1 1
Clay 0.237 0.426 0 0 0 0 1
Grass 0.236 0.425 0 0 0 0 1
Hard 0.527 0.500 0 0 1 1 1
Break 0.549 0.498 0 0 1 1 1
Favorite Rank 16.738 19.128 1 3 10 24 134
Challenger Rank 65.250 70.326 2 26 52.5 87 1141
Favorite Age 25.195 3.032 18.626 22.976 25.050 27.146 36.534
Challenger Age 25.507 3.743 16.572 22.773 25.166 28.246 36.726
Home player 0.143 0.350 0 0 0 0 1
Minutes 148.257 48.834 6 112 142 182 393
Clay Experience (CE) 0.260 0.133 0 0.195 0.255 0.310 1
OBS. 1,010 1,010 1,010 1,010 1,010 1,010 1,010

Notes: This table presents descriptive statistics for our selected variables. Variables are defined as follows:
Ace Ratio is a variable that captures the total number of aces over the total number of served points; Hawk-
Eye is a dummy variable that takes a value of 1 if the match is played with Hawk-Eye technology in place;
Clay, Grass and Hard are dummy variables taking the value of 1 for the type of court the match has been
played on; Favorite and Challenger Rank(Age) capture the ranking(age) of the highest and lowest seeded
(oldest and youngest) player in the match, respectively; Home player indicates whether one of the two players
comes from the country organizing the tournament; Minutes is the length of the match.
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Table 3: Pairwise Correlation Coefficients
# 1 2 3 4 5 6 7 8

Ace ratio 1 1
Hawk Eye 2 0.204*** 1
Favorite Rank 3 -0.031 -0.295*** 1
Challenger Rank 4 -0.031 -0.150*** 0.311*** 1
Favorite Age 5 0.05 -0.073** 0.126*** 0.048 1
Challenger Age 6 0.076** 0.055* 0.041 0.094*** 0.162*** 1
Home player 7 0.051 0.061* -0.013 0.036 -0.017 -0.014 1
Minutes 8 -0.057* 0.05 -0.002 -0.128*** -0.014 0.022 0.027 1
Clay Experience 9 -0.180*** 0.029 -0.020 -0.014 0.012 0.004 -0.061* 0.046
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Table 4: Hawk Eye effect on Ace Ratio
2006-2010 2007-2010 2008-2010 2009-2010 2010
Panel A. With pair FEs (N=639)

Hawk Eye 1.131* 1.350** 1.508** 1.378* -0.692
(0.676) (0.658) (0.642) (0.701) (0.952)

Favorite Rank 0.005 0.004 0.002 0.004 0.003
(0.015) (0.014) (0.014) (0.014) (0.014)

Challenger Rank -0.005** -0.005** -0.005* -0.005** -0.005**
(0.002) (0.002) (0.002) (0.002) (0.002)

Favorite Age 0.252* 0.199 0.199 -0.031 0.066
(0.151) (0.156) (0.150) (0.103) (0.101)

Challenger Age 0.277** 0.220 0.208 -0.009 0.083
(0.137) (0.144) (0.138) (0.101) (0.100)

Home player -0.355 -0.326 -0.333 -0.336 -0.334
(0.568) (0.573) (0.573) (0.569) (0.569)

Minutes 0.001 0.001 0.001 0.001 0.000
(0.003) (0.003) (0.003) (0.003) (0.003)

adj. R2 0.540 0.541 0.543 0.541 0.537
within R2 0.158 0.160 0.163 0.161 0.153
Pair FE Yes Yes Yes Yes Yes
Court and Time FE Yes Yes Yes Yes Yes

Panel B. Without pair FEs (N=639)
Hawk Eye 0.781* 0.979** 1.638** 1.637* 0.189

(0.471) (0.426) (0.634) (0.921) (0.634)
Favorite Rank -0.004 -0.003 -0.001 -0.004 -0.009

(0.010) (0.010) (0.010) (0.009) (0.008)
Challenger Rank -0.002 -0.002 -0.002 -0.002 -0.003

(0.005) (0.005) (0.005) (0.005) (0.004)
Favorite Age 0.021 0.024 0.030 0.020 0.011

