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1. Introduction

The fractional perimeter of a measurable set E C R is defined as follows:

1
P(E) = ff —ddydx s € (0,1). (1.1)
£ Jra\g |x = y[**s

After being first considered in the pivotal paper [4] (see also [15] where the definition was first given),
this functional has inspired a variety of literature both in the community of pure mathematics, regarding
for instance existence and regularity of fractional minimal surfaces, and in view of applications to phase
transition problems and to several models with long range interactions. We refer to [17], and references
therein, for an introductory review on this subject.

The limits as s — 0" or s — 17 are critical, in the sense that the fractional perimeter (1.1) diverges
to +c0. Nevertheless, when appropriately rescaled, such limits give meaningful information on the set.

The limit of the (rescaled) fractional perimeter when s — 0% has been considered in [11], where
the authors proved the pointwise convergence of sP,(E) to the volume functional dwy|E|, for sets E of


http://www.aimspress.com/journal/mine
http://dx.doi.org/10.3934/mine.2020023
http://www.aimspress.com/newsinfo/1396.html

513

finite perimeter, where wy is the volume of the ball of radius 1 in R?. The corresponding second-order
expansion has been recently considered in [8]. In particular it is shown that

d 1 1
P(E) - B — f f —dxdy — f f —dxdy — dw,log RIE|,
s E JBR(x\E lx =yl E JE\Bg(x) lx — i

in the sense of I'-convergence with respect to the L'-topology of the corresponding characteristic
functions, where the limit functional is independent of R, and it is called the O-fractional perimeter.

The limit of P;(E) as s — 17, in pointwise sense and in the sense of ['-convergence, has been studied
in [1,5], where it is proved that

(1 = $)Py(E) — wy-P(E),

where P(FE) stands for the classical perimeter of E.
In this paper we are interested in the analysis of next order expansion. In particular we will prove

in Theorem 2.1 that

“"’1“—1)(15) _PE) — H(E) ass— I,
- S

in the sense of ['-convergence with respect to the L!-convergence, and the limit functional is defined as

H(E) := f f =0 YWl gty (1.2)
&E J(EAH- 0))03.@) lx =yl

f f 020 ka4 ) = w1 PCE)
8*E JE\B|(y) lx — )’|d+

for sets E with finite perimeter, and H(E) = +oo otherwise. Here we denote by 0*E the reduced
boundary of E, by v(y) the outer normal to E at y € §"E and by H™(y) the hyperplane

H () :={xeR|(y—x) () > O (1.3)

We observe that, in dimension d = 2, the functional H(E) coincides with the I'-limit as 6 — 0* of

the nonlocal energy
ooy (X
2/ log SP(E) — f‘f X640 3y|)dxdy,
R1\E lx =yl

as recently proved by Muratov and Simon in [16, Theorem 2.3].

We also mention the recent work [6], where the authors establish the second-order expansion of
appropriately rescaled nonlocal functionals approximating Sobolev seminorms, considered by
Bourgain, Brezis and Mironescu [2].

As for the properties of the limit functional H, first of all we observe that it is coercive in the sense
that it provides a control on the perimeter of the set, see Proposition 3.1. Moreover it is bounded
on C' sets, for @ > 0, and on convex sets C such that for some s € (0, 1) the boundary integral
fa* c H,(C, x)dH*'(x) is finite, where H,(C, x) is the fractional mean curvature of C at x, which is

defined as
H.(C.x) = f XRd\C(Y) _XC(y)dy,
Rd

lx =yl
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see Proposition 3.3. In particular when E has boundary of class C?, in Proposition 3.5 we show that
the limit functional H(E) can be equivalently written as

L VD) = YOI a1y g
H(E) =—— f B 2|x_ S dH T 0dH T 0) = ZEER(E)

ﬁE »LE lx — )’|d !

. f -0
OE JOE

ly — xl4-!

2

(y X) -v(x)| ((d-1)log|x—y|— 1)d7’{d_1(x)d7’(d_l(y)

x|
log |x — yl dH*™ ()dH* ' (y)

where H(E, x) denotes the (scalar) mean curvature at x € JF, that is the sum of the principal curvatures
divided by d — 1. Notice that the first term in the expression above is the (squared) L>-norm of a
nonlocal second fundamental form of OF (see e.g. [7, Appendix B]). We recall also that an analogous
representation formula for the same functional in dimension d = 2 has been given in [16].

