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Abstract. This paper proves new regularity estimates for continuous soluti-
ons to the balance equation

∂tu + ∂xf(u) = g g bounded, f ∈ C2n(R),

when the flux f satisfies a convexity assumption that we denote as 2n-convexity.

The results are known in the case of the quadratic flux by very different ar-

guments in [14, 10, 8]. We prove that the continuity of u must be in fact
1/2n-Hölder continuity and that the distributional source term g is determi-

ned by the classical derivative of u along any characteristics; part of the proof

consists in showing that this classical derivative is well defined at any ‘Lebes-
gue point’ of g for suitable coverings. These two regularity statements fail in

general for C∞(R), strictly convex fluxes, see [3].

1. Introduction. This paper is part of a series of papers concerning the interplay
among the Lagrangian and Eulerian formulation for solutions of balance laws with
a bounded source term

∂tu+ ∂xf(u) = g g bounded, f ∈ C2n(R). (1.1)

The fact of considering continuous solutions is motivated by the idea that the source
term g might act as a control device preserving continuity, differently from the case
of conservation laws. Indeed the analysis of continuous solutions might be an in-
termediate step even when more regularity is proved to hold in the end, see for
instance [11, 16]. In the case of the quadratic flux, when considering the Cauchy
problem with an Hölder continuous initial datum, one can indeed construct conti-
nuous solutions for all times, see [14]. There are interesting contributions, like the
last one just mentioned, coming from sub-Riemannian geometry because relevant
geometric objects in modeling surfaces have been related to balance laws, see for
instance [5, 24]. Studying the structure and the regularity of continuous solutions
when the source is bounded is also interesting as a toy problem for more complex
situations, e.g. developing the physically relevant program of determining the struc-
ture of distributional solutions for unbounded sources, see [7] as a progress in this
direction.

By ‘Eulerian’ solution we just mean here a distributional solution. Even if the
entropy condition does not play any role in the analysis of this paper, we recall [2]

2000 Mathematics Subject Classification. Primary: 35L60, 37C10, 58J45.
Key words and phrases. Continuous solutions, entropy solutions, balance laws, Lagrangian
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the intuitive but nontrivial fact that continuous distributional solutions of (1.1) are
indeed Kružkov entropy solutions [18]. We also recall [2] that continuous Eulerian
solutions are ‘Lagrangian’ in the following sense: they satisfy a transliteration of
the infinitely dimensional system of ordinary differential equations

d

dt
γ(t) = f ′(u(t, γ(t))) γ(0) = x0 ∈ R

d

dt
u(t, γ(t)) = g(t, γ(t))

(1.2)

which in the smooth setting arises by reducing the balance law along characteristic
curves, see [2, Definitions 5;12] for a precise definition. In this reduction, a point
which was not fully clear in [2] is the correspondence among the source term g and
its ‘restriction on characteristics’ which appears in the formulation in ordinary dif-
ferential equations: as g is defined L2-a.e. this restriction on curves in the plane is
fairly nontrivial. Under general assumptions, a compatibility statement ensures [3]
that one can pointwise select a Borel function g good for both the formulations.
Nevertheless, g is not fully determined by the classical derivative of u along cha-
racteristics even if f ∈ C∞ is strictly convex: [3] contains a counterexample. We
prove here that, if f is α-convex as defined below, the classical derivative of u along
characteristics does determine g: (a) L2-a.e. points of the plane are Lebesgue points
of g, for suitable coverings, and (b) at those Lebesgue points the classical derivative
of u along characteristics exists and it is equal to that Lebesgue value. We thus
extend the known case of the quadratic flux [14, 10, 8].

Aim of this paper is indeed proving new regularity estimates for continuous solu-
tions to balance equations (1.1) when the flux f satisfies the following α-convexity
assumption.

Definition 1.1. Let α > 1. A function f : R → R is α-convex at v if there exist
ε, c > 0 and ` ∈ R such that for |z − v| < ε one has

f(z)− f(v)− (z − v)` > c|z − v|α.
We say that f is α-convex if f is α-convex at every point of its domain, with ε, c
independent of the point. In particular, an α-convex function is convex. When
α = 2 and f ∈ C1(R) we recover uniform convexity.

We state now the main theorem of this paper assuming α-convexity of the flux
for α = 2n, with n ∈ N. It will be described in more detail in the next sections.

Theorem 1.2. Let g be a bounded Borel function on R2. Let f ∈ C2n(R) satisfy
Definition 1.1 of 2n-convexity and let u be a continuous distributional solution of

∂t u(t, x) + ∂x (f(u(t, x))) = g(t, x). (1.3)

Then

1. u is 1
2n -Hölder continuous and

2. at L2-a.e. (t, x), u is differentiable along any characteristic curve through (t, x)
with derivative g(t, x).

Property 2. in the above statement is of importance for the correspondence of the
sources among the Eulerian formulation (1.1) and the Lagrangian formulation (1.2)
of the balance law. We stress again that Point 2. is highly nontrivial: it fails in
general if the flux is only strictly convex rather than 2n-convex. If f ∈ C∞(R) is
strictly convex, indeed, but not 2n-convex for any n ∈ N, it might still happen [3]
that there is a compact set K ⊂ R2, with L2(K) > 0, which is made of points (t, x)
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where u is not differentiable along characteristics, whichever characteristic is chosen.
When u is not differentiable along characteristics at points belonging to K, possible
if f is strictly convex, then it is not evident how to determine the distributional
source term for (1.1) given the derivative of u only along characteristics: on the
non-negligible set K there is no obvious candidate value! Even when the flux is
quadratic there might be [3] a continuous solution u which admits a non-negligible
compact set K, L2(K) > 0, which intersects each characteristic curve in at most a
single point. Nevertheless, Point (2) of Theorem (1.2) states that u is differentiable
L2-a.e. along characteristics also at points belonging to K: the natural candidate for
the distributional source term is thus the classical derivative along characteristics.

