
PHYSICAL REVIEW RESEARCH 2, 023287 (2020)

Efficient random number generation techniques for CMOS single-photon avalanche diode array
exploiting fast time tagging units

Andrea Stanco ,1,2 Davide G. Marangon,1,* Giuseppe Vallone ,1,2,3 Samuel Burri,4 Edoardo Charbon,4

and Paolo Villoresi1,2,†
1Dipartimento di Ingegneria dell’Informazione, Università degli Studi di Padova, via Gradenigo 6B, 35131 Padova, Italy

2Istituto Nazionale di Fisica Nucleare (INFN) – sezione di Padova, Via Marzolo 8, 35131 Padova, Italy
3Dipartimento di Fisica e Astronomia, Università degli Studi di Padova, via Marzolo 8, 35131 Padova, Italy

4EPFL, Route Cantonale, 1015 Lausanne, Switzerland

(Received 18 October 2019; accepted 3 April 2020; published 4 June 2020)

This work presents a technique to produce random bits by exploiting single-photon time of arrival. Two quan-
tum random number generator (QRNG) devices based on the field programmable gate array (FPGA) technology
are presented: Randy, which uses one discrete single-photon avalanche diode (SPAD), and LinoSPAD, which
uses a complementary metal-oxide semiconductor (CMOS) SPAD array, along with a time-to-digital converter
(TDC). Postprocessing procedures are explained in order to extract randomness, taking care of SPAD and TDC
nonidealities. These procedures are based on the application of Peres [Ann. Statist. 20, 590 (1992)] and Zhou and
Bruck [arXiv:1209.0726] extraction algorithms. Achieved generation rates are 1.8 Mbit/s for the Randy device
and 310 Mbit/s for the LinoSPAD device.

DOI: 10.1103/PhysRevResearch.2.023287

I. INTRODUCTION

In recent years, there has been widespread interest in
random number generators based on physical processes of
quantum nature. In fact, these devices, so-called quantum
random number generators (QRNGs), represent the ultimate
way to obtain reliable randomness, free from the typical
nonrandom issues that affect algorithmic random number
generators. Typically, QRNGs exploit the quantum properties
of the optical radiation field in many “recipes.” Different
architectures exploit different properties; setups using en-
tangled systems and violating Bell inequalities feature the
highest unpredictability in the so-called device-independent
(DI) framework [1–5]. Systems that trust the measurement ap-
paratus but not the states of the quantum system or vice versa,
the so-called semi-device-independent generators, work under
less strict assumptions [6]: For this reason, they feature, in
principle, less unpredictability than DI-QRNG but are more
feasible to implement and reach even larger generation rates.
The last category includes those generators that work in a
framework of complete trust in both the quantum system and
the measurement apparatus. This means that the absence of

*Present address: Toshiba Europe Limited, Cambridge Research
Laboratory, 208 Cambridge Science Park, Milton Road, Cambridge,
CB4 0GZ, UK.

†paolo.villoresi@dei.unipd.it

Published by the American Physical Society under the terms of the
Creative Commons Attribution 4.0 International license. Further
distribution of this work must maintain attribution to the author(s)
and the published article’s title, journal citation, and DOI.

side information, exploitable by an adversary, is assumed. The
most famous example of this kind of generator is the welcher
weg (which path) QRNG that produces randomness according
to which path a photon takes after interacting with a beam
splitter [7,8]. In this work, we consider the subcategory of
trusted QRNGs that were developed in order to limit the num-
ber of single-photon detectors. Random number generation
with just one detector is indeed possible by exploiting time
as an additional degree of freedom and by leveraging on the
statistical features of the photon detection distribution. This
could be done with the following procedure: time sampling
of the photon detector with a sampling rate almost equal to
the photon rate; application of dedicated generation protocols;
and application of dedicated unbiasing algorithms. In this
work, we will show that it is possible to generate true ran-
dom numbers without the application of dedicated generation
protocols. Using a higher sampling rate, we applied unbiasing
algorithms directly to the stream of samples, achieving higher
generation rate of true random numbers. We used this tech-
nique on two different systems: The first one, Randy, uses
a standard clock to sample the signal of one single-photon
detector; the second one, LinoSPAD, uses both a standard
clock and a time-to-digital converter (TDC) to sample the
signals from a matrix of 256 single-photon detectors.

The paper is structured as follows: In Sec. II, the most
common ways to generate random numbers from time will
be reviewed. In Sec. III, we will introduce our method and we
will compare it with the previous ones. The results achieved
by applying it to the numbers obtained with a single detector
connected to an field programmable gate array (FPGA) will be
presented. In Sec. V, we will extend this method to a matrix
of 256 detectors with time tagging capabilities. In Sec. VI, the
conclusions will be presented.

2643-1564/2020/2(2)/023287(8) 023287-1 Published by the American Physical Society

https://orcid.org/0000-0001-8442-9055
https://orcid.org/0000-0003-4965-5801
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevResearch.2.023287&domain=pdf&date_stamp=2020-06-04
https://doi.org/10.1214/aos/1176348543
https://doi.org/10.1214/aos/1176348543
https://doi.org/10.1214/aos/1176348543
https://doi.org/10.1214/aos/1176348543
http://arxiv.org/abs/arXiv:1209.0726
https://doi.org/10.1103/PhysRevResearch.2.023287
https://creativecommons.org/licenses/by/4.0/

ANDREA STANCO et al. PHYSICAL REVIEW RESEARCH 2, 023287 (2020)

II. EXISTING PARADIGMS OF SINGLE
DETECTOR QRNGS

We now introduce two elaborated generation protocols,
reported in literature, that can extract randomness from a
photon distribution.