Some interesting issues about the limit functional remain open, for instance existence and rigidity
(at least for small volumes) of minimizers of HH among sets with fixed volume, see the discussion in
Remark 2.7.

The paper is organized as follows. Section 2 is devoted to the proof of the main result, which is
Theorem 2.1. The result is based on two main steps: the pointwise limit of “"”%PS(E) — P,(E) on smooth
sets proved in Proposition 2.4, and the monotonicity of a related functional showed in Lemma 2.5. In
Section 3 we analyze some properties of the limit functional H.

2. Second order asymptotics

We introduce the following functional on sets E C R? of finite Lebesgue measure:

Wd-1 _ .
PJ(E) = I-s P(E) - Py(E) ifP(E) < +o0
oo otherwise.

2.1)

We now state the main result of the paper.

Theorem 2.1. There holds
PJ(E) — H(E) ass— 17,

in the sense of T-convergence with respect to the L'-topology, where the functional H(E) is defined in
(1.2).

Remark 2.2. Observe that H(E) can be also expressed as

H(E) = — wyP(E) + f f & =9 YN} g1y, 2.2)
O*E J(EAH(y))NB1(y)

|X _ y|d+1

1
+ f f —————dydx — f f dH (y)dx.
EJE\B () X = YT E JoB(x)NE

Indeed by the divergence theorem and by the fact that div, (W) = —m we get

f f 0=0 YO 4 g1y (2.3)
8*E JE\B|(y) lx — }’|d+1
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- f f 0 =0 V) a1y
EJoEBx X =Y

Iy xl d-1
dydx+ff dH (y)dx
fEfE\Bl(x) |x — yld+! OB (ONE |X y|dJrl
:ff —dldydx—ff dH*(y)dx.
E JE\B(x) lx — y|&* E JoB|(x)nE

First of all we recall some properties of the functional £.

Proposition 2.3 (Coercivity and lower semicontinuity). Let s € (0, 1). If E, is a sequence of sets such
that \E,| < m for some m > 0 and P,(E,) < C for some C > 0 independent of n, then P(E,) < C’ for
some C’ depending on C, s,d, m.

In particular, the sequence E, converges in L
perimeter, with |E| < m.

o UP f0 a subsequence, to a limit set E of finite

Moreover; the functional Py is lower semicontinuous with respect to the L'-convergence.

Proof of Proposition 2.3. Let E with |E| < m. By the interpolation inequality proved in [3, Lemma
4.4] we get
dwy dwy
Py(E) < ——2—P(E)|E|'"™ < ——2—P(E)'m'™
‘()2s(1)()|| 2(1)()1%
For a sequence E, as in the statement, this gives

C(1 =) > wy1P(E,) — (1 = 5)PY(E,) > wy—1P(E,) — QP(E )'m (2.4)

From this we conclude that necessarily P(E,) < C’, where C’ is a constant which depends on C, s, d, m.
As a consequence, by the local compactness in L' of sets of finite perimeter (see [14]) we obtain the
local convergence of E,, up to a subsequence, to a limit set E of finite perimeter.

Now, assume that E, — E in L! and that 1= P(E,) — Py(E,) < C. By the previous argument, we get
that P(E,) < C’, where C’ is a constant which depends on C, s, d, |E|. By the compact embedding of
BV in H*'?, see [10,15], we get that lim,, Py(E,) = P,(E), up to passing to a suitable subsequence. This,
along with the lower semicontinuity of the perimeter with respect to local convergence in L! (see [14])
gives the conclusion. O

The proof of Theorem 2.1 is based on some preliminary results. First of all we compute the
pointwise limit, then we show that the functional sP(E) is given by the sum of the functional 7 (E),
defined in (2.13), which is lower semicontinuous and monotone increasing in s, and of a continuous
functional. This will permit to show that the pointwise limit coincides with the I'-limit.

