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This paper deals with the periodic homogenization of nonlocal parabolic
Hamilton–Jacobi equations with superlinear growth in the gradient terms. We show
that the problem presents different features depending on the order of the nonlocal
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the locally uniform convergence to the unique solution of the Cauchy problem for
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1. Introduction

This paper deals with periodic homogenization for nonlocal parabolic Hamilton–
Jacobi equations of the form

uϵ
t − a

(
x,

x

ϵ

)
I(uϵ, x) + H

(
x,

x

ϵ
,Duϵ

)
= 0 in QT , (1.1)

where QT := RN × (0, T ], for T > 0 fixed. We complement this equation with the
initial condition

uϵ(x, 0) = u0(x) x ∈ RN , (1.2)
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2 Martino Bardi, Annalisa Cesaroni and Erwin Topp

where u0 is a bounded and uniformly continuous function in RN . The elliptic part
of the operator in (1.1) is the term a(x, y)I(u, x), where a : RN × RN → R is a
uniformly continuous function and I(u, x) is a nonlocal operator defined as

I(u, x) :=
∫

RN

[u(x + z) − u(x) − 1B(z)⟨Du(x), z⟩]Kσ(z)dz, (1.3)

for suitable functions u : RN → R, with Kσ : RN → R nonnegative and measurable
and 1B the indicator function of the unit ball B centred at 0. The main assumption
on this nonlocal operator is the following ellipticity condition

0 < a0 ! a(x, y) ! a−1
0 for all x, y ∈ RN , and there exists σ ∈ (0, 2) such that

k̄(z) := Kσ(z)|z|N+σ is bounded in RN , continuous at the origin, and k̄(0) > 0.
(E)

This assumption makes I(u, x) in (1.3) well-defined for bounded and sufficiently
smooth functions u. The parameter σ shall be regarded as the order of the operator.

An example of particular interest is the case of the fractional Laplacian of order
σ ∈ (0, 2) defined as

(−∆)σ/2u(x) := −CN,σ

∫

RN

[u(x + z) − u(x) − 1B(z)⟨Du(x), z⟩]|z|−(N+σ)dz,

(1.4)

where CN,σ > 0 is a suitable normalizing constant, see [20].
We will assume k̄(0) = CN,σ, see assumption (2.3), so the interaction kernel Kσ

in (1.3) under assumption (E) coincides with the kernel of the fractional Laplacian
(−∆)σ/2 multiplied by the function k̄(z)/k̄(0) which is bounded, continuous in 0
and takes value 1 in 0. Therefore, Kσ can be considered a perturbation of the kernel
of the fractional Laplacian (−∆)σ/2, and therefore the integro-differential operator
I is a perturbation of (−∆)σ/2.

Concerning the Hamiltonian, we concentrate here on the case where H is
superlinear in the gradient variable, see assumption (H1). A model problem is

uϵ
t − a

(
x,

x

ϵ

)
I(uϵ, x) + b

(
x,

x

ϵ

)
|Duϵ|m = f

(
x,

x

ϵ

)

with m > 1 and b(x, y) " b0 > 0, but we do not need any convexity of H with
respect to Du. This is a suitable framework because we can exploit available well-
posedness and regularity results, especially by Barles, Koike, Ley, and Topp [11], to
study the behaviour of the family of viscosity solutions {uϵ}ϵ to (1.1)–(1.2) as ϵ→
0. The estimates in [11] extend to integro-differential equations some interesting
results of [15] for viscous Hamilton–Jacobi equations.

Our main purpose is to obtain homogenization results for problems of the
form (1.1) under periodicity conditions on the ‘fast variable’ x/ϵ, in the spirit of
the celebrated paper of Lions, Papanicolaou, and Varadhan [24] and subsequently
addressed for first and second-order degenerate elliptic and parabolic equations
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Homogenization of nonlocal H-J equations 3

in [1–3,21,22], among many others. The goal is finding an effective Hamiltonian
H̄ : RN × RN × R → R such that uϵ converges to a solution of

ut + H̄(x, Du, I(u, x)) = 0 in QT , (1.5)

possibly the unique one satisfying the initial condition

u(x, 0) = u0(x) x ∈ RN . (1.6)

The basic strategy to identify H̄ begins with a formal expansion in powers of ϵ of
the form

uϵ(x, t) = ū(x, t) + ϵ1∨σψ(x/ϵ), (1.7)

where a ∨ b = max{a, b} and ψ is called the corrector. Note that the exponent of ϵ is
chosen depending on the order σ of the integral operator I. Plugging the ansatz (1.7)
in equation (1.1), some nontrivial calculations in § 4 lead to a cell problem, which
is an additive eigenvalue problem on the torus TN whose solution should be the
corrector ψ and the eigenvalue H̄ = H̄(x, p, l), where x, p and l are parameters. The
presence of the nonlocal term I produces three different cell problems depending
on σ:

• for σ < 1 the cell problem is the purely first-order PDE

−a(x, y)l + H(x, y, p + Dψ(y)) = H̄ y ∈ TN .

• for σ > 1 the cell problem is the linear purely nonlocal equation

−a(x, y)l + a(x, y)(−∆)σ/2ψ(y) + H(x, y, p) = H̄ y ∈ TN .

• for σ = 1 it has both first-order and nonlocal terms, and an extra drift term
⟨b,Dψ(y)⟩

− a(x, y)l + a(x, y)[(−∆)1/2ψ(y) + ⟨b,Dψ(y)⟩]

+ H(x, y, p + Dψ(y)) = H̄ in TN , (1.8)

with b ̸= 0 if the kernel K1 is not symmetric (b is explicitly defined in (4.6)).

The solvability of these problems and sufficient regularity of ψ are not difficult in the
first two cases, whereas for σ = 1 they require some fine estimates that we obtain
by adapting the methods of [11], [12] and [29], and by strengthening the regularity
assumption on H from the general condition (H2) to (2.6). We deduce from the
cell problems also information about the effective Hamiltonian H̄, especially about
its modulus of continuity, since H̄ is explicit only for σ > 1.

Adapting in an appropriate way the perturbed test function method introduced
by Evans [21,22], we show that the weak semilimits of the family of solutions
{uϵ}ϵ are a sub- and a supersolution of the effective equation (1.5) and initial
condition (1.6). Next we need a comparison principle between a sub- and a super-
solution of this Cauchy problem to obtain the locally uniform convergence of the
full sequence {uϵ}ϵ. In the nonlocal setting, however, the known theory does not
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cover nonlinearities where the state variable x and the integral operator I interact.
Only the case σ > 1, where the effective equation is

ut −
I(u, x)∫

TN 1/a(x, y)dy
+
∫

TN

H(x, y, Du)
a(x, y)

dy = 0

can be treated by the methods of Barles and Imbert [10]. For the other two cases
we prove a new comparison result for (1.5)–(1.6) under the structure condition on
the operator that for some n > 0

|H̄(x1, p1, l1) − H̄(x2, p2, l2)|

! ω
(
|l1 − l2| + |x1 − x2|(1 + |l| + |p|m)n + |p1 − p2|(1 + |l| + |p|m)n

)
, (1.9)

and for semicontinuous sub- and supersolutions attaining the initial data continu-
ously uniformly on RN , i.e.

lim
t→0+

sup
x∈RN

|u(x, t) − u0(x)| = 0, (1.10)

and such that at least one of them is Hölder continuous. The proof relies on a new
argument for comparison when one knows that the semisolutions are ordered in
a small strip RN × [0, d0] and one of them is Hölder, proposition 3.1. Then one
reduces to this case by regularizing in time, and exploiting the regularity results of
[11] and the initial condition (1.10), see theorem 3.2. We believe this comparison
theorem and the method of proof have independent interest and will find other
applications.

Finally, we show that H̄ satisfies (1.9) with n = m − 1 and the weak semilimits
verify the assumptions of the comparison theorem, and therefore we get the homog-
enization result for all σ, as well as a characterization of the limit as the unique
solution of (1.5) with the property (1.10).

There are a few other papers on the homogenization of integrodifferential equa-
tions in the framework of viscosity solutions. Arisawa [4,5] addressed stationary
equations of the form uϵ − a (x/ϵ) I(uϵ, x) = g (x/ϵ) in a bounded open set Ω, with
uϵ prescribed in Ωc. In this problem there is no interaction between I and gra-
dient terms in H, and the effective equation does not depend on x, so it satisfies
the comparison principle by standard theory. In the unpublished paper [6] she
considered the same equation with the addition of a non-oscillating Hamiltonian
H = maxα∈A⟨f(x,α),Duϵ⟩, with A compact, and mere almost periodicity of a and
g. In [26] Schwab also considered a Dirichlet problem and nonlocal equations with-
out first order terms, which in his case are elliptic and have the Bellman–Isaacs
form with oscillating kernels Kσ(x/ϵ, z). In [26] the effective equation has nontrivial
interaction between the state variable and the nonlocality, but it enjoys translation
invariance properties which allow to get a comparison principle by inf/sup con-
volutive regularizations. Schwab also extended some of these results to stochastic
homogenization [27]. The very recent preprint [18] addresses periodic homogeniza-
tion of Hamilton–Jacobi–Bellman equations with nonlocal terms and at most linear
growth in the gradient. We mention that nonlocal homogenization problems have
been addressed also in other contexts, such as divergence-form equations, using
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Homogenization of nonlocal H-J equations 5

Γ-convergence [23], and semigroup theory [25]. Finally, we point out that a phe-
nomenon related to the appearance of the extra term in (1.8) when the kernel is
not symmetric was observed in [16].

This paper is organized as follows. In § 2 we present the main assumption and
preliminary results. In § 3 we provide the new comparison principle that is needed
in the case σ ! 1. In § 4 we present the different cell problems associated to the
value of σ ∈ (0, 2). Sections 5, 6 and 7 deal, respectively, with the case σ = 1, σ < 1
and σ > 1. Finally, in the appendix we provide two a priori estimates for solution
to coercive Hamilton–Jacobi equation with fractional Laplacian of order 1/2.

