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ON FINITE-BY-NILPOTENT PROFINITE GROUPS

ELOISA DETOMI AND MARTA MORIGI

Abstract. Let γn = [x1, . . . , xn] be the nth lower central word. Suppose that G is a profinite group

where the conjugacy classes xγn(G) contains less than 2ℵ0 elements for any x ∈ G. We prove that then

γn+1(G) has finite order. This generalizes the much celebrated theorem of B. H. Neumann that says

that the commutator subgroup of a BFC-group is finite. Moreover, it implies that a profinite group G

is finite-by-nilpotent if and only if there is a positive integer n such that xγn(G) contains less than 2ℵ0

elements, for any x ∈ G.

1. Introduction

Given a group G and an element x ∈ G, we write xG for the conjugacy class containing x. Of

course, if the number of elements in xG is finite, we have |xG| = [G : CG(x)]. A group is said to be a

BFC-group if its conjugacy classes are finite and of bounded size. One of the most famous of B. H.

Neumann’s theorems says that in a BFC-group the commutator subgroup G′ is finite [11]. It follows

that if |xG| ≤ m for each x ∈ G, then the order of G′ is bounded by a number depending only on

m. A first explicit bound for the order of G′ was found by J. Wiegold [16], and the best known was

obtained in [8] (see also [12] and [14]).

The recent articles [6], [4], and [1] deal with groups G in which conjugacy classes containing com-

mutators are bounded. Recall that multilinear commutator words are words which are obtained by

nesting commutators, but using always different variables. More formally, the group-word w(x) = x
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in one variable is a multilinear commutator; if u and v are multilinear commutators involving different

variables then the word w = [u, v] is a multilinear commutator, and all multilinear commutators are

obtained in this way. Examples of multilinear commutators include the familiar lower central words

γn(x1, . . . , xn) = [x1, . . . , xn] and derived words δn, on 2n variables, defined recursively by

δ0 = x1, δn = [δn−1(x1, . . . , x2n−1), δn−1(x2n−1+1, . . . , x2n)].

We let w(G) denote the verbal subgroup of G generated by all w-values. Of course, γn(G) is the nth

term of the lower central series of G while δn(G) = G(n) is the nth term of the derived series.

The following theorem was established in [4].

Theorem 1.1. [4] Let m be a positive integer and w a multilinear commutator word. Suppose that G

is a group in which xG ≤ m for any w-value x. Then the order of the commutator subgroup of w(G)

is finite and m-bounded.

Here the expression “(a, b, . . .)-bounded” means that a quantity is finite and bounded by a certain

number depending only on the parameters a, b, . . ..

One may wonder what happens in the realm of profinite groups satisfying an analogue condition,

that is, in profinite groups where, given a multilinear commutator word w, every w-value x has a finite

conjugacy class. A theorem of Shalev [15] states that in a profinite group with all conjugacy classes

finite, the commutator subgroup is finite. This was generalized in [5] to multilinear commutator words.

Namely, in [5] it is proved that if w is a multilinear commutator word and G a profinite group in which

all centralizers of w-values are either finite or of finite index, then w(G) is abelian-by-finite. Moreover,

the following holds.

Theorem 1.2. [5] Let w be a multilinear commutator word and G a profinite group in which xG is

finite for every w-value x, then the order of the commutator subgroup of w(G) is finite.

A modification of the techniques developed in [6] and [4] can be used to deduce that if [G′ :

CG′(x)] ≤ m for each x ∈ G, then γ3(G) has finite m-bounded order. Naturally, one expects that a

similar phenomenon holds for other terms of the lower central series of G. This was investigated in

the article [1], where the following result was proved.

Theorem 1.3. [1] Let m,n be positive integers and G a group. If |xγn(G)| ≤ m for any x ∈ G, then

γn+1(G) has finite (m,n)-bounded order.

In this article we prove an analogue of Theorem 1.3 for profinite groups, in the spirit of Theorem

1.2.