(0.053) (0.053) (0.057) (0.054) (0.046)
Challenger Age 0.020 0.021 0.025 0.022 0.016

(0.029) (0.029) (0.028) (0.029) (0.028)
Home player 1.514*** 1.512*** 1.466*** 1.523*** 1.642***

(0.000) (0.000) (0.000) (0.000) (0.000)
Minutes -0.006 -0.006 -0.006 -0.006 -0.006

(0.004) (0.004) (0.004) (0.004) (0.004)
adj. R2 0.074 0.076 0.083 0.079 0.069
within R2 0.122 0.124 0.131 0.127 0.118
Court and Time FE Yes Yes Yes Yes Yes

Notes: This table reports the estimates of Equations (5) and (6) for different treatment periods. The
dependent variable is the aces to points ratio measured for pair p, in court c at time t. All regressions include
courts and time dummies absorbing for the direct effects of the treatment group and period. Hawk Eye is a
dummy indicating whether the Hawk-Eye technology was available in court c at time t. In Panel A, we also
consider a vector of pair FEs. Standard errors are clustered at the pair level in Panel A and based on 1,000
wild-bootstrap replications in Panel B. Significance levels: *10%, **5%, ***1%.
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Table 5: Hawk Eye effect on Ace Ratio: placebo tests
2006-2010 2007-2010 2008-2010 2009-2010 2010
Panel A. With pair FEs (N=1010)

Hawk Eye 0.842 1.066* 1.203** 0.607 -1.159
(0.572) (0.556) (0.528) (0.610) (0.835)

Clay courts -1.355 -0.823 -0.807 0.701 -
(2.553) (2.573) (2.541) (1.514) -

adj. R2 0.576 0.577 0.577 0.575 0.576
within R2 0.155 0.157 0.159 0.153 0.155
Additional controls Yes Yes Yes Yes Yes
Pair FE Yes Yes Yes Yes Yes
Court and Time FE Yes Yes Yes Yes Yes

Panel B. Without pair FEs (N=1010)
Hawk Eye 1.076** 1.215** 1.854*** 1.502* 0.079

(0.529) (0.493) (0.000) (0.857) (1.014)
Clay courts -3.411 -3.411 -3.395 -0.715 -2.034

(3.052) (3.052) (3.063) (1.173) (2.633)
adj. R2 0.176 0.177 0.183 0.175 0.168
within R2 0.210 0.211 0.217 0.209 0.203
Additional controls Yes Yes Yes Yes Yes
Court and Time FE Yes Yes Yes Yes Yes

Notes: This table presents a set of DDD estimates for Equation (7), where Clay courts matches constitute a
placebo category. The dependent variable is the aces to points ratio measured for pair p, in court c at time t.
All regressions include a set of time-court varying pair’s characteristics potentially affecting the ace ratio (i.e.,
players ages, ranking, and home-field advantage) as well as courts and time dummies absorbing for the direct
effects of the treatment group and the Hawk-Eye introduction period. Hawk Eye is a dummy indicating
whether the Hawk-Eye technology was available in court c at time t. In Panel A, we also consider a vector
of pair FEs. Standard errors are clustered at the pair level in Panel A and based on 1,000 wild-bootstrap
replications in Panel B. Significance levels: *10%, **5%, ***1%.
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Table 6: Hawk Eye effect on Ace Ratio: player experience on placebo court
2006-2010 2007-2010 2008-2010 2009-2010 2010
Panel A. With pair FEs (N=639)

Hawk Eye 5.363** 5.738*** 3.513** 3.406** 0.362
(2.361) (2.035) (1.645) (1.719) (2.110)

HawkEye · CE -18.683* -18.481** -7.441 -7.719 -3.995
(9.506) (7.719) (6.067) (6.297) (6.930)

Break · CE -1.476 -0.725 4.171 0.920 0.183
(6.477) (6.238) (3.736) (3.660) (4.036)

Treated · CE 13.319 11.036 2.363 2.357 -0.750
(9.594) (7.692) (6.112) (5.877) (4.664)

adj. R2 0.546 0.553 0.541 0.541 0.533
within R2 0.041 0.058 0.032 0.032 0.016
Additional controls Yes Yes Yes Yes Yes
Pair FE Yes Yes Yes Yes Yes
Court and Time FE Yes Yes Yes Yes Yes

