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MODELING COMPETITION BETWEEN TWO PHARMACEUTICAL
DRUGS USING INNOVATION DIFFUSION MODELS1

BY RENATO GUSEO AND CINZIA MORTARINO

University of Padova

The study of competition among brands in a common category is an in-
teresting strategic issue for involved firms. Sales monitoring and prediction
of competitors’ performance represent relevant tools for management. In the
pharmaceutical market, the diffusion of product knowledge plays a special
role, different from the role it plays in other competing fields. This latent
feature naturally affects the evolution of drugs’ performances in terms of the
number of packages sold. In this paper, we propose an innovation diffusion
model that takes the spread of knowledge into account. We are motivated
by the need of modeling competition of two antidiabetic drugs in the Italian
market.

1. Introduction. The diffusion of an innovation often has to cope with the
rise of many competitors that generate huge competitive effects, expansion or con-
traction in the market’s potential size, changes in the evolutionary dynamics of
certain brands, increases or decreases in life cycle length, and anticipation of the
time of entry of additional products in the market. These effects can be modeled
only if they are included in a single complex system that can correctly identify
competition and contextual forces.

We cannot observe the complex system in which single agents (consumers) may
interact and share information regarding alternative technologies, comparable so-
lutions, similar devices, and so on. Instead, we observe the resulting aggregate
emergent dynamics (level reached by diffusion; e.g., number of packages sold),
and we base our analysis upon this level of observability.

Usually, the diffusion of products in a marketplace has a limited time horizon
defining particular finite life cycles with different internal dynamics. We observe
poor performance at the beginning of the process after launch due to limited ac-
ceptance of a newcomer to the market that interacts with previous knowledge and
consumers’ lifestyles. Similarly, but for different reasons, we notice a pronounced
decrease in sales at the end of the commercial life cycle, when the product is per-
ceived as an old, inefficient solution. Previous competing processes are nonstation-
ary and nonlinear due to chilling and saturating effects within their life spans. Fol-
lowing this qualitative reasoning, for modeling and predictive purposes, we may
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exclude the direct use of ARMA-like (or VARMA) processes, which are strongly
based on weak stationary conditions after some differencing.

The pharmaceutical market is an important example of competition among al-
ternative drugs. The products can differ to a great extent when they are based on
different active compounds, or they can differ only at the commercial level when
the same active compound is sold by competing firms. Moreover, this market dif-
fers from other markets, since in many countries the cost of essential/vital drugs
is paid through a welfare system. To some extent, pricing does not directly in-
fluence physicians’ prescriptions. In addition, in Italy, the Ministry of Health and
pharmaceutical firms negotiate the price to be paid by the national health service.

The aim of this paper is to build and apply a competition model for pharma-
ceutical drugs (source: IMS Health Italy). In particular, we focus on a pair of
drugs with the same active compound, based on glimepiride. This is a situation
of substitute products (brands) competing for the same patients. The results will
be compared with the outcomes obtained by applying alternative models. In this
case, we emphasize that an “explicative” model, in addition to describing the data
and providing reliable forecasts, should highlight the key features of the compe-
tition among the analyzed drugs. This is a further reason, beyond nonstationarity,
not to rely on traditional time series approaches.

A specific method for studying the dynamics of these special markets is based
on two steps. First, to detect the mean trajectory of the processes, we use the dif-
fusion of innovation methodology, which is strongly related to system analysis
and epidemiological modeling tools. Second, to take into account seasonal autore-
gressive or moving average effects, we perform an analysis of residuals, thereby
improving short-term prediction.

The models due to Bass and colleagues [Bass (1969), Bass, Krishnan and Jain
(1994)] represent an essential step for the development of aggregate univariate
diffusion patterns, and a huge number of extensions have originated from them
[see, among others, Meade and Islam, (2006), Peres, Muller and Mahajan (2010)].

Conversely, the main contributions pertaining to competition modeling are
rather sparse. Krishnan, Bass and Kumar (2000), Savin and Terwiesch (2005) and,
recently, Guseo and Mortarino (2012) and Guseo and Mortarino (2014b) have de-
scribed competition with a differential representation admitting a closed-form so-
lution. The differential representation is typical of the models proposed in quan-
titative marketing literature, where an aggregate parsimonious description of real
adoption processes, based on interpretable parameters, is essential to capture rele-
vant features, deduce related managerial implications, and predict the future evolu-
tion of the market under study. The simplicity of the model’s structure is obtained
by introducing plausible assumptions regarding the behavior of the agents play-
ing a role within the market. In addition, a tractable solution for estimation and
prediction makes it easy to validate the model through aggregate sales data. The
relevant issue in this research topic is to build an adequately large set of mod-
els to describe the different characteristics of the diffusion process. Confirmation
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or rejection of the assumptions underlying each model is then attained by fitting
available observed data and comparing the models’ performances.

Models available in the literature to describe diffusion of competing products in
a common market assume that the asymptotic market potential—that is, the total
number of adoptions a product will ultimately reach at the end of its life cycle—is
invariant throughout the life cycle from the products’ launch. However, this as-
sumption is almost always unrealistic. In general, knowledge and awareness of
a product are not immediately disseminated throughout eligible adopters upon the
entrance of a pioneering brand into the market. Moreover, new brands are often fol-
lowed by competitors, whose launch may affect awareness of the earlier products.
The topic arises from the consideration that awareness of a product and adoption
are themselves diffusion processes. Awareness is a latent prerequisite for adop-
tion, and the degree of penetration of a product into the market is limited by the
degree of diffusion of knowledge regarding its existence and properties. For this
reason, the market potential would be better described as a dynamic process than
as a fixed constant, as discussed in Guseo and Guidolin (2009) for the univariate
case without competition effects.

In Section 2 we briefly illustrate the standard Bass model [Bass (1969)] with its
extension [Guseo and Guidolin (2009)], that introduces a dynamic market poten-
tial. The underlying reasons motivating this extension are also presented. In Sec-
tion 3 we discuss how the competition model proposed in Guseo and Mortarino
(2014b) can be extended to incorporate dynamic market potential. In Section 4 we
illustrate the application of the new model to the description of competition be-
tween two antidiabetic drugs. In Section 5 we discuss the improvement obtained
for these data with the proposed dynamic potential model and contrast it with
the more common constant hypothesis and with alternative dynamic structures. In
Section 6 we present concluding remarks.

2. A possible form for dynamic market potential. The simpler form of a
univariate diffusion of an innovation model is given by the Bass model [Bass
(1969)]. The differential representation is defined through the following equation:

z′(t) = m

[
p + q

z(t)

m

][
1 − z(t)

m

]
=

[
p + q

z(t)

m

][
m − z(t)

]
,(2.1)

where z(t) and z′(t) = ∂z(t)/∂t represent the mean cumulative sales and the mean
instantaneous sales at time t , respectively. Parameter m is the fixed market poten-
tial (the asymptotic level of cumulative sales or the total number of adoptions at
the end of the life cycle), that is, m = limt→∞ z(t).

Equation (2.1) makes explicit that, at each time point, the increase in instan-
taneous mean sales is proportional to the residual market, m − z(t). The pro-
portionality factor is affected by a fixed effect, p, and by a time-varying effect,
qz(t)/m. The former, called the innovative coefficient, is independent of the de-
gree of diffusion reached. The higher the value of p, the more rapid the takeoff of
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the life cycle, describing a process in which exogenous factors, such as advertising
or institutional communication efforts, push a product’s diffusion. The latter ef-
fect, qz(t)/m, depends upon the degree of saturation of the market and describes,
through the interaction z(t)[m − z(t)], how word-of-mouth from previous sales
promotes further diffusion. The coefficient q is called the imitative coefficient. The
higher the value of q , the more important word-of-mouth is in increasing diffusion.
As z(t) approaches m, the residual market, m − z(t), collapses and instantaneous
mean sales, z′(t), reduces to zero.

Under the initial condition z(0) = 0, and defining z(t) = 0 for t < 0, the explicit
solution of equation (2.1) is

z(t) = m
1 − e−(p+q)t

1 + (q/p)e−(p+q)t
= mw(t;p,q), t > 0,p, q > 0,(2.2)

where

w(t;p,q) = 1 − e−(p+q)t

1 + (q/p)e−(p+q)t
.(2.3)

Continuous-time modeling is a common choice throughout the diffusion of in-
novation literature, even when models are fitted to weekly, monthly or quarterly
data. This is partially because the involved variables are measured continuously
over time, even if, for administrative reasons, data are recorded at discrete times.
In addition, Putsis (1996) conducts a detailed comparison and emphasizes that us-
ing seasonally adjusted quarterly data results in better estimates than using annual
data. In contrast, moving from quarterly to monthly data produces only marginal
statistical improvement. Boswijk and Franses (2005) indicate that the values of p

and q in their discretized version of the Bass model correspond to those of the
continuous time model used here whenever equally spaced data are available.