2. Preliminaries

2.1. Basic assumptions and examples

First of all we assume that a : R2N → R is uniformly continuous and H ∈ C(R3N )
satisfies

|H(·, ·, 0)|∞, |a|∞ < +∞,

a(x, ·), H(x, ·, p) are ZN -periodic, for all x, p ∈ RN .
(H0)

The assumption on the nonlocal operator are given in (E). We define ω̄ to be the
modulus of continuity of k̄ at 0, that is

ω̄(t) = sup
|z|!t

{|k̄(z) − k̄(0)|}, t > 0. (2.1)

Moreover, in the case σ = 1, we impose the following extra condition on K1, when
it is not symmetric:

∫ 1

0
ω̄(r)r−1dr < +∞. (2.2)

Regarding (E), the second assumption is related to what we call ‘the order’
of the nonlocal operator, i.e. the number σ ∈ (0, 2). On the other hand, the first
assumption is important to get the existence and uniqueness to (1.1). For simplicity,
we assume that

k̄(0) = CN,σ > 0, (2.3)

where CN,σ > 0 is the well-known normalizing constant arising in the definition of
fractional Laplacian (−∆)σ/2 (see [20]). This is going to be used in § 4.

We assume that the Hamiltonian is superlinear in the gradient variable in the
following sense:

∃b0, C0 > 0, m > 1 : µH(x, y, µ−1p) − H(x, y, p) (H1)

" (1 − µ)
(
b0|p|m − C0

)
, ∀µ ∈ (0, 1),
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for all x, y, p ∈ RN . Moreover, we assume there exists a modulus of continuity ω
such that

|H(x, y, p) − H(x′, y′, p′)| ! ω(|x − x′| + |y − y′|)(1 + Rm) (H2)

+ ω(|p − p′|)(1 + Rm−1),

for all R > 0, all x, x′, y, y′ ∈ RN and p, p′ ∈ RN with |p|, |p′| ! R. Since it is not
restrictive to assume ω(r) ! C1r for all r " 1, (H2) and (H0) imply the existence
of C > 0 such that

|H(x, y, p)| ! C(1 + |p|m), for x, y, p ∈ RN . (2.4)

We observe that assumptions (H0), (H1) and (H2) imply the following coercivity
condition: for some C > 1 and K " 0

C−1(1 + |p|m) − K ! H(x, y, p), for x, y, p ∈ RN . (2.5)

A proof of this fact is detailed at the end of the appendix. A model example is

H(x, y, p) = b(x, y)|p|m − f(x, y),

with m > 1 and f, b bounded and uniformly continuous, with b " b0 > 0.
Finally, in the case σ = 1, we require the following extra Lipschitz condition

over the data: recalling m > 1 arising in (H1), we assume the existence of L > 0
such that, for all R > 0, all X = (x, y),X ′ = (x′, y′) ∈ R2N and p, p′ ∈ RN with
|p|, |p′| ! R we have
{
|H(X, p) − H(X ′, p′)| ! L(1 + Rm)|X − X ′| + L(1 + Rm−1)|p − p′|,
|a(X) − a(X ′)| ! L|X − X ′|.

(2.6)

We recall briefly the definition of viscosity solutions for nonlocal parabolic
equations such as (1.1). For more details we refer to [10].

2.2. Notion of solution

We describe the notion of solution for slightly more general Cauchy problems of
the form

{
ut + F (x, Du, I(u, x)) = 0 in QT

u(x, 0) = u0(x) x ∈ RN .
(2.7)

Here, F ∈ C(RN × RN × R) is degenerate elliptic in the nonlocal variable, that is

F (x, p, l1) ! F (x, p, l2) for all x, p ∈ RN , l1, l2 ∈ R, such that l1 " l2.

We introduce some notation. Let δ ∈ (0, 1), and we denote with Bδ the ball cen-
tred at 0 of radius δ, with B the ball of radius 1, and with Bc

δ , Bc the complements
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Homogenization of nonlocal H-J equations 7

of such sets. Finally Bδ(x) will indicate the ball centred at x of radius δ. For
φ ∈ C2(RN × (0, T )) and x ∈ RN , t ∈ (0, T ), we define the localized operator

I[Bδ](φ, x) =
∫

Bδ

[φ(x + z, t) − φ(x, t) − ⟨Dφ(x, t), z⟩]Kσ(z)dz. (2.8)

Moreover, for any u ∈ L∞(RN × (0, T )), p ∈ RN and x ∈ RN , t ∈ (0, T ), we define

I[Bc
δ ](u, p, x) =

∫

Bc
δ

[u(x + z, t) − u(x, t) − 1B(z)⟨p, z⟩]Kσ(z)dz. (2.9)

Note that if Kσ is symmetric, that is Kσ(z) = Kσ(−z), due to its integrability
properties we get that the previous operator is independent of p ∈ RN , that is

I[Bc
δ ](u, p, x) = I[Bc

δ ](u, x) =
∫

Bc
δ

[u(x + z, t) − u(x, t)]Kσ(z)dz. (2.10)

Definition 2.1 Viscosity solutions.

• A bounded upper semicontinuous function u : RN × (0, T ] → R is a viscosity
subsolution of (1.1) if for any (x, t) ∈ RN × (0, T ] and any test-function φ ∈
C2(RN × (0, T ]), such that (x, t) is a maximum point of u − φ in Bδ(x) × (t −
δ, t + δ), for a small δ > 0, there holds

φt(x, t) + F
(
x, Dφ(x, t), I[Bδ](φ, x) + I[Bc

δ ](u, Dφ(x, t), x)
)

! 0.

• A bounded lower semicontinuous function u : RN × (0, T ] → R is a viscosity
supersolution of (1.1) if for any (x, t) ∈ RN × (0, T ] and any test-function
φ ∈ C2(RN × (0, T ]), such that (x, t) is a minimum point of u − φ in Bδ(x) ×
(t − δ, t + δ), for a small δ > 0, there holds

φt(x, t) + F
(
x, Dφ(x, t), I[Bδ](φ, x) + I[Bc

δ ](u, Dφ(x, t), x)
)

" 0.

• A bounded continuous function u : RN × (0, T ] → R is a viscosity solution of
(1.1) if it is both a subsolution and a supersolution.

2.3. Existence and comparison principle for (1.1)–(1.2)

In this section, we present well known results about existence and uniqueness
of solutions to the Cauchy problem (1.1)–(1.2). We point out that we give also
a precise estimate on the behaviour of the solutions to the parabolic problem as
t → 0, that is estimate (2.12), based on the uniform continuity assumption on the
initial data, which will be useful in comparing the weak upper and lower semilimits
of uϵ as ϵ→ 0.

Proposition 2.2. Assume (E), (H0), (H1), (H2) hold and u0 ∈ BUC(RN ).
Then there exists a unique bounded continuous viscosity solution to the Cauchy
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8 Martino Bardi, Annalisa Cesaroni and Erwin Topp

problem (1.1)–(1.2). Moreover,

|uϵ|L∞(QT ) ! |u0|∞ + |H(·, ·, 0)|∞T (2.11)

and there exists a modulus of continuity ω̄ (depending on the modulus of u0) such
that

sup
x∈RN

|uϵ(x, t) − u0(x)| ! ω̄(t) for all t > 0, ϵ > 0. (2.12)

Proof. A comparison principle for bounded viscosity sub and supersolutions which
are well-ordered at time t = 0 is proposition 3.1 in [11]. It does not apply directly
to (1.1) unless the coefficient a multiplying the nonlocal operator I is constant.
However, in view of assumption (E), equation (1.1) can be equivalently formulated
as

a−1(x, x/ϵ)ut − I(u, x) + a−1(x, x/ϵ)H(x, x/ϵ,Du) = 0,

so that the nonlocal operator does not interact with the state variables x, x/ϵ. Then,
using the continuity of a, we can get the comparison result by a straightforward
adaption of the proof in [11].

Concerning existence, by (E) and (H0), if u0 ∈ C2(RN ) with |u0|C2(RN ) < ∞,
then we see that the function U(x, t) = u0(x) ± C0t with C0 large enough in terms
of |u0|C2(RN ) is a supersolution (resp. a subsolution) for the problem solved by uϵ.
More precisely, C0 can be chosen of the form

C0 = C1|D2u0|∞ + C2|Du0|m∞,

with C1, C2 depending only on the constants in the assumptions, thanks to the
linearity of I and the growth (2.4) of H. Therefore, Perron’s method leads to the
existence of a viscosity solution to this problem. By stability arguments, it is possi-
ble to conclude the existence for initial data merely continuous by approximation.
Moreover, by comparison principle the unique solution uϵ to problem (1.1)–(1.2) is
uniformly bounded in QT for all ϵ > 0, that is (2.11) holds.

We prove now (2.12). If |u0|C2(RN ) < ∞ then (2.12) holds with ω̄(t) = C0t. In
the general case, we consider a standard mollifier ρ ∈ C∞(RN ) with support in the
unit ball and

∫
B ρ(x)dx = 1, and its rescaled version ρh(x) = h−Nρ(x/h), h > 0.

Then we define uh
0 := u0 ∗ ρh, which is a C∞ function with |Duh

0 |∞ ! Ch−1 and
|D2uh

0 |∞ ! Ch−2. Notice that for all x ∈ RN we have

|uh
0 (x) − u0(x)| ! h−N

∫

Bh

|u0(y) − u0(x)|ρ((x − y)/h)dy ! ω0(h),

where ω0 is the modulus of continuity of u0. Therefore a function with the form

Uh(x, t) = uh
0 (x) + ω0(h) + C(h)t,

is a supersolution for the problem solved by uϵ, with a constant C(h) of the form

C(h) = CC1h
−2 + CC2h

−m ! C3h
−α, α = 2 ∨ m, h ! 1
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Homogenization of nonlocal H-J equations 9

where m > 1 is the constant appearing in (H1), (H2). Since a subsolution can be
constructed in the same way, we have that

sup
x∈RN

|uϵ(x, t) − u0(x)| ! inf
h>0

{2ω0(h) + C(h)t}! 2ω0(t1/(2α)) + C3t
1/2 =: ω̄(t),

which proves (2.12) and in particular leads to (1.2). #

3. Comparison principle and uniqueness result for a class of nonlocal
Hamilton–Jacobi operators

In this section, we provide a comparison principle among semicontinuous viscosity
sub and supersolutions and a uniqueness result for problems of the form (2.7). We
need it for the effective problems addressed in §§ 5 and 6 of this paper, which do
not fall within the theory of [11], different from the ϵ-problem (1.1).