Theorem 1.2 is know for the quadratic flux in the context of sub-Riemannian ge-
ometry. Differentiability L2-a.e. was proved [14], and the strong approximation [10]
is now available. The Hölder continuity was shown in [9, 8] for f(z) = z2. We in-
clude the proof here, as well, for a broader presentation. Local Lipschitz-regularity
can be proved where f ′(u(t, x))f ′′(u(t, x)) 6= 0 only for autonomous sources [1].

In § 2 we discuss how continuity improves to 1/α-Hölder continuity when f ∈
C1(R) is α-convex. In § 3 we discuss the classical differentiability of u along cha-
racteristic curves and how it identifies g.

2. Rough Hölder continuity estimate. We derive in this section a rough Hölder
continuity estimate. The estimate we derive is rough because it is known for the
quadratic flux [14, 10, 8] that, for L2-a.e. (t, x) fixed, the quotient among the in-

crement |u(t, x) − u(t′, x′)| and the distance
√
|t− t′|+ |x− x′| converges to 0 as

(t′, x′) → (t, x). Here we prove that, if u is a continuous solution to the balance
law (1.1) in a connected open set O and the flux f ∈ C1(R) is α-convex, then u is
1/α-Hölder continuous on compact subsets of O. The proof follows [9, 8] relative to
the quadratic flux. We do not have any pretense of establishing an optimal constant
of Hölder continuity and we do not enter in a finer pointwise analysis.

As a preliminary observation, we shall indeed remark that the subject of this
section is not completely local in the following sense. If one has that u is a continuous
solution to (1.3) in a connected open set O, then one cannot in general obtain the
estimate in Theorem 2.1 below with the same constant ‖g‖L∞ in the right hand
side: the constant ‖g‖L∞ in the right hand side of Theorem 2.1 below is deduced
when O = R2. It shall be replaced by a bigger constant close to boundaries—or it
otherwise holds for x1, x2 sufficiently close to each other on compact subsets of O.

For keeping the exposition in this paper as simple as possible, we avoid to give
the full definition [2, Definitions 5;12] of Lagrangian continuous solution of (1.1).
We just stress that Lagrangian solutions, for fluxes whose set of inflection points
is negligible in the sense of [2, Assumption (H) in § 1.2.2], satisfy the following
property which in the general case defines the stronger notion of Broad solutions:

if γ is a characteristic curve of u in (1.1) ∃ d

dt
u(t, γ(t)) = ĝ(t, γ(t)) in D (R)

for a suitable Borel function ĝ, independent of γ, which satisfies ‖g‖∞ ≤ ‖g‖∞.
In Section 3 we prove that when f is α-convex then the above property necessarily
defines the Borel function ĝ L2-a.e. and it moreover defines precisely the distribution
g; this is not the case in general even for C∞, strictly convex fluxes [3]. For the rest
of this section, we determine the Hölder continuity of u.

Theorem 2.1. Assume f ∈ C1(R) is strictly convex. Then a continuous distri-
butional solution u in R2 of the conservation law (1.3) satisfies for all x1, x2, t the
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Figure 1. Proof of a rough Hölder continuity estimate of u

inequality

f(u(t, x1)) + f(u(t, x2))− 2f

(
u(t, x1) + u(t, x2)

2

)
≤ ‖g‖L∞ |x2 − x1|.

Proof. As in [9, 8] about Hölder continuity, the proof is based on the Taylor expan-
sion of the characteristic curves, that however we apply here differently.

We fix the attention on the case

t = 0, x1 < x2, u1 := u(0, x1) > u(0, x2) =: u2, G := ‖g‖L∞ .

This assumption is not restrictive: the case when u(0, x1) < u(0, x2) can be similarly
obtained by considering negative rather than positive times, while the case when
x1 > x2 follows by exchanging the indexes 1 and 2; finally, setting t = 0 is of
course a convenient notation but it does not play any mathematical role. Let γ1, γ2

be characteristic curves respectively through (0, x1), (0, x2). Denote by iγi(s) the
injection (s, γi(s)), for i = 1, 2. The characteristic curves can be written in integral
form as

γi(t) = xi +

∫ t

0

γ̇(s)ds = xi +

∫ t

0

f ′(u(iγi(s))ds, ∀i = 1, 2.

Remember moreover that, by the Lipschitz continuity along characteristics [2, The-
orem 30],

ui −Gs ≤ u(iγi(s)) ≤ ui +Gs ∀s ≥ 0 ∀i = 1, 2. (2.1)

Applying then the monotonicity of f ′(z), which follows by the convexity hypothesis
on f ,

xi−
f(ui −Gt)− f(ui)

G
= xi +

∫ t

0

f ′(ui −Gs)ds

≤ γi(t)

≤ xi +

∫ t

0

f ′(ui +Gs)ds = xi +
f(ui +Gt)− f(ui)

G
.

(2.2)

The exploitation of monotonicity, as for Lagrangian parameterizations in [2, 3], is
motivated by [6].

If the two curves γ1, γ2 do not intersect up to time t (Figure 1, on the left), then
the lower bound for γ1 must be less than the upper bound for γ2 and we find the
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inequality

Gx1 − [f(u1 −Gt)− f(u1)] < Gx2 + f(u2 +Gt)− f(u2).

In particular, if they do not intersect before t = u1−u2

2G one has the thesis:

Gx2 −Gx1 ≥ f(u1) + f(u2)− f(u1 −Gt)− f(u2 +Gt)

= f(u1) + f(u2)− 2f

(
u1 + u2

2

)
.