Although model (2.1) and its successive extensions proved to be extremely valu-
able in describing innovation diffusion processes, all are limited by the fact that
market potential, m, is a fixed constant, and hence cannot evolve over time. This
assumption conflicts with the common perception that knowledge may be time
dependent. Some attempts have been proposed in the literature to overcome this
limitation. In some papers, the dynamic market potential is modeled as a function
of exogenous observed variables [see, e.g., Kim, Bridges and Srivastava (1999),
and the included references]. In other cases, it is assumed to be a function of time
only [e.g., Sharif and Ramanathan (1981), Centrone, Goia and Salinelli (2007),
Meyer and Ausubel (1999)].

Here, we follow the approach proposed in Guseo and Guidolin (2009). In prin-
ciple, the market potential can be any function m(t) that defines an upper bound
for cumulative sales z(t), that is, z(t) ≤ m(t) for all t . However, a parsimonious
and intuitive method for specifying the form of m(t) arises when we examine
the communication network spreading information about the product in question.
The number of potential adopters of a product can be thought of, at each time
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point, as the size of the aware agents’ group. We describe awareness of the product
as knowledge transmitted through a network that describes the specific contacts
among agents who eventually “speak” about the product. This approach is linked
to the literature on social networks, often represented with random graph models
where nodes denote individual social actors (agents) and edges denote specific re-
lationships between two actors [Handcock and Gile (2010)]. Many contributions to
the literature assume observability of the edges, either complete or partial, through
sample data.

In our approach, conversely, the communication network evolving over time is
latent and does not have to be observed or described in detail; this is also due to the
high costs of reliable relational data collection. The focus is instead on the number
of informed agents (active nodes). This is a key aspect, since we want to deal with
all the situations where the communication network is product-specific (people
usually choose to talk with someone—and not with someone else—according to
the topic of the conversation). In these situations, the content-driven network is
totally unobservable, or it is very difficult to obtain reliable pertinent data.

The formalized structure of such a network is described in Guseo and Guidolin
(2009), where the authors explain in detail how this interpretation may lead to the
following dynamic market potential function:

m(t) = K

√
1 − e−(pc+qc)t

1 + (qc/pc)e−(pc+qc)t

(2.4)
= K

√
w(t;pc, qc), K,pc, qc > 0, t > 0,

where K is the upper asymptotic potential (directly related to the network’s size),
K = limt→∞ z(t), and pc and qc are evolutionary parameters describing how fast
communication spreads through the network. In particular, for large values of pc

and qc, the dynamic market potential m(t) rapidly approaches K .
The expression under the square root in equation (2.4) represents the core of the

Bass model [Bass (1969)] describing the latent diffusion process of communica-
tion. This is an S-shaped curve, a distribution function, whose peakedness varies
according to the product’s communication features.

The model proposed by Guseo and Guidolin (2009) extends the Bass model
(2.2) in the following manner:

z′(t) = m(t)

[
ps + qs

z(t)

m(t)

][
1 − z(t)

m(t)

]
+ z(t)

m′(t)
m(t)

,

(2.5)
ps, qs > 0, t ≥ 0,

where z(t) represents the mean cumulative sales, as in equation (2.1), and m(t) ≥
z(t) may be defined as in (2.4). The new parameters ps and qs are evolutionary
parameters that describe how fast the product is adopted (whereas, as mentioned
above, pc and qc are related to knowledge spread).
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The final term of equation (2.5) requires close examination to understand its
meaning. This component enables us to take into account a self-reinforcing ef-
fect that is common within marketing behavioral studies [see, e.g., Sydow and
Schreyögg (2013), a recent contribution on self-reinforcing processes]. The stan-
dard adoption process described in the first part of the equation is enhanced when-
ever the market is growing faster. In other words, an acceleration of the number of
informed people [the network’s size, m(t)] further induces people to adopt. More
generally, excluding assumption (2.4), m′(t) may be negative when m(t) is non-
monotonic, thereby introducing a shrinking effect on instantaneous sales due to a
decreasing market potential.

3. The proposed model. The proposed model describes the diffusion of two
competing brands. They are supposed to be sufficiently similar to share a common
market potential, whose size grows in time as described in Section 2. The assump-
tion of a common market potential is suitable in situations where the products
are substitutes competing for the same adopters. Whenever competition concerns
products that are sufficiently different to preserve product-specific market poten-
tials, the Lotka–Volterra models should be preferred, although these structures do
not allow a closed-form solution [Abramson and Zanette (1998)].

We denote the mean cumulative sales at time t of brand i by zi(t), i = 1,2,
and the instantaneous mean sales by z′

i (t) = ∂zi(t)/∂t , i = 1,2. We now describe
the category sales, z(t) = z1(t) + z2(t), by separately describing the two brands
constituting the category. The model is given by

z′
1(t) = m(t)

[
p1 + (q1 + δ)

z1(t)

m(t)
+ q1

z2(t)

m(t)

][
1 − z(t)

m(t)

]
+ z1(t)

m′(t)
m(t)

,

(3.1)

z′
2(t) = m(t)

[
p2 + (q2 − δ)

z1(t)

m(t)
+ q2

z2(t)

m(t)

][
1 − z(t)

m(t)

]
+ z2(t)

m′(t)
m(t)

,

where z(t) ≤ m(t), for all t .
To obtain an equivalent formulation of model (3.1), that may be more compa-

rable with the univariate Bass model, we can rearrange the terms in the following
manner:

z′
1(t) = m(t)

[
p1 + q1

z(t)

m(t)
+ δ

z1(t)

m(t)

][
1 − z(t)

m(t)

]
+ z1(t)

m′(t)
m(t)

,

z′
2(t) = m(t)

[
p2 + (q2 − δ)

z(t)

m(t)
+ δ

z2(t)

m(t)

][
1 − z(t)

m(t)

]
+ z2(t)

m′(t)
m(t)

.

In equation (3.1), we may observe innovators’ effects (parameters p1 and p2)
and word-of-mouth effects (parameters q1, q2 and δ). These parameters may be
different for the two competitors to describe products with different strengths in
the market. Observe that this structure is similar to the model used in Guseo and
Mortarino (2014b), allowing for within-brand word-of-mouth (q1 + δ and q2 for
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the two brands, resp.) that may be different from cross-brand word-of-mouth (q1
and q2 − δ). In other words, this model is able to deal with situations in which
word-of-mouth functions asymmetrically for the two products. In Guseo and Mor-
tarino (2014b), however, unlike the proposed model, m(t) was supposed to be
constant throughout the life cycle: m(t) = m for all t .

The final additive terms in equation (3.1)—which would obviously vanish for
a constant m(t)—represent a self-reinforcing component, as described in the pre-
vious section. The mean sales of both products are accelerated when m(t) grows
faster, that is, when awareness of the product category spreads rapidly based on the
collective behavior of agents. Conversely, the mean sales are further reduced by a
shrinking potential induced by unfavorable signals. In the latter case, m(t) could
also be a nonmonotonic function, and the self-reinforcing term could be negative
when the market potential undergoes a contraction.

Notice that the sum of the equations in (3.1) is equal to model (2.5). Moreover,
this model can also be used with an expression for m(t) that is different from
equation (2.4).

Let us define ps = p1 + p2 and qs = q1 + q2. Through w(t;ps, qs), defined
in (2.3), and

y(t) = 1 + qs

ps

w(t;ps, qs) = 1 + qs/ps

1 + (qs/ps)e−(ps+qs)t
,(3.2)

it is proven in Appendix 1 [Guseo and Mortarino (2015)] that, for any m(t), the
closed-form solution of the system (3.1) is

z1(t) = m(t)

{
q1

qs − δ
w(t;ps, qs) +

[
ps

δ

(
p1

ps

− q1

qs − δ

)][
y(t)δ/qs − 1

]}
,

(3.3)

z2(t) = m(t)

{(
q2 − δ

qs − δ

)
w(t;ps, qs) +

[
ps

δ

(
p2

ps

− q2 − δ

qs − δ

)][
y(t)δ/qs − 1

]}
,

when δ �= 0 and δ �= qs . When δ = qs , the solution reduces to

z1(t) = m(t)

[(
p1

ps

− q1

qs

)
w(t;ps, qs) + q1ps

q2
s

y(t) lny(t)

]
,

(3.4)

z2(t) = m(t)

[(
1 − p1

ps

+ q1

qs

)
w(t;ps, qs) − q1ps

q2
s

y(t) lny(t)

]
,

while in the special case δ = 0, we obtain

z1(t) = m(t)

[
q1

qs

w(t;ps, qs) + ps

qs

(
p1

ps

− q1

qs

)
lny(t)

]
,

(3.5)

z2(t) = m(t)

[
q2

qs

w(t;ps, qs) + ps

qs

(
p2

ps

− q2

qs

)
lny(t)

]
.