As a first example, let us consider the generation protocol
introduced by Stipčević et al. [9], here referred to as “Diff-
QRNG.” The Diff-QRNG comprises a light source attenuated
to single-photon level, illuminating a single-photon detector,
and a clock that counts the time between the detection events.
A binary random variable Xj = {0, 1} is obtained by com-
paring the length of time intervals between three consecutive
detections. It is therefore convenient to define the discrete
random variable T j , associated to the detection instants, such
that T j = {t j

0 , t j
1 , t j

2 }. Hence, Xj takes its value x j according to
the following “rule”: Given �T1 = t1 − t0 and �T2 = t2 − t1,

(1) if �T1>�T2 then x j = 0,
(2) if �T1<�T2 then x j = 1,
(3) if �T1 = �T2 then x j = ∅, i.e., no bit is generated.
The rule is iterated so that for the next bit b j+1 the new

time interval starts with the end of the previous one, i.e.,
t j
2 = t j+1

0 . The physical principle that guarantees the identi-
cal (Pr[x j = 0] = Pr[x j = 1]) and independent (Pr[x j |x j−1] =
Pr[x j |x j−1, x j−2, . . . , x1] = 1/2) distribution of the bits fol-
lows from the memoryless property that characterizes the
exponential distribution of the interarrival times �T , namely
Pr[�T1 > �T2] = Pr[�T2>�T1] = 1/2. As a consequence, a
random string X = {X1, X2, . . . , Xn} with n → ∞, is charac-
terized by full Shannon entropy, i.e., H (X) = n bits. This im-
plies that the average number of independent and identically
distributed (i.i.d.) bits that are generated per unit time is equal
to ri.i.d. = rphot/2, where rphot is the number of photodetections
per unit time [10].

As a second example, let us consider the generation
protocol introduced by Fürst et al. [11], here referred to
as “OdEven-QRNG.” As in the previous example, in the
OdEven-QRNG a light source attenuated to a single-photon
level illuminates a photomultiplier but in this case a counter
enumerates the number of photons detected within a fixed
time interval, τ , corresponding to the period of a sampling
signal. Defining n j

τ as the number of detections within the
interval τ j , a random binary variable Xj assumes its value x j ,
with the following rule:

(1) if n j
τ mod 2 = 0 then x j = 0,

(2) if n j
τ mod 2 = 1 then x j = 1.

In other words, the bit value is determined according
whether an even or odd number of detections is registered
in the time interval τ . For a Poisson distribution, we can
write the probability of having an even or odd number of
detections:

(1) Pr[2n] = ∑∞
n=0

(λτ)2n

(2n)! e−λτ = 1+e−2λτ

2 = Pr[x j = 0],

(2) Pr[2n + 1] = ∑∞
n=0

(λτ)2n+1

(2n+1)! e−λτ = 1−e−2λτ

2 = Pr[x j = 1],
where λ is the mean number of photons per second and

λτ = 〈nτ 〉 is the mean number of photons per time interval
τ . To avoid a bias in the output, 〈nτ 〉 has to be sufficiently
large so that Pr[x j = 0] � Pr[x j = 1]. Therefore, since H (X)
is a function of 〈nτ 〉, the generation rate is given by R =
H (X)/(nτ).

FIG. 1. A schematic view of Randy system. The SPAD links
the optical domain to the digital domain by detecting photons from
a light source attenuated to single-photon level and by sending
electrical signals to the FPGA. Through its internal clock, the FPGA
samples the SPAD events by its own time domain. Clock and SPAD
rates are not on scale.

III. OUR APPROACH

Our contribution takes into consideration the simplest and
most efficient way to generate random numbers by using
the temporal degree of freedom without the need to devise
complex rules. In its essence, the process of random num-
ber generation with a single-photon detector, for instance,
a single-photon avalanche diode (SPAD), can be considered
as a process with two signals: a squared-wave signal Sdet (t)
generated by the single-photon detector that is sampled on
the rising edge of a square periodic signal Sclk (t), which is
generated by a clock with a period τclk, as shown in Fig. 1.
Without impinging photons Sdet (t) has a typical value L.
Given a photodetection at the time instant ti, the Sdet (t) toggles
its state from Sdet (t)(t < ti) = L to Sdet (t)(ti � t < τU) = U .
τU is the specific fixed time interval in which a SPAD keeps
the state U before returning to L and typically τU < τdead,
being τdead the SPAD dead time. This means that Sdet (t)
toggles back to the L state before the SPAD is able to detect
another photon. The binary random variable Xj takes its value
x j at the instant jτclk according to the following rule:

x j =
{

1 if Sdet(j τclk) = U �= Sdet((j − 1) τclk)
0 otherwise (1)

with the index j ∈ {0, 1, 2, . . . }. The above rule is equivalent
to having x j = 1 whenever the clock detects a rising edge
of Sdet (t) and x j = 0 otherwise. It is worth noticing that
all existing paradigms of QRNG based on photon time of
arrival can be seen as a (nonoptimal) postprocessing algorithm
of the sequence X = (x1, x2, . . . , xn, . . .). We note that the
maximum content of randomness that can be extracted by the
above physical process is fully included in the X sequence,
and in particular it is given by the Shannon entropy (in the
large n limits):

H (X)

n
= −[p0 log2(p0) + p1 log2(p1)], (2)

023287-2

EFFICIENT RANDOM NUMBER GENERATION TECHNIQUES … PHYSICAL REVIEW RESEARCH 2, 023287 (2020)

where p0 and p1 are the probability of obtaining x j = 0 and
x j = 1 respectively.

