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Abstract. Let � � R
n be bounded, open and convex. Let F W R

n ! R be convex, coercive
of order p > 1 and such that the diameters of the projections of the faces of the epigraph of F
are uniformly bounded. Then every minimizer of

Z

�

F.rv.x// dx; v 2 � CW
1;1
0 .�;R/;

is Hölder continuous in� of order p�1
nCp�1

whenever � is Lipschitz on @�. A similar result for
non convex Lagrangians that admit a minimizer follows.
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1 Introduction

We address the problem of the regularity of the minimizers of the integral functional

I.u/ D

Z

�

F.rv.x// dx; v 2 � CW
1;1
0 .�;R/: (1.1)

This problem was studied thoroughly in the last decades even with a Lagrangian
depending on x and v and not only in the scalar valued case.

The classical approach gives strong regularity results under both some variants of p-
growth conditions and uniform ellipticity and thus strict convexity of the Lagrangian.
In this case the minima of I satisfy an elliptic equation; the celebrated De Giorgi–
Moser–Nash Theorem then yields the local Hölder regularity of the derivatives of the
minimizer, Schauder’s theory then applies to get more regularity of the minimizer.

The first result on the subject without assuming smoothness of the Lagrangian is due
to Giaquinta and Giusti [7]: their starting point is not, as in the previous approach, the
validity of the Euler equation. Assuming that the Lagrangian has the same p-growth
both from above and from below and using just the minimality properties they prove
the Hölder regularity of the minimizers that are locally bounded. A huge literature
appeared inspired by these two approaches; these results were then refined in many
directions.
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In recent years many efforts have been done in order to find out conditions that
ensure the (local) Lipschitz regularity of the minimum of I . This is in fact the crucial
property to prove the validity of Euler equation (at least under very weak regularity
assumptions on F ) and hence to apply the De Giorgi–Moser–Nash Theorem. In the
vectorial case and in the case of scalar functionals depending also on the state variable
there are examples that show that one can not expect that the minimum is locally
Lipschitz ([5], [16]).

From now on we will refer to problems of the same type considered in (1.1). For
this class of functionals, in [6] there is an example of a minimum that is not locally
bounded. Indeed in this case there is a singularity along a line, which therefore ap-
pears on the boundary datum too. Another interesting example can be found in [4]:
it shows that even in case of Lipschitz boundary datum one cannot expect more than
the local Lipschitz regularity for the minimum. Anyhow the following question is still
open: to what extent the boundary condition plays a role to prove the regularity of the
minimizers?

Recently the Hilbert–Haar approach has been used in this direction. A recent result,
that is a refinement of a classical one [8] is the following: if F is strictly convex and �
satisfies the Hartman–Stampacchia’s Bounded Slope Condition then the minimum of
I is Lipschitz [3]. It has further been proved that the minimum is locally Lipschitz if
just � satisfies a unilateral Bounded Slope Condition [4] and � is convex. If F is not
strictly convex, the minima of I are not unique: however we showed in [13] and [14]
that in this case the same results hold true if just the faces of the epigraph of F are
bounded. The interest in weakening the strict convexity of the Lagrangean is related
to the study of the relaxed problems arising for non convex ones.

The main tools that were used in this approach are the method of translations used
in [2], [13] and [17] and various Comparison Principles for the minimizers of I stated
in [3], [11], [12], [14].

By a smart use of these techniques, Bousquet proved in [1] that the minimum and
the maximum of the minima are continuous up to the boundary of a convex set �, for
every continuous boundary datum; this is even true for every superlinear and convex
function F .

We focus here on the regularity, more than continuity, in the case where the bound-
ary datum � is Lipschitz. It is shown in [4] that the minimum of I is Hölder continuous
up to the boundary, with an explicit Hölder order, if the boundary of� is a polyhedron
and F is coercive of order p > 1 and strictly convex.

We show here that the same conclusion holds true if � is any convex subset of R
n,

with no need of the strict convexity assumption of F . More precisely in this situation
the minimum and the maximum among the minimizers that share the boundary datum
� are Hölder continuous; their existence was proven in [14]. Actually, it turns out that
every minimizer is Hölder continuous by adding a further uniformity assumption on
the faces of the epigraph of F . The same result holds true in the case of a non convex
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Lagrangean whenever the minimizer exists and the lower semicontinuous envelope of
the Lagrangean satisfies the assumptions quoted above.

By means of the translation technique we prove the global Hölder regularity up to
the boundary of order ˛ D .p � 1/=.nC p � 1/; as it is pointed out in [4], in the case
p > n this exponent is better than 1 � .n=p/ provided by the Sobolev embedding.
The value of ˛ is also greater than the one that could be obtained by following the
lines of the proof of Theorem 1.6 of [4] in the case where the domain is a polyhedron.
We use here the idea [1] of a comparison of the minimizers on two different domains:
the original one and a larger polyhedron. This provides also an alternative proof of
Bousquet’s continuity result in the case where F is coercive.