The solutions for the mean cumulative sales enable us to use a nonlinear re-
gression model with dependent variables given by the observed cumulative sales
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of the two brands.2 A reasonable and robust inferential methodology for estimat-
ing and testing the performance of this structure may be implemented through the
regression model

vi(t) = zi(t) + εi(t), i = 1,2,(3.6)

where vi(t) represents the observed cumulative sales data for each of the two prod-
ucts and zi(t;β) denotes the mean cumulative functions (3.3) depending on the
vector of parameters β = {K,pc, qc,p1, q1,p2, q2, δ} and on time t . Henceforth,
we use either the notation zi(t) or zi(t;β) to make explicit the dependence of
the functions (3.3) upon β parameters. Here, we assume that m(t) is modeled as
in (2.4). In the rest of the paper, we will denote model (3.6)—with m(t) specified
as in (2.4)—with the expression Competition Dynamic Market Potential (CDMP)
model. The residual term εi(t) is usually a white noise or a more complex sta-
tionary process if seasonality or autoregressive aspects are included as stochastic
components. The joint estimate of β is obtained with a single model where v1(t)

and v2(t) are stacked. This estimate could be generated using the Beauchamp and
Cornell technique [Beauchamp and Cornell (1966)]. However, recent results show
that it is advisable to use ordinary nonlinear least squares [Guseo and Mortarino
(2014a)]. Note that estimation through nonlinear least squares does not require
assumptions regarding the distribution of εi(t). The nonlinear predicted values de-
scribe the mean trajectories of the competing processes, that is, z1(t) and z2(t).

We propose a detailed simulation study in Appendix 5 [Guseo and Mortarino
(2015)] to assess the performance of the CDMP model under different values of
the noise-to-signal ratio when the latent market potential is correctly specified. We
also consider a further improvement in the analysis of the robustness of the CDMP
model for alternative m(t) structures.

A different approach, based on a stochastic version of equation (3.1) including
an error term with suitable assumptions, may be extremely complex. This approach
is tractable, to our knowledge, only for simpler models such as the Bass model
[Boswijk and Franses (2005)]. However, as mentioned in Section 2, the Bass model
is too simple a structure to describe complex markets. Jha, Chaudhary and Gutpa
(2011) propose a stochastic differential equation model to describe the adoption of
newer successive technologies. However, their work does not present a compari-
son with existing deterministic models. The comparison is essential to evaluate the
effective gain of the stochastic approach, whose results are obtained through non-
negligible assumptions regarding the stochastic component of the model, which
may be inappropriate for real (not simulated) data sets.

2An alternative approach using instantaneous sales is described in Appendix 2 [Guseo and Mor-
tarino (2015)].
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FIG. 1. Monthly sales data for Amaryl 2 mg and Solosa 2 mg. The series of the sum of all the sales
of alternative products is also presented (source: IMS Health Italy).

4. Antidiabetic drug sales case study. Amaryl (Sanofi–Aventis) and Solosa
(Lab. Guidotti) are two glimepiride-based drugs used by people with type 2 dia-
betes. Glimepiride belongs to the class of drugs known as sulfonylureas. It lowers
hyperglycemia by causing the body to release its natural insulin. These drugs, at
a dose of 2 mg, were launched in the Italian market in January 1999 and were for
many years duopolists in the glimepiride market. Figure 1 shows monthly sales
data (available until August 2014, for a total of 188 data points) for the two drugs
separately. In addition, the figure depicts the series of the sum of all the sales of al-
ternative products (12 generic drugs) commercialized since 2006. The more recent
products have never represented an actual threat to the two oldest brands.

These two drugs are perfect substitutes from the medical viewpoint, and thus a
model with a common market potential appears to be an adequate solution. More-
over, in 1999, glimepiride represented a radical novelty in the Italian market, since
it was the first type of sulfonylurea available. Other dosages of the same drugs were
launched much later, in 2006. These considerations suggest that awareness of the
properties and efficacy of these drugs perhaps was not widespread among Italian
physicians in 1999. A dynamic market potential seems conceivable for these data.
The complete impossibility of observing the communication network that spread
knowledge about glimepiride beginning in 1999 finally suggests that the Guseo–
Guidolin model (2.4) could be an appropriate tentative solution. Of course, only
good agreement between the available data and functions (3.3), which incorporate
these features, could confirm or lead to rejection of these assumptions.

Joint nonlinear regression of the two main competitors’ cumulative sales on
functions (3.3)—that is, the CDMP model, (3.6)—gives rise to the parameter esti-
mates shown in Table 1.

The huge value of R2 = 0.99996 is unsurprising, given that we are working with
cumulative data and any S-shaped fitting produces high determination indexes.
A standard approach advises the use of the R2 measure only for comparative pur-
poses, as will be described at the beginning of Section 5. In addition, the evaluation
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TABLE 1
Estimation results for the CDMP model, (3.6)

Estimate Standard error 95% confidence interval

K 4.8669 ∗ 107 2.5771 ∗ 105 (4.81621 ∗ 107, 4.9176 ∗ 107)
pc 2.3837 ∗ 10−3 6.6814 ∗ 10−5 (2.2523 ∗ 10−3, 2.5151 ∗ 10−3)
qc 4.5235 ∗ 10−2 4.6993 ∗ 10−4 (4.4311 ∗ 10−2, 4.6159 ∗ 10−2)
p1 3.2004 ∗ 10−3 6.5762 ∗ 10−5 (3.0711 ∗ 10−3, 3.3297 ∗ 10−3)
q1 1.4277 ∗ 10−2 3.2663 ∗ 10−4 (1.3635 ∗ 10−2, 1.4920 ∗ 10−2)
p2 −7.9208 ∗ 10−4 3.6160 ∗ 10−5 (−8.6318 ∗ 10−4, −7.2097 ∗ 10−4)
q2 1.2709 ∗ 10−3 5.5915 ∗ 10−4 (1.7135 ∗ 10−4, 2.3704 ∗ 10−3)
δ −2.2248 ∗ 10−2 9.6448 ∗ 10−4 (2.4145 ∗ 10−2, −2.0351 ∗ 10−2)

R2 = 0.99996

of the squared linear correlation coefficient between observed instantaneous sales
and fitted instantaneous sales yields a value of 0.9673, which is extremely high.

The agreement between the observed and fitted values can also be assessed by
examining Figure 2. The two estimated profiles follow the observations very well,
and discrepancies (essentially due to seasonal effects) could easily be modeled
using a SARMAX approach characterizing the second step refinement for short-
term prediction [see Appendix 4, Guseo and Mortarino (2015)]. The analysis of
residuals is depicted in Figure 3.

Because we deal with consumables (i.e., repeatedly purchased goods), K̂ (49
million) represents an estimate of the total number of packages of the two drugs
that could be sold. Figure 4 depicts the estimated evolution of the common dy-
namic market potential, m(t). It is very far from a fixed m pattern, since knowl-
edge of these drugs seems to have spread slowly among physicians. This could be
explained by the observation that a new active compound (as glimepiride was in

FIG. 2. Comparison of the monthly number of packages sold and fitted values of instantaneous
sales using CDMP model, (3.6).
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FIG. 3. Residuals for the two products (instantaneous sales scale).

the Italian market in 1999) is accepted with caution until side effects are entirely
disclosed.

If we focus on innovation parameters, it is evident that this component did not
play a significant role for Solosa, and this may explain its slow start. Lab. Guidotti,
which launched Solosa, is a big Italian company; however, its promotional strength
could not compete with the promotional efforts exerted by the international com-
pany Sanofi–Aventis, which promoted Amaryl.