If instead γ1, γ2 intersect at some time t (Figure 1, on the right), then by the
tangency condition, by (2.1) and by the monotonicity of f ′ one has

f ′(u1 −Gt) ≤ f ′(u(iγ1(t))) = f ′(u(iγ2(t))) ≤ f ′(u2 +Gt),

which by the strict convexity of f implies

u1 −Gt ≤ u2 +Gt.

In particular, t = u1−u2

2G is the first possible time of intersection, achieving the
thesis.

Corollary 2.2. Assume f ∈ C1(R) satisfies Definition 1.1 of α-convexity when
restricted to the image of a continuous distributional solution u of (1.3). Then

u ∈ C1/α
loc (R2).

Proof. The proof is divided into two steps similar to [9, 8]. We first prove that
a continuous Lagrangian solution u of (1.3) is locally 1/α-Hölder continuous on
t-sections. We then prove that it is 1/α-Hölder continuous as a function of two
variables.
1: Study of t-sections. By the inequality of Theorem 2.1 one has that for all x1, x2, t

f(u(t, x1)) + f(u(t, x2))− 2f

(
u(t, x1) + u(t, x2)

2

)
≤ ‖g‖L∞ |x2 − x1| .

Being continuous, u is uniformly continuous on compact sets: for every compact set
K ⊂ R2 and ε > 0, let ω(ε;K) be a ε-modulus of continuity for u in space, at any
fixed time t, on the compact set K. We mean that

(t, x1), (t, x2) ∈ K, |x2 − x1| ≤ ω(ε;K) ⇒ |u(t, x1)− u(t, x2)| ≤ ε .

By the α-convexity assumption of Definition 1.1, one has that if u1, u2 ∈ R belong
to the image of a continuous Lagrangian solution u of (1.3) and if |u1−u2| ≤ ε then

f(u1) + f(u2)− 2f

(
u1 + u2

2

)
=

= f

(
u1 + u2

2
+
u1 − u2

2

)
− f

(
u1 + u2

2

)
�����������

−u1 − u2

2
f ′
(
u1 + u2

2

)
+ f

(
u1 + u2

2
+
u2 − u1

2

)
− f

(
u1 + u2

2

)
�����������

−u2 − u1

2
f ′
(
u1 + u2

2

)
≥ 2c

∣∣∣∣u1 − u2

2

∣∣∣∣α
Collecting the information, we conclude that if

|x2 − x1| < ω(ε;K) and (t, x1), (t, x2) ∈ K
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then

f(u(t, x1)) + f(u(t, x2))− 2f

(
u(t, x1) + u(t, x2)

2

)
≥ 2c

∣∣∣∣u(t, x1)− u(t, x2)

2

∣∣∣∣α .
Together with the inequality of Theorem 2.1 we obtain the local 1/α-Hölder con-
tinuity estimate of the t-sections on the compact K: if

(t, x1), (t, x2) ∈ K, |x2 − x1| ≤ ω(ε;K)

then

|u(t, x1)− u(t, x2)| ≤ 2
α

√
‖g‖L∞

2c
α
√
|x2 − x1|. (2.3)

2: Study in R2. The Hölder continuity of u in the two variables follows as in [9, 8]

combining estimate (2.3) on t-sections, which are horizontal lines, with the Lipschitz
continuity estimate of u along characteristic curves, as characteristic curves cannot
have horizontal tangent. In formulae, consider (t1, x1), (t2, x2) ∈ [−M,M ]2 for
some M > 0. We term x12 the point where a characteristic curve γ through (t1, x1)
intersects the coordinate line t = t2: setting λ := f ′(u) we obtain

γ(t1) = x1, γ(t2) = x12, γ̇(t) = λ(iγ(t)).

Below, we now apply: •Hölder continuity on the t2-section for estimating |u(t2, x2)−
u(t2, x12)| and • Lipschitz continuity along γ for estimating |u(t1, x1)− u(t2, x12)|.

We first need to check that the points (t2, x2), (t12, x12) belong to a same compact
[−M −L,M +L]2, where ‖λ‖∞ = L, and that |x2−x12| ≤ ω(ε; [−M −L,M +L]2).
Since |λ| ≤ L, the differential condition of being a characteristic curve implies

|x12| =
∣∣∣∣x1 +

∫ t2

t1

γ̇

∣∣∣∣ ≤ |x1|+ L|t2 − t1|,

|x2 − x12| =
∣∣∣∣x2 − x1 −

∫ t2

t1

γ̇

∣∣∣∣ ≤ |x2 − x1|+ L|t2 − t1|.

In particular, if

|x2 − x1|+ L|t2 − t1| ≤ ω(ε; [−M − L,M + L]2), |t1 − t2| ≤ 1 ,

then necessarily

|x12| ≤ |x1|+ |x1 − x12| ≤M + L|t1 − t2| ≤M + L ,

(t2, x12) ∈ [−M − L,M + L]2 ,

|x2 − x12| ≤ |x2 − x1|+ L|t2 − t1| ≤ ω(ε; [−M − L,M + L]2) .

We recall from [2, Theorem 30] that u ◦ iγ is G-Lipschitz continuous. The es-
timates we just made in this step show that we can apply the Hölder continuity
on the t2-sections, provided by previous step, with the choice of the compact set
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K = [−M − L,M + L]2: by the triangular inequality we get then

|u(t1, x1)− u(t2, x2)| ≤ |u(t1, x1)− u(t2, x12)|+ |u(t2, x12)− u(t2, x2)|

≤ G|t2 − t1|+ 2
α

√
‖g‖L∞

2c
α
√
|x2 − x12|

≤ G|t2 − t1|+ 2
α

√
‖g‖L∞

2c
α
√
|x2 − x1|+ L|t2 − t1|

≤

(
G
α
√
L

+ 2
α

√
‖g‖L∞

2c

)
α
√
|x2 − x1|+ L|t2 − t1|.