Proposition 2.4 (Pointwise limit). Let E C R be a measurable set such that |E| < +oc0 and P(E) < +oo.
Then

lim

s—1-

+00 otherwise

j 1=l a1
- PS(E)] = {W(E) lff(*E fEAH ONNBIO) =yl dxdH ' (y) < +o0

where H(E) is defined in (1.2) and H(y) in (1.3).
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Proof. We can write P;(E) as a boundary integral observing that forall 0 < s < 1

) y—x 1
d —_ | = -y 2.5
1Vy (|y _ x|d+s) S|y _ x|d+s ( )

So, by the divergence theorem, (1.1) reads

P,(E) ! f 00 vO) dH"(y) (2.6)
E

|X y|d+v

f f 029 YD) gy + - f f 029 YY) gy
oE JEnB () |X v s Joe Jpmy X =y

where v(y) is the outer normal at 9" E in y.
We fix now y € 0"E and we observe that

f 0=-00) . (2.7)
NB1(y)

|x y|d+s

3 y—x) vy y-—x- V(Y) y—x- V()’)
- d+s dx+ d+s X d+s x
H-)nBiy) X~V EH- OBy X = H-O\ENBIy) X =)

B f (y—x)- V(y)d f Iy —x) - V(y)ld
- d+s X = d+s X
H-(»)NB1(y) lx =yl (EAH-(y))NB1 () lx —

Now we compute, denoting by Bj the ball in R“"! with radius 1 (and center 0),

f 09 Y0, f 4 _ix (2.8)
H- By X = Y19 (xa201nB; X

1-|x |2 Xy
(x + |x |2)(d+s)/2

1
fBE—Z—d—s( X[ )dx’ = Wa-17Z

If we substitute (2.8) in (2.7) we get

y—x)- V(Y) Wq-1 Iy = x) - v(y)|
——, dx=— - —————dx. (2.9)
EnBiy) X = YT 1=s  Jeag-oposy X =y

By (2.6) and (2.9) we obtain

P(E) P P(E)
U=y DB memg=g - wng—s

—5)

f |(y .X,') d:/_(y)|d dq_{d—l(y)
EAH-O)NBi(y) X = YT

.

»y-x dv(y)d AT 1()’)
\Biy) X =yl

(2.10)

Wy-1

1,
oL
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Now we observe that, by Lebesgue’s dominated convergence theorem, there holds

lim — f f d( ) dxd e (y )—f f — %) dv% dAH (). (2.11)
=178 Joe Jpgiy X — Y4 oE JEBo) XY

Moreover, by the monotone convergence theorem,

lim G=0-vOl ,  _ f 6= -vOI (2.12)
EAH()0B1 ()

=1 JEam-opnBiyy 12— Y9 |x — yld+!

if L030l e LN(EAH(y) N By(y) and lim,_,;- j(‘EAH‘(y))ﬂBl()) =00l 7y = oo otherwise. The

|X y|d+l |X—y|d”

conclusion then follows from (2.10), (2.11), (2.12) sending s — 1~. O
Lemma 2.5. For s € (0, 1) and E C RY of finite measure, we define the functional

s|92P(E) = PUE) - [, [, ) irmdydx| if P(E) < +00

(2.13)
+00 otherwise.

FE) = {

Then the following holds:

(1) The map s — F,(E) is monotone increasing as s — 1~. Moreover, for every E of finite perimeter

lim F,(E) = - w1 P(E) + f f =0 YWl gty
s—1 £ JEAE- 0By X~

- f f dH* ' (y)dx.
E JOB|(x)NE

(2) For every family of sets E such that F(E) < C, for some C > 0 independent of s, and E; — E
in L', there holds

lim i]nf F(E,) > — wy_1P(E)

f f =0 YOl a1y - f f dH* (y)dx.
& E J(EAH-(y)NB1(y) lx — | E JB|(x)NE

Proof. (1) Arguing as in (2.3) and using (2.5), we get

FA(E) =s| T P(E) ~ Py(E)

f [ ety [ aniga
oEJEBG) XY S JE JoB,(onE

Therefore from (2.6), and (2.9), we getforO < § < s < 1

l(9L"S(E)+ f f dﬂd—l(y)dx)

§ E JoB(0)NE

R R R I I e )
(=5 s Jor Jpvmiy X =Y
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cwp )] f f 029 Y0 g1 )
& E JENB,(»)

(1-5) = x — yl+s

— C()d lP(E) f f |(y .X) V(y)|d d?fd_l(y)
d+s
& E J(EAH-(y)NB () lx =yl
_ Y- LP(E) + - f f 0 =0 YO ;g a1y
d+5s
& E J(EAH-(y))NB1(y) lx =yl