Imitative parameters have to be interpreted with reference to the proposed
model. If we substitute the estimates in model (3.1), we obtain the following equa-
tions:

z′
1(t) − z1(t)

m′(t)
m(t)

∝ 0.0032 − 0.0080
z1(t)

m(t)
+ 0.0143

z2(t)

m(t)
,

z′
2(t) − z2(t)

m′(t)
m(t)

∝ −0.0008 + 0.0235
z1(t)

m(t)
+ 0.0013

z2(t)

m(t)
.

Amaryl was sustained by a stronger innovation effect, and its cycle began much
more rapidly than its competitor’s cycle (0.0032 vs. −0.0008). Sanofi–Aventis is
a much larger company than Lab. Guidotti, and the former’s promotional strength

FIG. 4. Plot of the estimated market potential function, m̂(t).
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FIG. 5. Mean sales forecast and confidence bands for estimates based on the CDMP model, (3.6).

enabled an impressive start to Amaryl’s sales. However, Amaryl experienced a
negative within-brand word-of-mouth effect, in contrast with Solosa’s positive ef-
fect (−0.0080 vs. 0.0013). Both products were sustained by a positive cross-brand
word-of-mouth effect from the competitor, but the effect of this was to increase
Solosa’s sales more strongly (0.0235 vs. 0.0143). This ultimately led Solosa to
outsell Amaryl. Both drugs now appear to be in a declining phase of their life cy-
cle, due to the appearance of other active compounds in the type 2 diabetes market.

Figure 5 illustrates predictive confidence bands for the future sales of the two
products. Details regarding their construction are given in Appendix 3 [Guseo and
Mortarino (2015)].

5. Comparison with alternative models. The efficacy of the proposed model
in this application must be proven with reference to alternative models. As men-
tioned in the Introduction, we will examine a set of models to identify which one
performs better with available observations. The first alternative to be considered
is a simpler model with constant market potential. As mentioned above, it is plau-
sible that knowledge of the properties of the new active compound did not arise
immediately at the products’ launch. However, this hypothesis should be tested by
examining whether a model with dynamic market potential, m(t), really improves
the fitting.

The model proposed in Guseo and Mortarino (2014b) fits this purpose since
it can be obtained by (3.3) with the only restriction m(t) = m. All other features
related to the evolution of the process are the same for the two models. Thus,
we can claim that if model (3.6) shows a significantly better performance than
Guseo and Mortarino’s model (2014b), this proves that the market potential for
this category evolved in a manner that differs significantly from the constant path.
Note, too, that other models [e.g., those by Krishnan, Bass and Kumar (2000),
Savin and Terwiesch (2005), Libai, Muller and Peres (2009), Guseo and Mortarino
(2012)] are nested within the Guseo and Mortarino (2014b) model. The R2 value
for the Guseo and Mortarino (2014b) model equals 0.9988. Since this model is
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FIG. 6. Comparison of the fitted values for the monthly number of packages sold using the CDMP
model, (3.6), and the model used in Guseo and Mortarino (2014b).

nested within model (3.6), an F test can be used to detect whether the gain from
the simpler model to the more complex model is significant. As the first step, the
squared multiple partial correlation coefficient

R̃2 = (
R2

M1 − R2
M2

)
/
(
1 − R2

M2
)

(5.1)

is calculated (here, R2
M2 denotes the determination index of the reduced model that

has to be compared to model M1). A possible test to verify the significance of the
s parameters of the M1 model that are not included in model M2 may be given by

F = [
R̃2(N − k)

]
/
[(

1 − R̃2)
s
]
,(5.2)

where N denotes the number of observations used to fit the models and k is the
number of parameters included in model M1. Under the null hypothesis of equiv-
alence between models M1 and M2, (5.2) is distributed as a Snedecor’s F with
(s,N −k) degrees of freedom, if the stochastic component of the regression model
is normal i.i.d. This may not be true for our case. Nevertheless, the F ratio (5.2)
can be used as an approximate robust criterion for comparing model M2 nested
in M1, by considering the well-known common robust threshold 4. Here, the test
comparing model (3.1) with Guseo and Mortarino’s (2014b) model assigns a huge
value of F = 5474.78 (R̃2 = 0.9675), demonstrating the relevance of the extended
(3.6) model.

In Figure 6, the fitted values of model (3.6) and Guseo and Mortarino’s (2014b)
model are compared. The rigidity of a fixed market potential makes the latter
model inadequate to describe these data; even worse, for larger t values, it shows
a heavy underestimation that makes forecasts totally unreliable.

Both the result of the F test and the graphical comparison prove that a constant
market potential is not adequate to describe this market. Given that conclusion,
it could be interesting to see whether alternative market potential functions might
perform better than (2.4).

Table 2 shows the R2 and the corresponding ρ2 between observed and fitted
values of instantaneous sales for alternative models. In detail, the formulations
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TABLE 2
Comparison among alternative model specifications for market potential, m(t)

m(t) R2 ρ2

(2.4) 0.999960 0.967295
Constant market potential 0.998766 0.877826
(5.3) 0.999930 0.964444
(5.4) 0.999931 0.964347

used were

m(t) = K
1 − e−(pc+qc)t

1 + (qc/pc)e−(pc+qc)t
(5.3)

and

m(t) = K · F(t) = K ·
∫ t

0

1

�(α1)
α

α1
0 tα1−1e−α0t dt,(5.4)

where �(α1) = ∫ ∞
0 tα1−1e−t dt , and α0, α1, t > 0. The function in (5.3) represents

a modification of the proposed function (2.4), while (5.4) describes the evolution of
the dynamic market potential as proportional to F(t), the cumulative distribution
function of a Gamma random variable (with mean equal to α1/α0 and variance
equal to α1/α

2
0).

The values presented in Table 2 confirm that a constant market potential as-
sumption is not adequate to describe these data. The structures (5.3) and (5.4)
perform slightly worse than the proposed structure (2.4). However, the main dif-
ference is that a Gamma distribution or a structure similar to (5.3) only serves the
purpose of representing a flexible monotonic function. Conversely, (2.4) has been
proposed essentially because it represents the size of an informed network spread-
ing information regarding the product category. Thus, this model structure has a
substantial interpretative content. The proposed model is shown to perform best
in this application. In light also of the results of the simulation study proposed in
Appendix 5 [Guseo and Mortarino (2015)], our opinion is that the CDMP model
represents a useful contribution in the field of competition diffusion of innovation
models.

6. Concluding remarks. Diffusion of innovation methodologies have faced
and are facing new challenges in parsimonious model-building in terms of incorpo-
rating the major effects that can modify the evolutionary shapes of these method-
ologies over time.

This paper highlights the key features of the competition between Amaryl and
Solosa. These two drugs differ essentially in the persuasion effects exerted by the
two companies that launched the drugs and in their acceptance through the com-
munity of physicians spreading word-of-mouth about their efficacy.
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The initial novelty of the active compound of these drugs in the market sug-
gested to us that the existing models of competition must be enriched with the
introduction of dynamic market potential. This extension rests on the concept that
awareness is a fundamental prerequisite for adoption. We can imagine that, at the
individual level, awareness and adoption are two sequential states that subjects
(here, physicians) may undergo. The first state, awareness, is latent. In addition,
since individual data are unavailable in this case, the description is aggregated (as
a mean profile) and leads to equation (2.4).

Similarly, although in a very different context, note that the Guseo and Guidolin
(2009) paper inspired the approach followed by Furlan and Mortarino (2012) to
describe and predict the death toll due to pleural mesothelioma contracted through
exposure to asbestos fibers in a residential area close to a big plant. In that case,
contamination (state 1)—that is, contact with lethal asbestos fibers—was the latent
prerequisite for developing the disease (state 2).

Finally, we would emphasize that our proposed model is useful specifically
for analyzing competition between two products. The tractability of the model,
in terms of the estimation of the involved parameters, enables us to deal with a
higher number of competitors only if they have entered the market simultaneously.
Diachronic competition, that is, among products launched at different times, gen-
erally requires model structures with multiple regimes (a change-point in the evo-
lution of existing products occurs whenever a new competitor appears). In this
case, for more than three products, the parameter cardinality becomes too high to
obtain reliable estimates, unless each regime is covered by an adequate observation
period.

Acknowledgments. The authors are grateful to the Associate Editor and to
the anonymous reviewers for their helpful suggestions that improved the quality of
the manuscript.

