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Abstract

We consider the conjugation-action of the Borel subgroup of the symplectic or
the orthogonal group on the variety of nilpotent complex elements of nilpotency
degree 2 in its Lie algebra. We translate the setup to a representation-theoretic
context in the language of a symmetric quiver algebra. This makes it possible to
provide a parametrization of the orbits via a combinatorial tool that we call sym-
plectic/orthogonal oriented link patterns. We deduce information about numerol-
ogy. We then generalize these classifications to standard parabolic subgroups for
all classical groups. Finally, our results are restricted to the nilradical.

1 Introduction

Let G be a classical complex group of rank n. Then G is either the general linear group
GLn(K) or the symplectic group SP2l(K) or the orthogonal group On(K), where K = C.
Let g be the corresponding Lie algebra.

The study of the adjoint action of (subgroups of) G on g and numerous variants thereof
is a well-established and much considered task in algebraic Lie theory. Employing
methods of geometric invariant theory, a classical topic is the study of orbits and their
closures, which is also known as the vertical problem [11].

One famous example of a classification problem alike is the study of GLn-conjugation
(or SLn-conjugation, this doesn’t make a difference) on the variety of complex matrices
of square–size n. A complete system of representatives up to conjugation is given by
the Jordan canonical form [10] which dates back to the 19th century. This system
of representatives is given by continuous parameters, the eigenvalues of the matrix,
and discrete parameters. In order to determine the latter, it suggests itself to restrict
the action to the nilpotent cone, namely to GLn-conjugation on the set of nilpotent
matrices. The number of conjugacy classes of nilpotent matrices is finite and can be
described combinatorially by partitions of n.
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One generalization of this setup is obtained by restricting the acting group from G to
parabolic subgroups P ⊆ G. In particular, the Borel subgroup B is considered, then,
and the question about a variety admitting only finitely many orbits is closely related
to the concept of so-called spherical varieties [5]. One example of a parabolic action
can be found in [9], where Hille and Röhrle prove a finiteness criterion for the number
of orbits of parabolic conjugation on the unipotent radical of g.

Another adaption of the above setup is given by restricting the nilpotent cone N of
nilpotent matrices to certain subvarieties. For example, Melnikov parametrizes the
Borel-orbits in the variety of 2-nilpotent elements in the nilradical n of g = Lie(GLn(K))
in [14] which is inspired by the study of orbital varieties. A parametrization in the
symplectic setup is published by Barnea and Melnikov in [2]. In [8], Gandini, Maffei,
Möseneder Frajria and Papi consider the more general approach of B-stable abelian
subalgebras of the nilradical of b in which they parametrize the B-orbits and describe
their closure relations.

In this article, we consider the algebraic subvarietyN(2) of 2–nilpotent elements of the
nilpotent cone of g, namely

N(2) = N(2,G) = {x ∈ g| x2 = 0}.
Every parabolic subgroup P of G acts on N(2). It is known that the number of orbits
is always finite, since Panyushev shows finiteness for the Borel-action in [17]. In case
G = GLn(K), a parametrization of the P-orbits and a description of their degenerations
is given in [4] and [3] for each parabolic subgroup P ⊂ G.

Our first goal in this article is to prove in a different manner that there are only finitely
many B-orbits in N(2) for the remaining classical groups, that is, for types B, C and
D. We approach the problem in a way closely related to [4] from a quiver-theoretic
point of view - but instead of translating to the representation variety of a quiver with
relations of a special dimension vector, we translate the orbits to certain (isomorphism
classes of) representations of a symmetric quiver with relations of a fixed dimension
vector. In this setup we show that there are only finitely many of the latter which are
parametrized by combinatorial objects which we call symplectic/orthogonal oriented
link patterns, see Definitions 6.2 and 6.8.

For example the Borel-orbits of 2-nilpotent matrices in o4 are parametrized by these
five patterns:

1
��

2 1 2
��

1

•
��

2 1 2

•
��

1 2

The following five matrices give a system of representatives of these orbits.


0 0 0 0
1 0 0 0
0 0 0 0
0 0 −1 0




0 1 0 0
0 0 0 0
0 0 0 −1
0 0 0 0




0 0 0 0
0 0 0 0
1 0 0 0
0 −1 0 0




0 0 1 0
0 0 0 −1
0 0 0 0
0 0 0 0




0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0



Our second goal is to parametrize all orbits explicitly. The approach via a symmetric
quiver makes it possible to classify the orbits by representations, and thus, by combi-
natorial data.
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We afterwards generalize these results to parabolic subgroups P ⊂ G. To do so, we
consider the isotropic flag corresponding to P and realize it as a representation MP.
The parabolic P equals the symmetric stabilizer of MP and we obtain a classification
of the P-orbits in N(2) as in the Borel case.

In the last section, we restrict our results to the action of P on the nilradical n(2) :=
N(2)∩n of 2-nilpotent upper-triangular matrices in g and obtain complete parametriza-
tions, here. In the symplectic case, the parametrization coincides with the parametriza-
tion by so-called symplectic link patterns of [2], even though the methods used to prove
it are different.

Acknowledgments: The authors would like to thank Giovanna Carnovale for her input
concerning the results and methods of this work. Furthermore, the first author thanks
Martin Bender for many discussions about Lie-theoretical background.

2 Classical groups and Lie algebras

Let K be the field of complex numbers K := C and let n be an integer. We consider the
complex classical groups, that is, the general linear group GLn := GLn(K), the sym-
plectic group SPn := SPn(K), whenever n = 2l for some integer l, and the orthogonal
group On := On(K). The corresponding Lie algebras are denoted by gln := gln(K),
spn := spn(K) and on := on(K).

In general, given a vector space V endowed with a non-degenerate bilinear form 〈−,−〉,
let us denote by Sym(V) the group of symmetries of the vector space V which preserve
〈−,−〉|V×V . Then Sym(V) equals either the symplectic group SP(V) or the orthogonal
group O(V), depending on whether (V, 〈−,−〉) is symplectic or orthogonal). We define
sym(V) := Lie(Sym(V)).

Let l be an integer, then we denote by J = Jl the l × l anti-diagonal matrix with every
entry on the anti-diagonal being 1:

Jl =


0 1

1 0


It is easy to see (and well–known) that J−1 = J and that the conjugate J TAJ by J of the
transpose TA of a matrix A ∈ Kl×l is given by "the transpose of A with respect to the

anti-diagonal". For example, for l = 2, given A =

[
a b
c d

]
:

J TAJ =

[
0 1
1 0

] [
a c
b d

] [
0 1
1 0

]
=

[
d b
c a

]
.

We set
TA := J TAJ.
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In this notation, it is easy to write down the elements of the symplectic and orthogonal
Lie algebras.

2.1 Symplectic group

Let V be an n = 2l–dimensional complex vector space. Let us fix a basis of V and a
bilinear form F = FV : V × V → K, F(v,w) = 〈v,w〉, associated with the matrix (still
denoted by F)

F =

[
0 Jl

−Jl 0

]
. (2.1)

The symplectic group SPn consists of those matrices A ∈ GLn which preserve this
bilinear form (i.e. 〈Av, Aw〉 = 〈v,w〉); in other words A satisfies the equation

TAFA = F.

The Lie algebra spn of SPn consists of those matrices a ∈ gln which fulfill

TaF + Fa = 0. (2.2)

We write a =

[
A B
C D

]
, where A, B,C,D are l × l-blocks, so that condition (2.2)

translates into the following equations:

a =

[
A B = TB

C = TC D = − TA

]
. (2.3)

In particular, spn has dimension l2 + l(l + 1) = l(n + 1). The intersection of spn with
the Borel subalgebra bn := bn(K) of upper-triangular matrices is a solvable subalgebra
of spn of dimension l(l + 1) = l2 + l. Since spn is a Lie algebra of type Cl, the number
of positive roots is l2 and the number of simple roots is l; we hence see that b(spn) :=
spn ∩ bn is a solvable subalgebra of maximal dimension and hence a Borel subalgebra.
This is one of the advantages of working with the form F given by (2.1).