When F.�/ D j�jp (p � 2) the minimizer w of I is a p-harmonic function. For
p D 2 the fact thatw is Hölder continuous up to the boundary if � is Hölder continuous
is a well established fact; in this case the harmonic function has the same Hölder rank
of the boundary datum itself: the result was established by Kellogg in [9] in 1931, a
nice proof of it can be found in [15]. For more general functionals under the natural
growth assumptions the Hölder exponent of the minimizer is not explicitly known.

Finally we apply the main result to the case of a Lagrangean that is not convex.

2 Notation and definitions

� � is an open, bounded and convex subset of R
n; its boundary is denoted by @�

or by � and its closure by �.

� In every statement, except Corollary 4.10, we assume that F W R
n ! R is

convex. We say that F is coercive of order p > 1 if

8� 2 R
n F.�/ � � j�jp C � .� > 0; � 2 R/I

and that F is superlinear if

lim
j�j!C1

F.�/

j�j
D C1:

� For any open subset A of R
n, the functional IA (or simply I if A D �) is

defined on W 1;1.A/ by

IA.u/ D

Z

A

F.ru.x// dxI

if, moreover, � is a trace function on @A we denote by IA;� the restriction of IA
to �CW

1;1
0 .A/; a local minimizer w of IA is a minimizer of IA onwCW

1;1
0 .A/.

� If u; v 2 W 1;1.�/ we write that u � v on � if max¹u � v; 0º 2 W
1;1
0 .�/.
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We refer to [4] for the definition and the main properties of the Lower Bounded Slope

Condition that we recall here.

Lower Bounded Slope Condition. The function � W � ! R satisfies the Lower

Bounded Slope Condition of constant K � 0 if for every  2 � there exist � 2 R
n

with j� j � K such that

8 0 2 � �. 0/ � �./C h� ; 
0 � i:

Remark 2.1. We omit to reformulate the analogous definition of the Upper Bounded

Slope Condition. It is worth noticing that a function satisfies the Lower Bounded Slope
Condition if and only if it is the restriction of a convex function on R

n.

If F is not strictly convex, the minima of I are not unique in general; hence the
Comparison Principle may fail. However if F is superlinear, given a boundary datum
� there exist the essential pointwise minimum and maximum of the minimizers of
I�;� [14, Proposition 4.1] and they turn out to satisfy the Comparison Principle, at
least from below or from above; we recall here the result for the convenience of the
reader.

Theorem 2.2 ([14, Theorem 2.1]). Assume that w is the maximum of the local mini-

mizers of I , i.e. w � u for every minimizer u of I with w D u on � . If v is a local

minimizer of I such that w � v on � then w � v a.e. on �; in other words w satis-

fies the Comparison Principle from above. Similarly, the minimum of the minimizers

satisfies the Comparison Principle from below.

3 A comparison with convex functions

In the next proposition we formulate some conditions that ensure the validity of a
Comparison Principle between local minimizers and convex functions; in the case
where F is strictly convex it is due to Bousquet in a personal communication.

Proposition 3.1. Assume that F is superlinear, let  W R
n ! R be convex and w be

the maximum of the minimizers of I�; such that w �  on � . Then w.x/ �  .x/ at

every Lebesgue point x of w.

Proof. Let x 2 � and � belong to the convex subdifferential of  at x, so that

8 2 �  ./ � h./

where for y 2 R
n we set h.y/ D h�; y � xi C  .x/. Now the affine function h is a

local minimizer of I : if w is the maximum of the minimizers then Theorem 2.2 yields
that w.y/ � h.y/ a.e. on �. By taking the integral mean value of both terms of the
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inequality w.y/ � h.y/ on the balls centered in x we obtain, by passing to the limit
as the radii of the balls tend to 0, that w.x/ � h.x/ D  .x/ if x is a Lebesgue point
of w. Finally, fix  2 � and let � be in the convex subdifferential of  at  . Then

8 0 2 � �. 0/ �  . 0/ �  ./C h�;  0 � i:

If K is the projection of an exposed bounded face of the epigraph of F containing
.�; F.�// then, for all  0 in � , we have that �. 0/ � h�

K; .
0/C  ./ where

8x 2 R
n h�

K; .x/
:

D min¹h�; x � i W � 2 Kº:

The Comparison Principle [14, Theorem 3.2] yields that w.x/ � h�
K; .x/C  ./ for

every x in �.