:—(ﬂ(E)+ f f d?-{d‘l(y)dx),
N E JOB(x)NE

which gives the desired monotonicity.
Now we observe that by Lebesgue’s dominated convergence for every E with |[E| < 4co and
P(E) < 400,

1
lim — f f %) dj(y)d dH (y) - = f f dH (y)dx
=1 S Joyg E\Bl(y) |x — |4+ S Je JoB,onE

f f X) dVEy)d d7_{d—l(y) _ ff d?-(d_l(y)dx
8*E JE\B|(y) lx — y|* E JoB,(x)nE

So, we conclude by Proposition 2.4.
(2) We fix a family of sets E, such that F((E,) < Cand E;, - Ein L' as s — 1. Fix § < 1 and
observe that by the monotonicity property proved in item (1), we get

lim ilnf F(Es) = lim ilnf F+(Ey)

i 1
il 1_ P(E,) - PE(ES)] - lim 5 f f ———dydx
1- -1 ENB (v X — Y9*S

P(E) - P(E) —Sff i ———dydy = F5(E)
E\B(v) X — y| s

where we used for the first limit the lower semicontinuity proved in Proposition 2.3, and
Lebesgue’s dominated convergence theorem for the second limit.
We conclude by item (1), observing that ¥3(E) < C, and sending § — 1°.

> lim inf §
1

[wdl

We are now ready to prove our main result.

Proof of Theorem 2.1. We start with the I'-liminf inequality. Let E, be a sequence of sets such that
E, — Ein L'. We will prove that

= P(E,) - PS(E.V)] > H(E),

.. w,
liminf s
s—1 1

which will give immediately the conclusion. Recalling the definition of F(E) given in (2.13), we have
that

lim inf s Wa-1 P(Es)—PS(ES)] > liminf F(E;) + lim inf s f f dydx.
s— S 5= s— E

1 -

ABi() 1 = Y1
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By Lemma 2.5, item (2) and by Fatou lemma, we get

lim infs[;”d‘l P(E,) - Py(E,)| = —w, 1 P(E)

f f |(y X) dzgy)ld dq_[d—l(y)_ ff dq_{d—l(y)dx
8*E J(EAH- ()))031@) lx =yl E J6B|(x)NE

+ —dydx =H(E)
\fE \fb:\Bl(x) |x — yl+!

where the last equality comes from (2.3).
The I'-limsup is a consequence of the pointwise limit in Proposition 2.4. O

We conclude this section with the equi-coercivity of the family of functionals #;, which is a
consequence of the monotonicity property of 7 obtained in Lemma 2.5.

Proposition 2.6 (Equi-coercivity). Let s, be a sequence of positive numbers with s, — 17, letm, C € R
with m > 0, and let E, be a sequence of measurable sets such that |E,| < m and P, (E,) < C for all
neN.

Then P(E,) < C’ for some C" > 0 depending on C,d,m, and the sequence E, converges in LIOC, up
to a subsequence, to a limit set E of finite perimeter, with |E| < m.

Proof. Reasoning as in Proposition 2.3, we get that E,, has finite perimeter, for every n € N. Recalling
(2.13), we get that

1
Cl'> 5.2, (En) = Fo (En) + 51 f f — L iydx > 7, ().
E, \Bj (%) |ox — y[+sn

We fix now 7 such that s; > % and we claim that there exists C’, depending on m, d but independent
of n, such that P(E,) < C’ for every n > . If the claim is true, then it is immediate to conclude that
eventually enlarging C’, P(E,) < C’ for every n.

For every n > 71, we use the monotonicity of the map s — 7 (E,) proved in Lemma 2.5, and the

fact that |E,| < m, to obtain that
1
|C| = ﬁn(En) = f;ﬁ(En) = SﬁPSﬁ(En) - Snf f 7dydx
n n\Bl(x) |'x - yl o
> 5; P, (Eq) — S f f dydx > s;Ps,(E,) — SalEal* = 5:Ps,(E,) — sam’
\B1(x)

This implies in particular that P, (E,) < ISQ +m? < 2|C| +m?, and we conclude by Proposition 2.3. O

Remark 2.7 (Isoperimetric problems). Let us consider the following isoperimetric-type problem for
the functionals P, and H:

lrgllin P(E) (2.14)
|IEI|lin H(E), (2.15)
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where m > 0 is a fixed constant. Observe that E is a minimizer of (2.14) if and only if the rescaled set

1= . P .
m~4E is a minimizer of
Wy-1

min ——P(E) — m'7 P(E).