2.2 Orthogonal group

Let V be an n–dimensional complex vector space (where n can be even or odd). Let
us fix a basis of V and let us choose the non–degenerate bilinear form on V associated
with the matrix F = Jn. The orthogonal group On consists of those matrices A ∈ GLn

for which TAFA = F holds true. The Lie algebra on consists of those matrices a ∈ gln
satisfying (2.2) which translates into the relation

a = − Ta. (2.4)

In particular, on has dimension n(n−1)
2 . The intersection of on with the Borel subalgebra

bn of upper-triangular matrices, is a solvable subalgebra of on.
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• If n = 2l, the dimension of such a solvable subalgebra is easily seen to be

n(n − 1)
2

− l(l − 1) = l(2l − 1) − l(l − 1) = l2.

Since on is a Lie algebra of type Dl, the number of positive roots is l(l − 1) and
the number of simple roots is l; we hence see that b(on) := on ∩ bn is a solvable
subalgebra of maximal dimension and hence a Borel subalgebra.

• Similarly, if n = 2l + 1, the dimension of b(on) := on ∩ bn is easily seen to be

n(n − 1)
2

− (l(l − 1) + l) = (2l + 1)l − l2 = l2 + l.

Since on is a Lie algebra of type Bl, the number of positive roots is l2 and the
number of simple roots is l; we hence see that b(on) is a solvable subalgebra of
maximal dimension and hence a Borel subalgebra.

As before, this is one of the benefits of working with the form F given by Jn.

3 Background on (symmetric) quiver representations

We include basic knowledge about the representation theory of finite-dimensional al-
gebras via finite quivers [1] before introducing the notion of a symmetric quiver and
discussing its representations. This theoretical background will be necessary later on
to prove our main results.

A finite quiver Q is a directed graph Q = (Q0,Q1, s, t), such that Q0 is a finite set of
vertices and Q1 is a finite set of arrows, whose elements are written as α : s(α)→ t(α).
The path algebra KQ is defined as the K-vector space with a basis consisting of all
paths in Q, that is, sequences of arrows ω = αs . . . α1 with t(αk) = s(αk+1) for all
k ∈ {1, . . . , s − 1}; formally included is a path εi of length zero for each i ∈ Q0 starting
and ending in i. The multiplication is defined as the concatenation of paths ω = αs...α1
and ω′ = βt...β1, that is,

ω · ω′ =

{
αs...α1βt...β1, if t(βt) = s(α1);
0, otherwise.

Let rad(KQ) be the path ideal of KQ, which is the (two-sided) ideal generated by all
paths of positive lengths. An ideal I ⊆ KQ is called admissible if there exists an integer
s with rad(KQ)s ⊂ I ⊂ rad(KQ)2. If this is the case for an ideal I, then the algebra
A := KQ/I is finite-dimensional.

We denote by rep(KQ) the abelian K-linear category of all representations of Q (which
is equivalent to the category of KQ-modules). In more detail, the objects are given as
finite-dimensional (K-)representations of Q which, in more detail, are tuples

((Mi)i∈Q0 , (Mα : Mi → M j)(α : i→ j)∈Q1 ),
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where the Mi are K-vector spaces, and the Mα are K-linear maps. A morphism of
representations M = ((Mi)i∈Q0 , (Mα)α∈Q1 ) and M′ = ((M′i )i∈Q0 , (M′α)α∈Q1 ) consists of a
tuple of K-linear maps ( fi : Mi → M′i )i∈Q0 , such that f jMα = M′α fi for every arrow
α : i→ j in Q1.

Let us denote by rep(A) the category of representations of Q bound by I: For a repre-
sentation M and a path ω in Q as above, we denote Mω = Mαs · . . . · Mα1 . A represen-
tation M is called bound by I, if

∑
ω λωMω = 0 whenever

∑
ω λωω ∈ I. The category

rep(KQ/I) is equivalent to the category of finite-dimensionalA-representations.

Let M be an A-representation, let Bi ⊆ εiM be a K-basis of εiM for every i ∈ Q0 and
let B be the disjoint union of these sets Bi. We define the coefficient quiver Γ(M) :=
Γ(M, B) of M with respect to the basis B to be the quiver with exactly one vertex for
each element of B, such that for each arrow α ∈ Q1 and every element b ∈ Bs(α) we
have

Mα(b) =
∑

c∈Bt(α)

λαb,cc

with λαb,c ∈ K. For each λαb,c , 0 we draw an arrow b → c with label α. Thus, the
quiver reflects the coefficients corresponding to the representation M with respect to
the chosen basis B.

Given a representation M ∈ rep(A), its dimension vector dimM ∈ NQ0 is defined by
(dimM)i = dimK Mi for i ∈ Q0. For a fixed dimension vector d ∈ NQ0, we denote by
rep(A, d) the full subcategory of rep(A) which consists of representations of dimension
vector d.

Let M and M′ be two representations of A. We denote by HomA(M,M′) the space
of homomorphisms from M to M′, by EndA(M) the set of endomorphisms and by
AutA(M) the group of automorphisms of M in rep(A).

For certain finite-dimensional algebras a convenient tool for the classification of the
indecomposable representations (up to isomorphism) and of their homomorphisms is
the Auslander–Reiten quiver Γ(A) of rep(A). Its vertices [M] are given by the iso-
morphism classes of indecomposable representations of rep(A); the arrows between
two such vertices [M] and [M′] are parametrized by a basis of the space of so-called
irreducible maps f : M → M′.

By defining the affine space Rd(KQ) :=
⊕

α : i→ j HomK(Kdi ,Kd j ), one realizes that
its points m naturally correspond to representations M ∈ rep(KQ, d) with Mi = Kdi for
i ∈ Q0. Via this correspondence, the set of such representations bound by I corresponds
to a closed subvariety Rd(A) ⊂ Rd(KQ).

The algebraic group GLd =
∏

i∈Q0
GLdi acts on Rd(KQ) and on Rd(A) via base change,

furthermore the GLd-orbitsOM of this action are in bijection to the isomorphism classes
of representations M in rep(A, d).

The notion of symmetry for a finite quiver comes into the picture as follows: A sym-
metric quiver is a pair (Q, σ) where Q is a finite quiver and σ : Q0 ∪ Q1 → Q0 ∪ Q1 is
an involution, such that σ(Q0) = Q0, σ(Q1) = Q1 and every arrow i α // j is sent to
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the arrow σ( j)
σ(α) //σ(i) .

In this article, we represent the action of σ by adding the symbol ∗. For example,

1 a // 2 b // 3 b∗ // 2∗ a∗ // 1∗

is the symmetric quiver (Q, σ) with underlying quiver Q being equioriented of type A5,
such that σ acts on Q by sending an elment x ∈ Q0 ∪ Q1 to x∗; the vertex 3 is fixed by
σ.

A symmetric (K-)representation of a symmetric quiver (Q, σ) is a representation M =

({Mp}p∈Q0 , {Mα}α∈Q1 ) in rep(KQ) endowed with a non–degenerate bilinear form

〈−,−〉 :
⊕
p∈Q0

Mp ×
⊕
q∈Q0

Mq → K,

such that:

(i) The equation
〈−,−〉|Mp×Mq = 0 (3.1)

holds true, unless q = σ(p);

(ii) The equation
〈Mα(v),w〉 + 〈v,Mσ(α)(w)〉 = 0 (3.2)

holds true for every v ∈ Mp, w ∈ Mσ(q) and for every arrow p α // q ∈ Q1.

A representation (M, 〈−,−〉) of a symmetric quiver (Q, σ) is called symplectic, if the
bilinear form is skew–symmetric and it is called orthogonal, if the bilinear form is
symmetric.

Let (Q, σ) be a symmetric quiver and let I be an ideal of KQ, such that σ · I ⊂ I. The
involution σ induces an involution on the algebra A := KQ/I and we can consider
symplectic and orthogonal representations of the algebra A: these are symplectic or
orthogonal representations ofA which are annihilated by the ideal I.