It is clear that the maximum generation rate is given by
rmax = τ−1

clk (in case of a perfect detector). Given a mean
photon number per second λ = rphot, for a Poisson distribution
the probability of no detections within the τclk interval is equal
to Pr[∅] = e−rphotτclk . To achieve the rate rmax, it is necessary
to avoid a bias in the output string X by tuning the photon
detection rate; this is to obtain at least one detection within
a sampling period, namely 1 − Pr[∅] = 1/2 from which we
obtain rphot = ln 2/τclk. It is therefore clear that as the clock
rate increases, the detection rate should become larger to keep
the bias low in 0. However, rphot cannot be set arbitrarily
large as it is strongly limited by the detector dead time. Given
a fixed rphot, our idea is to increase the generation rate r
by deliberately increasing the sampling rate and producing a
highly biased string with plenty of 0’s and very few 1’s. Then,
we rebalance the bias through an optimal postprocessing algo-
rithm, introduced by Peres [12]. Peres’ algorithm is a revision
of the famous von Neumann algorithm [13] and allows the
removal of bias from a string while extracting the maximum
entropy from that. We give a brief description of it. Given a
sequence of samples sw, Peres procedure is defined as

�(sw) = �N (sw)||�(�U (sw))||�(�V (sw)) (3)

where �N (s) is the von Neumann algorithm applied to the
string, �(�U (s)) is the Peres algorithm applied to a substring
�U (s), and �(�V (s)) is the Peres algorithm applied to an-
other substring �V (s). �U (s) is created by an exclusive OR
(XOR) operation on every bit-pair of the string, while �V (s)
is created by discarding one bit of each 00 and 11 pair. For a
full description of the procedure, refer to Ref. [12]. Clearly,
the i.i.d. property comes from the Poisson distribution itself.

The extraction rate after Peres algorithm, under asymptotic
assumptions, is given by

ri.i.d. = τ−1
clk

H (X)

n
. (4)

As shown in Fig. 2, by fixing rphot, the extraction rate in-
creases with the sampling rate despite the value of H (X) (the
maximum entropy is reached with a sampling rate equal to
rphot/ln2 = 288.539 kHz). These plots confirm the following:
With a fixed rphot, the generation rate is more influenced by
the actual input length than by the bias value. Therefore, the
optimal choice is to have τ−1

clk
 rphot with no upper bound
since ri.i.d. → ∞ when τclk → 0. However, increasing the
sampling frequency implies a logarithmic improvement of the
generation rate (see Fig. 2) and using frequencies that are too
large could be ineffective.

To summarize, any QRNG based on the photon time of
arrival can be modeled by a binary signal Sdet (t) sampled
by a clock Sclk (t) that gives an output sequence X . Standard
generation protocols, such as Diff-QRNG or OdEven-QRNG,
can be applied to X . Nevertheless, these protocols are far from
being efficient. Here we propose an optimal postprocessing
able to extract the maximum available entropy from the string
X based on the Peres algorithm. In the next section, we will
show how to apply our method to physical generators, while
dealing with the nonidealities of the detectors.

FIG. 2. The upper plot shows the balance between 0’s and 1’s
(Pr[∅] and Pr[1]) as well as the binary entropy as function of the
sampling rate. The photon count rate is fixed to 200 kcounts/s. In
the lower plot, the continuous line shows the theoretical generation
rate as function of the sampling rate before any afterpulses or dead
time treatment. The dashed line shows the actual generation after
the afterpulses and dead time removal. The expected 1.815 Mbit/s
rate after Peres postprocessing is highlighted by the dotted line.
The magenta square highlights the rate obtained by the Diff-QRNG
protocol.

IV. SINGLE DETECTOR IMPLEMENTATION

We first implemented our method by using a single SPAD
illuminated by an attenuated laser light. We designed a system
that is capable of producing true random numbers using
different generation protocols as well as the Peres algorithm.
The system was developed from an FPGA/CPU device [14].
The FPGA allows us a full control over the generation process
and great flexibility in order to easily switch from one protocol
to another. We called this design “Randy.” A schematic view
of the setup is shown in Fig. 1. We set the light source
intensity to keep the photon count rate around 200 kcounts/s,
due to the SPAD nonlinear behavior on higher rates. As a
first implementation, we used the default 100-MHz system
clock to sample the SPAD signals. The advantages are quite
clear since an FPGA allows a full description of the time
evolution of the system: Every operation can be described as
a multiple of the fundamental time unit τclk defined by the
system clock. Therefore, the behavior of the system is fully
deterministic apart from the nondeterministic side due to the
true randomness of the photon time of arrival.

The FPGA saves a logical 0 for every clock cycle whenever
the SPAD signal is low, and a logical 1 otherwise. The raw
string is then postprocessed on a dedicated CPU. Because of
the huge difference between the clock rate and the photon rate
(100 MHz over 200 kcount/s), the raw strings are heavily
biased in zero with a percentage of 99.8%. Ideally, the role
of Peres algorithm is to reduce the bias to zero. Nevertheless,
the Peres algorithm cannot work around any correlation. On

023287-3

ANDREA STANCO et al. PHYSICAL REVIEW RESEARCH 2, 023287 (2020)

FIG. 3. Top plot: time differences histogram before any post-
processing. The dead time causes the gap at zero with no events
occurring within three clock cycles. It is also clear the presence of
afterpulses which appear as a deviation of the histogram from an
ideal exponential. Indeed, the curve trend shows a higher count rate
below the 18 clock cycles threshold. Bottom plot: time difference
histogram after the removal of afterpulses and dead time.

the contrary, it could emphasize it. Therefore, any correlation
has to be removed before the application of Peres algorithm.
In our case, correlation comes from afterpulses and dead time
of the detectors, and we describe how to remove them in the
following.