Panel B. Without pair FEs (N=639)
Hawk Eye 2.015* 2.445* 3.129** 2.952* 2.630

(1.142) (1.298) (1.270) (1.683) (2.789)
HawkEye · CE -5.782* -6.260** -4.589* -4.827 -8.630

(3.447) (3.072) (2.702) (3.134) (6.164)
Break · CE -0.576 -0.379 1.297 -0.592 1.903

(3.362) (3.968) (1.787) (2.572) (1.961)
Treated · CE 1.179 0.765 -1.330 -0.555 0.100

(2.765) (2.418) (2.665) (3.555) (0.737)
adj. R2 0.080 0.084 0.086 0.081 0.069
within R2 0.132 0.136 0.138 0.133 0.121
Additional controls Yes Yes Yes Yes Yes
Court and Time FE Yes Yes Yes Yes Yes

Notes: This table presents results of a set of the DD model specified in Equation (8). Here, we interacted
the Hawk-Eye effect with the players’ experience on clay (CE). The dependent variable is the aces to points
ratio measured for pair p, in court c at time t. All regressions include a set of time-court varying pair’s
characteristics potentially affecting the ace ratio (i.e., players ages, ranking, and home-field advantage) as
well as courts and time dummies absorbing for the direct effects of the treatment group and the Hawk-Eye
introduction period. Hawk Eye is a dummy indicating whether the Hawk-Eye technology was available in
court c at time t. In Panel A, we also consider a vector of pair FEs. Standard errors are clustered at the pair
level in Panel A and based on 1,000 wild-bootstrap replications in Panel B. Significance levels: *10%, **5%,
***1%.
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Table 7: Sequential IPWRA estimates
2006 2007 2008 2009 2010

ATT 0.812 1.437*** 1.437** 1.538** 0.511
(1.076) (0.480) (0.621) (0.775) (0.740)

Control group mean 7.646*** 7.348*** 7.494*** 8.159*** 9.066***
(0.880) (0.365) (0.505) (0.605) (0.597)

N 252 502 508 504 505

Notes: This table provides results for an alternative method to estimate the average treatment effect consid-
ering a panel as a sequence of cross-sectional natural experiments. We estimate the double-robust estimator
proposed in Wooldridge (2007) for each year separately. Robust-clustered standard errors are in parentheses.
Significance levels: *10%, **5%, ***1%.

Table 8: Pair-tournament effects
2006-2010 2007-2010 2008-2010 2009-2010 2010

Panel A. With pair-tournament FEs (N=208)
Hawk Eye 1.025 3.249** 3.492** 3.107* -1.730

(1.583) (1.415) (1.733) (1.810) (1.815)
adj R2 0.503 0.522 0.530 0.524 0.506
within R2 0.385 0.408 0.418 0.410 0.388
Additional controls Yes Yes Yes Yes Yes
Pair-Tournment FE Yes Yes Yes Yes Yes
Court and Time FE Yes Yes Yes Yes Yes

Panel B. With pair-tournament FEs and placebo court type (N=293)
Hawk Eye 0.490 2.740* 3.415** 3.106* -1.741

(1.624) (1.423) (1.658) (1.658) (1.816)
Clay courts -11.390 -7.394 -5.503 5.688*

(6.965) (6.996) (6.935) (3.263)
adj R2 0.573 0.581 0.589 0.587 0.576
within R2 0.355 0.368 0.379 0.376 0.359
Additional controls Yes Yes Yes Yes Yes
Pair-Tournment FE Yes Yes Yes Yes Yes
Court and Time FE Yes Yes Yes Yes Yes

Notes: This table reports the estimates of Equations (11) and (12), considering different treatment periods.
Now, pair-tournament FEs absorb the effect of the home player variable and control for possible interactions
between pairs of players and tournaments unobserved characteristics. Panel B also considers clay courts as a
placebo control group. Robust-clustered standard errors are in parentheses. Significance levels: *10%, **5%,
***1%
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Fig. 1. Definitivity Avoidance and Prospect Theory
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Fig. 2. Distribution of aces per match in control and treatment group over time
This figure reports the box-plot distribution of ace ratios over the sample period. Ace ratio is
measured as the total number of aces over the total number of served points and is reported in
percentage points on the vertical axis
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Appendix A. Proofs