SUPPLEMENTARY MATERIAL

Supplementary materials (DOI: 10.1214/15-AOAS868SUPP; .pdf). In Ap-
pendix 1 we provide details regarding the closed-form solution of the proposed
model. In Appendix 2 we propose an alternative estimation method to deal with
monthly sales data instead of cumulative observations. In Appendix 3 we discuss
the construction of predictive confidence bands. In Appendix 4 we present a SAR-
MAX refinement for the first-order model fitting for short-term forecasting pur-
poses. Finally, in Appendix 5 we show the results of a simulation study to assess
the reliability of inferences.
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Appendix 1. Proof. Let z(t) = z1(t) + z2(t) denote the sum of the
cumulative sales of the two products and z′(t) the total instantaneous sales.
If we sum the equations of system (3.1), we obtain

z′(t) = z′1(t) + z′2(t)

= m(t)

[
(p1 + p2) + (q1 + q2)

z1(t)

m(t)
+ (q1 + q2)

z2(t)

m(t)

] [
1− z(t)

m(t)

]
+[z1(t) + z2(t)]

m′(t)

m(t)

= m(t)

[
(p1 + p2) + (q1 + q2)

z(t)

m(t)

] [
1− z(t)

m(t)

]
+ z(t)

m′(t)

m(t)
.(A1.1)

Equation (A1.1) defines a coevolutive model (Guseo and Guidolin, 2009)
with unspecified market potential m(t) and adoption parameters ps = p1+p2
and qs = q1 + q2. Thus, the solution of the differential equation (A1.1), with
initial condition z(0) = 0, is given below:

(A1.2)
z(t)

m(t)
= w(t) =

1− e−(ps+qs)t

1 + qs
ps
e−(ps+qs)t

.

In order to find a solution for z1(t), the first equation in system (3.1)

∗Corresponding author

1
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should be rearranged in the following manner:

z′1(t)− z1(t)
m′(t)

m(t)
= m(t)

[
p1 + (q1 + δ)

z1(t)

m(t)
+ q1

z2(t)

m(t)

] [
1− z(t)

m(t)

]
z′1(t)m(t)− z1(t)m′(t)

m2(t)
=

[
p1 + q1

z(t)

m(t)
+ δ

z1(t)

m(t)

] [
1− z(t)

m(t)

]
[
z1(t)

m(t)

]′
=

[
p1 + q1

z(t)

m(t)
+ δ

z1(t)

m(t)

] [
1− z(t)

m(t)

]
[
z1(t)

m(t)

]′
=

[
p1 + q1w(t; ps, qs) + δ

z1(t)

m(t)

]
[1− w(t; ps, qs)] .(A1.3)

Equation (A1.3) perfectly matches the differential equation in Guseo and
Mortarino (2014, p. 308, between (A.1) and (A.2)), where mc is replaced by
m(t) and the condition zs = 0 is added in the expression for w(t; ps, qs). In
our case, unlike in Guseo and Mortarino (2014), we are examining competi-
tion between two products that enter the market simultaneously. If we add
these two conditions to the solution of the differential equation, we obtain
exactly (3.3), (3.4), and (3.5).

Appendix 2. Regression model with instantaneous sales. Esti-
mation of the parameters involved in diffusion models is usually performed
through cumulative data, as described at the end of Section 3. The main
reason is that the solution of the differential equations describing the mean
evolutionary trajectory refers to z(t) in the univariate case (or zi(t), i = 1, 2,
in the competitive setup). Thus, the corresponding observed data are the
cumulative sales.

As an alternative approach, instantaneous data could be used as depen-
dent variables in a regression model, provided that the specification is mod-
ified in the following manner with respect to (3.6):

si(t) = zi(t+ 0.5;β)− zi(t− 0.5;β) + ξi(t), i = 1, 2,(A2.4)

where si(t) = vi(t+ 1)− vi(t) represents observed instantaneous sales (here,
monthly sales) and zi(t) = zi(t;β) is defined as in (3.6).

The reason for using the difference zi(t+0.5)−zi(t−0.5) in (A2.4) instead
of the more intuitive zi(t+ 1)− zi(t) is the known symmetric approximation
of a function F (x),

F ′(x) =
F (x+ h)− F (x− h)

2h
+O(h2),

which cancels out the second-order derivative, F ′′(x). This approximation
has a simple form for h = 0.5.
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Table A2.1
Estimation results for model (A2.4).

Estimate Standard Error 95% Confidence Interval

K 4.9794∗107 7.9471∗105 (4.8231∗107, 5.1357∗107 )
pc 2.2006∗10−3 1.9303∗10−4 (1.8210∗10−3, 2.5801∗10−3)
qc 4.4731∗10−2 1.5710∗10−3 (4.1641∗10−2, 4.7820∗10−2)
p1 3.4950∗10−3 2.4323∗10−4 (3.0167∗10−3, 3.9733∗10−3)
q1 1.4902∗10−2 1.3948∗10−3 (1.2160∗10−2, 1.7645∗10−2)
p2 -9.3386∗10−4 1.8066∗10−4 (-1.2891∗10−3, -5.7859∗10−4)
q2 -6.2316∗10−4 1.8463∗10−3 (-4.2537∗10−3, 3.0074∗10−3)
δ -2.5405∗10−2 3.5526∗10−3 (-3.2391∗10−2, -1.8419∗10−2)

R2 = 0.96777

Table A2.2
Comparison between model (A2.4) and Guseo and Mortarino’s (2014) model estimated

with instantaneous sales.

R2 ρ2

model (A2.4) 0.9678 0.9678
Guseo and Mortarino’s (2014) model 0.8920 0.8937

R̃2 = 0.7016 F = 432.57

If we use model (A2.4), we obtain the parameter estimates shown in
Table A2.1. A comparison with results shown in Table 1 highlights that the
procedure relying on cumulative data leads uniformly to smaller standard
errors for all the parameters.

From Figure A2.1, comparing the estimated mean trajectory with model
(3.6) (already shown in Figure 2) and with model (A2.4), we see that the
two methods give rise to almost overlapping paths, even if the squared corre-
lation coefficient between observed and fitted values is slightly higher when
instantaneous data are used (0.9678 vs. 0.9672). Further, the estimate of
the dynamic market potential structure, m̂(t), is fully coherent with the one
obtained from model (3.6) (see Figure A2.2).

In Section 5, the comparison between the CDMP model, (3.6), and the
simpler model of Guseo and Mortarino (2014) was conducted through a test
statistic based upon the respective R2 values. Of course, if we use model
(A2.4) for the comparison, we should estimate Guseo and Mortarino’s (2014)
model with the same approach (using instantaneous sales as response vari-
ables). Table A2.2 shows the comparison. The change in the estimation
method does not modify the conclusions regarding the superiority of a dy-
namic market potential structure.

Appendix 3. Predictive confidence bands. Starting from Srini-
vasan and Mason (1986) and, more recently, Boswijk and Franses (2005), we
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Fig A2.1. Comparison of the observed and fitted values, instantaneous sales, model (A2.4)
(the fitted values with the CDMP model, (3.6), are also shown).
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Fig A2.2. Comparison of the estimated market potential function m̂(t) with the CDMP,
(3.6), and (A2.4) models.
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Fig A3.3. Histograms of the estimates ûi(t), i = 1, 2, t = 49, . . . , 188, based on the CDMP
model, (3.6).

know that—for the models under study—estimators do not have standard
asymptotic properties and the parameters cannot be estimated consistently
even as the sample period increases. Intuitively, since we describe finite diffu-
sion processes, an increase in sample size with observations for t values after
the end of the process does not correspond to an increase in information.

The procedure used to estimate the parameters using cumulative data
(model (3.6)) with a nonlinear least squares algorithm (NLS) does not at first
require detailed assumptions about the structure of εi(t). Following Boswijk
and Franses (2005), it is, however, important to allow for heteroscedasticity
in εi(t). Alternative model specifications may be appropriate, but a sensible
assumption is

(A3.5) vi(t) = zi(t;β) + εi(t) = zi(t;β) + z′i(t;β)ui(t),

where ui(t) are supposed to be normally distributed, with zero mean and
constant variance, uσ

2
i , for i = 1, 2. The structure (A3.5) takes into account

the specific heterogeneity issue typical of saturating diffusion models (low
variability around the mean trajectory both at the beginning and at the end
of the diffusion cycle, with higher variability when the diffusion peaks).