We therefore find the following. If (t1, x1), (t2, x2) ∈ [−M,M ]2 for some M > 0 and
if ε > 0, then

|x2 − x1|+ L|t2 − t1| ≤ ω(ε; [−M − L,M + L]2) ≤ 1, |t1 − t2| ≤ 1

implies that

|u(t1, x1)− u(t2, x2)| ≤

(
G
α
√
L

+ 2
α

√
‖g‖L∞

2c

)
α
√
|x2 − x1|+ L|t2 − t1|.

Notice that we are using as a modulus of continuity in the two variables on the
compact set [−M,M ]2 precisely the modulus of continuity ω, introduced in the
previous step for the t-sections, on the larger square [−M − L,M + L]2. This
concludes the proof of the local 1/α-Hölder continuity of u because |x|+L|t| defines
a norm on R2 equivalent to the Euclidean one.

Example 2.3. We remind the well-known, classical example u(t, x) =
√
|x|, which

satisfies

∂t u(t, x) + ∂x (u2(t, x)) = 1.

We notice that the Hölder estimate on the t-sections (2.3) cannot be lowered in this
example if one of the two points is the origin, as in this example c = α = 2 and
‖g‖L∞ = 1: for the two points x2 = x, x1 = 0 estimate (2.3) reduces precisely to

|u(t, x2)− u(t, x1)| = |u(t, x)− u(t, 0)| =
√
|x| = 2 α

√
‖g‖L∞/2c α

√
|x2 − x1|.

3. Lebesgue differentiation theorem with characteristic regions. In this
section we aim at showing that the distributional source term is the classical deriv-
ative along characteristics, when u is a continuous distributional solution to (1.1)
with a smooth 2n-convex flux as in Definition 1.1. More precisely, we provide coun-
tably many Vitali coverings of R2 such that if (t, x) is a Lebesgue point of the
distributional source term for all these coverings, then u is differentiable at (t, x)
along characteristic curves with derivative given by the Lebesgue value of the dis-
tributional source. For f(z) = z2/2 an alternative proof is available [14, 10, 8], and
a third line of proof was pointed out by Stefano Bianchini (Taipei, 2012).

The section is organized as follows:

§3.1: We make clear what we mean by ‘Lebesgue value’ and which coverings we
consider.

§3.2: We prove a differentiation theorem at ‘Lebesgue values’ for the coverings spe-
cified in §3.1. This differentiation theorem identifies Lagrangian and Eulerian
source terms. We show that for uniformly convex fluxes L2-a.e. point is a
‘Lebesgue value’.
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§3.3: We show that if the flux f ∈ C2n(R) is 2n-convex, then there are at most
countably many exceptional values {v̄k}k∈N where f ′′ might vanish. We prove
then the differentiation theorem for the covering of § 3.1 also of the set where
f ′′ vanishes. In particular, we identify Lagrangian and Eulerian source terms
also on this remaining set.

This brings us to the following conclusion, which will be better explained in the
subsections.

Theorem 3.1. Suppose f ∈ C2n is 2n-convex in the sense of Definition 1.1 for
some n ∈ N. Let g = [g] ∈ L∞(R2) be the equivalence class of functions L2-a.e. equal
to the Borel function g. If u is a continuous solution to the balance law (1.1), then
L2-a.e. point is a Lebesgue point of g in the sense of (3.13) below. At those points
(t, x) where (3.13) holds one has

∃ d

dt
u(t, γ(t))|t=t ≡ g(t, γ(t)) for all γ characteristic curve of u with γ(t) = x.

The proof of the above Theorem is given in Lemma 3.5 below for n = 1 and in
Lemma 3.8 below for n > 1.

3.1. Lebesgue values. We now specify the coverings of R2 that we consider when
we talk later on of Lebesgue values of a function, and in particular of the source term
in (1.1). The coverings are indexed by a parameter ρn ↓ 0 with n ∈ N, and they
would degenerate to pieces of characteristic curves of (1.1) if we had rather fixed
ρ = 0. Each covering is made by compact sets which are ‘flow tubes’: two edges
are space segments, say of length ρnδ, and the other two edges are given by any
characteristic curve of (1.1) and its translation, with a fixed amount of time equal
to δ1/α as the eight. These kind of regions resembles ‘characteristic regions’. This
covering is of course devised taking into account the α-convexity of f for passing
to the limit when expressing the PDE (1.1) in an integral form over these regions:
this limit is matter of Sections 3.2, 3.3.

For fixed 0 < ρ < 1 < α, consider the following family of subsets of R2 (Figure 2):

Vρα :=
{
S±,ρ`,α (γ, ε, σ), S±,ρr,α (γ, ε, σ)

∣∣
γ ∈ C1(R) : γ̇(t) = f ′(u(t, γ(t))), ε > 0, σ ∈ R

}
,

(3.1)

S+,ρ
r,α (γ, ε, σ) := {(t, x) : σ ≤ t ≤ σ + ε, γ(t) ≤ x ≤ γ(t) + ρεα} , (3.2)

S−,ρr,α (γ, ε, σ) := {(t, x) : σ − ε ≤ t ≤ σ, γ(t) ≤ x ≤ γ(t) + ρεα} , (3.3)

S+,ρ
`,α (γ, ε, σ) := {(t, x) : σ ≤ t ≤ σ + ε, γ(t)− ρεα ≤ x ≤ γ(t)} , (3.4)

S−,ρ`,α (γ, ε, σ) := {(t, x) : σ − ε ≤ t ≤ σ, γ(t)− ρεα ≤ x ≤ γ(t)} , (3.5)

Sρα(γ, ε, σ) := S−,ρr,α (γ, ε, σ) ∪ S−,ρ`,α (γ, ε, σ) ∪ S+,ρ
r,α (γ, ε, σ) ∪ S+,ρ

`,α (γ, ε, σ) . (3.6)

For brevity, we will at some occurrences omit the indexes ρ, α from the above sets.
Define also the following quasimetric: for all points A,B ∈ R2 set

dα(A,B) =


min

{
ε ∈ [0, 1] | ∃σ, ∃γ characteristic curve : A,B ∈ Sαρ (γ, ε/2, σ)

}
or

1 if the set in the above minimum is empty.