We evaluated the distribution of the time interval between
consecutive events. For ideal Poissonian events, this distri-
bution is expected to be a decreasing exponential. As shown
in Fig. 3, the experimental distribution differs from the ideal
distribution by two effects.

The first one is the dead time, whose value depends on the
specific SPAD used [15], and represents the minimum time
distance between two rising edge of Sdet (t). τdead � 30 ns,
corresponding to three clock cycles.

The second effect is the afterpulse. Afterpulses are spuri-
ous events that occur randomly within a fixed time interval
from a real detection. As a result, they produce a peak which
undermines the exponential trend of the events’ difference
distributions. We evaluated an 18 clock cycles (180 ns) cross-
point between the only-true-events region and the afterpulses
region.

Dead time and afterpulses introduce correlations in the
output string. Clearly, after a value x j = 1, some of the few
following bits in X are not independent. Since we estimated
18 clock cycles as the required time to be in the true-event
region, we removed 18 values of X following any value x j = 1
to get rid of the correlation.

As a result, this procedure eliminated a portion of valid
random events which we evaluated to be around 14%.

FIG. 4. Top plot: the serial correlation evaluated on a sampled
bit string without any dead time or afterpulse treatment. Bottom plot:
the serial correlation evaluated on the same sampled bit string after
dead time and afterpulse removal. The serial correlation re-enters
within the limit of acceptance. Green dashed lines represent standard
deviation while red dot-dashed lines are 99% confidential limits.

However, the resulting distribution of the difference between
consecutive 1’s follows the expected decreasing exponential
(see Fig. 3 bottom). Moreover, the process eliminates the
correlation initially present in the string X , as Fig. 4 demon-
strates.

After compensating dead time and afterpulse, we applied
Peres algorithm to the bit string. With an actual photon count
rate of 172 kcounts/s and an equivalent sampling frequency
of 97 MHz (due to afterpulses and dead time removal), a real-
time implementation of Peres algorithm would have yielded
a final true random bit rate of 1.8 Mbit/s according to the
rates shown in Fig. 2. We point out that the realization of
a real-time version of this procedure requires us to address
some challenges. Indeed, in order to have a valuable gener-
ation efficiency (>99%), it is required to store and process
sequences larger than 108 bit. Therefore, both memory and
computational complexity have to be addressed. Furthermore,
the evaluation of Peres computational costs is not trivial and
may change according to different input sequences [16]. As
shown in Fig. 4, the correlation over the output string is within
the limits of statistical acceptance. The resulting unbalance
between 0’s and 1’s is less than 0.01% likely.

Moreover, the two generation protocols Diff-QRNG and
OdEven-QRNG described in Refs. [9,11] were also imple-
mented on the same FPGA system in order to compare

023287-4

EFFICIENT RANDOM NUMBER GENERATION TECHNIQUES … PHYSICAL REVIEW RESEARCH 2, 023287 (2020)

their performances with our method. The high time
resolution (rphot � τ−1

clk) allows enough precision to identify
time differences and to have a good estimation on the detected
photons within a fixed intervals. Indeed, the system was
successfully used to produce timed random numbers in the
work of Vedovato et al. [17]. Of course, the only uncertainty
came from the photons’ time of arrival, but it was handled
by setting the photon counting rate to a proper value [18].
On the other hand, given the same optical setup and clock
frequency and assuming an ideal detector (i.e., no dead time or
afterpulses), these protocols have lower bitrate performances:
a photon count rate of 200 kcount/s produces a rate of true
random bits of 100 kbit/s for the Diff-QRNG protocol and of
20 kbit/s for the OdEven-QRNG [19].

V. MULTIPLEXING THE GENERATION RATE

The main limitation concerning the use of QRNG based on
SPADs, i.e., discrete variable QRNG, is the limited generation
rate achievable. Typically, SPADs feature maximum count
rates of a few Mcps (counts per second). QRNGs based on
continuous variable (CV) protocols are therefore preferred
when it comes to obtain rates in the order of Gbps [20,21].
However, the recent advancements in miniaturization tech-
niques, and especially the creation of deep-submicron com-
plementary metal-oxide semiconductor (CMOS) SPADs, have
led to arrays and matrices with hundreds or even thousands of
SPADs [22,23]. Hence, each SPAD can be considered as a
pixel of an extremely sensitive light sensor. The application
to the case of random number generation is then straight-
forward: Given that every pixel works independently, it is
possible to multiplex the random signals and then fill the
rate gap with CV-QRNGs [24,25]. The typical approach is
to generalize the paradigm of the welcher weg QRNG—a
beam splitter and two photon paths—to a generator where
photons can take N possible paths, with N being the to-
tal pixel number of the sensor [26]. Nevertheless, as in
Randy, the temporal degree of freedom can be exploited as
well, allowing an easier calibration. Therefore, the sensor
is illuminated with a uniform light intensity so that each
SPAD has the same probability to click within a given
time interval, which corresponds to the exposure time for
a frame. Random numbers are indeed produced by periodi-
cally sampling each pixel and applying dedicated generation
protocols.

In this work, we consider a sensor of recent introduction,
LinoSPAD [27], from the AQUA laboratory at Delft Univer-
sity and EPFL, which features a linear array of 256 pixels
connected to a single FPGA. The peculiarity of LinoSPAD
is a time tagging functionality, which associates a temporal
coordinate to every detection, thus potentially enabling a
further increase in the generation rate. In the following, we
will apply the techniques described in the previous sections
for the single-detector case to LinoSPAD.