The data described in this paper support the structure (A3.5), as is
evident from Figure A3.3, representing the histograms of the estimates
ûi(t), i = 1, 2, t = 49, . . . , 188, obtained through the residuals of model
(3.6). An examination of Figure 2 reveals that for both series, the fit in the
first part of the series is worse and the estimate of the stochastic component,
based upon residuals inflated by a partial lack-of-fit, is biased. To avoid that
effect, since the purpose is to build plausible confidence bands for the future
evolution of the series, we have excluded the first 48 residuals (4 years) of
both series. The normality assumption is confirmed, and the corresponding
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Fig A3.4. Histograms of the estimates ω̂i(t), i = 1, 2 based on model (A2.4).

variance estimates are uσ̂
2
1 = 0.0231 and uσ̂

2
2 = 0.1436. Thus, we can use the

following values as confidence bands for the predictions ẑi(t) = zi(t; β̂), i.e.,

ẑi(t)± 2 uσ̂i ẑ
′
i(t), t = 189, . . .

When the fitted values are represented in terms of instantaneous data (as
in Figure A2.1), the prediction confidence bands have to be modified in the
following manner. Beginning from instantaneous observed data,

si(t) = vi(t+ 1)− vi(t)
(A3.5)

= zi(t+ 1) + z′i(t+ 1)ui(t+ 1)− zi(t)− z′i(t)ui(t)
= zi(t+ 1)− zi(t) + z′i(t+ 1)ui(t+ 1)− z′i(t)ui(t),

and thus the amplitude of the confidence bands around the estimated tra-
jectory,

ẑi(t+ 1)− ẑi(t),

should be proportional to the standard error of

z′i(t+ 1)ui(t+ 1)− z′i(t)ui(t),

given by

[ẑ′i(t+ 1)]2 + [ẑ′i(t)]
2 − 2ẑ′i(t+ 1)ẑ′i(t))Ĉov[ui(t+ 1), ui(t)].

Note that the last term of the previous expression must not be neglected
and equals 0.0207 for i = 1 and 0.1419 for i = 2. The resulting confidence
bands are plotted in Figure 5.

When we turn to the regression model (A2.4), an analogous argument
leads to
(A3.6)
si(t) = zi(t+ 0.5)− zi(t− 0.5) + ξi(t) = zi(t+ 0.5)− zi(t− 0.5) + z′i(t)ωi(t),
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Fig A3.5. Forecasted mean sales trajectory and confidence bands, model (A2.4).

where ωi(t) are supposed to be normally distributed, with zero mean and
constant variance, ωσ

2
i , i = 1, 2.

The data described in this paper support the structure (A3.5), as is
evident from Figure A3.4, representing the histograms of the estimates
ω̂i(t), i = 1, 2, obtained through the residuals of model (A2.4). The first
48 residuals of both series were excluded for the same reason described
for the residuals of model (3.6). The normality assumption is confirmed
and the corresponding variance estimates are ωσ̂

2
1 = 0.0045 and ωσ̂

2
2 =

0.0056. Thus, we can use the following confidence bands for the predictions
ẑi(t+ 0.5)− ẑi(t− 0.5), i.e.,

ẑi(t+ 0.5)− ẑi(t− 0.5)± 2 ωσ̂i ẑ
′
i(t), t = 189, . . .

The resulting confidence bands are plotted in Figure A3.5 together with
the confidence bands obtained through model (3.6). Again, we observe that
model (3.6) leads to greater precision: We obtained narrower bands for Solosa
and very similar bands for Amaryl.

Appendix 4. SARMAX refinement. As mentioned in Section 4, for
short-term prediction, we use a two-step procedure. First, we apply a robust
NLS algorithm to model (3.6), which ignores the stochastic structure of εi(t),
under the well-known Levenberg-Marquardt correction of the Gauss-Newton
recursive procedure (see, e.g., Seber and Wild, 2003). Second, the prediction
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Fig A4.6. Comparison of the fitted values using the CDMP model, (3.6), and the SARMAX
refinement.

zi(t; β̂), based on an NLS solution, β̂, may be used, as an input X, in a model
based on a seasonal, autoregressive, moving average process (SARMAX) to
improve short-term prediction, which is relevant for managerial applications.
This second step is implemented if the residuals of the first stage do not
follow a standard white noise pattern. The Durbin-Watson statistic may be
used as an exploratory test to diagnose whether this second step is necessary.
In this case, the Durbin-Watson statistic equals 0.0847, distinctly detecting
a positive autocorrelation.

The SARMAX improvement for short-term predictions rests on the fol-
lowing equation based on a polynomial function of backward operators,
namely,
(A4.7)

Ψ(B)Φ(Bs)
{
si(t)− ci[zi(t+ 0.5; β̂)− zi(t− 0.5; β̂)]

}
= Ω(B)Θ(Bs)ai(t)

with ai(t) a White Noise process; B and Bs the standard and seasonal
backward operators; and Ψ(B), Φ(Bs), Ω(B), and Θ(Bs) the usual backward
polynomials of order g,G, h, and H, respectively. The calibration parameters
ci allow a global assessment of the stability of the predicted regressive values
stemming from the estimated models zi(t; β̂).

As above, since the first part of the series produced higher residuals and
since SARMAX is meant as an improvement for predictive purposes, we
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Table A4.3
Parameter estimates for the SARMAX refinement. [ ] t statistic. ∗: significant, 95%. ∗∗:
strongly significant, 99%. prM denotes the fitted values with the CDMP model, (3.6). The
subscripts of R̃2 and F define the involved nested models; in particular, M |S denotes the

comparison between the CDMP model and the SARMAX model.

Model Parameter Amaryl Solosa

AR1 -0.9096** 0.1372
AR2 0.0446 1.0304**
AR3 0.6661** 0.7554
AR4 0.2504 -0.4155
AR5 -0.4528** -0.7863**
AR6 – 0.2391
MA1 -0.6233** 0.2806
MA2 0.2330* 0.8279**
MA3 0.4287** 0.4580
MA4 -0.3284** -0.5807

SARMAX MA5 -0.7675** -0.3927*
+ MA6 – 0.3771

prM SAR1 0.6777** 1.0623**
SAR2 -0.7824** -0.0361
SAR3 1.0223** -0.8886**
SAR4 – 1.8993**
SAR5 – -0.7673**
SMA1 0.1788 0.6459**
SMA2 -0.8049** 0.2042*
SMA3 0.6395** -0.8361**
SMA4 – 1.5490**
SMA5 – -0.0185

prM c 0.9885** 1.0067**
[tM ] [32.4488] [16.2051]

RSS 2.3043∗109 9.0195∗109

RSSM 8.3637∗109 1.5361∗1010

R̃2
M|S 0.7245 0.4128

FM|S 17.8228 3.3985
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chose to apply it only to the second part of the series (t > 48), whose data
are more relevant for future evolution.

The estimates of the parameters involved in Equation (A4.7) applied to
instantaneous data are proposed in Table A4.3. The agreement between the
observed data and the fitted values with the SARMAX refinement is almost
perfect (see Figure A4.6). This confirms that the discrepancies between the
observed data and the fitted values with the CDMP model were essentially
due only to autoregressive/moving average components and seasonal effects.

Further, the overlapping of the fitted trajectory on the observed data
strongly supports the choice of model (3.6) for the description of the mean
trajectories of the sales data for both drugs.

Appendix 5. Simulation study.

A5.1. Correct specification. In order to assess the performance of the
proposed CDMP model for different fluctuation levels around the mean tra-
jectory, a simulation study has been performed as follows. We started from
a fixed parameter configuration,

β0 = {10000, 0.07, 0.04, 0.02, 0.03, 0.005, 0.1, 0.05}.

We simulated 1000 instantaneous datasets as

si(t) = z′i(t;β0) + z′i(t;β0)ωi(t), i = 1, 2, t = 1, . . . , 50,

where (ω1(t), ω2(t)) ∼ N2(ωσ
2
1, ωσ

2
2,−0.1ωσ1ωσ2). The correlation value has

been fixed at −0.1 to represent a substitution effect between the sales of the
two products.

The ωσi were allowed to vary in the set {0.05, 0.10, 0.15, 0.20, 0.25}. As
an example, Figure A5.7 shows the plot of the first simulated dataset in
the case ωσi = 0.05 (a) and ωσi = 0.25 (b). The latter case corresponds
to a situation with a very high noise–to–signal ratio. For each simulated
dataset, the corresponding cumulative data have been used to fit the CDMP
model, (3.6). Notice that this situation corresponds to a correct specification,
because, for data simulation, we used the mean instantaneous trajectories,
zi(t), with m(t) specified as in (2.4).

Table A5.4 shows the mean squared error (MSE) of the parameter esti-
mates

MSE(β̂j) =
1

1000

1000∑
k=1

(β̂jk − βj0)2,

where β̂jk denotes the estimate of the j-th parameter obtained with the k-th
simulated dataset.
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Fig A5.7. First simulated instantaneous dataset for ωσi = 0.05 (a) and ωσi = 0.25 (b).