We consider the following continuity assumption: there exists n > 0 such that
such that for all xi, pi ∈ RN , li ∈ R, i = 1, 2,

|F (x1, p1, l1) − F (x2, p2, l2)|

! ω
(
|l1 − l2| + |x1 − x2|(1 + |l| + |p|m)n + |p1 − p2|(1 + |l| + |p|m)n

)
, (3.1)

where m > 1, ω be a modulus of continuity, and |p| = max{|p1|, |p2|}, |l| =
max{|l1|, |l2|}.

The initial condition u0 ∈ BUC(RN ) satisfies (2.12).
Note that the nonlocal operator depends on the state variable: in this setting, the

validity of a comparison principle among semicontinuous sub- and supersolutions is
an open problem. We provide in theorem 3.2 a comparison principle by exploiting
regularization by sup-convolutions in the time variable and the uniform continuity
of the initial datum u0. We will first need a technical result for the case σ = 1,
which requires sufficient regularity either of the subsolution or of the supersolution,
and moreover it requires to control the behaviour of sub- and supersolutions in a
small neighbourhood of the initial time.

Proposition 3.1. Assume σ ! 1. Let u, v bounded, u u.s.c. in Q̄T , v l.s.c. in Q̄T

be, respectively, a viscosity sub- and supersolution to the PDE in (2.7), with F
satisfying (3.1). Moreover we assume

u ! v in RN × [0, d0], (3.2)

for some 0 < d0 < T . Then there exists α0 = α0(n,σ,m) < 1 such that, if u or v is
in Cα(Q̄T ) for some α ∈ (α0, 1), then u ! v in Q̄T .

Proof. We assume that the Cα property corresponds to u. The case in which v is
Hölder follows the same lines. By contradiction, we assume that

sup
Q̄T

{u − v} =: M > 0.
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10 Martino Bardi, Annalisa Cesaroni and Erwin Topp

Replacing u by u − νt for some ν > 0 small enough in terms of M and T , a
classical argument allows us to assume that u in fact satisfies the viscosity inequality

ut + F (x, Du, I(u)) ! −ν in QT .

Then, we double variables and approximate M as follows:

Mϵ,η,β = sup
Q̄T ×Q̄T

Φ(x, y, s, t)

:= sup
Q̄T ×Q̄T

(u(x, s) − v(y, t) − χβ(y) − ϵ−2|x − y|2 − η−1(s − t)2), (3.3)

where the parameters ϵ, η,β > 0 are small parameters that will go to 0, and the
function χβ is constructed as follows, arguing as in the proof of [10, theorem 3]. We
consider a function χ ∈ C2

b (R) with ∥χ∥C2 < ∞, χ = 0 in B1, χ " |u|∞ + |v|∞ + 1
in Bc

2. For β > 0 we denote χβ(x) = χ(βx).
Observe that χβ(x) > |u|∞ + |v|∞ + 1 for all |x| " 2/β which ensures that the

supremum defining Mϵ,η,β is achieved and therefore the function Φ in (3.3) attains
its maximum at a point (x̄, ȳ, s̄, t̄) for all β, ϵ, η > 0 small enough.

Moreover, again as in [10, theorem 3] we get that

|Dχβ |∞, |I(χβ , ·)|∞ → 0 uniformly in RN as β → 0. (3.4)

Hence, for β > 0 small enough in terms of M we have

sup
Q̄T

{u(x, t) − v(x, t) − χβ(x)} =: M̃ " M/2, (3.5)

and this supremum is achieved at some point (x̂, t̂) ∈ Q̄T with |x̂| ! 2/β. Using the
inequality

Φ(x̄, ȳ, s̄, t̄) " Φ(x̂, x̂, t̂, t̂) = M̃ > 0, (3.6)

we see that |x̄ − ȳ| ! Cϵ and |s̄ − t̄| ! Cη1/2. Using this and (3.6) again together
with the fact that u is Cα, we conclude that

M̃ ! u(ȳ, t̄) − v(ȳ, t̄) + C(ϵα + ηα/2),

for all η, ϵ,β and a constant C > 0 not depending on these parameters. Then, for all
ϵ, η small enough depending on M̃ , assumption (3.2) implies that t̄ " d0 and there-
fore, taking η smaller if it is necessary, we conclude that s̄, t̄ " d0/2, independent
of β.

Thus, we use the viscosity inequality for u at (x̄, s̄) and for v at (ȳ, t̄), for each
δ > 0 we can write

2η−1(s̄ − t̄) + F (x̄, p̄, Iδ,1 + Iδ
1 ) ! −ν

2η−1(s̄ − t̄) + F (ȳ, q̄, Iδ,2 + Iδ
2 ) " 0,

(3.7)

where p̄ = 2ϵ−2(x̄ − ȳ), q̄ = p̄ − Dχβ(ȳ). For the nonlocal evaluations denotes as
Iδ,i, Iδ

i , i = 1, 2, we require some notation to split the analysis depending if σ < 1
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Homogenization of nonlocal H-J equations 11

or σ = 1. Denote Iσ = 1 if σ = 1, Iσ = 0 if σ < 1, φ(x, y) := ϵ−2|x − y|2 + χβ(y),
and with this the integral terms

Iδ,1 =
∫

Bδ

[φ(x̄ + z, ȳ) − φ(x̄, ȳ) − Iσ⟨p̄, z⟩]Kσ(z)dz,

Iδ,2 = −
∫

Bδ

[φ(x̄, ȳ + z) − φ(x̄, ȳ) − Iσ⟨q̄, z⟩]Kσ(z)dz,

Iδ
1 =

∫

Bc
δ

[u(x̄ + z, s̄) − u(x̄, s̄) − Iσ1B⟨p̄, z⟩]Kσ(z)dz,

Iδ
2 =

∫

Bc
δ

[v(ȳ + z, t̄) − v(ȳ, t̄) − Iσ1B⟨q̄, z⟩]Kσ(z)dz,

where we have omitted the dependence of these quantities on the rest of the param-
eters for simplicity. Subtracting the inequalities in (3.7), by the continuity of F and
the respective semicontinuity of u, v we take limit as η → 0 to arrive at

F (x̄, p̄, Iδ,1 + Iδ
1 ) − F (ȳ, q̄, Iδ,2 + Iδ

2 ) ! −ν, (3.8)

where τ ∈ [0, T ] is such that s̄, t̄ → τ as η → 0. We keep using the notation x̄, ȳ
after taking η → 0 for simplicity.

Using that Φ(x̄, ȳ, τ, τ) " Φ(x̂, x̂, t̂, t̂), the definition of φ and the property of I
in (3.4) we arrive at

Iδ
1 ! Iδ

2 + oβ(1),

where oβ(1) → 0 uniformly on the rest of the parameters. Thus, by the elliptic
monotonicity of F in the nonlocal variable, (3.8) leads us to

F (x̄, p̄, Iδ,1 + Iδ
1 ) − F (ȳ, q̄, Iδ,2 + Iδ

1 + oβ(1)) ! −ν. (3.9)

It is direct to check using (3.4) that

|Iδ,i| ! oβ(1) + Cϵ−2

{
δ if σ = 1
δ1−σ if σ < 1,

for each i = 1, 2. On the other hand, using the Cα assumption for u we see that

|Iδ
1 | ! C

∫

Bc
δ

|z|α−N−σdz + CIσ|p̄|
∫

B\Bδ

|z|1−N−σdz,

from which we get

|Iδ
1 | ! Cδα−σ + CIσ|p̄|| log(δ)|.

Next we deal first with the case σ = 1. Using (3.6) once more we see that

u(x̄, τ) − u(ȳ, τ) − ϵ−2|x̄ − ȳ|2 " 0.

Then, applying the Cα continuity of u we conclude that

C|x̄ − ȳ|α " ϵ−2|x̄ − ȳ|2,

9CC#%,��))) 42 3$:586 "$8�4"$6�C6$ % �9CC#%,��5": "$8��� �����#$  ���� 
�
.")!�"2565�7$" �9CC#%,��))) 42 3$:586 "$8�4"$6 �1!:(6$%:C2�5:�/25"(2��"!����06#������2C��
,��,	���%D3�64C�C"�C96��2 3$:586��"$6�C6$ %�"7�D%6��2(2:�23�6�2C

https://www.cambridge.org/core/terms
https://doi.org/10.1017/prm.2019.56
https://www.cambridge.org/core


12 Martino Bardi, Annalisa Cesaroni and Erwin Topp

for some constant depending on α. From here, denoting θ = 2/(2 − α) we conclude
that

|x̄ − ȳ| ! Cϵθ and |p̄| ! Cϵθ−2. (3.10)

Notice that θ → 2 as α→ 1−.
In view of the above estimates, we apply the continuity assumption on the

Hamiltonian F in (3.9) to conclude

ω
(
ϵ−2δ + oβ(1) + (ϵθ + oβ(1))[1 + δα−1 + ϵ−2δ + ϵθ−2| log(δ)| + ϵm(θ−2)]n

)
! −ν
(3.11)

At this point we choose δ = ϵ2+κ, κ > 0 and β ≪ ϵ to have oβ(1) = ϵθ to get,
recalling that m > 1 and θ < 2,

ω
(
ϵκ + ϵθ + ϵθ+n(2+κ)(α−1) + ϵθ+nm(θ−2)

)
! −ν (3.12)

where we have replaced ω(·) by ω(C·) for C > 0 large enough. We show now that
we can choose κ > 0 such that there exists a constant α0(n,σ,m) ∈ (0, 1) such that
for α > α0(n,σ,m) all the exponents of ϵ in (3.12) are positive. This will give a
contradiction sending ϵ→ 0 since ν > 0 is fixed.

Indeed, choosing κ = 2 and recalling that θ = 2/(2 − α) we observe that

θ + 4n(α− 1) > 0 if α ∈
(

3
2
− 1

2

√
1 +

2
n

, 1

)

and

θ + mn(θ − 2) > 0 if and only if α > 1 − 1
nm

.