We denote the categories of symmetric, symplectic and orthogonal representations by
srep(A) and make sure that it will always be clear from the context which one is meant.
The restriction to the full subcategory of representations of a fixed dimension vector
d is denoted by srep(A, d). Analogously to the non-symmetric case, we associate a
variety SRd(A) to this category; and denote Mx ∈ srep(A, d) for x ∈ SRd(A).

Let (M, 〈−,−〉) and (M′, 〈−,−〉′) be two representations in srep(A). Let us denote by
Homsrep(A)(M,M′) the space of homomorphisms from M to M′ and by Autsrep(A)(M)
the group of automorphisms of M in srep(A).

We have

Autsrep(KQ)(M) = AutKQ(M)
⋂ ∏

p,σ(p)

Sym(Mp ⊕ Mσ(p)) ×
∏

p=σ(p)

Sym(Mp).
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Let Endsrep(A)(M) be the Lie algebra of Autsrep(A)(M). An element A = {Ap}p∈Q0 of
Endsrep(A)(M) is called a symmetric endomorphism of (M, 〈−,−〉); it is an element of
EndA(M) with the following extra conditions:

If M is symplectic: p , σ(p)⇒ Aσ(p) = − TAp

If M is orthogonal: p , σ(p)⇒ Aσ(p) = TAp (3.3)
Furthermore, p = σ(p)⇒ TApFp + FpAp = 0. (3.4)

Remark 3.1. Conditions (3.3) follow by imposing the relation[ TAp 0
0 TAσ(p)

] [
0 J
±J 0

]
+

[
0 J
±J 0

] [
Ap 0
0 Aσ(p)

]
= 0.

Condition (3.4) means that Ap belongs to the Lie algebra of Sym(Vp).

We hence have

Endsrep(KQ)(M) = EndKQ(M)
⋂ ∏

p,σ(p)

sym(Vp ⊕ Vσ(p)) ×
∏

p=σ(p)

sym(Vp).

4 B-orbits vs. isoclasses of symmetric representations

Let G ∈ {SPn,On} where n = 2l in the symplectic case and n ∈ {2l, 2l + 1} in the
orthogonal case for some integer l ∈ N and let g be the corresponding symplectic or
orthogonal Lie algebra. Let B be the standard Borel subgroup of G, that is, the subgroup
of G of upper-triangular matrices which is obtained by intersecting the Borel subgroup
of GLn with G.

We consider the algebraic variety N(2) of 2–nilpotent elements of g

N(2) = N(2,G) = {x ∈ g| x2 = 0}.

Then B acts on N(2) via conjugation and our first aim in this article is to prove by
means of symmetric quiver representations that the action admits only a finite number
of orbits. We thereby specify an explicit parametrization of the orbits.

4.1 Symmetric quiver setup

We defineA(l) to be the algebra given by the quiver

Ql : 1
a1 // 2

a2 // · · · ak−1 // k
ak // ω

α

�� a∗k // k∗
a∗k−1 // · · · a∗2 // 2∗

a∗1 // 1∗

with relations α2 = a∗l al = 0. Notice that the 2l vertices of Ql are colored; the choice
of the color will be clear in a few lines.
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We consider the dimension vector

d• = (d1, ..., dl, dω, dk∗ , ..., d1∗ ) = (1, 2, · · · , l − 1, l, n, l, l − 1, · · · , 2, 1)

and the variety SRd• (A(l)). This variety is acted upon by the group

GLsym := GL(d1) × GL(d2) × · · · × GL(dl) × Sym(n)

where Sym(n) denotes either the symplectic or the orthogonal group on a vector space
of dimension n. Inside the variety SRd• (A(l)) we consider the open subset SRd• (A(l))0

corresponding to the full subcategory srep(A(l),d•)0 of srep(A(l),d•) of those rep-
resentations whose linear maps associated with the arrows ai and a∗i have maximal
rank. For an element x ∈ SRd• (A(l))0, we have the natural notion of its GLsym-
stabilizer. We denote the corresponding stabilizer of the representation Mx in the cate-
gory srep(A(l),d•) by stabGLsym (Mx).

Example 4.1. Let us consider the quiver Q2

1 a // 2 b // 3 b∗ //

α

��
2∗ a∗ // 1∗

and the algebra A(2) = KQ/(α2, b∗b). Let us consider the A(2)-representation M0
given by

1 a // 2 b // 3

2 b // 3

3 b∗ // 2∗

3 b∗ // 2∗ a∗ // 1∗

(4.1)

and theA(2)-representation M′0 given by

1 a // 2 b // 3

2 b // 3

3

3 b∗ // 2∗

3 b∗ // 2∗ a∗ // 1∗

(4.2)

In view of (3.2), in order for M to be symmetric, the arrows a, b of Q2 must act by 1
and the arrows a∗, b∗ must act as −1.

The symmetric structure of M0 (that is, the choice of a non-degenerate bilinear form)
is induced by the symmetric structure on the vector space at vertex 3. In the symplectic
case, this bilinear form is given by the matrix

0 0 0 1
0 0 1 0
0 −1 0 0
−1 0 0 0

 ;
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and for the orthogonal case, it is defined by the anti–diagonal matrix with every entry
on the anti–diagonal being 1 (see Section 2).

The symplectic space Endsrep(A(2))(M0) has dimension 6 and can be represented by the
matrix 

a c f g
0 b e f
0 0 −b −c
0 0 0 −a

 .
In orthogonal type, it is 4–dimensional and represented by

a c f 0
0 b 0 − f
0 0 −b −c
0 0 0 −a

 .
In a similar way, we proceed for the orthogonal group O5 and look at the representation
M′0. Then, as above, the stabilizer is given by

a c e f 0
0 b d 0 − f
0 0 0 −d −e
0 0 0 −b −c
0 0 0 0 −a


We have hence found the well known fact that the stabilizer of the complete standard
flag is the Borel subgroup in both the symplectic and orthogonal setup. The Borel sub-
groups therefore equal the intersection of G with the standard Borel of upper-triangular
matrices in GLn.

Clearly, this example generalizes to larger n in a straight forward manner.

4.2 Translation

The translation from B–orbits in N(2) to the representation theory of a symmetric
quiver is based on a theorem on associated fibre bundles which we recall for the con-
venience of the reader. Its origin can be found in [18].

Theorem 4.2. Let G be an algebraic group, let X and Y be G–varieties, and let π :
X → Y be a G–equivariant morphism. Assume that Y is a single G–orbit, Y = Gy0.
Define H := StabG(y0) = {g ∈ G| g · y0 = y0} and F := π−1(y0). Then X is isomorphic to
the associated fibre bundle G ×H F, and the embedding ι : F → X induces a bijection
between H–orbits in F and G–orbits in X preserving orbit closures.

Corollary 4.3. With the notation of Theorem 4.2, given a point p ∈ F, we have
stabH(p) = stabG(p)
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Proof. Since H is a subgroup of G, StabH(p) ⊆ StabG(p); viceversa, since H · p =

G · p ∩ F, the reversed inclusion also holds. �

In view of Theorem 4.2, we can now prove the following key lemma, analogous to [3,
Lemma 3.1].

Lemma 4.4. There is a bijection between isoclasses of symplectic/orthogonal A(l)–
representations in srep(A(l),d•)0 and symplectic/orthogonal B–orbits in N(2). This
bijection respects orbit closure relations and dimensions of stabilizers.

Proof. Let Q̃l be the quiver obtained from Ql by removing the loop α and let Ã(l)
be the corresponding symmetric algebra (also remove the relation α2). By defining
SRd• (Ã(l))0 analougously to SRd• (A(l))0, we see that this variety is acted upon tran-
sitively by GLsym and we denote the representation which is given by the complete
standard flag by M0; this is a generating point. The embedding Ã(l) ⊂ A(l) induces a
GLsym-equivariant projection

π : SRd• (A(l))0 // // SRd• (Ã(l))0

which is given by forgetting the linear map associated with the loop α. The fiber of π
equals the variety N(2).