Table A5.4
MSE of the parameter estimates

parameter K pc qc p1
(βj0) (10000) (0.007) (0.04) (0.02)

ωσi = 0.05 7.0655*105 1.5130*10−7 9.1726*10−5 1.1897*10−5

ωσi = 0.10 7.7058*105 3.8166*10−7 1.3603*10−4 2.5986*10−5

ωσi = 0.15 1.2554*106 8.3944*10−7 2.3944*10−4 5.5103*10−5

ωσi = 0.20 4.6040*107 4.2749*10−6 5.0578*10−4 6.7359*10−5

ωσi = 0.25 5.4571*108 7.7279*10−6 8.2287*10−4 3.4129*10−4

parameter q1 p2 q2 δ
(βj0) (0.03) (0.005) (0.1) (0.05)

ωσi = 0.05 2.7558*10−3 1.4823*10−6 3.5251*10−3 8.9532*10−3

ωσi = 0.10 8.3951*10−3 6.5940*10−6 9.1042*10−3 2.4722*10−2

ωσi = 0.15 3.1755*10−2 2.1710*10−5 3.2648*10−2 9.0742*10−2

ωσi = 0.20 6.7459*10−2 3.1218*10−5 6.9825*10−2 1.8678*10−1

ωσi = 0.25 9.3869*10−1 2.7502*10−4 9.4350*10−1 2.6786
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Table A5.5
MISE for the market potential function, m(t)

T = 50 T = 60 T = 70 T = 88 T = 114

ωσi = 0.05 7.9842*105 8.4136*105 9.5680*105 1.8808*106 6.7524*106

ωσi = 0.10 1.0264*106 1.1166*106 1.3408*106 2.8253*106 9.2680*106

ωσi = 0.15 1.6529*106 1.8306*106 2.2428*106 4.7968*106 1.5172*107

ωσi = 0.20 3.8034*106 4.1396*106 4.8721*106 9.0723*106 2.7517*107

ωσi = 0.25 6.3988*107 6.9203*107 8.0086*107 1.3918*107 3.8715*107

For ωσi ≤ 0.20, we observe a gradual deterioration in the accuracy of the
estimates of the evolutionary parameters (p1, q1, p2, q2, and δ). The estimates
are quite unstable in the case ωσi = 0.25, corresponding to an extreme
value of the noise–to–signal ratio. Notice that the MSE, as an average, may
be heavily affected by some odd convergence points for a few simulated
datasets. Due to the high number of datasets, the estimation procedure is
unsupervised and common initial values have been used for all of them.

One interesting issue is to see whether the model allows for good estimates
of the market potential component, m(t). Thus the mean integrated squared
error (MISE) has been evaluated as follows:

MISE(m̂(t)) =
1

1000

1000∑
k=1

∫ T

t=0
[m̂k(t)−m0(t)]

2dt,

where m̂k(t) denotes the estimate of m(t) obtained with the k-th simulated
dataset, m0(t) denotes the true function m(t) used to generate the data,
and T = 50, 60, 70, 88, 114. The two final values represent, respectively, the
95-th and 99-th quantiles of zi(t;β0). In other words, after 114, the prod-
ucts’ lifecycle is essentially concluded and the estimation issue is no longer
interesting (firms usually stop offering a product when sales levels are negli-
gible). Because a product’s exit from the market is often anticipated due to
high commercialization costs, the 95-th quantile, 88, is also an interesting
endpoint to consider. Notice that the simulated data used to fit the model
cover the first 50 time points. This is why the first T value has been set at
50. The values 60 and 70 represent, for forecasting purposes, a medium term
and a long term. Table A5.5 shows the MISE values. Unlike the MSE values,
the MISE results do not highlight a sudden jump for high ωσi values, but
they smoothly increase with ωσi values.

The left side of Figures A5.8-A5.12 shows the plots of m0(t), m̂k(t),
m(t) = 1

1000

∑1000
k=1 m̂k(t), the median trajectory, and the quantile trajec-

tories (0.05 and 0.95). Because our main interest is in the global model
function, however, the right side of Figures A5.8-A5.12 shows the plots
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Fig A5.8. Case ωσi = 0.05. Left side: m̂k(t) (yellow trajectories), true m0(t), m(t) =
1
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k=1 m̂k(t), median trajectory, and quantile trajectories (0.05 and 0.95). Right side:

ẑik(t) (yellow and orange trajectories), true zi0(t), zi(t) = 1
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k=1 ẑik(t), median tra-

jectory, and quantile trajectories (0.05 and 0.95).
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Fig A5.9. Case ωσi = 0.10. Left side: m̂k(t) (yellow trajectories), true m0(t), m(t) =
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jectory, and quantile trajectories (0.05 and 0.95).
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Fig A5.10. Case ωσi = 0.15. Left side: m̂k(t) (yellow trajectories), true m0(t), m(t) =
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jectory, and quantile trajectories (0.05 and 0.95).
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Fig A5.11. Case ωσi = 0.20. Left side: m̂k(t) (yellow trajectories), true m0(t), m(t) =
1

1000

∑1000
k=1 m̂k(t), median trajectory, and quantile trajectories (0.05 and 0.95). Right side:
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Fig A5.12. Case ωσi = 0.25. Left side: m̂k(t) (yellow trajectories), true m0(t), m(t) =
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of the true zi(t) functions, the estimated mean trajectories ẑik(t), zi(t) =
1

1000

∑1000
k=1 ẑik(t), the median trajectory, and the quantile trajectories (0.05

and 0.95). For ωσi values up to 0.15, all the estimated trajectories are very
close to the true one even for long-term forecasting (t ≤ 75). For ωσi = 0.20,
uncertainty is moderate for medium-term forecasting (t ≤ 60), while fluc-
tuations around the true trajectories make forecasts less reliable for ωσi ex-
ceeding 0.20. It is notable, however, that the average trajectories, m(t) and
zi(t), are essentially coincident with the respective true functions, m0(t) and
z0i(t).

A5.2. Alternative market potential structures. The simulations shed light
on one further key point. The described results were obtained with a “cor-
rectly specified” m(t) function, function (2.4). To determine whether the
proposed model could also adequately describe data generated with a more
complex dynamic than (2.4)—and what implications such a misspecification
in the market potential dynamics would have for evolutionary parameters p1,
q1, p2, q2, and δ—we examined alternative m(t) functions for data genera-
tion. The structure (2.4) represents a communication network’s size growing
according to a simple Bass model. Pertaining sensible assumptions about
knowledge spread may lead to heterogeneous behavior of involved agents.
In the literature, this effect has been modeled through more complex dif-
fusion of innovation models either with a continuous approach (see, e.g.,
Bemmaor, 1994; Bemmaor and Lee, 2002) or with a discrete approach (see,
e.g., Karmeshu and Goswami, 2001). The former leads to the alternative
specification

(A5.8) m(t) = K
[1− e−(pc+qc)t]β

[1 + qc
pc
e−(pc+qc)t]α

, K, pc, qc, α, β > 0, t > 0,

while the latter gives rise to a two-wave model,

(A5.9) m(t) = K1
1− e−(p1c+q1c)t

1 + q1c
p1c

e−(p1c+q1c)t
+K2

1− e−(p2c+q2c)(t−tc)

1 + q2c
p2c

e−(p2c+q2c)(t−tc)
It≥tc,

where Ki, pic, qic, tc > 0, t > 0.
Specifically, we present the results obtained for

• a Bemmaor model (A5.8) with α = 0.25 and β = 0.5 (BE(0.25,0.5)),
• a Bemmaor model (A5.8) with α = 1 and β = 0.5 (BE(1,0.5)),
• a two–wave model (A5.9) with changepoint in tcc = 20 (TW(20)).

Notice that function (2.4) can be represented as BE(0.5,0.5), as it is obvi-
ously a special case of (A5.8).
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Fig A5.13. Alternative m(t) dynamics used in simulations: a Bemmaor model (A5.8) with
α = 0.25 and β = 0.5 (BE(0.25,0.5)), a Bemmaor model (A5.8) with α = 1 and β = 0.5
(BE(1,0.5)) a two-wave model (A5.9) with changepoint in tcc = 20 (TW(20)). The m(t)
function used throughout the paper, (2.4), is also plotted and denoted by BE(0.5,0.5).

Table A5.6
MISE for the market potential function, m(t), with alternative specifications.