This implies the claim for σ = 1 by choosing

α0(n, 1,m) = max

(
1 − 1

nm
,
3
2
− 1

2

√
1 +

2
n

)
.

In the case σ < 1 we argue in the same way. Now (3.11) is replaced by

ω
(
ϵ−2δ1−σ + oβ(1) + (ϵθ + oβ(1))

[
1 + δα−σ + ϵ−2δ1−σ + ϵm(θ−2)

]n )
! −ν

(3.13)

and (3.12) is replaced by

ω
(
ϵκ(1−σ)−2σ + ϵθ + ϵθ+n(2+κ)(α−σ) + ϵθ+nm(θ−2)

)
! −ν

Then we choose κ > 2σ/(1 − σ) and observe that

θ + n(2 + κ)(α− σ) > 0 if α ∈ (ᾱ, 1) ,

where ᾱ := (2 + σ −
√

(2 − σ)2 + 8/(n(2 + κ)))/2. This proves the claim for σ < 1
by choosing

α0(n,σ,m) = max
(

1 − 1
nm

, ᾱ

)
. #
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Homogenization of nonlocal H-J equations 13

The key assumption on the regularity of the subsolution in the previous proposi-
tion can be obtained through the gradient dominance. We say that F is superlinear
in the gradient if there exist m > 1 and C, c > 0 such that

F (x, p, l) " c|p|m − C(|l| + 1), for all x, p ∈ RN , l ∈ R. (3.14)

Now we are ready to prove a comparison principle for semicontinuous solutions to
problem (2.7) among functions u attaining uniformly continuously the initial data,
namely, satisfying

sup
x∈RN

|u(x, t) − u0(x)| ! ω0(t), t " 0, (3.15)

for some modulus ω0 (i.e. ω0(t) → 0 as t → 0).

Theorem 3.2. Assume that σ ! 1, F satisfies (3.1), it is degenerate elliptic in the
nonlocal variable and superlinear in the gradient (3.14), and u0 ∈ BUC(RN ). Let u
be a bounded l.s.c. supersolution to (2.7) in QT and ū be a bounded u.s.c. subsolution
to (2.7) in QT attaining uniformly continuously the initial data u0. Then, ū ! u in
Q̄T .

In particular, there exists at most one viscosity solution to (2.7) among functions
satisfying (3.15).

Proof. It is sufficient to prove that ū ! u in Q̄T , since the uniqueness of the con-
tinuous viscosity solution is a direct consequence of this. For γ > 0 and (x, t) ∈ Q̄T

we consider

ūγ(x, t) = sup
s∈[0,T ]

{ū(x, s) − γ−1|s − t|2},

and present some well-known properties for this regularization. Since ū is u.s.c.,
for each (x, t) ∈ Q̄T , there exists s̃ depending on x, t and γ such that ūγ(x, t) =
u(x, s̃) − γ−1|t − s̃|2 and from here, noticing that ū ! ūγ , it is possible to conclude
that |t − s̃| ! 2|u|∞

√
γ. Using again the u.s.c. of ū, we see that ūγ → ū as γ → 0

locally uniformly in Q̄T .
In particular, we see that for all x we can write

ūγ(x, t) − u0(x) ! ū(x, s̃) − u0(x) ! ω0(t + 2|u|∞
√
γ),

where ω0 comes from (3.15), and therefore, that for all d > 0 small enough, there
exists γ small in terms of d such that

ūγ(x, t) − u0(x) ! ω(d), for all (x, t) ∈ RN × [0, d],

where ω is a modulus of continuity.
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14 Martino Bardi, Annalisa Cesaroni and Erwin Topp

At this point, we consider d > 0 fixed and define

w̄(x, t) := ūγ(x, t) − 2(ω(d) + ω0(d)). (3.16)

Then it is easy to see that

w̄ ! u, in RN × [0, d/2].

On the other hand, standard arguments concerning sup-convolutions lead us to
prove that w̄ solves

wt + F (x, Dw, I(w, x)) ! 0 in RN × (aγ , T ],

where aγ > 0 is such that aγ → 0 as γ → 0.
Then we get that for every fixed d > 0, there exists γ(d) > 0 such that for γ <

γ(d), aγ < d/4 and w̄ ! u in RN × [0, d/2]. This implies that w̄, u are respectively
a sub and a supersolution to (2.7) in RN × [2aγ , T ] with w̄ ! u in RN × [2aγ , d/2].
Our aim is to apply proposition 3.1 to conclude that w̄ ! u in RN × [2aγ , T ] for
all γ small enough. We need to prove that w̄ is in Cα(RN × [2aγ , T ]) for some α
sufficiently close to 1.

By definition the function t 0→ ūγ(x, t) (and so also w̄) is Lipschitz continuous
in [0, T ], uniformly in x with Lipschitz constant proportional to γ−1. Then w̄t is
bounded by a constant C proportional to γ−1 and w̄ is a viscosity subsolution to
F (x, Dw, Iw) − C ! 0 in RN × [2aγ , T ]. A standard argument in viscosity solution
theory, see [7, lemma II.5.17], gives that for all t, the function w̄(·, t) is a viscosity
subsolution to F (x, Dw, Iw) − C ! 0 in RN . We sketch briefly the argument for
completeness. Let φ : Rn → R such that x is a strict maximum point of w̄(·, t) − φ.
We can assume without loss of generality that φ " 1. We define ψϵ(y, s) = φ(y)(1 +
|t − s|2/ϵ) for ϵ > 0. Let (xϵ, tϵ) be a maximum point of w̄ − ψϵ in Rn × [2aγ , T ].
Then (w̄ − ψϵ)(xϵ, tϵ) " (w̄ − ψϵ)(xϵ, t) implies that |t − tϵ| ! Cϵ, where C is the
Lipschitz constant of w̄ (with respect to time). Using this we get that (xϵ, tϵ) →
(x, t) as ϵ→ 0, and Dψϵ(xϵ, tϵ) → Dφ(x). Then the continuity properties of the
operator imply F (x, Dφ(x), I(φ, x)) ! C.

Therefore, we can use the Hölder estimates in [11, theorem 2.2] to obtain Cα

estimates for w̄(·, t). In fact, if σ = 1, for each α ∈ (0, 1), there exists C depending
on α and γ such that

|w̄(x, s) − w̄(y, t)| ! C(|s − t| + |x − y|α), for x, y ∈ RN , s, t ∈ [2aγ , T ].

If σ < 1, then there exists C > 0 depending on σ and γ such that

|w̄(x, s) − w̄(y, t)| ! C(|s − t| + |x − y|), for x, y ∈ RN , s, t ∈ [2aγ , T ].

Therefore, in both cases, we fulfil the requirements of proposition 3.1, which allows
us to conclude that w̄ ! u in RN × (2aγ , T ] for all γ small enough. Then

ūγ ! u + 2(ω(d) + ω0(d)) in RN × (2aγ , T ],

which implies, taking γ → 0 that ū ! u + 2(ω(d) + ω0(d)) in Q̄T . Since d > 0 is
arbitrary, we arrive to ū ! u in Q̄T . #
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Homogenization of nonlocal H-J equations 15

4. The cell problems for the homogenization

We consider the formal asymptotic expansion (1.7) and we plug it in equation (1.1)
to get the effective operator, through the solution of the so called cell problem.

We introduce some notation. We will denote y = x/ϵ, p = Dū(x, t), c = −ūt(x, t)
and

l = I(ū(·, t), x) =
∫

RN

[ū(x + z, t) − ū(x, t) − 1B(z)⟨Dū(x, t), z⟩]Kσ(z)dz.

Moreover we denote ψϵ(x) = ψ(x/ϵ) and for e > 0 we introduce the notation

δe(v, x, z) = v(x + z) − v(x) − 1Be(z)⟨Dv(x), z⟩, (4.1)

where 1Be = 1(σ)
Be

denotes the indicator function of Be, the open ball centred at the
origin with radius e if σ " 1, and the zero function if σ < 1.

Plugging the formal asymptotic expansion (1.7) into equation (1.1), we obtain

− a(x, y)l − a(x, y)ϵ1∨σI(ψϵ, x) + H(x, y, p + ϵ0∨(σ−1)Dψ(y)) = c. (4.2)

Performing the change of variables ξ = z/ϵ we get that

I(ψϵ, x) = ϵN
∫

RN

δϵ−1(ψ, x/ϵ, ξ)Kσ(ϵξ)dξ.

Using assumption (E) and (2.3) we obtain

I(ψϵ, x) = ϵ−σ
(
− (−∆)σ/2ψϵ + J(ψϵ, x)

)
, (4.3)

where

J(ψϵ, x) =
∫

RN

δϵ−1(ψ, x/ϵ, ξ)
(
k̄(ϵξ) − k̄(0)

)
|ξ|−(N+σ)dξ. (4.4)

We prove now the following claim:

∥J(ψϵ, x)∥∞ =

{
oϵ(1) σ ∈ (0, 2),σ ̸= 1
⟨b,Dψ(x/ϵ)⟩ + oϵ(1), σ = 1,

(4.5)

where

b := lim
ρ→0

∫

B\Bρ

(k̄(z) − k̄(0))
|z|N+1

zdz ∈ RN , (4.6)

and where oϵ(1) → 0 as ϵ→ 0 only depends on N,σ, Cσ+α estimates of ψ, α > 0 and
ω̄ in (2.2) when σ = 1. Note that if k̄ (and then K1) is symmetric, then b = 0. This
means that the nonlocal term develops an extra drift term when the kernel defining
it is nonsymmetric and satisfies the integrability condition (2.2) with respect to the
kernel of the square root of the Laplacian.
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16 Martino Bardi, Annalisa Cesaroni and Erwin Topp

To prove the claim, we introduce some notation. For A ⊆ RN measurable we
write

J [A] =
∫

A
δϵ−1(ψ, x/ϵ, ξ)(k̄(ϵξ) − k̄(0))|ξ|−(N+σ)dξ.