A.1. Proof of Prediction 1

We begin by deriving the expression for ∆d(b). The expressions for the expected decision

with and without the review system are the following

E[d(b,H)] = 1/2 [(1− F1(s
∗
H))[(1− F1(s

∗
NB)) + F1(s

∗
NB)(1− c)p]]

+F1(s
∗
H)[((1− F1(s

∗
NB))(1− c)p)]+

+(1− F0(s
∗
H))[(1− F0(s

∗
NB)) + F0(s

∗
NB)(1− c)(1− p)]

+F0(s
∗
H)[(1− F0(s

∗
NB))(1− c)(1− p)]

E[d(b,NH)] = 1/2 [(1− F1(s
∗
NH)) + (1− F0(s

∗
NH))] .

So, simplifying ∆d(b) can be rewritten in the following way:

∆d(b) = 1/2[
∑
ω

(Fω(s∗NH)− Fω(s∗H))]+

+ [(F0(s
∗
H) + F1(s

∗
H)− 1)(1− c)(F1(s

∗
NB)(1− p) + (F0(s

∗
NB)p)] . (13)

Now using Proposition 1 (i.e., s∗NH ≥ s∗NB where s∗NH > s∗NB implies that there is DA

and s∗NH = s∗NB implies that there is no bias) and the symmetry of the signal structure

(1−F1(s
∗
NB)) = F0(s

∗
NB), notice that if a bias exists there are 3 possible cases that may arise

in which ∆d(b) > 0 (∆d(b) < 0):

case 1) s∗H = s∗NB so if there is a bias it is completely corrected by the review system,

which implies that the 2nd term of (13) is equal to 0, and for ∆d(b) > 0 (∆d(b) < 0) it must
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be that s∗H < s∗NH (s∗H > s∗NH) which implies that there must be DA.

case 2) s∗H > s∗NB which implies that there is DA, and the 2nd term of (13) is greater

than 0, so ∆d(b) > 0 (∆d(b) < 0) is consistent with s∗H R s∗NH (s∗NH < s∗H). In other words

the review system may lead to an uncertain variation (decrease) in the propensity to make

definitive decisions with respect to the pre-review system level.

case 3) s∗H < s∗NB which implies that there is DA and the 2nd term of (13) is less than

0, so for ∆d(b) > 0 (∆d(b) < 0) it must be that s∗H < s∗NB < s∗NH (s∗H Q s∗NH) implying that

the review system induces an increase (uncertain variation) in definitive decisions.

This completes the proof of our empirical prediction, namely that a variation in definitive

decisions due to the introduction of the review system may occur only if the decision maker

is characterized by DA before the review system is introduced.

A.2. Proof of Proposition 2

We define ∆L(r) =| E(d(r))− E(d(NB)) |, which represents the expected informational

loss of each regime r. Therefore, the condition for the review system to be welfare improving

is the following:

∆L(H) ≤ ∆L(NH) (14)

We again consider 3 cases:

case 1) s∗H = s∗NB in this case ∆L(H) = 0 and therefore welfare maximizing for all values

of c and p.

case 2) s∗H > s∗NB. If s∗NH > s∗H the review system reduces the bias and is therefore always

welfare improving. If instead s∗H > s∗NH > s∗NB the review system induces a greater bias in

the decision maker’s behavior (more definitivity avoidance) and we must find if there exist

values of c and p such that the review system can be welfare improving.

case 3) s∗H < s∗NB in this case as implied by the proof of the empirical prediction, it must

be that s∗NH > s∗NB > s∗H meaning that regime H inverts the bias and makes the decision

maker definitivity loving. In this case, again we must verify for which values of c and p the
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system guarantees an increase in welfare.

First notice that

∆L(H) = |1/2[1− F1(s
∗
H)− F0(s

∗
H)](1− (1− c)(p− F1(s

∗
NB)(2p− 1))| ,

and

∆L(NH) = |1/2[1− F1(s
∗
NH)− F0(s

∗
NH)]| .