As we have seen before, the stabilizer of the symplectic/orthogonal representation M0
is isomorphic to the Borel subgroup B of the symplectic/orthogonal group. Thus, The-
orem 4.2 proves the claim. �

We are hence left to classify the isomorphism classes of symplectic/orthogonal repre-
sentations of A(l) of dimension vector d• with maximal rank maps, which in view
of Krull–Remak–Schmidt’s theorem is analogous to classifying the unique decom-
positions of elements of srep(A(l),d•)0 into indecomposable symplectic/orthogonal
representations (up to symmetric isomorphism). Let M and M′ be two points of
srep(A(l),d•)0 which are contained in different orbits. Since π(M) = π(M′) under
the morphism of the proof of Lemma 4.4, the only difference beetween them is given
by the action of the loop α. This means that the only part of the coefficient quivers of
M and M′ which differs is the subquiver which represents the loop α.

5 Representation theory ofA(l)

In this section, we look at the (symmetric) representation theory of the algebra A(l)
corresponding to the symmetric quiver Ql. With these considerations, we are able to
prove explicit parametrizations of the Borel-orbits in N(2) in Section 6.
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5.1 Indecomposable symmetricA(l)–modules

The following proposition follows from [6, Section 3] by noticing that there are no
band modules.

Proposition 5.1. The algebra A(l) is a string algebra of finite representation type. In
particular, the indecomposable A(l)–modules are string modules and their isoclasses
are parametrized by words with letters in the arrows of Ql and their inverses, avoiding
relations.

Let us give names to the indecomposableA(l)–modules (where l + 1 := ω).

Mi j: For 1 ≤ i ≤ j ≤ l + 1, we denote by Mi j the string module associated with
the word ai · · · a j−1, i.e. it is the indecomposable module supported on vertices
i, i + 1, · · · , j; its coefficient quiver is given by

i // i + 1 // · · · // j − 1 // j

M∗i j: For 1 ≤ i ≤ j ≤ l + 1, we denote by M∗i j the string module associated with
the word a∗j−1 · · · a∗i , i.e. it is the indecomposable module supported on vertices
j∗, ( j − 1)∗, · · · , i∗; its coefficient quiver is given by

j∗ // ( j − 1)∗ // · · · // (i + 1)∗ // i∗

D+
i j: For 1 ≤ i ≤ j ≤ l + 1, we denote by D+

i j the indecomposable associated with the
word aiai+1 · · · alα

−a−l a−l−1 · · · a−j ; its coefficient quiver has the following form

i // i + 1 // · · · // j // j + 1 // · · · // l // ω

j // j + 1 // · · · // l // ω

OO

D−i j: For 1 ≤ i < j ≤ l + 1 we denote by D−i j the indecomposable associated with the
word aiai+1 · · · alαa−l a−l−1 · · · a−j ; its coefficient quiver is given by

i // i + 1 // · · · // j // j + 1 // · · · // l // ω

��
j // j + 1 // · · · // l // ω

C+
i j: For 1 ≤ i ≤ j ≤ l + 1 we denote by C+

i j the indecomposable associated with the
word (a∗j)

−(a∗j−1)− · · · (a∗l )−α−a∗l a∗l−1 · · · a∗i ; its coefficient quiver is given by

ω

��

// l∗ // · · · // j∗ // ( j − 1)∗ // · · · // (i + 1)∗ // i∗

ω // l∗ // · · · // j∗
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C−i j: For 1 ≤ i < j ≤ l + 1 we denote by C−i j the indecomposable module associated
with the word (a∗j)

−(a∗j−1)− · · · (a∗l )−α a∗l a∗l−1 · · · a∗i ; its coefficient quiver is given
by

ω // l∗ // · · · // j∗ // ( j − 1)∗ // · · · // (i + 1)∗ // i∗

ω

OO

// l∗ // · · · // j∗

Z+
i j: For 1 ≤ i, j ≤ l we denote by Z+

i j the indecomposable associated with the word
aiai+1 · · ·αlα

−a∗l · · · a∗j; its coefficient quiver is given by

i // i + 1 // · · · // l // ω

ω

OO

// l∗ // · · · // j∗

Z−i j: For 1 ≤ i, j ≤ l we denote by Z−i j the indecomposable associated with the word
aiai+1 · · · alαa∗l · · · a∗j; its coefficient quiver is given by

i // i + 1 // · · · // l // ω

��
ω // l∗ // · · · // j∗

Remark 5.2. All the modules above are non–isomorphic to each other, apart from
D+

l+1,l+1 ' C+
l+1,l+1 and Ml+1,l+1 ' M∗l+1,l+1.

We consider the involution σ of Ql, which sends every vertex i to i∗, every arrow a
to a∗ and which fixes ω and α (here we use the convention that (−)∗∗ = (−)). Then
(Ql, σ) is a symmetric quiver and we can consider symmetric representations of A(l).
The involution σ induces a duality on the category of representations of A(l) that we
denote by ∇ (as in [7]).

Convention 5.3. Given an indecomposable A(l)–module M, we need to choose care-
fully the linear maps. Since we often work with its coefficient quiver, we fix one and for
all a convention about these:
The arrows of the coefficient quiver of M colored with a1, · · · , al act as 1, while the
arrows colored with a∗l , · · · , a∗1 act as −1.

Every pair of two arrows ωi
α1 // ω j and ω j∗

α2 // ωi∗ colored with ω (if they
exist) has to satisfy the following conditions:

• For V to be orthogonal, α1 acts as 1 and α2 as −1.

• For V to be symplectic, if 1 ≤ i, j ≤ l or 1 ≤ i∗, j∗ ≤ l, then α1 acts as 1 and α2
as −1, otherwise α1 and α2 both act as 1.
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Proposition 5.4. With the above notation, we have: ∇Mi, j ' M∗i, j, ∇D+
i, j ' C+

i, j, ∇D−i, j '
C−i, j, ∇Z+

i, j ' Z+
j,i, ∇Z−i, j ' Z−j,i. In particular, ∇Ml+1,l+1 ' Ml+1,l+1 and ∇D+

l+1,l+1 '
D+

l+1,l+1

Proof. Let M be an indecomposable module as listed above. The coefficient quiver
of the dual ∇M of M is obtained from the coefficient quiver of M by reversing all the
arrows, changing their sign and then making a reflection through the middle vertex
ω = l + 1. �

Thus, we obtain the following classification lemma.

Lemma 5.5. The symplectic indecomposable representations ofA(l) are Z±ii , Mi j⊕M∗i j,
D±i j ⊕C±i j (for (i, j) , (l + 1, l + 1)), D+

l+1,l+1 and Z±i j ⊕ Z±ji (for i , j).

The orthogonal indecomposable representations ofA(l) are Mi j⊕M∗i j, D±i j⊕C±i j, Z±i j⊕Z±ji
and Ml+1,l+1.

In particular, there is only one indecomposable A(l)–modules which can be endowed
with an orthogonal structure.

Remark 5.6. The reason why an indecomposableA(l)–module with symmetric dimen-
sion vector cannot be orthogonal, except for the case that it is one–dimensional, is the
following: let M be such a (at least two–dimensional) module and let Mα be the linear
map associated with the loop α. Such a map is a 2–nilpotent endomorphism of an or-
thogonal two–dimensional vector space. In order for M to be orthogonal, Mα must lie
in the Lie algebra o2 of O2 and hence it must be zero, contradicting the fact that M is
indecomposable.

For example, the following representation:

1 1 // 2 1 // 3 1 // 4 1 // ω

1

zz

2 1 // 3 1 // 4 1 // ω
1xx3 1 // 4 1 // ω

4 1 // ω

b

&&

ω
−1 // 4∗

ω
−1 &&

−1 // 4∗ −1 // 3∗

ω
−1 // 4∗ −1 // 3∗ −1 // 2∗

ω
−1 // 4∗ −1 // 3∗ −1 // 2∗ −1 // 1∗

is symplectic if b = 1 and orthogonal if b = −1.
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5.2 Auslander–Reiten quiver ofA(l)

The algebra A(l) is a string algebra of finite representation–type, that is, it does only
admit a finite number of isomorphism classes of indecomposable representations. Its
Auslander–Reiten quiver can be obtained in several ways. We prefer to follow the
treatment of Butler–Ringel [4] and get the following result.