Then, we split J in (4.4) as

J = J [B] + J [B1/ϵ\B] + J [Bc
1/ϵ],

and we estimate each term separately.
For J [B] we perform a second-order Taylor expansion for ψ in the integral term

and using that k̄(ϵξ) − k̄(0) ! ω̄(ϵ) for ξ ∈ B together with the fact that σ < 2 we
arrive at

|J [B]| ! 1
2
ω̄(ϵ)|D2ψ|∞

∫

B
|ξ|−N−σ+2dξ ! C|D2ψ|∞ω̄(ϵ),

for some constant C = C(N,σ) > 0 not depending on ϵ.
For J [Bc

1/ϵ] we notice that the compensator term 1Bϵ−1 (z)⟨Du(x), z⟩ is no longer
present in the integral and therefore we have that

|J [Bc
1/ϵ]| ! 4|ψ|∞|k̄|∞

∫

Bc
1/ϵ

dξ
|ξ|N+σ

! C|ψ|∞ϵσ.

It remains to estimate J [B1/ϵ\B], and at this point we separate the cases σ ̸= 1
and σ = 1.

For the case σ ̸= 1, we split the remaining integral as

J [B1/ϵ\B] = J [B1/ϵ\Bθϵ ] + J [Bθϵ\B],

where θϵ → ∞ and ϵθϵ → 0 as ϵ→ 0. With this choice, we see that

|J [Bθϵ\B]| !

⎧
⎪⎪⎨

⎪⎪⎩

ω̄(ϵθϵ)(2|ψ|∞ + |Dψ|∞)
∫

Bθϵ\B
dξ

|ξ|N+σ−1

)

! C(|ψ|∞ + |Dψ|∞)ω̄(ϵθϵ), σ > 1
ω̄(ϵθϵ)2|ψ|∞

∫
Bθϵ\B

dξ
|ξ|N+σ ! C|ψ|∞ω̄(ϵθϵ) + oϵ(1) σ < 1

for some C = C(N,σ) > 0 not depending on ϵ.
Similarly, for J [B1/ϵ\Bθϵ ] we have

|J [B1/ϵ\Bθϵ ]| !

⎧
⎪⎪⎨

⎪⎪⎩

2|k̄|∞ (2|ψ|∞ + |Dψ|∞)
∫

Bc
θϵ

dξ
|ξ|N+σ−1

! C(|ψ|∞ + |Dψ|∞)θ1−σ
ϵ σ > 1

4|k̄|∞|ψ|∞
∫

Bc
θϵ

dξ
|ξ|N+σ ! C|k̄|∞|ψ|∞θ−σ

ϵ + oϵ(1) σ < 1.

Hence, joining the above estimates we conclude (4.5) if σ ̸= 1.
We consider now the case σ = 1. First of all note that the estimates for J [B] and

J [Bc
1/ϵ] follow the same lines above. Moreover observe that, if k̄ is symmetric, then

∫

B1/ϵ\B
⟨Dψ(x/ϵ), z⟩ (k̄(ϵz) − k̄(0))

|z|N+1
dz = 0,

therefore we can estimate J [B1/ϵ\B] exactly as in the case σ < 1.

9CC#%,��))) 42 3$:586 "$8�4"$6�C6$ % �9CC#%,��5": "$8��� �����#$  ���� 
�
.")!�"2565�7$" �9CC#%,��))) 42 3$:586 "$8�4"$6 �1!:(6$%:C2�5:�/25"(2��"!����06#������2C��
,��,	���%D3�64C�C"�C96��2 3$:586��"$6�C6$ %�"7�D%6��2(2:�23�6�2C

https://www.cambridge.org/core/terms
https://doi.org/10.1017/prm.2019.56
https://www.cambridge.org/core


Homogenization of nonlocal H-J equations 17

In the nonsymmetric case, we consider the term θϵ present in the previous analysis
for σ < 1 to write

J [B1/ϵ\B] =
∫

B1/ϵ\B
[ψ(x/ϵ+ ξ) − ψ(x/ϵ)]

k̄(ϵξ) − k̄(0)
|ξ|N+1

dξ

+
∫

B1/ϵ\B
⟨Dψ(x/ϵ), ξ⟩ k̄(ϵξ) − k̄(0)

|ξ|N+1
dξ

! C|ψ|∞(ω̄(ϵθϵ) + |k̄|∞θ−1
ϵ ) +

〈
Dψ(x/ϵ),

∫

B\Bϵ

k̄(z) − k̄(0)
|z|N+1

zdz

〉
,

where in the last integral we have performed the change of variables z = ϵξ. We
observe that, by definition (2.1) and assumption (2.2),

∣∣∣∣
k̄(z) − k̄(0)

|z|N+1
z

∣∣∣∣ !
ω̄(|z|)
|z|N ∈ L1(B).

Hence, the dominated convergence theorem allows us to conclude (4.5). This finishes
the proof of the claim.

Therefore, using (4.5) in (4.2), we conclude with different cell problems, according
to the value of σ.

Case σ < 1: in this case (4.2) reads

−a(x, y)l + a(x, y)ϵ1−σ((−∆)σ/2ψ(y) + oϵ(1)) + H(x, y, p + Dψ(y)) = c.

Therefore, the cell problem is the following: for every (x, p, l) ∈ RN × RN × R
there exists a unique c = c(x, p, l) such that there exists a periodic viscosity
solution to

− a(x, y)l + H(x, y, p + Dψ(y)) = c y ∈ TN . (4.7)

Case σ > 1: in this case (4.2) reads

−a(x, y)l + a(x, y)((−∆)σ/2ψ(y) + oϵ(1)) + H(x, y, p + ϵσ−1Dψ(y)) = c.

Therefore, the cell problem is the following: for every (x, p, l) ∈ RN × RN × R
there exists a unique c = c(x, p, l) such that there exists a periodic viscosity
solution to

− a(x, y)l + a(x, y)(−∆)σ/2ψ(y) + H(x, y, p) = c y ∈ TN . (4.8)

Case σ = 1: in this case (4.2) reads

− a(x, y)l + a(x, y)((−∆)σ/2ψ(y) + ⟨b,Dψ(y)⟩ + oϵ(1))

+ H(x, y, p + Dψ(y)) = c.

Therefore, the cell problem is the following: for every (x, p, l) ∈ RN × RN × R
there exists a unique c = c(x, p, l) such that there exists a periodic viscosity
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18 Martino Bardi, Annalisa Cesaroni and Erwin Topp

solution to

− a(x, y)l + a(x, y)(−∆)1/2ψ(y) + a(x, y)⟨b,Dψ(y)⟩
+ H(x, y, p + Dψ(y)) = c (4.9)

for y ∈ TN , where b ∈ RN is defined in (4.6) (and it is identically 0 if K1 is
symmetric).

Remark 4.1. Looking at the computations related to J(φϵ, x) made above in the
case σ = 1, we see that if we consider nonlocal operators written in the second order
finite differences form

∫

RN

[u(x + z) + u(x − z) − 2u(x)]K1(z)dz

assumption (2.2) can be dropped.

5. Homogenization for the case σ = 1

We start studying the cell problem introduced above.

Proposition 5.1 Cell problem. Assume (E) with σ = 1, (H0), (H1) and (2.6). If
K1 is not symmetric, we additionally assume that condition (2.2) holds.

Then, for each x, p, l, there exists a unique constant c = H̄(x, p, l) such that the
cell problem (4.9) has a classical solution ψ ∈ C1,α for some α ∈ (0, 1), and such
solution is unique up to an additive constant.

Moreover, the following estimate holds

|(−∆)1/2ψ|L∞(TN ) ! C(1 + |l| + |p|m)m, (5.1)

where C > 0 does not depend on x, l nor p.

Proof. We concentrate on the case b ̸= 0. Given x, p ∈ RN and l ∈ R, and for each
δ ∈ (0, 1) we consider the solution ψ = ψδ(y) for the approximating problem

δψ − a(x, y)l + a(x, y)[(−∆)1/2ψ − ⟨b,Dψ⟩] + H(x, y, p + Dψ) = 0, y ∈ TN .
(5.2)

The proper term δψ implies the existence and uniqueness of a solution ψδ to this
problem, and the following estimate holds

|ψδ|∞ ! δ−1
(
|a|∞|l| + |H(·, ·, p)|∞

)
,

and in view of (2.6) and (2.5) we have the existence of a constant C1 > 0 such that

|ψδ|∞ ! C1δ
−1(1 + |l| + |p|m). (5.3)

Then, in view of (2.5) and the fact that m > 1, it is direct to see that ψδ satisfies,
in the viscosity sense, the inequality

(−∆)1/2ψδ + c|Dψδ|m ! C(1 + |l| + |p|m) in TN ,

from which, by applying theorem 2.2 in [11], we get that ψδ is Hölder continuous
for each exponent γ ∈ (0, 1). More precisely, a careful analysis of the proof shows
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Homogenization of nonlocal H-J equations 19

that there exists a constant Cγ > 0 such that

|ψδ(y) − ψδ(y′)| ! Cγ(1 + osc(ψδ)1/m + (|p|m + |l|)1/m)|y − y′|γ y, y′ ∈ TN .
(5.4)

A sketch of the proof of this estimate is provided in the appendix, lemma 7.4.
From this we deduce the existence of a constant C > 0 such that

oscTN (ψδ) ! C(1 + |p| + |l|1/m). (5.5)

At this point we claim that under the assumptions of the proposition together
with (5.3) and (5.5) we get the Lipschitz bound

|ψδ(y) − ψδ(y′)| ! C(1 + |l| + |p|m)|y − y′|, (5.6)

for some C > 0 not depending on δ, x, p or l. This claim is a consequence of theorem
3.1 in [12], but we provide a proof in the appendix (lemma 7.3) for completeness.

The application of the above boundedness/regularity results in the periodic set-
ting leads us to the solvability of the cell problem (4.9) by stability results of
viscosity solutions by taking δ → 0. The ergodic constant is characterized as the
uniform limit λ = − limδ→0 δψδ. The uniqueness of the ergodic constant is achieved
as in [22] by comparison principle. The uniqueness up to constants of the correc-
tor is a consequence of the strong maximum principle [11, proposition 4.1], by a
classical argument of Arisawa and Lions, see, e.g. [2].

We devote the rest of the proof to get the C1,α regularity. This is a consequence
of a ‘linearization’ argument which is possible by the Lipschitz estimates given
by (5.6). In fact, for a fixed e ∈ RN with |e| > 0 we define the function

ve(y) = (ψ(y + e) − ψ(y))/|e|.