We can indeed assume that the minimum exists in the first branch of the definition
of dα because we defined the regions Sαρ as compact sets.
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σ + ε

σ − ε
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r
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γ(t) + ρεαγ(t)− ρεα

Sρα

Figure 2. Balances on characteristic regions

Lemma 3.2. Let f ∈ W 2,∞(R). Let α ∈ [1, 2] and ρ > 0. If u is 1/α-Hölder
continuous, the function dα is a quasimetric in R2 in the sense that the following
properties hold:

1. dα(A,B) = 0 if and only if A = B,
2. dα(A,B) = dα(B,A) for all points A,B ∈ R2,
3. there exists q = q(α, ρ) > 1 such that

dα(A,B) ≤ q [dα(A,C) + dα(C,B)] for all points A,B,C ∈ R2.

Moreover, the quasimetric dα is doubling: there exists C = C(α, ρ) > 0 such that

L2({B : dα(A,B) ≤ 2ε})
L2({B : dα(A,B) ≤ ε})

≤ C ∀A ∈ R2, ∀ε ∈
(

0,
1

2

)
and such that for every curve

γ̄ through a point A = (tA, xA), with ˙̄γ(t) = f ′(u(t, γ̄(t))),

one has

Sρα (γ̄, ε, tA) ⊂ {B : dα(A,B) ≤ 2ε} ⊂ Sρα (γ̄, C ε, tA) . (3.7)

We refer to the reference [15, § 14.1] concerning doubling measures on quasime-
tric spaces. Before proving the statement of Lemma 3.2, we point out below an
elementary estimate that provides insights on the geometry induced on the plane
by characteristic curves of (1.3). This estimate is indeed crucial in order to have
that dα provides a doubling quasimetric.

Lemma 3.3. Let 1 < α ≤ 2. Let ω̄ be a modulus of 1/α-Hölder continuity of a
distributional solution u to (1.3) and set M = ‖f ′′(u)‖L∞ . Consider two integral
curves γ1 ≤ γ2 of f ′(u): the distance d = γ2 − γ1 satisfies for |t| ≤ t̄ in (3.9)(

d(0)
α−1
α −

(
α− 1

α

)
Mω̄t

) α
α−1

≤ d(t) ≤
(
d(0)

α−1
α +

(
α− 1

α

)
Mω̄t

) α
α−1

.
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Proof. By the definition of characteristic curves and the Hölder continuity in Corol-
lary 2.2,

|ḋ(t)| = |f ′(u(t, γ2(t)))− f ′(u(t, γ1(t)))| ≤Mω̄[d(t)]
1
α . (3.8)

Integrating the ordinary differential equation (3.8) one proves the statement. If
α ∈ (1, 2] the two curves cannot collide before

t̄ =
αd(0)

α−1
α

(α− 1)Mω̄
>

1

(α− 1)Mω̄
d(0)

1
α when d(0) < 1. (3.9)

Proof of Lemma 3.2. Properties (1), (2) are immediate. We prove (3) and the dou-
bling estimate. Set A = (tA, xA), B = (tB , xB) and C = (tC , xC).
1: Proof of (3). If dα(A,C) + dα(C,B) ≥ 1 the thesis holds trivially: we only

study the other case. Define

dα(A,C) = ε > 0, dα(C,B) = η > 0, ε+ η = ξ < 1. (3.10)

Since ε < 1 and η < 1, there exist σ1, σ2 > 0 and integral curves γ1, γ2 of f ′(u) such
that

A,C ∈ Sρα(γ1, ε/2, σ1), C,B ∈ Sρα(γ2, η/2, σ2).

We directly suppose γ1 ≤ γ2, as one can easily reduce to this case. Necessarily

|tC − tA| ≤ ε, |tB − tC | ≤ η ⇒ |tB − tA| ≤ ε+ η. (3.11)

Comparing the x-variable is trickier and we apply the estimate from Lemma 3.3
above. By definition of Sρα(γ1, ε/2, σ1) and Sρα(γ2, η/2, σ2), at time tC one has

|γ1(tC)− xC | ≤ ρ
(ε

2

)α
, |γ2(tC)− xC | ≤ ρ

(η
2

)α
from which we obtain, since we defined ξ = ε+ η = dα(A,C) + dα(C,B) in (3.10),
the estimate

|γ1(tC)− γ2(tC)| ≤ ρε
α + ηα

2α
≤ ρ

(
ξ

2

)α
.

By Lemma 3.3 above and estimates (3.11) computed among times tA, tB and since
ξ ≤ 1, we get

|γ1(tA)− γ2(tA)| ≤

(
ρ
α−1
α ·

(
ξ

2

)α−1

+

(
α− 1

α

)
Mω̄ξ

) α
α−1

≤ ρ ·
(
D1ξ

2

)α
|γ1(tB)− γ2(tB)| ≤ ρ ·

(
D1ξ

2

)α
where D1 = 2

(
1 + α−1

αρ1−
1
α
Mω̄

) 1
α−1

> 1. Being also, by definition of Sρα(γ1, ε/2, σ1)

and Sρα(γ2, ε/2, σ2),

|xA − γ1(tA)| ≤ 2−αρεα, |xB − γ2(tB)| ≤ 2−αρηα

one arrives to

|xA − γ2(tA)| ≤ ρ[D1ξ]
α, |xB − γ1(tB)| ≤ ρ[D1ξ]

α.