Theorem 1.4. Let n be a positive integer and G a profinite group. If xγn(G) is finite for any x ∈ G,

then γn+1(G) has finite order.

When investigating profinite groups, it might occur that certain subsets of the group are finite

under the weaker hypotheses that the same sets have at most countably many elements, or in some

cases less than 2ℵ0 elements (see for instance [3] or [2]). The following result is [2, Lemma 2.2].
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Lemma 1.5. [2] Let H be a profinite group and let x ∈ H. If the conjugacy class xH contains less

than 2ℵ0 elements, then it is finite.

This implies in particular that if G is a profinite group, x ∈ G and the conjugacy class xγn(G)

contains less than 2ℵ0 elements, then xγn(G) is finite. An immediate consequence of this fact is the

following generalization of Theorem 1.4.

Theorem 1.6. Let n be a positive integer and G a profinite group. If xγn(G) contains less than 2ℵ0

elements for any x ∈ G, then γn+1(G) has finite order.

Using the concept of verbal conjugacy classes, introduced in [7], one can obtain a generalization of

Theorem 1.4. Let Xn = Xn(G) denote the set of γn-values in a group G. It was shown in [7] that if

the set xXn = {xy | y ∈ Xn} is finite for each x ∈ G, then xγn(G) is finite. Hence, we have

Corollary 1.7. Let n be a positive integer and G a profinite group. If xXn is finite for any x ∈ G,

then γn+1(G) has finite order.

Another result which is straightforward from Theorem 1.4 is the following characterization of finite-

by-nilpotent profinite groups.

Theorem 1.8. A profinite group G is finite-by-nilpotent if and only if there is a positive integer n

such that xγn(G) contains less than 2ℵ0 elements, for any x ∈ G.

2. Proof of the main result

Recall that in any group G the following “standard commutator identities” hold, when x, y, z ∈ G.

(1) [xy, z] = [x, z]y[y, z]

(2) [x, yz] = [x, z][x, y]z

(3) [x, y−1, z]y[y, z−1, x]z[z, x−1, y]x = 1 (Hall-Witt identity);

(4) [x, y, zx][z, x, yz][y, z, xy] = 1.

Note that the fourth identity follows from the third one. Indeed, we have

[xy, y−1, zy][yz, z−1, xz][zx, x−1, yx] = 1.

Since [xy, y−1] = [y, x], it follows that

[y, x, zy][z, y, xz][x, z, yx] = 1.

In the sequel, Xi will denote the set of γi-values in a group G. Moreover, the notation |S| < ∞ will

mean that the set S is finite.

Lemma 2.1. Let k, n be integers with 2 ≤ k ≤ n and let G be a profinite group in which |xγn(G)| < ∞
for any x ∈ G. Assume that [γk(G), γn(G)] is finite. Then for every g ∈ Xn we have

|gγk−1(G)| < ∞.
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Proof. Let N = [γk(G), γn(G)]. It is sufficient to prove that in the quotient group G/N , for every

integer d with k − 1 ≤ d ≤ n

|(gN)γd(G/N)| < ∞ for every γn−d+1-value gN ∈ G/N,

since this implies that gγd(G) is contained in finitely many cosets of N , whenever g ∈ Xn−d+1.

So in what follows we assume that N = 1. The proof is by induction on n − d. The case d = n is

immediate from the hypotheses.

Let c = n − d + 1. Choose g ∈ Xc and write g = [x, y] with x ∈ Xc−1 and y ∈ G. Let z ∈ γd(G).

We have

[x, y, zx][z, x, yz][y, z, xy] = 1.

Note that

[z, x] ∈ [γd(G), γc−1(G)] ≤ γd−1+c(G) = γn(G)

and

[y, z] ∈ γd+1(G) ≤ γk(G),

whence [z, x, yz] = [z, x, y[y, z]] = [z, x, y]. Thus,

1 = [x, y, zx][z, x, yz][y, z, xy] = [x, y]−1[x, y]z
x
[z, x, y][y, z, xy]

= [x, y]−1[x, y]z
x
(y−1)[z,x]y((xy)−1)[y,z]xy.