Notice that by (5.6) this function ve is bounded, with

|ve|∞ ! C(1 + l + |p|m). (5.7)

In what follows we derive an equation solved by ve. Using (5.6) together with (2.6)
we get the existence of C > 0 such that

|a−1(x, y + e)H(x, y + e, p + Dψ(y + e)) − a−1(x, y)H(x, y, p + Dψ(y))|

! C(1 + l + |p|m)m|e| + C(1 + l + |p|m)m−1|Dψe(y)|,

where a−1(x, y) = 1/a(x, y) and ψe(y) = ψ(y + e) − ψ(y).
Using this estimate, the linearity of the fractional Laplacian, the assumptions

on the data, and the uniform bounds on ve, we conclude that ve satisfies, in the
viscosity sense

(−∆)1/2ve − A(p, l)|Dve| ! C(p, l),

(−∆)1/2ve + A(p, l)|Dve| " −C(p, l).

for some A(p, l), C(p, l) > 0 depending on the parameters p, l and the data, but not
on e. From here, we use theorem 6.1 in [29] (stated for parabolic problems, but
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20 Martino Bardi, Annalisa Cesaroni and Erwin Topp

easily adapted to the stationary case), or the appendix in [19], to conclude the
existence of α > 0 (small, depending on the data and A(p, l), C(p, l) but not on e)
such that ve ∈ Cα. This concludes the C1,α regularity for the solution of ψ.

Finally, we notice that the Lipschitz bound (5.6) is inherited by ψ via uniform
convergence. We use this into the pointwise inequality

|(−∆)1/2ψ(y)| ! λ+ C(1 + |l| + |Dψ(y)| + |Hx(y, p + Dψ)|),

which leads to (5.1) using (2.5) and (5.3). This concludes the proof. #

Now we present some properties of the effective Hamiltonian. The proof is a
straightforward adaptation to the corresponding effective properties given in [21].

Lemma 5.2. Let H̄ be the effective Hamiltonian associated to (4.9). Then

(i) There exists C > 0 just depending on the data such that

|H̄(x1, p1, l1) − H̄(x2, p2, l2)|

! C
(
|l1 − l2| + |x1 − x2|(1 + |l| + |p|m)m + |p1 − p2|(1 + |l| + |p|m)m−1

)
,

where |p| = max{|p1|, |p2|}, |l| = max{|l1|, |l2|}.

(ii) There exists b0, C > 0 such that for all x, p ∈ RN , l ∈ R

H̄(x, p, l) " b0|p|m − |a|∞|l|− C.

(iii) For all x, p ∈ RN , the function l 0→ H̄(x, p, l) is decreasing.

Proof. (i) Let x1, x2, p1, p2 ∈ RN and l1, l2 ∈ R and for δ > 0 and i = 1, 2 consider
the approximating problems

δψi − ai(y)li + ai(y)(−∆)1/2ψi + Hi(y, pi + Dψi) = 0 in TN ,

where, with a slight abuse of notation we have written ai(y) = a(xi, y) and
Hi(y, pi + Dψi) = H(xi, y, pi + Dψi). Then, we use the equation solved by ψ2 and
assumptions (2.6) and (H1) to write

δψ2 − a1(−∆)1/2ψ2 + H1(y, p1 + Dψ2)

! C|l1 − l2| + C|x1 − x2|
(
1 + |l| + |(−∆)1/2ψ|∞ + LH(|p|m + |Dψ2|m∞)

)

+ LH |p1 − p2|(1 + |p|m−1 + |Dψ2|m−1
∞ ),

and from this, using the Lipschitz bound (5.6) and the fractional estimate (5.1) we
arrive at

δψ2 − a1(−∆)1/2ψ2 + H1(y, p1 + Dψ2)

! C
(
|l1 − l2| + |x1 − x2|(1 + |l| + |p|m)m + LH |p1 − p2|(1 + |l| + |p|m)m−1

)
,

(5.8)

for some C > 0 just depending on the data.
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Homogenization of nonlocal H-J equations 21

From here, by comparison it is possible to get that

δ(ψδ
2 − ψδ

1) ! C(|l1 − l2| + |x1 − x2|(1 + |l| + |p|m)m

+ |p1 − p2|(1 + |l| + |p|m)m−1),

and a similar lower bound can be obtained. Letting δ → 0+ and recalling the
definition of H̄ we conclude the result.

(ii) We consider δ > 0 and the approximating problem (5.2). Then, we consider
y0 ∈ TN a maximum point to ψδ and using a constant function as a test function
to ψδ at y0 we can write

δψδ(y0) − a(x, y0)l + H(x, y0, p) ! 0,

and using the boundedness of a and coercivity of H we get that

−C − |a|∞|l| + b0|p|m ! −δψδ(y0),

for some C, b0 depending on H. Thus, recalling that δψδ(y0) → −H̄(x, p, l) as δ →
0+, we conclude the result taking the limit in the right-side of the last inequality.

(iii) We fix x, p, consider l1 < l2 and assume by contradiction that

H̄(x, p, l1) < H̄(x, p, l2). (5.9)

For i = 1, 2, let ψi solution to the cell problem

−a(x, y)li + a(x, y)(−∆)1/2ψi + H(x, y, p + Dψi) = H̄(x, p, li), y ∈ TN .

We can assume without loss of generality that ψ2 < ψ1.
Next we claim that ψ2 satisfies the inequality

− a(x, y)l1 + a(x, y)(−∆)1/2ψ2 + H(x, y, p + Dψ2) > H̄(x, p, l1) (5.10)

in the viscosity sense. For this, we take y0 ∈ TN and consider φ bounded and smooth
such that y0 is a minimum point for ψ2 − φ in TN . Then, using the equation solved
by ψ2 we get

−a(x, y0)l2 + a(x, y0)(−∆)1/2φ(y0) + H(x, y0, p + Dφ(y0)) " H̄(x, p, l2).

Then, using (5.9), that l2 > l1 and the nonnegativeness of a we arrive at

−a(x, y0)l1 + a(x, y0)(−∆)1/2φ(y0) + H(x, y0, p + Dφ(y0)) > H̄(x, p, l1),

from which the claim follows. The strict inequality in (5.10) allows us to compare
to get ψ2 " ψ1, which contradicts the assumed reverse inequality. This concludes
the proof. #

At this point we present the main result of this section

Theorem 5.3 Homogenization. Under the assumptions of proposition 5.1 and for
u0 ∈ BUC(RN ), the family of solutions uϵ of (1.1)–(1.2) converges locally uniformly
to a viscosity solution u of the associated effective problem (1.5) with H̄ given in
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proposition 5.1. Moreover u is the unique solution of (1.5) attaining uniformly
continuously the initial data u0.

Proof. Recalling proposition 2.2, we see that the family of functions {uϵ}ϵ is
uniformly bounded in Q̄T . Then, by half-relaxed limits as in [13] we see that
the functions ū = lim sup∗

ϵ uϵ and u = lim inf∗ϵ uϵ are respective viscosity sub and
supersolution to the effective problem.

To see this we argue over ū, a similar treatment can be done for u. Let (x0, t0) ∈
QT and φ be a smooth function such that (x0, t0) is a strict global maximum point
to ū − φ. Then, for x = x0, p = Dφ(x0) and l = I(φ, x0) let ψ be a solution to (4.9).
In view of proposition 5.1 we can assume ψ ∈ C1,α.

By the strict maximality of x0 , the fact that uϵ → ū locally uniformly in RN and
the boundedness of ψ, there exists a sequence (xϵ, tϵ) → (x0, t0), maximum point
to (x, t) 0→ uϵ(x, t) − (φ(x, t) + ϵψ(x/ϵ)) in the set BRϵ(xϵ) × [0, T ], with Rϵ → +∞
as ϵ→ 0.

Then, we can use φϵ(x, t) = φ(x, t) + ϵψ(x/ϵ) as test function for uϵ at (xϵ, tϵ)
and denoting yϵ = xϵ/ϵ we can write

φt(xϵ, tϵ) − a(xϵ, yϵ)I[BRϵ ](φϵ, xϵ) − a(xϵ, yϵ)I[Bc
Rϵ

](uϵ, xϵ)

+ H(xϵ, yϵ,Dφϵ(xϵ, tϵ)) ! 0, (5.11)

where we have also used the notation introduced before. By the boundedness and
smoothness of φ and since Rϵ → ∞ as ϵ→ 0 we see that

φt(xϵ, tϵ) → φt(x0, t0) I[BRϵ ](φ, xϵ) → I(φ, x0) as ϵ→ 0,

meanwhile, by the uniform boundedness and smoothness of ψ we can use (4.5) to
conclude that

ϵI[BRϵ ](ψ(·/ϵ), xϵ) + (−∆)1/2ψ(yϵ) − ⟨b,Dψ(yϵ)⟩ = oϵ(1).

Plugging this into (5.11) and using the smoothness of φ again, and the regularity
assumption (2.6) we arrive at

φt(x0, t0) − a(x0, yϵ)I(φ, x0) + a(x0, yϵ)(−∆)1/2ψ(yϵ) − a(x0, yϵ)⟨b,Dψ(yϵ)⟩
+ H(x0, yϵ,Dφ(x0, t0) + Dψ(yϵ)) ! oϵ(1),

and therefore

φt(x0, t0) + H̄(x0,Dφ(x0, t0), I(φ, x0)) ! oϵ(1),

from which we conclude that ū is a viscosity subsolution of the effective problem
using the continuity of H̄ and letting ϵ→ 0. Observe that H̄ satisfies (3.1) by
lemma 5.2.

By definition u ! ū, and moreover (2.12) implies that u and ū satisfy (3.15).
Therefore, using theorem 3.2 we deduce that u = ū in Q̄T . This concludes the
proof. #
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6. Homogenization in the case σ < 1

We recall that when σ < 1 the compensator term 1B(z)⟨Du(x), z⟩ in (1.3) is not
required, so we consider in this section that

I(u, x) =
∫

RN

[u(x + z) − u(x)]K(z)dz.