T = 50 T = 60 T = 70 T = 88 T = 114

BE(0.5,0.5) ωσi = 0.05 7.9842*105 8.4136*105 9.5680*105 1.8808*106 6.7524*106

ωσi = 0.10 1.0264*106 1.1166*106 1.3408*106 2.8253*106 9.2680*106

ωσi = 0.15 1.6529*106 1.8306*106 2.2428*106 4.7968*106 1.5172*107

BE(0.25,0.5) ωσi = 0.05 1.0649*106 1.1039*106 1.2103*106 2.1663*106 8.4540*106

ωσi = 0.10 2.0646*106 2.1692*106 2.3584*106 3.4547*106 9.2892*106

ωσi = 0.15 3.9747*106 4.1821*106 4.5231*106 6.1057*106 1.3061*107

BE(1,0.5) ωσi = 0.05 1.4031*106 1.4457*106 1.6207*106 4.1432*106 1.7707*107

ωσi = 0.10 2.7012*106 2.8158*106 3.4295*106 1.0847*107 6.0820*107

ωσi = 0.15 3.2451*106 3.4712*106 4.5917*106 1.7575*107 1.1643*108

TW(20) ωσi = 0.05 5.2213*107 5.4527*107 5.5356*107 1.3536*108 1.2534*109

ωσi = 0.10 5.2346*107 5.4871*107 5.5799*107 1.3644*108 1.2625*109

ωσi = 0.15 5.3285*107 5.5762*107 5.6861*107 1.4162*108 1.2932*109

Figure A5.13 shows the plot of these alternative dynamic structures in
comparison with the original function used in previously described simula-
tions. For comparative purposes, we show here the results obtained with the
three alternatives for the less extreme values of ωσi (namely 0.05, 0.10, and
0.15).

Table A5.6 shows the MISE values. When a BE(0.25,0.5) structure is
used to simulate the data, the MISE values are remarkably close to the
BE(0.5,0.5) case, and for higher T values, the MISE is even smaller. The
BE(1,0.5) model makes a somewhat greater impact on the MISE. Figures
A5.14–A5.19 show the true and estimated trajectories for the dynamic mar-
ket potential and the fitted response, when m(t) is simulated through a
Bemmaor process. The fluctuations are higher, especially when BE(1.0.5) is



17

0 20 40 60 80 100 120
t0

2000

4000

6000

8000

10 000

12 000

market potential

moHtL
mHtL
Median@mHtLD
0.05�0.95@mHtLD

0 20 40 60 80 100 120
t0

2000

4000

6000

8000

instantaneous sales

zioHtL
ziHtL
Median@ziHtLD
0.05�0.95@ziHtLD

Fig A5.14. Case BE(0.25,0.5), ωσi = 0.05. Left side: m̂k(t) (yellow trajectories),
true m0(t), m(t) = 1
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Fig A5.15. Case BE(0.25,0.5), ωσi = 0.10. Left side: m̂k(t) (yellow trajectories),
true m0(t), m(t) = 1
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and 0.95). Right side: ẑik(t) (yellow and orange trajectories), true zi0(t), zi(t) =
1
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k=1 ẑik(t), median trajectory, and quantile trajectories (0.05 and 0.95).

used and t ≥ 80. For higher t values, the average trajectories are not fully
coincident with the true ones. This is unsurprising, as the estimation pro-
cedure makes use of data from t = 1 to t = 50; a good approximation of a
Bemmaor structure through a Bass model in the range [1, 50] may not be
equally good in a different range.

Finally, the two-wave model (TW(20)) produces MISE values that are
ten times greater than the BE(0.5,0.5) model. Figures A5.20–A5.22 show
the true and estimated trajectories for dynamic market potential and the
fitted response when m(t) is simulated through a two-wave process. In this
case, m(t) cannot be adequately described even for smaller t values, but the
fluctuations around z0i(t) are extremely small for t ≤ 60.

Table A5.7 shows the MSE for the estimates of (p1, q1, p2, q2, δ) with the
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Fig A5.16. Case BE(0.25,0.5), ωσi = 0.15. Left side: m̂k(t) (yellow trajectories),
true m0(t), m(t) = 1
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Fig A5.17. Case BE(1,0.5), ωσi = 0.05. Left side: m̂k(t) (yellow trajectories), true m0(t),
m(t) = 1
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k=1 m̂k(t), median trajectory, and quantile trajectories (0.05 and 0.95).

Right side: ẑik(t) (yellow and orange trajectories), true zi0(t), zi(t) = 1
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∑1000
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median trajectory, and quantile trajectories (0.05 and 0.95).
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Fig A5.18. Case BE(1,0.5), ωσi = 0.10. Left side: m̂k(t) (yellow trajectories), true m0(t),
m(t) = 1
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k=1 m̂k(t), median trajectory, and quantile trajectories (0.05 and 0.95).

Right side: ẑik(t) (yellow and orange trajectories), true zi0(t), zi(t) = 1
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∑1000
k=1 ẑik(t),

median trajectory, and quantile trajectories (0.05 and 0.95).
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Fig A5.19. Case BE(1,0.5), ωσi = 0.15. Left side: m̂k(t) (yellow trajectories), true m0(t),
m(t) = 1
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k=1 m̂k(t), median trajectory, and quantile trajectories (0.05 and 0.95).

Right side: ẑik(t) (yellow and orange trajectories), true zi0(t), zi(t) = 1
1000

∑1000
k=1 ẑik(t),

median trajectory, and quantile trajectories (0.05 and 0.95).

Table A5.7
MSE of the parameter estimates for (p1, q1, p2, q2, δ) with alternative m(t) specifications.

parameter p1 q1 p2 q2 δ
(βj0) (0.02) (0.03) (0.005) (0.1) (0.05)

BE(0.5,0.5) ωσi = 0.05 1.1897*10−5 2.7558*10−3 1.4823*10−6 3.5251*10−3 8.9532*10−3

ωσi = 0.10 2.5986*10−5 8.3951*10−3 6.5940*10−6 9.1042*10−3 2.4722*10−2

ωσi = 0.15 5.5103*10−5 3.1755*10−2 2.1710*10−5 3.2648*10−2 9.0742*10−2

BE(0.25,0.5) ωσi = 0.05 1.1852*10−5 1.8281*10−3 1.1023*10−6 2.5001*10−3 6.1818*10−3

ωσi = 0.10 2.7446*10−5 6.6698*10−3 5.0748*10−6 7.4257*10−3 1.9925*10−2

ωσi = 0.15 4.9248*10−5 2.1805*10−2 1.3392*10−5 2.3126*10−2 6.1728*10−2

BE(1,0.5) ωσi = 0.05 3.7755*10−6 4.8813*10−3 3.1662*10−6 5.4007*10−3 1.4122*10−2

ωσi = 0.10 1.4818*10−5 1.9343*10−2 1.1618*10−5 2.0172*10−2 5.5211*10−2

ωσi = 0.15 3.3855*10−5 6.4107*10−2 2.9979*10−5 6.4740*10−2 1.8183*10−1

TW(20) ωσi = 0.05 1.1022*10−4 2.5203 1.9994*10−6 3.5076 6.1608

ωσi = 0.10 1.1130*10−4 2.5217 2.6444*10−6 3.5249 6.3360

ωσi = 0.15 1.1872*10−4 2.5613 3.0510*10−6 3.5735 6.4498
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Fig A5.20. Case TW(20), ωσi = 0.05. Left side: m̂k(t) (yellow trajectories), true m0(t),
m(t) = 1

1000

∑1000
k=1 m̂k(t), median trajectory, and quantile trajectories (0.05 and 0.95).

Right side: ẑik(t) (yellow and orange trajectories), true zi0(t), zi(t) = 1
1000

∑1000
k=1 ẑik(t),

median trajectory, and quantile trajectories (0.05 and 0.95).
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Fig A5.21. Case TW(20), ωσi = 0.10. Left side: m̂k(t) (yellow trajectories), true m0(t),
m(t) = 1
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∑1000
k=1 m̂k(t), median trajectory, and quantile trajectories (0.05 and 0.95).

Right side: ẑik(t) (yellow and orange trajectories), true zi0(t), zi(t) = 1
1000

∑1000
k=1 ẑik(t),

median trajectory, and quantile trajectories (0.05 and 0.95).

alternative m(t) specifications. We can see that when m(t) belongs to the Be-
mmaor family, the misspecification has a very small impact on the precision
of the evolutionary parameters. For two-wave m(t), the impact is larger.
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