Owing to (3.11), the last inequalities prove that dα(A,B) ≤ 2D1[dα(A,C)+dα(C,B)]
because

A,B ∈ Sρα(γ1, D1ξ, tC), A,B ∈ Sρα(γ2, D1ξ, tC).

2: Proof of the doubling estimate: estimate from above on L2({B : dα(A,B) ≤
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2ε}). Fix an integral curve γ̄ of f ′(u) through A. If dα(A,B) ≤ 2ε, there exists
an integral curve γ of f ′(u) such that

|γ̄(tA)− γ(tA)| = |xA − γ(tA)| ≤ ρεα, |xB − γ(tB)| ≤ ρεα, |tB − tA| ≤ 2ε.

Applying the estimate from above in Lemma 3.3 above one has

|γ̄(tB)− γ(tB)| ≤
(

[ρεα]
α−1
α +

(
α− 1

α

)
Mω̄ · 2ε

) α
α−1

≤ ρ (D2ε)
α
.

for a positive constant D2 = D2(ρ, α) > 1. In particular we obtain that B ∈
Sρα(γ̄, 2D2ε, tA) because

|xB − γ̄(tB)| ≤ |xB − γ(tB)|+ |γ(tB)− γ̄(tB)| ≤ ρεα + ρ (D2ε)
α ≤ ρ (2D2ε)

α
.

This yields the above inclusion in (3.7) and the estimate from above

L2({B : dα(A,B) ≤ 2ε}) ≤ L2 (Sρα(γ̄, 2D2ε, tA)) = 4(2D2)1+αρε1+α. (3.12)

3: Proof of the doubling estimate: estimate from below on L2({B : dα(A,B) ≤ ε}).
Fix an integral curve γ̄ of f ′(u) through A. Notice that by definition of dα the whole
set Sρα(γ̄, ε2 , tA) is contained in L2({B : dα(A,B) ≤ ε}): we get thus the lower
inclusion in (3.7) and

L2({B : dα(A,B) ≤ ε}) ≥ L2
(
Sρα

(
γ̄,
ε

2
, tA

))
= (2)1−αρε1+α.

4: Conclusion. Finally, one can conclude, owing to the estimate from above, that

L2({B : dα(A,B) ≤ 2ε})
L2({B : dα(A,B) ≤ ε})

≤ L
2(Sρα(γ̄, 2D2ε, tA)

L2(Sρα(γ̄, ε2 , tA))
≤ 4(2D2)1+α���ρε1+α

(2)1−α���ρε1+α = (4D2)1+α.

Corollary 3.4. Let f ∈ W 2,∞(R), α ∈ [1, 2] and fix any sequence ρn ↓ 0. At fixed
n, the dα-balls of radius 0 < ε < 1 are a Vitali covering of any open set O where
u is 1

α -Hölder continuous. Let g ∈ L∞(R2) be the equivalence class of functions

L2-a.e. equal to a Borel function g. Then on O

∃ lim
(t,x)∈S∈Vρnα

diam(S)↓0

1

L2(S)

∫
S

|g − g(t, x)| = 0 for L2-a.e. (t, x), for n ∈ N. (3.13)

Proof. Owing to Lemma 3.2, when n is fixed one can directly deduce by [23, § 1.3]
that the family of ε-balls of dα is a Vitali covering of O. The differentiation theorem
follows then at L2-a.e. point of O directly from [13, Theorem 2.9.8] for this covering.
This implies the differentiation theorem also for the covering Vρnα by (3.7). Denote
by Nn the L2-negligible set where the limit (3.13) does not hold for the fixed family
Vρnα . The limit (3.13) therefore holds for any fixed n when (t, x) ∈ O does not
belong to the L2-negligible set N = ∪n∈NNn.

3.2. Differentiation theorem at ‘Lebesgue points’. We derive now consequen-
ces of Lebesgue differentiation theorem on all the families Vρnα , n ∈ N, defined in
§ 3.1 for a sequence ρn ↓ 0: we identify in particular Eulerian and Lagrangian source
terms when f is uniformly convex.

Lemma 3.5. Let g = [g] ∈ L∞(R2) be the equivalence class of functions L2-
a.e. equal to the Borel function g. If f is uniformly convex, then any continuous
distributional solution u of

∂t u(t, x) + ∂x (f(u(t, x))) = g(t, x)
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is differentiable along any characteristic curve with derivative g(t, x) at any point
(t, x) satisfying (3.13) for some ρn ↓ 0. In particular, the thesis holds for L2-
a.e. (t, x).

Proof. We prove the thesis when f ∈W 2,∞(R) satisfies Definition 1.1 of α-convexity:
the meaningful case is the one of uniformly convex functions when α = 2. Fix ρ
belonging to a sequence ρn ↓ 0. We integrate the balance law on domains belonging
to the covering Vρα defined in (3.1), which are regions in the plane in the time-strip
between σ and τ = σ+ε obtained translating of ρεα a characteristic curve γ through
(t̄, x̄) = (σ, γ(σ)). The convexity of f provides [11] (or, more explicitly, [2, (3.1)])
the one sided estimate, if σ < τ = σ + ε,∫ γ(τ)+ρεα

γ(τ)

u(τ, x)dx−
∫ γ(σ)+ρεα

γ(σ)

u(σ, x)dx ≤
∫ τ

σ

∫ γ(t)+ρεα

γ(t)

g(t, x)dxdt.

This estimate implies, denoting by C the 1/α-Hölder continuity constant given by
Corollary 2.2, that

ρεα[u(τ, γ(τ))− u(σ, γ(σ))]− 2C

∫ ρεα

0

α
√
xdx ≤

∫ τ

σ

∫ γ(t)+ρεα

γ(t)

g(t, x)dxdt.