Then the nonlocal operator has strictly lower order than the gradient term. In
the supercritical framework given by assumption (H1), this leads to a dominance
of the Hamiltonian term that makes the homogenization problem similar to the
purely first-order case already addressed in the literature. For this reason, in the
current section we mainly remark the new arguments involving the nonlocality.
These features would also allow to weaken some assumptions, e.g. to consider kernels
Kσ that are integrable and with a direct dependence on x, but we do not pursue
these generalizations here.

Proposition 6.1 Cell problem. Assume (E) with σ < 1, (H0), (H1), (H2). Then,
for all x, p ∈ RN , l ∈ R there exists a unique constant c = H̄(x, p, l) such that
problem (4.7) has a Lipschitz continuous viscosity solution ψ.

As in proposition 5.1, the solvability of the cell problem is obtained as the limit
as δ → 0 of δψδ with ψδ solving the problem

δψδ(y) + H(x, y, p + Dψδ(y)) − a(x, y)l = 0, y ∈ TN .

The coercivity of H in the gradient variable leads to the equi-Lipschitz property
for the family ψδ, see [11]. Since (H0) gives its equiboundedness, we obtain the
needed compactness. From here, the proof follows classical lines.

Lemma 6.2. Under the assumptions of proposition 6.1, the effective Hamiltonian
H̄ associated to problem (4.7) satisfies the property

(i′) there exists C > 0 just depending on the data such that

|H̄(x1, p1, l1) − H̄(x2, p2, l2)|

! C|l1 − l2| + ω(|x1 − x2|)(1 + |l| + |p|m) + ω(|p1 − p2|)(1 + |p|m−1),

where |l| = max{|l1|, |l2|}, |p| = max{|p1|, |p2|} and ω is a modulus of continuity
related to the one in (H2),

as well as the properties (ii) and (iii) of lemma 5.2.

Proof. We concentrate on (i′) to provide explicit bounds. The proof of (ii) and (iii)
follow as in lemma 5.2.
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24 Martino Bardi, Annalisa Cesaroni and Erwin Topp

Let x1, x2, p1, p2 ∈ RN and l1, l2 ∈ R and for δ > 0 and i = 1, 2 consider the
approximating problems

δψi − a(xi, y)li + H(xi, y, pi + Dψi) = 0 in TN .

We use the equation solved by ψ2, (H2), the uniform continuity of a, and the
known Lipschitz continuity of ψ2 [7,8], to write

δψ2 − a(x1, y)l1 + H(x1, y, p1 + Dψ2)

! C|l1 − l2| + ω(|x1 − x2|)(|l| + 1 + (|p| + |Dψ2|∞)m)

+ ω(|p1 − p2|)
(
1 + (|p| + |Dψ2|∞)m−1

)
,

where ω is the maximum between the modulus of continuity of a and the modulus
appearing in (H2). Moreover, condition (H1) implies that |Dψ2|∞ ! C|p|1/m for
some C > 0 just depending on the data. From here, we arrive at

δψ2 − a(x1, y)l1 + H(x1, y, p1 + Dψ2)

! C|l1 − l2| + ω(|x1 − x2|)(1 + |l| + |p|m∨1) + ω(|p1 − p2|)
(
1 + |p|(m−1)∨0

)
,

and therefore, by the comparison principle, we get the existence of C > 0 just
depending on the data such that

δ(ψδ
2 − ψδ

1) ! C|l1 − l2| + ω(|x1 − x2|)(1 + |l| + |p|m∨1)

+ ω(|p1 − p2|)(1 + |p|(m−1)∨0).

A similar lower bound can be obtained. Letting δ → 0+ and considering the
definition of H̄ we conclude the result. #

Now we are in position to prove the homogenization result for this case.

Theorem 6.3 Homogenization. Under the assumptions of proposition 6.1 and for
u0 ∈ BUC(RN ), the family of solutions {uϵ} of (1.1)–(1.2) converges locally uni-
formly to a viscosity solution u of the associated effective problem (1.5) with H̄ given
in proposition 6.1. Moreover u is the unique solution of (1.5) attaining uniformly
continuously the initial data u0.

Proof. As in the proof of theorem 5.3, we consider the half-relaxed semilimits ū, u.
We are able to prove that ū, u are respective viscosity sub and supersolution to the
effective problem, the main difference being that φϵ cannot be used directly as a
test function because ψ is just Lipschitz continuous. Anyway a standard argument
by contradiction based on viscosity solution theory (see [1,22]) can be used to make
it rigorous.

The uniqueness of the limit problem comes from theorem 3.2, observing that,
by lemma 6.2 and the property ω(r) ! Cr for all r " 1, the effective operator H̄
satisfies (3.1) (possibly with a different modulus ω). #
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7. Homogenization in the case σ > 1

In this section, we deal with the case σ ∈ (1, 2). Let us mention that the stronger
ellipticity nature of this case would allow to weaken some assumptions, e.g. to
consider non-coercive Hamiltonians H, but we do not pursue these generalizations
here.

The solvability of the cell problem now reads as follows.

Proposition 7.1 Cell problem. Assume (E) with 1 < σ < 2, (H0), (H1) and
(H2). Then, for each x, p, l there exists a constant c = H̄(x, p, l) such that the cell
problem (4.8) has a classical solution C1,α with 1 + α > σ, and such solution is
unique up to additive constants.

Moreover, we have the following characterization of the effective Hamiltonian H̄:

H̄(x, p, l) = −A(x)l +
∫

TN

H(x, y, p)
a(x, y)

dy, for x, p ∈ RN , l ∈ R, (7.1)

where A(x) := 1/(
∫

TN 1/(a(x, y))dy).

Proof. Fixed x, p, l, for each δ > 0 we consider the vanishing discount approximation
of (4.8)

δψ − a(x, y)l + a(x, y)(−∆)σ/2ψ(y) + H(x, y, p) = 0, y ∈ TN ,

which can be uniquely solved by a function ψδ such that δψδ is bounded. Then, we
define the function ψ̃δ(y) = ψδ(y) − ψδ(0) and claim that it is uniformly bounded.
The argument is known (see for instance [9], sublinear case), but we provide a
sketch of the proof for completeness. By contradiction, if ψ̃δ is not bounded, up
to subsequences we can consider |ψ̃δ|∞ → ∞ as δ → 0 and from here we define
vδ = ψ̃δ/|ψ̃δ|∞. By construction, |vδ|∞ = 1 for all δ and satisfies, in the viscosity
sense, a problem with the form

−C(δ) ! (−∆)σ/2vδ ! C(δ) in TN ,

for some constant C(δ) → 0 as δ → ∞. Then, by the interior Hölder estimates
presented in [14] we conclude that the family {vδ} is equi-Hölder continuous. By
stability results in the viscosity theory, and up to subsequences, there exists a
function v̄ such that vδ → v̄ uniformly in the torus, solving the problem (−∆)σ/2v̄ =
0 in Tn. Thus, by strong maximum principle, it must be a constant. However, by
construction v̄(0) = 0 and |v̄|∞ = 1, a contradiction.

Then, using stability results over the family {ψ̃δ} we get the existence of a con-
stant c such that (4.8) has a continuous solution (which ends up to be classical
by the regularity results in [28]). Applying a strong maximum principle in [17] we
conclude this constant is unique and the solution of the problem is unique up to an
additive constant.

Finally, the characterization of the effective Hamiltonian is obtained writing (4.8)
as

(−∆)σ/2ψ = a−1(x, y)(H̄(x, p, l) − H(x, y, p)) + l =: f(x, y, p, l).

Since the fractional Laplacian is a self adjoint operator and by the strong max-
imum principle we have that the unique solutions to (−∆)σ/2u = 0 in TN are
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constants. By Fredholm alternative the above problem is solvable if and only if

∫

TN

f(x, y, p, l)dy = 0,

from which the characterization of H̄ follows. #

The above characterization of the effective Hamiltonian allows us to conclude the
homogenization result more directly.

Theorem 7.2 Homogenization. Under the assumptions of proposition 7.1 and for
u0 ∈ BUC(RN ), the family of solutions uϵ to problem (1.1)–(1.2) converges locally
uniformly to the unique viscosity solution u of the associated effective problem (1.5),
with H̄ given in proposition 7.1, satisfying u(x, 0) = u0(x).

Proof. Also in this case, the proof of the convergence of the family follows the lines
provided in theorem 5.3. Now the uniqueness of the effective problem follows at
once from the comparison principle in [10], noticing that the term A in (7.1) is
bounded and uniformly positive and therefore we can divide by it to get rid of the
x-dependence of the nonlocality. We omit the details.
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Probabilità e le loro Applicazioni (GNAMPA) of the Istituto Nazionale di Alta
Matematica (INdAM).

Appendix

We start providing a proof for the Lipschitz bounds leading to (5.6) in the proof of
proposition 5.1.

Lemma 7.3. Let δ ∈ (0, 1), ã ∈ C(TN ) strictly positive, and H̃ ∈ C(TN × RN ) sat-
isfying the assumptions (H1) (in the x independent setting). For p, l fixed, let ψ be
a continuous solution to the problem

δãψ − l + (−∆)1/2ψ + H̃(y, p + Dψ) = 0 in TN .

Then there exists a constant C > 0 depending only on the data such that

|ψ(x) − ψ(y)| ! C(1 + osc(ψ) + |l| + |p|m)|x − y|, for x, y ∈ TN .
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Homogenization of nonlocal H-J equations 27

Proof. We follow closely the lines of theorem 3.1 in [12]. We start noticing that by
comparison principle, ψ satisfies

δ|ψ|∞ ! C(1 + |l| + |H̃(·, p)|∞) ! C(1 + |l| + |p|m),

for some C > 0 depending on the data.
Now, replacing ψ by ψ − infTN ψ + 1 we can assume ψ " 1 at the expense of deal

with the modified problem

δãψ − l + (−∆)1/2ψ + H̃(y, p + Dψ) = f̃ in TN ,

where f̃(y) = θã(y) with θ ∈ R satisfying |θ| ! C(1 + |l| + |p|m).
Then, we introduce the change of variables ψ = ev, from which we conclude that

v solves the problem

δã − le−v − J(v, x) + e−vH̃(y, p + evDψ) = f̃ e−v in TN , (7.2)

where J is a nonlinear nonlocal operator with the form

J(v, x) =
∫

RN

[ev(x+z)−v(x) − 1 − 1B⟨Dv(x), z⟩]|z|−(N+1)dz.