LinoSPAD features 64 FPGA-based time-to-digital con-
verters [28,29] that tag the detections of each SPAD in a given
bank. Each TDC is implemented by a delay line with 35 carry
elements of 4 bits and it is sampled with a frequency fclock =
400 MHz. At every time interval τclock = 2.5 ns the TDC emits
an output code b ∈ [0, 139]. The TDC has therefore a sub-

FIG. 5. Distribution of the time differences between successive
detections on LinoSPAD device.

resolution of τsub = τclock/140 � 17.86 ps and this represents
the fundamental time resolution of the system. The following
considerations take into account that the actual number of
valid pixels is 64 and not 256 due to the limitation of 64 TDCs.
The measurements of the photon time of arrival are taken with
respect to a “reference” time signal, whose period determines
the integration time of a frame. The buffer of the system can
add output codes to a maximum of 228 bins. Hence, the longest
measurable time interval between the reference clock signal
and a photon detection cannot be larger than τsub228 � 4.8 ms.

Since the device registers a maximum of 512 tags per pixel
during the integration time, every frame is composed at most
by 64 × 512 tags. Similar to the paradigm adopted in the
previous sections, random bits can be extracted directly from
the bare physics of the process: A string τframe/τsub bits long
is associated to each frame and the 1’s, equal in number to the
number of tags, are located according to the tag values. Again,
the limit of this approach is that the strings are consistently
biased toward zero. This bias is the result of two concurring
causes: The first one is the dead time of the SPADs, which
being of τdead � 40 ns, implies that every bit 1 is necessarily
followed by τdead/τsub � 2240 0′s. However, the 0’s due to
the dead time can be removed, as was previously done. The
second cause is the limited buffer size: Each string produced
in a frame will always feature at most 512 1’s. Indeed, an
extraction approach by means of Peres debiasing procedure
could be suitable even for this framework. As in Randy, we
studied the interarrival detections time, whose distribution is
reported in Fig. 5, in order to detect the artifacts induced by
the physical limits of the device.

The histogram starts approximately at 40 ns due to the dead
time, and a peak starting at 40 ns and extending up to 200 ns
indicates the presence of afterpulses. A noticeable feature is
an unusual peak pattern. This pattern was due to a nonlinear
behavior of the TDC (further details in Sec. V B). Hence, to
manage these nonidealities we decided to separate the tag res-
olution between coarse resolution (clock sampling) and fine
resolution (TDC), implementing two different postprocessing
procedures. This distinction allows an easy postprocessing
procedure since it separates the treatment of nonidealities, i.e.,
coarse for detectors ones and fine for electronics ones (see
Secs. V A and V B). The analysis was done on data collected

023287-5

ANDREA STANCO et al. PHYSICAL REVIEW RESEARCH 2, 023287 (2020)

FIG. 6. Number of events for every pixel. From the graph, it is
clear that the efficiency varies from pixel to pixel with highly efficient
isolated pixels and a descending trend.

with an acquisition of 8 × 103 frames where every frame has
an integration time τframe = 320 × 10−6 s. The photon rate
was tuned to obtain approximately 400 counts per frame.
Given a buffer size of 512 detections, this value was chosen in
order to keep low the probability of saturation and frame loos-
ing. Results show a final achieved generation bit rate equal to
310 Mbit/s.

A. Coarse resolution

The coarse resolution is defined by the 400-MHz system
clock. The tag information is related to the number of clock
cycles in which an event is detected. Therefore, it describes
the temporal distance between an event and the zero refer-
ence with a resolution of 2.5 ns. We remove dead time and
afterpulses of the SPADs with the same technique described
in Sec. III. However, the SPAD arrays suffer from pixel cross
correlation, which causes a pixel to output an event when its
neighbor receives a photon, i.e., it produces a fake event as
in the afterpulse. In order to remove it and to be sure that no
cross correlation exists, we discard approximately one third
of the pixels of a bank, losing all the events from those pixels.
This procedure reduces the actual number of pixel from 64
to 22. After removing the cross correlation, the dead time,
and the afterpulse, we applied the Peres algorithm to every
selected pixel independently. As discussed in Sec. III and
according to Fig. 2, higher rates can be achieved by preferring
longer heavily biased bit strings over shorter slightly biased
bit strings. Therefore, we treat every selected pixel as an
autonomous QRNG. As in single-detector implementation,
we evaluated the serial correlation on a sampled bit string
and it re-enters within the limit of acceptance after removing
dead time, afterpulse, and pixel cross correlation. By summing
the bit rate of the selected pixels, we obtain a total bit rate
of Rcoarse � 87 Mbit/s. The value is averaged since the event
rate varies from pixel to pixel, as shown in Fig. 6. The mean
extraction rate per pixel is equal to Rcoarse/64 = Rcoarse,p �
1.36 Mbit/s. Considering an ideal SPAD array with no cor-
relation, the hypothetical extraction rate per pixel would be
equal to Rcoarse/22 = R∗

coarse,p � 3.95 Mbit/s.

FIG. 7. Distribution of the tags modulo 140 of the pixel 256. The
highly biased distribution shows the nonlinear response of the TDC.