It follows that

[x, y]z
x
= [x, y](x−1)y(xy)[y,z]y−1y[z,x].

Since xy ∈ Xc−1 and [y, z] ∈ γd+1(G), by induction

|{(xy)[y,z] | z ∈ γd(G)}| < ∞.

Moreover, [z, x] ∈ γn(G) and so |{y[z,x] | z ∈ γd(G)}| < ∞. Thus,

|{[x, y]zx | z ∈ γd(G)}| = |{[x, y]z | z ∈ γd(G)}| < ∞

as claimed. □

Recall that if G is a profinite group, a ∈ G and H is a subgroup of G, then [H, a] denotes the

(closed) subgroup of G generated by all commutators of the form [h, a], where h ∈ H. It is well-known

that [H, a] is normalized by a and H.

Lemma 2.2. Let k, n be integers with 2 ≤ k ≤ n and let G be a profinite group in which |xγn(G)| < ∞
for any x ∈ G. Suppose that [γk(G), γn(G)] is finite. Then for every x ∈ γk−1(G) the order of

[γn(G), x] is finite.
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Proof. Without loss of generality we can assume [γk(G), γn(G)] = 1. Let x ∈ γk−1(G). Since |xγn(G)|
is finite, the index of Cγn(G)(x) in γn(G) is finite, as well. Let ∆n be the abstract subgroup generated

by Xn. Since ∆n is dense in γn(G), we can choose a right transversal y1, . . . , ym of Cγn(G)(x) in γn(G)

with each yi ∈ ∆n. Note that [∆n, x] is generated by the commutators [yi, x]. For each i = 1, . . . ,m

write yi = yi 1 · · · yimi−1, where yi j ∈ Xn. The standard commutator identities show that [yi, x] can

be written as a product of conjugates in γn(G) of the commutators [yij , x]. Since [yij , x] ∈ γk(G), for

any z ∈ γn(G) we have that

[[yij , x], z] ∈ [γk(G), γn(G)] = 1.

Therefore [yi, x] can be written as a product of the commutators [yij , x].

Let T be the abstract subgroup generated by x, yij for 1 ≤ i, j ≤ m. It is clear that [∆n, x] ≤ T ′ and

so it is sufficient to show that T ′ is finite. Observe that T ≤ γk−1(G). By Lemma 2.1, Cγk−1(G)(yij)

has finite index in γk−1(G). It follows that CT ({yij | 1 ≤ i, j ≤ m}) has finite index in T . Moreover,

T ≤ ⟨x⟩γn(G) and |xγn(G)| is finite, whence [T : CT (x)] is finite. Therefore the centre of T has finite

index in T . Thus, Schur’s theorem [13, theorem10.1.4] tells us that T ′ has finite order. Therefore

[∆n, x] is finite, as well as its closure [γn(G), x]. □

The next lemma can be seen as a development related in [6, Lemma 2.4] and in [16, Lemma 4.5].

Lemma 2.3. Let k, n be integers with 2 ≤ k ≤ n and let G be a profinite group in which |xγn(G)| < ∞
for any x ∈ G. Suppose that [γk(G), γn(G)] is finite. Then [γk−1(G), γn(G)] is finite.

Proof. Without loss of generality we can assume [γk(G), γn(G)] = 1. Let W = γn(G) and let K =

γk−1(G).

For each natural number j consider the set Cj of elements g ∈ K such that |gγn(G)| ≤ j. Note that

the sets Cj are closed (see for instance [10, Lemma 5]). As the union of the sets Cj is the whole K,

by the Baire category theorem (cf. [9, p.200]) at least one of the sets Cj is open in K. So there exists

an open subgroup Y of K and an element a ∈ K such that

r = |aW | ≥ |(ya)W | for all y ∈ Y .