Proposition 5.7. The following are the Auslander–Reiten sequences ofA(l):

(i) Auslander–Reiten sequences starting with Mi j:

0 // M1,ω // Z+
1,1

// M∗1,ω // 0 ,

0 // Mi,ω // Mi−1,ω ⊕ Z+
i,1

// Z+
i−1,1

// 0 , if i > 1,

0 // Mi, j // Mi, j−1 ⊕ Mi−1, j // Mi−1, j−1 // 0 , if i > 1 and j ≤ l,

0 // Mi,i = S i // Mi−1,i // Mi−1,i−1 // 0 , if i = j > 1.

(ii) Auslander–Reiten sequences starting with M∗i j:

0 // M∗1, j // M∗2, j ⊕ M∗1, j+1
// M∗2, j+1

// 0 , if j ≤ l − 1,

0 // M∗1,l // M∗2,l ⊕ Pω
// C−1,l // 0 ,

0 // M∗1,ω // M∗2,ω ⊕C+
1,1

// C−1,2 // 0 ,

0 // M∗i,i = S i∗ // M∗i,i+1
// M∗i+1,i+1

// 0 , if i < l,

0 // M∗l,l = S l∗ // C−1,l // C−1,ω // 0 ,

0 // S ω
// Ml,ω ⊕C+

1,ω
// Z+

l,1
// 0 ,

0 // M∗i,ω // M∗i+1,ω ⊕C+
1,i

// C+
1,i+1

// 0 , if 1 < i < l,

0 // M∗l,ω // S ω ⊕C+
1,l

// C+
1,ω

// 0 ,

0 // M∗i, j // M∗i+1, j ⊕ M∗i, j+1
// M∗i+1, j+1

// 0 , if i > 1 and j < l.

(iii) Auslander–Reiten sequences starting with D+
i j:

0 // D+
1,ω

// D+
1,l ⊕ S ω

// Ml,ω // 0 ,

0 // D+
i,ω

// D+
i−1,ω ⊕ D+

i,l
// D+

i−1,l
// 0 , if 1 < i ≤ l,

0 // D+
1, j

// D+
1, j−1 ⊕ M j,ω // M j−1,ω // 0 , if 1 < j ≤ l,

0 // D+
i, j

// D+
i−1, j ⊕ D+

i, j−1
// D+

i−1, j−1
// 0 , if 1 < i ≤ j ≤ l.
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(iv) Auslander–Reiten sequences starting with D−i j:

0 // D−1,ω // D−1,l // Ml,l = S l // 0 ,

0 // D−i,ω // D−i−1,ω ⊕ D+
i,l

// D−i−1,l
// 0 , if 1 < i ≤ l,

0 // D+
i,i

// D−i−1,i ⊕ D+
i−1,i

// D+
i−1,i−1

// 0 , if 1 < i ≤ ω

0 // D−1, j // D−1, j−1 ⊕ M j,l // M j−1,l // 0 , if 1 < j ≤ l,

0 // D−i, j // D−i−1, j ⊕ D−i, j−1
// D−i−1, j−1

// 0 , if 1 < i < j ≤ l.

(v) Auslander–Reiten sequences starting with C+
i j:

0 // C+
i,ω

// C+
i+1,ω ⊕ Z+

l,i
// Z+

l,i+1
// 0 , if 1 ≤ i < l,

0 // C+
l,ω

// C+
ω,ω ⊕ Z+

l,l
// D+

l,ω
// 0 ,

0 // C+
i, j

// C+
i+1, j ⊕C+

i, j+1
// C+

i+1, j+1
// 0 , if 1 < i ≤ j ≤ l.

(vi) Auslander–Reiten sequences starting with C−i j:

0 // C−1,ω // Z−l,1 = Pl ⊕C−2,ω // Z−l,2 // 0 ,

0 // C−i,ω // Z−l,i ⊕C−i+1,ω
// Z−l,i+1

// 0 , if 1 ≤ i ≤ l,

0 // C−1,1 = Pω
// C−1,2 ⊕C+

1,2
// C+

2,2
// 0 ,

0 // C−i, j // C−i+1, j ⊕C−i, j+1
// C−i+1, j+1

// 0 , if 1 < i ≤ j ≤ n.

(vii) Auslander–Reiten sequences starting with Z+
i j (note that Z+

i,ω = D+
i,ω):

0 // Z+
1, j

// Z+
1, j+1 ⊕ M∗j,ω // M∗j+1,ω

// 0 ,

0 // Z+
i, j

// Z+
i, j+1 ⊕ Z+

i−1, j
// Z+

i−1, j+1
// 0 , if i > 1.

(viii) Auslander–Reiten sequences starting with Z−i j (note that Z−1 j = I j∗ ):

0 // Z−i,1 = Pi // Z−i−1,1 ⊕ Z−i,2 // Z−i−1,2
// 0 , if i > 1,

0 // Z−i, j // Z−i−1, j ⊕ Z−i, j+1
// Z−i−1, j+1

// 0 , if 1 < i, j ≤ l,

The resulting Auslander–Reiten quiver of A(l) has the shape of a "christmas tree"; its
bottom part consists of pre–projective modules and its top consists of l + 1 periodic
τ–orbits. The duality ∇ acts as a reflection through the vertical line formed by the self–
dual A(l)–modules Z±ii and D+

l+1,l+1. Figure 1 shows the Auslander–Reiten quiver of
A(3).
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Figure 1: Auslander–Reiten quiver ofA(3)

6 Parametrization of orbits

It is known by Panyushev [17] that B acts finitely on the varietyN(2). We aim to prove
explicit parametrizations of the orbits by means of symmetric representations and, thus,
in a very combinatorial way. This way, we hope to be able to calculate e.g. degenera-
tions in a follow-up article by means of the used representation-theoretic methods. We
begin by discussing symplectic orbits in Subsection 6.1 and deduce orthogonal orbits
in Subsection 6.2. In each type, we generalize the results to parabolic orbits in Section
7.

6.1 Orbits in type C

Let G = SPn, where n = 2l for some integer l. We denote by B the standard Borel
subgroup of G and consider the algebra A(l) and its symmetric representations as dis-
cussed in 5. Due to Lemma 4.4, we are interested in symplectic representations of
dimension vector d• = (1, 2, ..., l, 2l, l, ..., 2, 1).

Let us begin with an example.

Example 6.1. Figure 2 shows the complete list of isomorphism classes of symplectic
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representations in srep(A(2),d•)0, where n = 4 = 2l and B is the Borel subgroup.
In more detail, the indecomposables are displayed by their coefficient quiver and then
interpreted combinatorially by graphs on two vertices.

M0 = (M13 ⊕ M∗13)

⊕(M23 ⊕ M∗23)

· // · // ·
· // ·
· // ·
· // · // ·

1

2

D+12 ⊕ ∇D+12 · // · // ·
· // ·

jj

· // ·
·
44
// · // ·

1

2

aa D−12 ⊕ ∇D−12 · // · // ·
tt· // ·
·
**
// ·

· // · // ·

1

}}
2

Z+21 ⊕ ∇Z+21 · // · // ·
· // ·
·

ff

// ·
·

88

// · // ·

1

2

•
aa Z−12 ⊕ ∇Z−12 · // · // ·

xx
· // ·
&&
· // ·
· // · // ·

1

•
}}

2

Z+11 ⊕ (M23 ⊕ M∗23) · // · // ·
· // ·
· // ·
·

==

// · // ·

1 •{{

2

Z−11 ⊕ (M23 ⊕ M∗23) · // · // ·

}}

· // ·
· // ·
· // · // ·

1 •cc

2

Z+22 ⊕ (M13 ⊕ M∗13) · // · // ·
· // ·
·
44
// ·

· // · // ·

1

2 •{{

Z−22 ⊕ (M13 ⊕ M∗13) · // · // ·
· // ·
** · // ·
· // · // ·

1

2 •cc

Z+11 ⊕ Z+22 · // · // ·
· // ·
·
44
// ·

·

``

// · // ·

1 •{{

2 •{{

Z−11 ⊕ Z−22 · // · // ·

~~

· // ·
** · // ·
· // · // ·

1 •cc

2 •cc

Z+11 ⊕ Z−22 · // · // ·
· // ·
** · // ·
· //

``

· // ·

1 •{{

2 •cc

Z−11 ⊕ Z+22 · // · // ·

~~

· // ·
·
44
// ·

· // · // ·

1 •cc

2 •{{

Figure 2: Isomorphism classes of symplectic representations in srep(A(2),d•)0 and
their combinatorial interpretation

This observation leads us to the following definition.