B. Fine resolution

The fine resolution is defined by the TDC and has a time
resolution of approximately 17.86 ps. The TDC outputs a
number between 0 and 139, which identifies a precise moment
within a clock cycle in which an event occurred. Hence,
the access to the TDC value is done at every clock cycle.
As in the coarse resolution, we decide to treat every pixel
independently. The peaks of Fig. 5 are exactly separated
by 2.5 ns, which can be explained by the presence of a
dead time in accessing the TDC. This behavior brings to
the tag distribution shown in Fig. 7, which represents an
entire 2.5-ns clock cycle. The figure shows a significant
bias on several values and no events in the lower bins. This
behavior is due to the TDC implementation on an FPGA
technology which introduces nonlinearity caused by different
propagation delays over hardware blocks [30]. It is worth
noticing that, while the distribution is not uniform, its entropy
is equal to Hexp = −∑139

k=0 pk log2 pk � 6.8 bits, very close to
the maximum entropy Hth = log2 140 � 7.12 bits achievable
with 140 uniformly distributed decimal values. We also point
out that, if such 140 integers are transformed into their binary
description, the biased distribution introduces a correlation of
the bits. Numbers in decimal basis are just biased and not
correlated; by transforming the integers into a binary basis,
the resulting bits are correlated due to the nonuniform original
distribution. Moreover, in order to describe 140 different
values, 8 bits are required, implying that there are no events
from 140 to 255, which worsens the situation. Clearly, the
Peres algorithm cannot be applied to this string.

In order to remove the bias and the correlation on the
modulo 140 distribution, it is possible to use another post-
processing method, the algorithm proposed by Zhou and
Bruck [31]. The latter is the generalization of the Peres
algorithm for biased distributions over a finite number of
integers. Now we briefly describe the Zhou-Bruck algorithm
(for a full description of the method, refer to Ref. [31]). Let us
consider a random variable X with n possible outcomes with
a biased probability distribution. Let us define b = �log2 n�
as the number of bits required for a binary description of
the outcomes (in our case with n = 140 we have b = 8). If
the outcomes are labeled as 0, 1, . . . , n − 1 and converted
to binary, a string of b bits corresponds to each outcome.

023287-6

EFFICIENT RANDOM NUMBER GENERATION TECHNIQUES … PHYSICAL REVIEW RESEARCH 2, 023287 (2020)

FIG. 8. Bias after the application of the Zhou-Bruck method. The
graph shows the perfect balancing between 0’s and 1’s for every pixel
within the order of 10−4.

For a given sequence (x1, . . . , xM), we can convert any xk

to the corresponding binary string and consider only the first
bit of each string: The resulting sequence is biased but has
no correlation. Let us now consider the second bit of each
string. We may create two sequences corresponding to the two
possible values of the first bit: The first sequence collects the
second bits related to a 0 first bit and vice versa for the second
one. Again, these two sequences have bias but no correlation.
The idea can be iterated: The ith bits can be grouped into
2i − 1 sequences according to the values of the i − 1 bits.
After this manipulation, one gets N different sequences where
N = 2b. Since these N sequences have bias but no correlation,
the Peres algorithm can be applied separately to each of
them (if the sequence is not empty). We implemented the
Zhou-Bruck method on the tags modulo 140 of each pixel.
As a matter of fact, Zhou-Bruck method is quite efficient. For
example, for the pixel 256, from each tag we get an average
of 6.3 unbiased bits; this value is close to the maximum
Hexp � 6.8 bits that can be extracted with a perfect efficient
algorithm. The obtained bits were evaluated in term of bias
(Fig. 8) and binary entropy extraction efficiency (Fig. 9) as
well as serial correlation, which re-enters within the limit of
acceptance.

FIG. 9. Extraction efficiency of the Zhou-Bruck method for
every pixel. The efficiency is evaluated as η(p) = Nbit/(NtagHexp),
where Nbits and Ntags are the number of extracted bits and the number
of tags. The four spikes are due to a higher count efficiency of the
selected pixels according to Fig. 6.

SPADs array

0

1

Peres-QRNG

2

64

108

R
at

e
[b

it/
s]

60Diff-QRNG 54

3

4842OdEven-QRNG

Number of SPADs

4

3630Standard-QRNG 241221

Single SPADs
SPADs array
Coarse
Fine

2 Mbit/s

1 Mbit/s

StdOdEvDiffPeres

×

FIG. 10. Bar diagram comparing the rates of different protocols.
The diagram shows the qualitative bit rates differences between
different protocols. It is divided in two areas which represent the use
of discrete SPADs (as in Randy) and SPAD array (LinoSPAD).

The final rate of the fine resolution is equal to Rfine =
223 Mbit/s for the whole pixels array. In order to evaluate
the rate for a single pixel, it must be taken into account that
there are only 64 TDCs which switch among the four pixel
banks. Therefore, the actual number of pixels (in terms of
rate) truly is 64 and the final rate per pixel is Rfine/64 =
Rfine,p � 3.48 Mbit/s per pixel. Thus, by considering the fine
and coarse resolution, the average generation rate per pixel
is given by Rtot,p = Rfine,p + Rcoarse,p � 4.84 Mbit/s while
the total generation rate for LinoSPAD device is given by
Rtot = Rfine + Rcoarse � 310 Mbit/s.

VI. CONCLUSION

In this paper, we showed improved techniques to produce
true random numbers by processing single-photon events.
An innovative CMOS SPAD array device called LinoSPAD
was used to implement a high-rate RNG. It integrates a
temporal tagging system with a detector matrix, which allows
the usage of the temporal degree of freedom in addition to
the much more common spatial one. Starting from a single
detector system (Randy), we defined an efficient procedure to
fully exploit the temporal degree of freedom. Compared to
existing paradigms which are based on complex rules and are
far from being information efficient, our procedure extracts
the most of the system entropy, achieving the maximum bit
rate allowed by the system. This procedure is based on the
use of a high-frequency sampling clock (compared to the
photon rate) and on the use of the Peres unbiasing algorithm.
Therefore, the generation rate is only limited by the physical
device performances and not by the technique itself. Applying
this technique to LinoSPAD required a further step to deal
with detectors matrix nonidealities (pixel cross correlation)
and TDC ones. Hence, a dedicated postprocessing proce-
dure, which included the usage of the Zhou-Bruck algorithm,
was developed in order to work around such nonidealities.
The summary comparison bar diagram of Fig. 10 clearly