Divide by ρεα|τ − σ| = ρεα+1. Corollary 3.4 assures that at L2-a.e. (t̄, x̄) the right
hand side converges to the Lebesgue value g(t̄, x̄). At those points (t̄, x̄), one has

therefore for some constant C̃ = C̃(α) > 0

lim sup
τ↓σ

u(τ, γ(τ))− u(σ, γ(σ))

τ − σ
≤ g(t̄, x̄) + C̃ lim

ε↓0

(ρεα)1+ 1
α

ρεα+1
= g(t̄, x̄) + C̃ α

√
ρ.

The same upper limit can be obtained for τ ↑ σ just considering the region S−,ρr,α

instead of S+,ρ
r,α . By analogous considerations on the other regions S+,ρ

`,α , S−,ρ`,α one
gets the opposite inequality

lim inf
τ→σ

u(τ, γ(τ))− u(σ, γ(σ))

τ − σ
≥ g(t̄, x̄)− C̃ α

√
ρ.

Since we proved that at those points where (3.13) holds for every ρ ∈ {ρn}n∈N, the
inequalities

g(t̄, x̄)− C̃ α
√
ρ ≤ lim inf

|τ−σ|↓0

u(τ, γ(τ))− u(σ, γ(σ))

τ − σ

≤ lim sup
|τ−σ|↓0

u(τ, γ(τ))− u(σ, γ(σ))

τ − σ
≤ g(t̄, x̄) + C̃ α

√
ρ

also hold for each ρ ∈ {ρn}n∈N, and since ρn ↓ 0, then the limit exists with value
g(t̄, x̄).

3.3. The case n > 1. In this section we conclude the identification of the Lagran-
gian and Eulerian source terms when f ∈ C2n is α-convex for α = 2n > 2. By
Lemma 3.6 below the set of real values {v̄k}∈N where f ′′ vanishes can be enumera-
ted: in particular one has the partition

R2 =
⋃
k∈N
{(t, x) : u(t, x) = v̄k} ∪ {(t, x) f ′′(t, x) 6= 0} .

We already identified by Lemma 3.5 above the Lagrangian and Eulerian source terms
L2-a.e. on the open set where f ′′ does not vanish. The only points (t, x) where we
still need to identify Lagrangian and Eulerian source terms L2-a.e. correspond to
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the at most countably many values {v̄k}∈N where f ′′ vanishes and where (3.14)
below holds with n > 1. In order to conclude we have to identify source terms on
each set

Bv̄k := u−1(v̄k).

Lemma 3.6. If f ∈ C2(R) is α-convex with α ≥ 2 then the set of zeros of f ′′ are
isolated.

Proof. Suppose by contradiction that there exists zj → z̄ where f ′′(z̄) = f ′′(zj) = 0
for all j ∈ N. Then in particular, as a simple consequence of de L’Hôpital’s theorem,
one has

lim
j→∞

f(zj)− f(z̄)− f ′(z̄)(zj − z̄)
(zj − z̄)α

= lim
j→∞

f ′′(zj)

(zj − z̄)α−2(α− 1)α

= lim
j→∞

0

(zj − z̄)α−2(α− 1)α
= 0 .

The fact that

f(zj)− f(z̄)− f ′(z̄)(zj − z̄) = o (|zj − z̄|α) for a sequence zj → z̄

contradicts Definition 1.1 of α-convexity.

For the rest of the section, we fix a single value v̄ where f ′′(v̄) vanishes and we
study the set

Bv̄ = {(t, x) : u(t, x) = v̄} .
Due to smoothness and α-convexity, where α = 2n̄ > 2 since we consider f ′′(v̄) = 0,
the following expansion holds at v̄: f (2n)(v̄) 6= 0 for some n ∈ {2, . . . , n̄} and

f(z)−f(v̄)−(z− v̄)f ′(v̄) =
f (2n)(v̄)

(2n)!
(z− v̄)2n+o(|z− v̄|2n) when z → v̄. (3.14)

We now provide Vitali coverings ad hoc for the set Bv̄. We then show in Lemma 3.8
how this implies that the differentiation theorem holds on Bv̄ also for Vρα defined
at (3.1), thus we identify sources as in §3.2.

Let ρ > 0, set λ̄ := f ′(v̄). Consider the covering of the closed set Bv̄ given by

Vρ2n(v̄) :=
{
P+,ρ
r,2n(t̄, x̄, ε), P+,ρ

`,2n(t̄, x̄, ε) | 1 > ε > 0, (t̄, x̄) ∈ Bv̄
}
, (3.15)

P+,ρ
r,2n(t̄, x̄, ε) := {(t, x) :

t̄ ≤ t ≤ t̄+ ε, x̄+ λ̄(t− t̄) ≤ x ≤ x̄+ λ̄(t− t̄) + ρε2n
}
,

(3.16)

P+,ρ
`,2n(t̄, x̄, ε) := {(t, x) :

t̄ ≤ t ≤ t̄+ ε, x̄+ λ̄(t− t̄)− ρε2n ≤ x ≤ x̄+ λ̄(t− t̄)
}
.

(3.17)

The above regions are analogous to the ones of the covering Vρα in Figure 2 but
the lateral edges have the fixed slope λ̄ rather than being characteristic curves.

Lemma 3.7. Vρ2n(v̄) is a Vitali covering of Bv̄. In particular, given a Borel function
g, L2-a.e. point (t̄, x̄) of Bv̄ is a Vρ2n(v̄)-Lebesgue point of g in the sense that

lim
(t̄,x̄)∈P∈Vρ2n(v̄)

diam(P )↓0

1

L2(P )

∫
P

|g(t, x)− g(t̄, x̄)|dtdx = 0. (3.18)
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Proof. We apply [13, Theorem 2.8.17] with the covering relation Vρ2n(v̄), the nonne-

gative function δ(P+,ρ
r,2n(t̄, x̄, ε)) = δ(P+,ρ

`,2n(t̄, x̄, ε)) = ε, φ = L2, τ = 2: indeed, being

parallelograms, the τ -enlargement P̂ of P ∈ Vρ2n(v̄) is a parallelogram with sides of
slope λ̄, base of length ρ(1 + 22n+1)ε2n, eight equal to 5ε. In particular,

lim
(t̄,x̄)∈P∈Vρ2n(v̄)

diam(P )↓0

[
δ(P ) +

L2(P̂ )

L2(P )

]
= 5(1 + 22n+1).