Definition 6.2. A symplectic oriented link pattern (solp for short) of size l consists of
a set of l vertices 1, 2, · · · l together with a collection of oriented arrows between these
vertices and a collection of oriented arrows with dots between these vertices, such that

(B) every vertex is touched by at most one arrow;

(SpOr) there are no loops of arrows without dots (that is, no arrows without dots from a
vertex to itself).

We denote by Solpl the set of solps of size l.

The definition of symplectic link patterns leads to a combinatorial parametrization of
symplectic Borel-orbits in N(2).

Theorem 6.3. The B–orbits in the variety N(2) ⊆ spn are in bijection with the set
Solpl of solps of size l.
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Proof. By Krull–Remak–Schmidt, there is a quite obvious bijection between the set
of solps of size l and the set of symplectic representations in srep(A(l),d•)0 up to
isomorphism which maps an isomorphism class [M] of a symplectic representation M
to the subquiver of the coefficient quiver of M induced by Mα. Since this subquiver is
completely determined by the vertices 1, ...l and the arrows By Lemma 4.4, the claim
follows.

Let us state in detail, how the bijection works and how we can read of the representative
2-nilpotent matrix of a particular solp. For this, the following table gives a recipe; let
i < j and translate i∗ and j∗ via (k∗ = n − k + 1):

(Part of) solp Indecomposable (Part of) Matrix
i Mi,l+1 ⊕ M∗i,l+1 0

i j
�� D+

i, j ⊕C+
i, j Ei, j − E j∗,i∗

i
��
j D−i, j ⊕C−i, j E j,i − Ei∗, j∗

i j

•
�� Z+

i, j ⊕ Z+
j,i Ei, j∗ + E j,i∗

i

•
��
j Z−i, j ⊕ Z−j,i E j∗,i + Ei∗, j

i

•
�� Z+

i,i Ei,i∗

i

•
�� Z−i,i Ei∗,i

�

Since we have a combinatorial description, we can count the number of orbits.

Proposition 6.4. Let sl be the cardinality of Solpl. Then the sequence {sl} is deter-
mined by

• s0 = 1,

• s1 = 3,

• sl = 3sl−1 + 4(l − 1)sl−2.

Proof. We divide the set Solpl into the subset of symmetric link patterns where vertex
1 is not touched by any arrow and its complement. �

The sequence 1, 3, 13, 63, 345, 2043, ... of numbers of slps is classified in OEIS as
A202837 [16].
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Remark 6.5. For GLn, the oriented link patterns considered in [4] only have to satisfy
condition (B) that is, the 2–nilpotency conditions. We hence see that solps are special
oriented link patterns as defined in [4]. This is not surprising; indeed the following fact
is known by [12]: if two symplectic elements are conjugate under the Borel of GLn,
then they are conjugate under the Borel of SPn, as well.

We finish the symplectic classification by describing all B-orbits for SP(4) in detail.

Example 6.6. The B-orbits in N(2) ⊆ spn are classified by the collection of solps of
size 2. These are explicitly listed in the following table and the corresponding represen-
tative matrices in N(2) are displayed. This completes the example which we already
considered in Figure 2.

1
��

2 1 2
��

1

•
��

2 1 2

•
��

1 2
0 0 0 0
1 0 0 0
0 0 0 0
0 0 −1 0




0 1 0 0
0 0 0 0
0 0 0 −1
0 0 0 0




0 0 0 0
0 0 0 0
1 0 0 0
0 1 0 0




0 0 1 0
0 0 0 1
0 0 0 0
0 0 0 0




0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0



1

•

��
2 1

•

��
2 1 2

•

��
1 2

•

��


0 0 0 0
0 0 0 0
0 0 0 0
1 0 0 0




0 0 0 1
0 0 0 0
0 0 0 0
0 0 0 0




0 0 0 0
0 0 0 0
0 1 0 0
0 0 0 0




0 0 0 0
0 0 1 0
0 0 0 0
0 0 0 0



1

•

��
2

•

��
1

•

��
2

•

��
1

•

��
2

•

��
1

•

��
2

•

��


0 0 0 0
0 0 0 0
0 1 0 0
1 0 0 0




0 0 0 0
0 0 1 0
0 0 0 0
1 0 0 0




0 0 0 1
0 0 0 0
0 1 0 0
0 0 0 0




0 0 0 1
0 0 1 0
0 0 0 0
0 0 0 0



6.2 Orbits in types B and D

Let G = On, where n ∈ {2l, 2l + 1}. We denote by B the standard Borel subgroup of G
and consider the algebraA(l) as discussed in Section 5. We are interested in orthogonal
representations of dimension vector d• = (1, 2, ..., l, n, l, ..., 2, 1) by Lemma 4.4.

As before, we begin with an example.

Example 6.7. Figure 3 shows the complete list of isomorphism classes of orthogonal
representations in srep(A(2),d•)0.

The first table shows the isomorphism classes of orthogonal representations where d• =

(1, 2, 4, 2, 1), i.e. it corresponds to O4.

The second table shows the isomorphism classes of orthogonal representations where
d• = (1, 2, 5, 2, 1), i.e. it corresponds to O5.

This observation leads us to the following definition.
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Figure 3: Isomorphism classes of orthogonal representations in srep(A(2),d•)0 and
their combinatorial interpretation

Definition 6.8. An orthogonal oriented link pattern (oolp for short) of size l consists of
a set of l vertices 1, 2, · · · l together with a collection of oriented arrows between these
vertices and a collection of oriented arrows with dots between these vertices, such that

(B) every vertex is touched by at most one arrow;

(SpOr) there are no loops of arrows without dots (that is, no arrows without dots from a
vertex to itself).

(Or) there are no loops of arrows with dots (that is, no arrows with dots from a vertex
to itself).

We denote by Oolpl the set of oolps of size l.

Thus, an oolp is a solp without loops.

As in the symplectic case, the parametrization of the Borel-orbits in N(2) follows
straight away.

Theorem 6.9. The B–orbits in the variety N(2) ⊆ on, where n ∈ {2l, 2l + 1}, are in
bijection with the set Oolpl of oolps of size l.

Proof. In a similar manner to Theorem 6.3, there is a quite obvious bijection between
the set Oolpl of oolps of size l and the set of isoclasses of orthogonal representations
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of A(l) in srep(A(l),d•)0 which maps an isomorphism class [M] of an orthogonal
representation to a particular subquiver of the coefficient quiver of M induced by Mα.

In case n is even, this is done analogously to the symplectic case.

In case n is odd, the middle vertex of this particular subquiver is always determined
as a fixed point as visualized in Figure 3. This is due to the fact that it corresponds to
the direct summand Mω,ω. The diagram representing Mα can thus be restricted to 2l
vertices and we obtain the sought subquiver. This can be translated to an oolp as in the
symplectic case again. In more detail, the translation of indecomposables to vertices
/ arrows in the oolp can be read off the following table - where also the translation to
matrices in N(2) can be found.

(Part of) solp Indecomposable (Part of) Matrix
i Mi,l+1 ⊕ M∗i,l+1 0

i j
�� D+

i, j ⊕C+
i, j Ei, j − E j∗,i∗

i
��
j D−i, j ⊕C−i, j E j,i − Ei∗, j∗

i j

•
�� Z+

i, j ⊕ Z+
j,i Ei, j∗ − E j,i∗

i

•
��
j Z−i, j ⊕ Z−j,i E j∗,i − Ei∗, j

As before, the claim follows from Lemma 4.4. �

Proposition 6.10. Let ol be the cardinality of Oolpl. Then the sequence {ol} is deter-
mined by

• o0 = 1,

• o1 = 1,

• ol = ol−1 + 4(l − 1)ol−2.