Remark 3.2. In Proposition 3.1 the superlinearity assumption is needed to ensure the
existence of a maximal minimizer; it can be replaced by the assumption that the diam-
eters of the projections of the faces of the epigraph of F are uniformly bounded [14,
Proposition 4.1]. A dual statement holds when  is a concave function: it is enough
to reverse the inequalities.

4 Hölder continuity of the minimizers

Our proof is based on [4, Theorems 1.6, 2.3] of Clarke; we recall here the part of the
statement of our interest and formulate some remarks that turn out to be useful.

Theorem 4.1 ([4, Theorem 2.3]). Let F be strictly convex and coercive of order p > 1.

Assume that Q is the interior of a polyhedron in R
n. Let w be a minimizer of IQ;�

where � satisfies the Lower Bounded Slope Condition. Then w is locally Lipschitz

and, for some constant k,

8x 2 Q; 8 2 @Q w.x/ � �./ � kjx �  j˛; ˛ D .p � 1/=.nC p � 1/: (4.1)

Remark 4.2. As we mentioned in [14], if F is not strictly convex the claim of
Theorem 4.1 does still hold for the minimum and the maximum of the minimizers of
IQ;� . The proof of Theorem 4.1 is based on the Comparison Principle proved in [11].
Replacing it with Theorem 2.2 one gets immediately the result. As it is pointed out
in [4], the Hölder constant of w is an explicit function of k�k1, of � and � involved
in the coercivity assumption, of n, of the Lipschitz constant of � and of the geometric
properties of the polyhedron Q that are invariant for translations and rotations.

Remark 4.3. An analogous statement holds, even in the non strictly convex case, when
the boundary datum satisfies the Upper Bounded Slope Condition and w is the mini-
mum of the minimizers. In this case one obtains the inequality

8x 2 Q; 8 2 @Q �./ � w.x/ � kjx �  j˛I

it will be used in proof of the main theorem.
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The following lemma is an argument in the proof of the continuity of the minimizers
by Bousquet [1]. We formulate it here without assuming that F is strictly convex.

Lemma 4.4. Let � W R
n ! R be convex, Q be an open, convex and bounded set

containing �. If ew is the maximum of the minimizers of IQ;� and w is any minimizer

of I�;� then ew � w a.e. on �.

Proof. Since ew � � on @Q then Proposition 3.1 implies that ew � � a.e. on Q and
thus in particular ew � � on � . Since ew is still the maximum of the local minimizers
of I� it follows from Theorem 2.2 that ew � w a.e. on �.

The main result of the paper is the following theorem.

Theorem 4.5. Assume that F is coercive of order p > 1. Let � be Lipschitz, and w be

either the maximum or the minimum minimizer of I�;� . Then w is Hölder continuous

in � of order ˛ D .p � 1/=.nC p � 1/. More precisely,

jw.x/ � w.y/j � kjx � yj˛ 8x; y 2 �

where the constant k depends only on k�k1, on the Lipschitz constant of �, on� and

on F .

Remark 4.6. Theorem 4.5 is an extension of [4, Theorem 1.6]: indeed we drop both
the assumption that F is strictly convex and that � is a polyhedron. Moreover the
proof the theorem quoted above yields a global Hölder order  D p�1

n
˛

C2p�.1C 1
˛ /
< ˛,

so that our result improves Clarke’s result even in the case where � is a polyhedron.

Under a further uniformity assumption on the faces of the epigraph of F it turns out
that every minimizer of I is Hölder continuous.

Theorem 4.7. Let F be coercive of order p > 1 and assume that the diameters of

the projections of the faces of the epigraph of F are uniformly bounded. Let � be

Lipschitz. Then the conclusion of Theorem 4.5 holds for every minimizer of I�;� .

Proof of Theorem 4.5. We assume in the first part of the proof that w is any minimizer
of I�;� . Let Q be a cube in R

n such that one of its faces contains 0 in its relative
interior and such that, for every  2 � , there exists a linear isometry A such that
� �  C A .Q/ (in other words a clone of Q may be assumed to contain � and one
of its faces to be tangent to � at ).

Fix q 2 � , consider the set q C Aq.Q/ and, on it, the boundary datum

�q./
:

D �.q/CKj � qj;
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whereK is the Lipschitz constant of � on � . Notice that k�qk1 � k�k1CK diamQ;
moreover �q is convex and Lipschitz of rank K and thus satisfies the Lower Bounded
Slope Condition of rank K. We will also consider in q C Aq.Q/ the boundary datum

�q./
:

D �.q/ �Kj � qj

that satisfies analogous properties; in particular it is concave and satisfies the Upper
Bounded Slope Condition of rank K. To simplify the notation, from now on, we will
identify each q C A .Q/ with Q itself.