023287-7

ANDREA STANCO et al. PHYSICAL REVIEW RESEARCH 2, 023287 (2020)

shows the remarkable differences among different generation
procedures. Our Peres-based procedure clearly reaches a
higher bit rate compared to a protocol-based one. Further-
more, moving from the discrete SPADs framework (Randy)
to the CMOS SPAD array one and increasing the sam-
pling frequency as well as adding a time-to-digital con-
verter (LinoSPAD) improve the generation rate even more.
Final results show a bitrate per SPAD/pixel equal to the
following:

(1) RRandy,spad(100 MHz) = 1.8 Mbit/s,
(2) RLinoSPAD,spad(400 MHz + TDC) = 4.84 Mbit/s,

and for LinoSPAD a total bit rate of RLinoSPAD =
RLinoSPAD,spad64 = 310 Mbit/s.

Moreover, applying these techniques to other physical
devices with better performances will further increase the
generation rate. Future steps will also consider a real-time
implementation of the two procedures since the preprocessing
and both the Peres and Zhou-Bruck algorithms could be
effectively implemented via FPGA.

ACKNOWLEDGMENT

Part of this work was supported by Ministero
dell’Istruzione, dell’Università e della Ricerca (MIUR)
(Italian Ministry of Education, University and Research)
under the initiative “Departments of Excellence” (Law
232/2016).

[1] S. Pironio, A. Acín, S. Massar, A. B. de la Giroday, D. N.
Matsukevich, P. Maunz, S. Olmschenk, D. Hayes, L. Luo, T. A.
Manning, and C. Monroe, Nature (London) 464, 1021 (2010).

[2] B. G. Christensen, K. T. McCusker, J. B. Altepeter, B. Calkins,
T. Gerrits, A. E. Lita, A. Miller, L. K. Shalm, Y. Zhang, S. W.
Nam, N. Brunner, C. C. W. Lim, N. Gisin, and P. G. Kwiat,
Phys. Rev. Lett. 111, 130406 (2013).

[3] P. Bierhorst, E. Knill, S. Glancy, Y. Zhang, A. Mink, S.
Jordan, A. Rommal, Y.-K. Liu, B. Christensen, S. W. Nam,
M. J. Stevens, and L. K. Shalm, Nature (London) 556, 223
(2018).

[4] Y. Liu, X. Yuan, M.-H. Li, W. Zhang, Q. Zhao, J. Zhong, Y.
Cao, Y.-H. Li, L.-K. Chen, H. Li, T. Peng, Y.-A. Chen, C.-Z.
Peng, S.-C. Shi, Z. Wang, L. You, X. Ma, J. Fan, Q. Zhang, and
J.-W. Pan, Phys. Rev. Lett. 120, 010503 (2018).

[5] S. Gómez, A. Mattar, E. S. Gómez, D. Cavalcanti, O. J.
Farías, A. Acín, and G. Lima, Phys. Rev. A 97, 040102(R)
(2018).

[6] X. Ma, X. Yuan, Z. Cao, B. Qi, and Z. Zhang, npj Quantum Inf.
2, 16021 (2016).

[7] J. Rarity, P. Owens, and P. Tapster, J. Mod. Opt. 41, 2435
(1994).

[8] T. Jennewein, U. Achleitner, G. Weihs, H. Weinfurter, and A.
Zeilinger, Rev. Sci. Instrum. 71, 1675 (2000).

[9] M. Stipčević and B. M. Rogina, Rev. Sci. Instrum. 78, 045104
(2007).

[10] With the exception of bit x1 and xn, two photodetections are
necessary to generate an i.i.d. bit.

[11] H. Fürst, H. Weier, S. Nauerth, D. G. Marangon, C. Kurtsiefer,
and H. Weinfurter, Opt. Express 18, 13029 (2010).

[12] Y. Peres, Ann. Statist. 20, 590 (1992).
[13] J. von Neumann, in Monte Carlo Method, National Bureau

of Standards Applied Mathematics Series Vol. 12, edited by
A. S. Householder, G. E. Forsythe, and H. H. Germond (U.S.
Government Printing Office, Washington, DC, 1951), Chap. 13,
pp. 36–38.

[14] We used the ZedBoard produced by Avnet.

[15] We used the SPCM-ARQH by Excelitas.
[16] A. Prasitsupparote, N. Konno, and J. Shikata, Entropy 20, 729

(2018).
[17] F. Vedovato, C. Agnesi, M. Schiavon, D. Dequal, L. Calderaro,

M. Tomasin, D. G. Marangon, A. Stanco, V. Luceri, G.
Bianco, G. Vallone, and P. Villoresi, Sci. Adv. 3, e1701180
(2017).

[18] The time required by the FPGA in order to implement the
protocols was totally negligible.

[19] The time interval was set in order to have 〈nτ 〉 � 10 according
to what was stated in Sec. II.

[20] D. G. Marangon, G. Vallone, and P. Villoresi, Phys. Rev. Lett.
118, 060503 (2017).

[21] M. Avesani, D. G. Marangon, G. Vallone, and P. Villoresi, Nat.
Commun. 9, 5365 (2018).

[22] C. Niclass, M. Sergio, and E. Charbon, in Proceedings of
the Design Automation & Test in Europe Conference (IEEE,
Munich, Germany, 2006), pp. 1–6.