E=11-—1s
Note in particular that the functional #; is given by the sum of an attractive term, which is the perimeter
functional, and a repulsive term given by the fractional perimeter with a negative sign.

In general we cannot expect existence of solutions to these problems for every value of m. However,
from [9, Thm 1.1, Thm 1.2] it follows that there exist 0 < my(s) < m(s) such that, for all m < m;(s),
Problem (2.14) admits a solution and moreover, if m < m,(s), the unique solution (uo to translations)
is the ball of volume m. Actually, the bounds m,(s), m,(s) tend to 0 as s — 17, hence these results
cannot be extended directly to Problem (2.15).

A weaker notion of solution, introduced in [13], are the so-called generalized minimizers, that is,
minimizers of the functional }; P (E;) (resp. of },; H(E;)), among sequences of sets (E;); such that
|E;] > 0 and P(E;) < +oo for finitely many i’s, and ) ;|E;| = m. Note that, if £, is a minimizing
sequence for (2.14) or (2.15), by reasoning as in Proposition 2.6, we get that there exists a constant
C = C(m) > 0 such that P(E,) < C for every n. Then, as it is proved in [12, Proposition 2.1], there
exists C’ = C’(m) > 0, depending on C and m, such that sup, |E, N Bi(x)| > C’. Using these facts,
reasoning as in [13], it is possible to show existence of generalized minimizers both for (2.14) and
(2.15), for every value of m > 0.

3. Properties of the limit functional

In this section we analyze the main properties of the limit functional . Note that, since it is
obtained as a I'-limit, it is naturally lower semicontinuous with respect to L' convergence.

First of all we observe that by the representation of H in (2.2), for every E with finite perimeter
there holds

—wa P(E) - dw|E| < H(E) < f f =0 YO ag ) + dwo Bl GB1)
& E J(EAH-(y))NB1(y) lx =yl

1
< f f —dxdH* (y) + dwy|E|.
& E J(EAH-(y))NB1(y) lx — yl

We start with a compactness property in L' for sublevel sets of 4, which follows from a lower
bound on H in terms of the perimeter.

Proposition 3.1. Let E C R? be such that H(E) < C. Then there exists a constant C’ depending on
C,|E|, d such that P(E) < C'.

In particular, if E, is a sequence of sets such that H(E,) < C, then there exists a limit set E of finite
perimeter such that H(E) < C and E, — E in LlloC as n — +oo, up to a subsequence.

Proof. By Lemma 2.5, for s € (0, 1) there holds

1
F(E) < H(E) - ff —————dxdy < H(E) < C.
EJENB) X =V

The estimate on P(E,) then follows by Proposition 2.6.
The second statement is a direct consequence of the lower semicontinuity of /, and of the local
compactness in L' of sets of finite perimeter. O
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We point out the following rescaling property of the functional H, the will allow us to consider only
sets with diameter less than 1.

Proposition 3.2. For every A > 0 there holds
HAE) = A7'H(E) — wy_1 297" log AP(E). (3.2)

Proof. We observe that for every R > 0, with the same computation as in (2.8) we get

(y—x)'V()’)d B (Y—x)'V()’)d Iy = x) - v(y)l
d+s X = d+s X d+s d)C
EnBpy) X =) H-nBr() X =V (EAH-()Br) X~ )

_ R'™ |y — x) - v(y)|
-y (EAH-(y))NBR() lx — yl**

Therefore, arguing as in Proposition 2.4, we can show that HH(E) can be equivalently defined as follows,
forallR >0

H(E) = — wy_P(E)(1 + logR) + f f dedﬂd—l(y) (3.3)

(EAH-(y))NBR() |x — yld+t

f f (y x) V()’)d dﬂd—l(y).
& E JE\Bgr(y) |x — yl@+!

This formula immediately gives the desired rescaling property (3.2). O
Now, we identify some classes of sets where H is bounded.
Proposition 3.3. Let E be a measurable set with |E| < +oc0 and P(E) < +co.