Proof. We divide the set Oolpl into the subset of oolps where vertex 1 is not touched
by any arrow and its complement. �

The sequence 1, 1, 5, 13, 73, 281, 1741, ...which gives {ol} is classified in OEIS as A115329
[15].

Remark 6.11. As before, we see that oolps are special oriented link patterns. As in
the symplectic case, this fact also follows from [12]: if two orthogonal elements are
conjugate under the Borel of GLn, then they are conjugate under the Borel of On, as
well.

Again, we end the subsection by writing down the explicit classification of B-orbits in
N(2) for the orthogonal group O(4).
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Example 6.12. Let B ⊂ O(4), then the collection of oolps of size 2 and the correspond-
ing matrices in N(2) ⊂ o4 are given in the following table:

1
��

2 1 2
��

1

•
��

2 1 2

•
��

1 2
0 0 0 0
1 0 0 0
0 0 0 0
0 0 −1 0




0 1 0 0
0 0 0 0
0 0 0 −1
0 0 0 0




0 0 0 0
0 0 0 0
1 0 0 0
0 −1 0 0




0 0 1 0
0 0 0 −1
0 0 0 0
0 0 0 0




0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0



7 Generalization to parabolic actions

Since there are only finitely many Borel orbits in N(2), we know that every parabolic
P acts finitely on the variety N(2), too. We aim to find explicit parametrizations for
these parabolic orbits in case P is a standard parabolic subgroup of G.

For the rest of the article, we consider G to be either the symplectic group SP2l in type
C or the special orthogonal group SO2l (type D) or SO2l+1 (type B).

7.1 Parabolic subgroups

We have seen before that the standard Borel subgroups of G equal the intersection of
G with the standard Borel subgroup of GLn. For standard parabolic subgroups, this is
only true for types B and C; in type D there are standard parabolic subgroups P ⊂ SOn

which are not given as the intersection of a standard parabolic subgroup of GLn with
SOn.

Following Malle-Testermann in [13, Chapter 12], the parabolic subgroups of a classical
group G are in bijection to the so-called totally isotropic flags. These are flags

V1 ⊂ ... ⊂ Vk,

such that every two elements v,w ∈ Vi vanish according to the bilinear form of G,
namely (v,w) = 0. Given such isotropic flag F, the parabolic P equals the stabilizer of
F in G which we denote by stabG(F).

Let F = V1 ⊂ ... ⊂ Vk be a totally isotropic flag, such that P = stabG(F) includes
the standard Borel B. Then we define di := dimK Vi, the dimension vector dF = dP =

(d1, ..., dk, n, dk, ..., d1) and define the corresponding A(k)-representation MF = MP of
dimension vector dF which represents the flag in a symmetric manner as usually.

Example 7.1. Let n = 6 and look at the totally isotropic flag

F1 := (V1 = 〈e1〉 ⊂ V2 = 〈e1, e2, e3〉)

Then F1 corresponds to theA(2)-representation MF1 of dimension vector (1, 3, 6, 3, 1)
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with coefficient quiver

• 1 // • 1 // •
• 1 // •
• 1 // •

• −1 // •
• −1 // •
• −1 // • −1 // •

(7.1)

Its stabilizer in G is given as the upper-block standard parabolic subgroup of GL6 of
block sizes (1, 2, 2, 1), intersected with G.

Let now n = 4 and set
F2 := (V1 = 〈e1, e3〉)

Then F2 corresponds to theA(1)-representation MF2 of dimension vector (2, 4, 2) with
coefficient quiver

• 1 // •
• −1 // •

• 1 // •
• −1 // •

(7.2)

Its stabilizer in SO(4) is not given as the intersection of SO(4) with an upper-block
standard parabolic subgroup of GL4. In fact,

Lie stabSO(4)(F2) �




a c d 0
0 b 0 −d
e 0 −b −c
0 −e 0 −a

 | a, b, c, d, e
 ⊃ b.

Let us fix a standard parabolic P now, together with the corresponding totally isotropic
flag FP and the representation MP := MFP of dimension vector dP. Our notions from
Section 4 generalize to this setup by looking at the variety SRdP (A(k)) which is acted
upon by the group

GLsym(P) := GL(d1) × GL(d2) × · · · × GL(dk) × Sym(n)

where Sym(n) denotes either the symplectic or the orthogonal group on a vector space
of dimension n, as before. Again, the open subset SRdP (A(k))0 corresponds to the full
subcategory srep(A(k),dF)0 of srep(A(k),dP) of maximal rank representations.

We define the block vector bP = (d1, d2−d1, ..., dk−dk−1). In case of a standard parabolic
which is induced by GLn, this vector gives the explicit structure of the parabolic as can
be seen in Example 7.1.

We obtain a translation as in Lemma 4.4 which can be proven in the same way.

Lemma 7.2. There is a bijection between the isomorphism classes of symplectic/orthogonal
A(k)–representations in srep(A(k),dP)0 and symplectic/orthogonal P–orbits in N(2).
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7.2 Orbits in type C

We aim to classify the P-orbits in N(2) ⊂ spn by combinatorial objects and generalize
the results of Subsection 6.1 in a straight forward manner.

Definition 7.3. An enhanced symplectic oriented link pattern (esolp. for short) of size
k of type (b1, ..., bk) consists of a set of k vertices 1, 2, · · · , k together with a collection
of oriented arrows between different vertices, unoriented loops and oriented arrows
with dots between arbitrary vertices.

Denote by xi the number of sources of arrows, by yi the number of targets of arrows,
by zi the number of unoriented loops and by li the number of loops with dots at vertex
i. Then the following condition defines an esolp of such kind:

(Sp) xi + yi + zi − li ≤ bi holds for each vertex i.

Theorem 7.4. There is a natural bijection between the set of P-orbits in N(2) ⊆ spn
and the set of esolps of size k and of type (b1, ..., bk).

Proof. In an analoguous manner to Theorem 6.3, by Krull–Remak–Schmidt, there is a
bijection between the set of esolps of size k of type (b1, ..., bk) and the set of isomor-
phism classes of symplectic representations ofA(k) in srep(A(k),dP)0 which maps an
isomorphism class [M] of a symplectic representation M to the subquiver of the coef-
ficient quiver of M induced by Mα and then restricts the latter as follows: all vertices
i ∈ {1, 2, ..., l} which correspond to the same step in the flag F, say to step Vs \ Vs−1
are glued together to vertex s of the esolp. This way, we obtain 2k vertices. We are
again able to shrink them to k vertices as the table in Figure 7.2 shows - via this cor-
respondence, we obtain a bijection between symplectic direct sum decompositions and
esolps.

By Lemma 4.4, the claim follows. �

Clearly, solps are special esolps: they are of size l and of type (1, ..., 1), such that we
obtain the classification of Borel-orbits.

Example 7.5. Let P be the symplectic parabolic subgroup of block sizes (4, 2), thus,
b1 = 4 and b2 = 2. Then a symplectic representation of dimension vector (4, 6, 12, 6, 4)
is represented by a pattern of 12 coloured vertices which represents the map Mα of the
representation, for example by

1
∗

��
2
∗ ''

3
∗

4
∗

##
5
∗

6
∗

6
∗

5
∗

4
∗

cc
3
∗

AA
2
∗

1
∗

This pattern corresponds to the indecomposable direct sum decomposition

(D+
1,1 ⊕C+

1,1) ⊕ Z+
1,1 ⊕ (Z−1,2 ⊕ Z+

1,2) ⊕ (M2,3 ⊕ M∗2,3)
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Indecomposable Multiplicity

Ms,k+1 ⊕ M∗s,k+1
bs − xs − ys + ls

bs − xs − ys

(symplectic)
(orthogonal)

D−i, j ⊕C−i, j number of arrows i
��
j

D+
s,s ⊕C+

s,s � D−s,s ⊕C−s,s number of loops s

D+
i, j ⊕C+

i, j number of arrows i j
��

Z−i, j ⊕ Z−j,i number of arrows i

•
��
j

Z+
i j ⊕ Z+

j,i number of arrows i j

•
��

Z−s,s (symplectic)
Z−s,s ⊕ Z−s,s (orthogonal) number of loops s

•
��

Z+
s,s (symplectic)

Z+
s,s ⊕ Z+

s,s (orthogonal) number of loops s

•
��

Figure 4: Correspondence of indecomposables and esolps for i < j < k+1 and s < k+1
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of a representation of the quiver Q2. The corresponding esolp is given by

1
• %% • %%

2

We see that b1 − x1 − y1 + l1 = 4−4−1 + 1 = 0 and b2 − x2 − y2 + l2 = 2−0−1 + 0 = 1;
these equations show that the multiplicity of the indecomposable M1,3 ⊕ M∗1,3 is zero
and the multiplicity of the indecomposable M2,3 ⊕ M∗2,3 is one.