[23] E. Charbon, Philos. Trans. R. Soc. A 372, 20130100 (2014).
[24] D. Stucki, S. Burri, E. Charbon, C. Chunnilall, A. Meneghetti,

and F. Regazzoni, Proc. SPIE 8899, 88990R (2013).
[25] S. Burri, D. Stucky, Y. Maruyama, C. Bruschini, E. Charbon,

and F. Regazzoni, in International Image Sensor Workshop,
Utah, USA, 12-16 June, EPFL-CONF-191217 (EPFL scientific
publications, 2013).

[26] D. G. Marangon, G. Vallone, U. Zanforlin, and P. Villoresi,
Quantum Sci. Technol. 1, 015005 (2016).

[27] S. Burri, H. Homulle, C. Bruschini, and E. Charbon, Proc. SPIE
9899, 98990D (2016).

[28] C. Favi and E. Charbon, in Proceedings of the ACM/SIGDA
International Symposium on Field Programmable Gate Arrays,
FPGA ’09 (ACM, New York, 2009), pp. 113–120.

[29] M. Fishburn, L. H. Menninga, C. Favi, and E. Charbon, IEEE
Trans. Nucl. Sci. 60, 2203 (2013).

[30] J. Song, Q. An, and S. Liu, IEEE Trans. Nucl. Sci. 53, 236
(2006).

[31] H. Zhou and J. Bruck, arXiv:1209.0726.

023287-8

https://doi.org/10.1038/nature09008
https://doi.org/10.1038/nature09008
https://doi.org/10.1038/nature09008
https://doi.org/10.1038/nature09008
https://doi.org/10.1103/PhysRevLett.111.130406
https://doi.org/10.1103/PhysRevLett.111.130406
https://doi.org/10.1103/PhysRevLett.111.130406
https://doi.org/10.1103/PhysRevLett.111.130406
https://doi.org/10.1038/s41586-018-0019-0
https://doi.org/10.1038/s41586-018-0019-0
https://doi.org/10.1038/s41586-018-0019-0
https://doi.org/10.1038/s41586-018-0019-0
https://doi.org/10.1103/PhysRevLett.120.010503
https://doi.org/10.1103/PhysRevLett.120.010503
https://doi.org/10.1103/PhysRevLett.120.010503
https://doi.org/10.1103/PhysRevLett.120.010503
https://doi.org/10.1103/PhysRevA.97.040102
https://doi.org/10.1103/PhysRevA.97.040102
https://doi.org/10.1103/PhysRevA.97.040102
https://doi.org/10.1103/PhysRevA.97.040102
https://doi.org/10.1038/npjqi.2016.21
https://doi.org/10.1038/npjqi.2016.21
https://doi.org/10.1038/npjqi.2016.21
https://doi.org/10.1038/npjqi.2016.21
https://doi.org/10.1080/09500349414552281
https://doi.org/10.1080/09500349414552281
https://doi.org/10.1080/09500349414552281
https://doi.org/10.1080/09500349414552281
https://doi.org/10.1063/1.1150518
https://doi.org/10.1063/1.1150518
https://doi.org/10.1063/1.1150518
https://doi.org/10.1063/1.1150518
https://doi.org/10.1063/1.2720728
https://doi.org/10.1063/1.2720728
https://doi.org/10.1063/1.2720728
https://doi.org/10.1063/1.2720728
https://doi.org/10.1364/OE.18.013029
https://doi.org/10.1364/OE.18.013029
https://doi.org/10.1364/OE.18.013029
https://doi.org/10.1364/OE.18.013029
https://doi.org/10.1214/aos/1176348543
https://doi.org/10.1214/aos/1176348543
https://doi.org/10.1214/aos/1176348543
https://doi.org/10.1214/aos/1176348543
https://doi.org/10.3390/e20100729
https://doi.org/10.3390/e20100729
https://doi.org/10.3390/e20100729
https://doi.org/10.3390/e20100729
https://doi.org/10.1126/sciadv.1701180
https://doi.org/10.1126/sciadv.1701180
https://doi.org/10.1126/sciadv.1701180
https://doi.org/10.1126/sciadv.1701180
https://doi.org/10.1103/PhysRevLett.118.060503
https://doi.org/10.1103/PhysRevLett.118.060503
https://doi.org/10.1103/PhysRevLett.118.060503
https://doi.org/10.1103/PhysRevLett.118.060503
https://doi.org/10.1038/s41467-018-07585-0
https://doi.org/10.1038/s41467-018-07585-0
https://doi.org/10.1038/s41467-018-07585-0
https://doi.org/10.1038/s41467-018-07585-0
https://doi.org/10.1098/rsta.2013.0100
https://doi.org/10.1098/rsta.2013.0100
https://doi.org/10.1098/rsta.2013.0100
https://doi.org/10.1098/rsta.2013.0100
https://doi.org/10.1117/12.2029287
https://doi.org/10.1117/12.2029287
https://doi.org/10.1117/12.2029287
https://doi.org/10.1117/12.2029287
https://doi.org/10.1088/2058-9565/1/1/015005
https://doi.org/10.1088/2058-9565/1/1/015005
https://doi.org/10.1088/2058-9565/1/1/015005
https://doi.org/10.1088/2058-9565/1/1/015005
https://doi.org/10.1117/12.2227564
https://doi.org/10.1117/12.2227564
https://doi.org/10.1117/12.2227564
https://doi.org/10.1117/12.2227564
https://doi.org/10.1109/TNS.2013.2241789
https://doi.org/10.1109/TNS.2013.2241789
https://doi.org/10.1109/TNS.2013.2241789
https://doi.org/10.1109/TNS.2013.2241789
https://doi.org/10.1109/TNS.2006.869820
https://doi.org/10.1109/TNS.2006.869820
https://doi.org/10.1109/TNS.2006.869820
https://doi.org/10.1109/TNS.2006.869820
http://arxiv.org/abs/arXiv:1209.0726