Since the assumptions are verified, [13, Theorem 2.8.17] gives us that Vρ2n(v̄) is a
Vitali covering of Bv̄. The differentiation theorem follows then from [13, Theo-
rem 2.9.8].

Lemma 3.8. Let g = [g] ∈ L∞(R2) be the equivalence class of functions L2-
a.e. equal to the Borel function g and u a continuous solution to (1.1) with a 2n-
convex flux f ∈ C2n(R). If (t̄, x̄) ∈ Bv̄ is a Vρ2n(v̄)-Lebesgue point of g in the sense
of (3.18) and γ is a characteristic curve through (t̄, x̄), then

γ(t) = x̄+ λ̄(t− t̄) +
f (2n)(v̄)

(2n)!
[g(t̄, x̄)]2n−1(t− t̄)2n + o((t− t̄)2n).

Moreover, also (3.13) holds and u ◦ γ is differentiable at t̄ with derivative g(t̄, x̄).

Proof. Simplify notations setting t̄ = x̄ = 0.
1: Expansion of f ′ in z. We claim that assumption (3.14) implies

f ′(z)− λ̄ =
f (2n)(v̄)

(2n− 1)!
(z − v̄)2n−1 + o(|z − v̄|2n−1) (3.19)

in a neighborhood of v̄. Setting h(w) = f(v̄ + w) − f(v̄) − wf ′(v̄) − f(2n)(v̄)
(2n)! w2n,

the statement follows by (3.14) and the following observation: if h ∈ C1(R) and
h(w) = o(w2n) as w → 0, then h(w) = k(w)w2n with k ∈ C1(R\{0}) and k(w)→ 0
as w → 0, thus by differentiation of the product k(w)w2n one obtains

h ∈ C1(R), h(w) = o(w2n) for w → 0 ⇒ h′(w) = o(w2n−1) for w → 0.

2: Expansion of γ. Let us denote iγ(t) = (t, γ(t)). By (3.19), the characteristic γ

satisfies

γ(t) = x̄+

∫ t

0

f ′(u(iγ(s))) ds (3.20)

= x̄+ λ̄t+

∫ t

0

[
f (2n)(v̄)

(2n− 1)!
(u(iγ(s))− v̄)2n−1 + o(|u(iγ(s))− v̄|2n−1)

]
ds.

Recall that u is G-Lipschitz continuous along characteristics [2, Theorem 30]: then

|u(iγ(s))− v̄| ≤ Gs

and therefore the distance among γ(t) and the linearization x̄+ λ̄t is estimated by∣∣γ(t)− x̄− λ̄t
∣∣ ≤ f (2n)(v̄)

(2n− 1)!
G2n−1

∫ t

0

[
s2n−1 + o(s2n−1)

]
ds

=
f (2n)(v̄)

(2n)!
G2n−1t2n + o(t2n). (3.21)

3: Lebesgue points of g: differentiation theorem for Vρnα on Bv̄. Set
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M = ρ−2n

(
2 +

f (2n)(v̄)

(2n)!
G2n−1

)
.

Estimate (3.21) proves that both sets S+,ρ
r,2n(γ, ε, σ) and S+,ρ

`,2n(γ, ε, σ) defined in (3.1)
are contained in

P+,ρ
2n := P+,ρ

r,2n(t̄, x̄,Mε) ∪ P+,ρ
`,2n(t̄, x̄,Mε) ,

definitively as ε ↓ 0 when ρ, α = 2n are fixed. Being

L2(P+,ρ
2n )

L2(S+,ρ
r,2n(γ, ε, σ))

=
2�ρM

2n+1���ε2n+1

�ρ�
��ε2n+1 = 2M2n+1

then by (3.18) necessarily, when ρ is fixed,

0 ≤ lim
ε↓0

1

L2(S+,ρ
r,2n(γ, ε, σ))

∫
S+,ρ
r,2n

|g(t, x)− g(t̄, x̄)|dtdx

≤ lim
ε↓0

1

L2(S+,ρ
r,2n(γ, ε, σ))

∫
P+,ρ

2n

|g(t, x)− g(t̄, x̄)|dtdx

= lim
ε↓0

2M2n+1

L2(P+,ρ
2n )

∫
L2(P+,ρ

2n )

|g(t, x)− g(t̄, x̄)|dtdx = 0.

The same limit holds as well for S−,ρε,2n. Since S+,ρ
ε,2n and S−,ρε,2n are right and left dom-

ains bounded by a characteristic curve through (0, 0), and the analogous domains

S−,ρ`,2n, S−,ρr,2n are similarly admissible, one can repeat the proof of Lemma 3.5 above
thanks to convexity: one finds that

d

dt
(u ◦ iγ) (0) = g(0, 0).

4: Conclusion. Plugging this expansion into (3.20) one finds by elementary calculus

the formula in the statement since

u(iγ(s))− v̄ = g(0, 0)s+ o(s)

(u(iγ(s))− v̄)2n−1 = [g(0, 0)s+ o(s)]
2n−1

= [g(0, 0)]2n−1s2n−1 + o(s2n−1).

Remark 1. Lemma 3.8 can be similarly adapted to the case when f ∈ W 2n,∞ is
2n-convex.
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