7.3 Orbits in type B and D

Let us consider a standard parabolic subgroup of SO2l+1 or SO2l together with its totally
isotropic flag F now. Then the classification of orbits is done analogously to the sym-
plectic case, but in type D we have to be careful, since not every parabolic is obtained
from a standard flag.

Definition 7.6. An enhanced orthogonal oriented link pattern (esolp. for short) of size
k of type (b1, ..., bk) consists of a set of k vertices 1, 2, · · · , k together with a collection
of oriented arrows and oriented arrows with dots between these vertices.

Denote by xi the number of sources of arrows, by yi the number of targets of arrows and
by zi the number of unoriented loops at vertex i. Then the following condition defines
an eoolp of such kind:

(SO) xi + yi + 2zi ≤ bi holds for each vertex i.

An esolp is an eoolp, if bi = 1 implies that there are no loops at vertex i.

The classification of parabolic orbits follows similarly to the considerations in 7.4.

Theorem 7.7. There is a natural bijection between the set of P-orbits inN(2) ⊆ g and
the set of eoolps of size k and of type (b1, ..., bk).

Proof. In type B, every standard parabolic subgroup is given as the stabilizer of a to-
tally isotropic standard flag. Given a P-orbit P.x inN(2) we look at the representation
Mx via Lemma 4.4. Consider the coefficient quiver of Mx and restrict it to those n ver-
tices which represent the loop Mα. Then the eoolp is obtained by identifying vertices
according to the flag and then restricting to the vertices 1, ..., k via the correspondence
depicted in Figure 7.2 - similarly as in the symplectic case. Note that the vertex k + 1
is redundant, since it always represents the indecomposable Mω,ω (as in the proof of
Theorem 6.9).

In type D, there are two cases to consider.

(i) The flag F is a standard flag, such that P is the intersection of a standard parabolic
of GLn with SOn.
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In this case, the classification of the orbits is done similarly as in Theorem 7.4
with the correspondence table given in Figure 7.2.

(ii) For every missing standard parabolic, the flag F is not a standard flag and P does
not equal the intersection of a standard parabolic of GLn with SOn.

In this case, the classification is still done in the same mannner, since we deal
with the Krull-Remak-Schmidt decomposition into unique indecomposables. Thus,
Figure 7.2 is still a valid correspondence for the bijection between orbits and
eoolps and the combinatorial description via eoolps is just only dependent on the
block vector of the flag (b1, ..., bk). �

Clearly, oolps are special eoolps, they are of size l and of type (1, ..., 1), such that we
obtain the classification of Borel-orbits.

Even though the classification of orbits for parabolics of non-standard totally isotropic
flags in type D is done in a similar manner as in the other cases, these parabolics
are more difficult to handle - especially if one is interested in partiular representative
matrices of the P-orbits inN(2) - and we give them some more attention by calculating
an example.

Example 7.8. Let us consider n = 6 and the totally isotropic flag

F = (V1 = 〈e1〉 ⊂ V2 = 〈e1, e2, e4〉).

Then the coefficient quiver of MF is

• 1 // • 1 // •
• 1 // •

MF = • −1 // •
• 1 // •

• −1 // •
• −1 // • −1 // •

(7.3)

and the isomorphism classes of indecomposables are listed in the table in Figure 5.

8 Restriction to the nilradical

If we restrict a parabolic action on N(2) to the nilradical n(2) of 2-nilpotent upper-
triangular matrices in the given Lie algebra, then we still have a parabolic action. The
parametrization of the orbits can be obtained from our parametrizations of Sections
6 and 6 straight away. The action of the Borel subgroup in the symplectic case is
parametrized in detail in [2], where Barnea and Melnikov also derive a description of
the orbit closures and look at applications to orbital varieties in detail. In [8], Gandini,
Maffei, Möseneder Frajria and Papi consider the more general approach of B-stable
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Representation/Matrix Representation/Matrix Eoolp Representation/Matrix Esolp
· // · // ·

tt· // ·
· // ·

· // ·
·
**

// ·
· // · // ·

E2,1 − E6,5

· // · // ·

}}

· // ·
·

!!

// ·
· // ·

· // ·
· // · // ·

E4,1 − E6,3

1

}}
2

· // · // ·
· // ·
· // ·

· // ·
· // ·
· // · // ·
0

1

2

· // · // ·
· // ·

jj

· // ·
· // ·

· // ·
·
44

// · // ·
E1,2 − E5,6

· // · // ·
· // ·

· // ·
· // ·

aa

· // ·
·

==

// · // ·
E1,4 − E3,6

1

2

aa · // · // ·
· // ·

tt· // ·
· // ·

** · // ·
· // · // ·

E3,2 − E5,4

1

2 •cc

· // · // ·
xx

· // ·
· // ·

· // ·
&&
· // ·
· // · // ·

E3,1 − E6,4

· // · // ·

��

· // ·

��

· // ·
· // ·

· // ·
· // · // ·

E5,1 − E6,2

1

•
}}

2

· // · // ·
· // ·

·
jj
// ·

· // ·
·
jj
// ·

· // · // ·
E2,3 − E4,5

1

2 •{{

· // · // ·
· // ·

·

ff

// ·
· // ·

· // ·
·

88

// · // ·
E1,3 − E4,6

· // · // ·
· // ·

· // ·
· // ·

·

]]

// ·
·

AA

// · // ·
E1,5 − E2,6

1

2

•
aa

· // · // ·
· // ·

xx
·
&&

// ·
· // ·

· // ·
· // · // ·

E1,3 − E4,6

· // · // ·
· // ·

· // ·
· // ·

ff

·

88

// ·
· // · // ·

E1,5 − E2,6

1

2

Figure 5: Isomorphism classes of orthogonal representations in srep(A(2),dP)0 and
their combinatorial interpretation

abelian subalgebras of the nilradical of b in which they parametrize the B-orbits and
describe their closure relations.

Definition 8.1. A symplectic link pattern (slp for short) of size k is a symplectic ori-
ented link pattern, such that every arrow is oriented from right to left and every loop
is oriented counterclockwise. In the same way, the natural notion of orthogonal link
pattern (orlp for short) enhanced symplectic and enhanced orthogonal link pattern is
obtained.

The sets of (enhanced) symplectic and (enhanced) orthogonal link patterns are obtained
by taking all such oriented patterns and deleting the orientation.

Corollary 8.2. There is a bijection between the parabolic orbits in the symplectic
nilradical n(2) (or orthogonal n(2), resp.) and the set of enhanced symplectic (or
orthogonal, resp.) link patterns.
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Proof. The fact that all arrows are oriented from right to left corresponds equivalently
to the nilpotent map at the loop being upper-triangular. Thus, these are directly the
nilpotent elements contained in the nilradical of the particular Lie algebra. �

We end the section with giving an example.

Example 8.3. For l = 2, we consider the Borel-action. Figures 2 and 3 show the
possible patterns. Taking away the orientation is equivalent to only considering upper-
triangular matrices. Thus, the following table gives a complete list of representatives
of orbits for type C. The patterns which are marked green give a complete list of or-
thogonal B-orbits.

1 2 1 2 1

•

2 1

•

2 1 2

•

1

•

2

•
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