Then, for L > 0 we consider the function

(x, y) 0→ Φ(x, y) = v(x) − v(y) − L|x − y|, x, y ∈ TN

which attains its maximum at a point (x̄, ȳ). We prove that for L large enough this
maximum is nonpositive from which the result follows.

By contradiction, we assume Φ(x̄, ȳ) > 0, from which x̄ ̸= ȳ. Then we can use x̄ as
test point for v (regarded as subsolution to (7.2)) with test function x 0→ L|x − ȳ|,
and ȳ as test point for v (regarded as supersolution to (7.2)) with test function
y 0→ −L|x̄ − y|. Subtracting the viscosity inequalities and using the maximality of
(x̄, ȳ) together with the definition of J to control the nonlocal terms, we arrive at

−δ|ã(x̄) − ã(ȳ)|− l(e−v(x̄) − e−v(ȳ)) + H ! e−v(x̄)f̃(x̄) − e−v(ȳ)f̃(ȳ),

where

H = e−v(x̄)H̃(x̄, p + Lev(x̄)â) − e−v(x̄)H̃(x̄, p + Lev(x̄)â),

and â = (x − y)/|x − y|.
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From now on we denote µ = ev(y)−v(x) ∈ (0, 1). By the assumptions, the last
inequality lead us to

− Lã|x̄ − ȳ|− l+e−v(y)(1 − µ) + H ! e−v(y)(|f̃ |(1 − µ) + Lf̃ |x − y|), (7.3)

From here we focus on H. Notice that

H = e−v(y)
(
µH̃(x, p + µ−1Lp̃) − H̃(y, p + Lp̃)

)
, p̃ = ev(ȳ)â.

In view of the assumption on H̃ we see that

H " −Ce−v(y)
{
− LH(1 + |p + Lµ−1p̃|m)|x − y|

− LH(1 + |p + Lp̃|m−1)|(1 − µ)|p| + (1 − µ)(c|µp + Lp̃|m − C)
}

If we assume that L " max{1, 4|p|, l+, |f̃ |∞, Cc−1} we can write

H " (1 − µ)cLm|p̃|m,

for some constants C, c > 0. Hence, (7.3) reduces to

−Lã|x̄ − ȳ| + c(1 − µ)e−v(y)Lm|p̃|m ! e−v(y)Lf̃ |x − y|.

At this point, we notice that the maximality of (x, y) we see that L|x − y| !
v(x) − v(y), which in turn implies that |x − y| ! L−1osc(v). Then, considering addi-
tionally L large enough in terms of osc(v) (L " 2osc(v)), by definition of µ we can
conclude that

1 − µ " 1 − e−L|x−y| " e−osc(v)L|x − y|.

Using this and cancelling the common factor |x − y| > 0 in the last inequality,
and using the definition of p̃ we arrive at

−Lã + ce−osc(v)e(m−1)v(y)Lm+1 ! e−v(y)Lf̃ .

Then, since m > 1 we get that additionally assuming that

L " C max{c−1eosc(v), La, Lf}

for a large universal constant C > 1 we arrive at a contradiction. Finally, recalling
the relation ψ = ev we notice that

eosc(v) =
esup v

einf v
=

supψ − inf ψ
einf v

+ 1 ! osc(ψ) + 1,

from which the dependence on the oscillation is obtained. #
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Homogenization of nonlocal H-J equations 29

Next, we provide a sketch of the proof of (5.4), presented as the following

Lemma 7.4. Let c0, C0 > 0, m > 1 and u be a bounded, upper semicontinuous
viscosity solution to the problem

(−∆)1/2u + c0|Du|m ! C0 in TN .

Then, for each γ ∈ (0, 1), there exists a constant Cγ > 0 just depending on γ,m,N
and c0 such that

|u(x) − u(y)| ! Cγ

(
1 + (osc(u) + C0)1/m

)
|x − y|γ ∀x, y ∈ TN .

Proof. Fix γ ∈ (0, 1) and let x0 ∈ TN . We look for a constant L > 0 large enough,
not depending on x0, such that

u(x) − u(x0) ! L|x − x0|γ for all x ∈ TN .

We proceed by contradiction. Then, for every L > 0 there exists θL > 0 and x̄ ∈
TN , x̄ ̸= x0 such that

u(x̄) − u(x0) − L|x̄ − x0|γ = max
x∈TN

{u(x) − u(x0) − L|x − x0|γ} " θL.

Now, we observe that we can use the function φ(x) = L|x − x0|γ as test function for
u at x̄. Actually we fix δ0 < |x̄ − x0| and we consider a smooth function φ0 which
coincides with φ in B(x̄, δ0). So u − φ0 has a maximum at x̄ in Bδ0(x̄) and recalling
Definition 2.1, we get that for any 0 < δ < min(1, δ0), there holds

− I[Bδ](φ, x̄) − I[Bc
δ ](u, x̄) + c0γ

mLm|x̄ − x0|m(γ−1) ! C0, (7.4)

where −I = (−∆)1/2, and I[Bδ](φ, x̄) and I[Bc
δ ](u, x̄) have been defined in (2.8)

and (2.10).
Using the fact that x̄ is a maximum point to u − φ we can write

I[Bc
δ ](u, x̄) ! I[B\Bδ](φ, x̄) + I[Bc](u, x̄).

Now it is easy to check that I[Bc](u, x̄) ! Cosc(u) for some universal constant
C > 0. Moreover, recalling the definition of (−∆)1/2 in (1.4), of φ and δ, we get
that for any δ ∈ (0,min(1, δ0)),

I[B\Bδ](φ, x̄) = LCN,1

∫

δ<|z|<1
[|x̄ + z − x0|γ − |x̄ − x0|γ ]|z|−N−1dz

! LCN,1

∫

δ<|z|<1
|z|γ |z|−N−1dz

! CL(δγ−1 − 1) ! CL(|x̄ − x0|γ−1 − 1)

for some constant C > 0, depending on N and γ. On the other hand, if we fix
δ = |x̄ − x0|/2, we observe that there exists a constant C0 > 0 depending only on
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γ and N such that for every z ∈ Bδ we get

φ(x̄ + z) − φ(x̄) − ⟨Dφ(x̄), z⟩ =
1
2

∫ 1

0
(1 − t)⟨D2φ(x̄ + tz)z, z⟩dt

! C0L|x̄ − x0|γ−2|z|2.

Therefore, we conclude that

I[Bδ](φ, x̄) ! CN,1C0L|x̄ − x0|γ−2

∫

Bδ

|z|2|z|−(N+1)dz ! CL|x̄ − x0|γ−1.

for some constant C > 0 depending only on N, γ.
Joining the above estimates into (7.4) we can write

c0γ
mLm|x̄ − x0|m(γ−1)

(
1 − C

c0
γ−m(L|x̄ − x0|γ−1)1−m

)
! Cosc(u) + C0,

and since we can assume |x̄ − x0| !
√

N together with the fact that m > 1, we
arrive at

c0γ
mLm|x̄ − x0|m(γ−1)

(
1 − C

c0
γ−m(LN (γ−1)/2)1−m

)
! Cosc(u) + C0.

Thus, taking L large enough in terms of c0, N, γ and m we arrive at

c0γ
mLm|x̄ − x0|m(γ−1) ! 2(Cosc(u) + C0),

from which we arrive at a contradiction by taking L sufficiently large in terms of
C0/c0. #

We finish with the proof of the following
Claim: Conditions (H0), (H1) and (H2) imply (2.5).
By uniform continuity of H, see assumption (H2), from (H0) we can get (2.5)

in the case of p bounded, by taking K > 0 large enough. Therefore, we take K > 0
large enough such that (2.5) holds for all |p| ! 2. Thus, from here we concentrate
on the case of |p| > 2.

Consider q ∈ RN , q ̸= 0. Now, for µ ∈ (0, 1) and k ∈ N, applying (H1) with p =
µ−(k−1)q, we have

µH(x, y, µ−kq) − H(x, y, µ−(k−1)q) " (1 − µ)
(
b0µ

−m(k−1)|q|m − C0

)
.

We multiply the above inequality by µk−1 and sum it up from k = 1 to n for some
n ∈ N, and we conclude that

µnH(x, y, µ−nq) − H(x, y, q) =
n∑

k=1

[
µkH(x, y, µ−kq) − µk−1H(x, y, µ−(k−1)q)

]

"
n∑

k=1

[
(1 − µ)

(
b0µ

(1−m)(k−1)|q|m − C0µ
k−1
)]

= (1 − µ)b0|q|m
µn(1−m) − 1
µ1−m − 1

− C0(1 − µn). (7.5)
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Let us fix |p| > 2 and let n ∈ N such that 2n ! |p| ! 2n+1. Let µ = |p|−1/n < 1.
Note that by our choice of n, µ ∈ [1/4, 1/2]. Then, from (7.5), applied to q = p/|p|
and to µ and n as above, so that p = µ−nq, we get that

|p|−1H(x, y, p) − H(x, y, q) " (1 − µ)b0
|p|m−1 − 1
µ1−m − 1

− C0

(
1 − |p|−1

)
. (7.6)

Observe that 1/2 ! 1 − µ ! 3/4 and

1
1/41−m − 1

! 1
µ1−m − 1

! 1
1/21−m − 1

.

So there exist constants cm, Cm > 0 depending only on m > 1 such that

cm ! (1 − µ)
1

µ1−m − 1
! Cm.

Therefore from (7.6) we get

H(x, y, p) " b0cm|p|m − b0Cm|p| + |p|H(x, y, q) − C0(|p|− 1).

By (2.4) we have that H(x, y, q) " −C for all q ∈ RN with |q| = 1, therefore, we
conclude that

H(x, y, p) " b0cm|p|m − |p|(b0Cm + C + C0) + C0 ∀|p| > 2.

Therefore, recalling that m > 1, we conclude that there exist C̃ > 0, and K > 0,
depending on m, b0, Cm, cm, C, C0 such that

H(x, y, p) " C̃(|p|m + 1) − K ∀|p| > 2. #
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