Now defining

(1−B) =

∣∣∣∣ [F1(s
∗
NH) + F0(s

∗
NH)− 1]

[F1(s∗H) + F0(s∗H)− 1]

∣∣∣∣ > 0,

where B denotes percentage increase in bias of the decision maker after the introduction of

the review system, and

F1(s
∗
NB) ≡ F1 < 1/2,

where the last inequality follows from the assumption that unbiased signals are informative.

Condition (14) can therefore be written as:

1− (1− c)(p− F1(2p− 1)) < (1−B) (15)

We first consider Case 2 (s∗H > s∗NH > s∗NB)

Recalling the expression for ∆d(b) and using the finding that ∆d(b) > 0, it follows that:

(1− c)(p− F1(2p− 1)) >
|[
∑

ω(Fω(s∗NH)− Fω(s∗H))]|
[F1(s∗H) + F0(s∗H)− 1]

Since both sides of the above expressions are positive and the right hand side is less than

one, it can be rewritten as follows:

1− (1− c)(p− F1(2p− 1)) < 1− |[
∑

ω(Fω(s∗NH)− Fω(s∗H))]|
[F1(s∗H) + F0(s∗H)− 1]

.
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Now it is straightforward to show that

1− |[
∑

ω(Fω(s∗NH)− Fω(s∗H))]|
[F1(s∗H) + F0(s∗H)− 1]

= (1−B),

which allows to state that (15) is always satisfied, implying that the introduction of the

review system is always welfare improving

We now consider case 3 (s∗NH > s∗NB > s∗H)

In this case, (1 − B) > 0, but it can also be greater than 1. In this latter case, B < 0

(i.e., the introduction of the review system reduces the bias) implies that condition (15) is

always satisfied. In the other case, in which (1 − B) ∈ (0, 1) it is once again necessary to

analyze when (15) is satisfied as for case 2.

In the case in which (1− B) ∈ (0, 1) however, using the finding that ∆d(b) > 0 does not

allow us to rule out cases in which the review system may lead to a decrease in welfare. To

see this, notice that using the expression for ∆d(b) and the finding that ∆d(b) > 0 implies

that:

1− (1− c)(p− F1(2p− 1)) > 1− [
∑

ω(Fω(s∗NH)− Fω(s∗H))]

[F1(s∗H) + F0(s∗H)− 1]
,

Moreover, it straightforward to show that since [
∑

ω(Fω(s∗NH)−Fω(s∗H))] > [F1(s
∗
H)+F0(s

∗
H)−

1] > 0

1− [
∑

ω(Fω(s∗NH)− Fω(s∗H))]

[F1(s∗H) + F0(s∗H)− 1]
< 0 < (1−B).

which does not allow us to state whether or not (15) is satisfied.

Therefore, in order to pin down when the review system may be welfare improving, we

can rewrite (15) in the following way:

c < 1− B

p− F1(2p− 1)
= c.

In order for there to exist a c that satisfies this condition it must be that c > 0 which requires
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that the following necessary (but not sufficient) condition be satisfied

p− F1(2p− 1) > B. (16)

In other words, the bias ratio induced by the review system must sufficiently small in relation

to the precision of the review technology in order for the necessary condition to be satisfied.

Notice also that c is increasing in p implying that for higher values of p, the review system

can be welfare improving even for higher values of the cost of invoking a challenge.

50

Electronic copy available at: https://ssrn.com/abstract=3432981



Appendix B. Additional descriptive statistics
Table B1 reports the number of matches played in each treated court over time.

Table B1: Matches played in each treated court over time
Tournament Court 2002 2003 2004 2005 2006 2007 2008 2009 2010 Total
US Open Arthur Ashe 4 11 9 16 10 16 11 17 12 106
US Open Louis Armstrong 2 5 3 5 7 5 5 5 6 43
Wimbledon Centre Court 1 9 2 9 10 6 12 10 6 65
Wimbledon Court 1 0 1 7 6 7 10 8 6 5 50
Australian Op. Rod Laver 2 2 9 16 12 15 19 13 14 102
Total 9 28 30 52 46 52 55 51 43 366
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