Let ∆n be the abstract subgroup generated by Xn. Since ∆n is dense in γn(G), we can choose a

right transversal b1, . . . , br of Cγn(G)(a) in γn(G) with each bi ∈ ∆n. Set M = Y ∩ (CK(⟨b1, . . . , br⟩))K
(i.e. M is the intersection of Y and all K-conjugates of CK(⟨b1, . . . , br⟩)). Since each bi is a product

of finitely many elements of Xn and, by Lemma 2.1, CK(x) has finite index in K for each x ∈ Xn, the

subgroup CK(⟨b1, . . . , br⟩) has finite index in K, so also M has finite index in K.

Let v ∈ M ≤ Y . Note that (va)bi = vabi for each i = 1, . . . , r. Therefore the elements vabi form

the conjugacy class (va)W because they are all different and their number is the allowed maximum.

So, for an arbitrary element h ∈ W there exists b ∈ {b1, . . . , br} such that (va)h = vab and hence

vhah = vab. Therefore [h, v] = v−hv = aha−b and so [h, v]a = a−1aha−ba = [a, h][b, a] ∈ [W,a]. Thus

[W, v]a ≤ [W,a] and so [W,M ] ≤ [W,a].
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Let x1, . . . , xs be a set of coset representatives of M in K. As [W,xi] is normalized by W for each

i, it follows that

[W,K] ≤ [W,x1] · · · [W,xs][W,M ] ≤ [W,x1] · · · [W,xs][W,a].

Since by Lemma 2.2 all subgroups [W,xi] and [W,a] are finite, the result follows. □

Proof of Theorem 1.4. Let G be a profinite group in which |xγn(G)| < ∞ for any x ∈ G. We need

to show that γn+1(G) has finite order. We will show that the order of [γk(G), γn(G)] is finite for

k = n, n − 1, . . . , 1. This is sufficient for our purposes since [γ1(G), γn(G)] = γn+1(G). We argue

by backward induction on k. The case k = n was proved by Shalev in [15] and it also follows from

Theorem 1.2 when w = δ0. So we assume that k ≤ n − 1 and the order of [γk+1(G), γn(G)] is finite.

Lemma 2.3 now shows that also the order of [γk(G), γn(G)] is finite, as required. □

As observed in the introduction, the proofs of Theorem 1.6, Corollary 1.7 and Theorem 1.8 are

straightforward consequences of Theorem 1.4.
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[10] L. Lévai and L. Pyber, Profinite groups with many commuting pairs or involutions, Arch. Math. (Basel), 75 (2000)

1–7.

[11] B. H. Neumann, Groups covered by permutable subsets, J. London Math. Soc., 29 (1954) 236–248.

[12] P. M. Neumann and M. R. Vaughan-Lee, An essay on BFC groups, Proc. Lond. Math. Soc., 35 (1977) 213–237.

[13] D. J. S. Robinson, A course in the theory of groups, Second edition. Graduate Texts in Mathematics, 80, Springer-

Verlag, New York, 1996.

DOI: http://dx.doi.org/10.22108/ijgt.2019.119581.1577

http://dx.doi.org/10.22108/ijgt.2019.119581.1577


Int. J. Group Theory, 9 no. 4 (2020) 223-229 E. Detomi and M. Morigi 229

[14] D. Segal and A. Shalev, On groups with bounded conjugacy classes, Quart. J. Math. Oxford, 50 (1999) 505–516.

[15] A. Shalev, Profinite groups with restricted centralizers, Proc. Amer. Math. Soc., 122 (1994) 1279–1284.

[16] J. Wiegold, Groups with boundedly finite classes of conjugate elements, Proc. Roy. Soc. London Ser. A, 238 (1957)

389–401.

Eloisa Detomi

Dipartimento di Ingegneria dell’Informazione - DEI, Università di Padova, Via G. Gradenigo 6/B, 35121 Padova, Italy
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