1. If OE is uniformly of class C'® for some a > 0, then H(E) < +co.
2. If E is a convex set then, for every s € (0, 1), there holds

H(E) < @ H,(E,y)dH" ' (y) — wys1P(E) (% + log(diamE))

OFE

where diamE := sup, . |x — y|, and Hy(E,y) is the fractional mean curvature of E at y, which is

defined as
H,(E, ) ::f Xri\£(X) _XF(X)dx,
Rd |x — yld+s

in the principal value sense.

Proof. (1) If E is uniformly of class C'“, then there exists > 0 such that for all y € dE, OE N B, (y)
is a graph of a C'* function &, such that IVAllcoaes; ) < C, for some C independent of y. Up
to a rotation and translation, we may assume that y = 0, £(0) = 0 and VA(0) = 0 and moreover
—CIX'|""* < h(x’) < C|x’|'"* for all X’ € B;. Therefore recalling that E N B, = {(x, x4) | x4 < h(x")}
and that H=(0) = {(x, x4) | x4 < 0}, there holds

(EAH™(0)) N B, C C, :={(x',x2) | = CI¥'|""™ < x4 < CIX'|"**, || < ;.
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We compute

f Ly f L+ f L ix
—dax = —dax -
(EAH-(0))NB; | x| (EAH (0)NB, | x| (EAH(0)N(B1\By) | x|

1 1 1
< —dx+ = f f f — dx
fc,, |x| 2 Js\s, IXI |’ I" B\B, 1Kl

x| 1 2Cd - Dwg_n* 1
o ol dx’ — EddeOg(n/\ 1) = " 17 _ Edwdlog(ﬂ/\ 1).

<2C

Then, recalling (3.1) we get that
(2C(d — Dwg_1n”

H(E) < - %dwd log(n A 1)) P(E) + dwy|E| < +c0.

(2) Let R = diamE. Then by (3.3), we get
H(E) = —wa1P(E)(1 +10gR) + f f |y = %) - vyl
0

(EAH-(y))NBg(y) |x — y|d+1

1
< —(Ud_lp(E)(l + 10gR) + f f ddxdq_{d—l(y)
E JEAH-()nBx(y) X — )

N

R
< —wa P(E)(1 +logR) + f f ———dxdH"(y).
& E J(EAH-(y))NBR(y) lx =yl

By convexity for every y € 0"E, recalling that E C Bg(y), there holds

R R’ Xr\E(X) = YE(X)
d+s dx = — d+s dx
(EAH=(y))NBR(y) lx — yl 2 Br(y) lx — yl

RS R’ 1 R’ dwy
= —HyE,y)— — f ———dx=—H|E,y) — —
2 2 Rd\BR(y) |.x - y|d+s 2 2S

T dxdH T (y)

Therefore, substituting this equality in the previous estimate, we get

N

H(E) < % H(E, y)dH" ' (y) — ws1P(E)(1 + logR) — %P(E).
O*E S

Remark 3.4. Note that by Proposition 3.3, H(Q) < +co for every cube 0= Hd _,lai, bi].
Indeed for y € 0°Q, there holds that H(Q,y) ~ —+—— for s € (0,1) and so

(d(y.(00\6* Q)
Jp o H(Q-MAHE! () < +o0.

Finally we provide some useful equivalent representations of the functional H.

Proposition 3.5.
(i) Let E be a set with finite perimeter such that H(E) < +oco. Then
dwd—l
E) = P(E
H(E) -1 (E)
~lim [ f f YOV YD) a1 ) d 4 ) + 1 1og PUE) .
§-0" | d =1 Jog Jorm\By(y) 1X — VI
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ii) Let E be a compact set with boundary of class C*. Then
(ii) D ry

_ 1 (V()C) B V(y))z d—1 d—1 d(l)d 1
H(E) = Lf M7ﬂfwjﬁw (dH () = ZZP(E)

il o
ok Joe |x — )’|‘]Z1

Iy x|
+ f H(E, X)V(x)d_? log |x — YldH* (x)dH(y).
OE JOE ly —

((d— Dlog lx =yl = DAH () dH " (y)

- v(x)

Proof. (i) If the diameter of E is less than 1, then E \ B;(y) = 0 for all y € dE, and so

HE)=-wrpE)+ [ [ =9 YO g ),
& E J(EAH-(y))NB1(y) |x =yl

Using that

dw(‘@)):@‘””@
d=1"\|x—yp! o =yl

we compute the second inner integral for y € 0*FE, recalling that E C B,(y),

Iy — %) - v(y)l
d+1 dx
(EAH-(y))NB1 (y) lx =yl
_ »y—x)-v(©) O —x)-v©)
= Tyt P Tyt
H-O\E)NBy(y)  1X =V EH-y X =)
=1lim

. y—x)-v(y) »y—x)-v(©)
[ d+1 dx - d+1 dx]
=0t JE-o\ENBoNBs) X~ VI EH-ON\Bs) X =)

:lim[—L f V(x)'v(y)dﬂd ")+ —— ! f v(x) - v)dH (x)
d =1 Jop,oynn-o)

-0t d =1 Jappyy [x— 1!
1 1 1
+— — dHT'(x) - — f v(x) - v()dH (x)].
d =1 Jor-yn@onssm X = ! 61 Doy ;aE) ]
Now we observe that
1 1
lim —— f V(x) - vO)IdH (x) < lim — f dH" (x)
-0 01 Jopsonc-mak) =0 67 JaBy(y)n(H-()AE)
= lim dH* ' (x) =0

020 Jop n(H-()at52)

since, for y € 0*FE, there holds that (Ef;y) — H™(y) locally in L' as § — 0, see [14, Thm I1.4.5].

We compute
1 _ 1 _ Wy-1
— v(x) - vO)dHE (x) = —— f xgdH (x) = -
d =1 Jopyo-o) d=1J e d-1
and
1 1 1 1
_— ——dH (%) = — dx' = —wy_1 logé.

d =1 Jor-ynmonssoy X = 1! d—=1Jg\g ¥
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Therefore
H(E) = — ‘2“’" IP(E)
- hm f f LVd(_x])dfﬂd-l(x)d(Hd—l(y) + wy_1 log 5P(E)].
5—’O+ d-1 o Jor ey X —

If OF has diameter greater or equal to 1, we obtain the formula by rescaling, using (3.2).
(i1) Letus fix y € dF and define for all x € 0E, x # y, the vector field

1
N = flx—yW—x)  where f(r) i= —=r

By the Gauss-Green Formula (see [14, [.11.8]), for 6 > O there holds

1
— div,.n(x)dH" (x)
d =1 Jop\s,0)

) f HE, 3(3) - nd e () + —— f n(x) - —— L dH2(x)
OE\B;(y) d-1 OBs5(y)NOE lx =yl

= f H(E, x)v(x) - n(x)dH" (x) — wy_; log §
OE\B;(y)

where div,7(x) is the tangential divergence, that is div,n(x) = divi(x) —v(x)" Vi(x)v(x). Therefore
integrating the previous equality on 0F, we get that

wy-1 10g 6P(E) = f f H(E, x)v(x) - n(x)dH" " (x)dH" ™" (y) (3.4)
OE JOE\Bs(y)

L f f div () dH (x)dH ().
=1 Joe Jor\Bs)

Now we compute
diven(x) = trVn(x) — v(x)" Vi(ov(x)

E —tr(f(lx—yl)l +F(x =Dl — Y @ 2 x)
lx—yl |x-y

+ ()" (f(lx — WD+ £/ (Jx = yDlx — yI > oo )v(x)
lx =yl |x=yl

_ 2
= —f(lx = ¥)d = £(1x = yDlx =yl + flx =y + f/(1x = y)lx = ] ‘ |§ - ; - v(x)

1 1—(d—1)10g|x—y|'
|x — yld-1 [x = yl=1) y—x

where we used the equality rf’(r) = rd%l —d-1Df(r) = #ﬂbgr.

If we substitute this expression in (3.4) we get

Wy, 10g SP(E) = f f HE. V) 0 =0 |1 ydHe (odH ()
OE JOE\Bs(y)

|x — yld-1
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1 f f 1 d-1 d-1
————dHT (X)dH (y)
d-1 OE JOE\B;s(y) |X - )’|d_l

1 1-d-1)1 — — 2
- —f f @-1 ;_% =)l ‘ A -v(x)‘ dH (x)dH ().
d—1 Jse OE\Bs(y) lx — yl“=h) ly — x|

The conclusion then follows by substituting w,_; log SP(E) with the previous expression in the
representation formula obtained in (i), and observing that 1 — v(x)v(y) = (v(x) — v(y))?/2.

+
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