Let wq be the maximum of the minimizers of IQ;�q and wq be the minimum of
the minimizers of IQ;�q

. Since �q D wq on @Q and �q is convex then, by Propo-
sition 3.1, �q � wq a.e. on Q; moreover � � �q so that � � wq a.e. on Q and
thus � D w � wq on � in the trace sense: the Comparison Principle Theorem 2.2
yields w � wq a.e. on �. Analogously we obtain that wq � w a.e. on �. Now �q

satisfies the Lower Bounded Slope Condition so that Theorem 4.1 together with Re-
mark 4.2 yield wq.x/ � �.q/Ckjx�qj˛ for all x inQ; analogously, by Remark 4.3,
�.q/ � kjx � qj˛ � wq.x/ in Q and thus

8q 2 � �.q/�kjx�qj˛ � wq.x/ � w.x/ � wq.x/ � �.q/Ckjx�qj˛ a.e. on �:

By integration on balls of the members of the previous inequalities one obtains, by
passing to the limit as the radii of the balls tend to 0, that the inequalities hold (in-
dependently on the point q of �) at every Lebesgue point of w. Let `�; `C be the
functions defined by

8x 2 � `�.x/ D sup
q2�

¹�.q/ � kjx � qj˛º; `C.x/ D inf
q2�

¹�.q/C kjx � qj˛º:

The functions `�; `C are Hölder continuous of order ˛ and constant k > 0,

`�.x/ � w.x/ � `C.x/ at every Lebesgue point x of w; `� D � D `C on �:

We follow now the method of translations used in [2], [13] and [17]. We may consider
w; `�; `C as defined in all R

n by letting them to be equal to a prescribed Lipschitz
extension of � out of �: the functions �; `�; `C are thus Hölder continuous of order
˛ on every compact subset of R

n: let C D C.k;K/ be a Hölder constant of �; `�; `C

on ¹y W dist.y;�/ < 3 diam�º.
For every h in R

n with jhj � diam� let Eh be the subset of R
n defined by

Eh D ¹x 2 R
n W dist.x;�/ < 2 diam�; w.x C h/ � w.x/ > C jhj˛º:

We claim thatEh � �\.�hC�/ apart at most a negligible set. Indeed let x and xCh

be Lebesgue points of w: if both x C h and x are not in � then w.x C h/ � w.x/ D

�.x C h/ � �.x/ � C jhj˛; if x … � and x C h 2 � then

w.x C h/ � w.x/ D w.x C h/ � �.x/

� `C.x C h/ � �.x/ D `C.x C h/ � `C.x/ � C jhj˛I
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finally, if x 2 � and x C h … � then

w.x C h/ � w.x/ D �.x C h/ � w.x/

� �.x C h/ � `�.x/ D `�.x C h/ � `�.x/ � C jhj˛ W

in these cases x … Eh, proving the claim.
Assume that�\.�hC�/ ¤ ;. Sincew.xCh/�C jhj˛ � w.x/ in a neighborhood

of � out of � \ .�hC�/ then

w.x C h/ � C jhj˛ � w.x/ on @.� \ .�hC�//:

Suppose that w is the maximum of the minimizers of I�;� . Then w.x C h/ � C jhj˛

and w.x/ are local minimizers of I�\.�hC�/, both the maximum ones among those
that share the same boundary data. In both cases the Comparison Principle (Theo-
rem 2.2) yields that w.xC h/�C jhj˛ � w.x/ a.e. on �\ .�hC�/ so that Eh D ;

and thus

8h 2 R
n; jhj � diam�; 8x 2 �\.�hC�/ w.xCh/�w.x/ � C jhj˛: (4.2)

We claim that w is Hölder continuous of order ˛. Indeed let x, y be Lebesgue points
for w. Indeed fix h D y � x. By integrating on the balls Br.x/ centered in x and of
radius r > 0 both members of (4.2) we obtain, by means of a change of variables,

Z

Br .y/

w.�/ d� �

Z

Br .x/

w.�/ d� � C jBr jjhj˛ (4.3)

so that, by dividing with the volume of the balls and passing to the limit as r ! 0 in
(4.3) we obtain

w.y/ � w.x/ � C jy � xj˛:

The case where w is the minimum of the minimizers can be treated similarly.

Proof of Theorem 4.7. By Theorem 4.5 the claim holds for the minimum w� of the
minimizers of I�;� . By [13, Lemma 4.9] the gradients rw� and rw of the two
minimizers belong a.e. to the projection of a face of the epigraph of F and thus
jrw.x/ � rw�.x/j � R a.e. for some positive R. Since w and w� are both bounded
then w � w� is Lipschitz; the conclusion follows.

Remark 4.8. Our proof yields the continuity of the minimizers in the case where �
is Lipschitz; our method thus provides an alternative proof of Bousquet’s continuity
result stated in [1] in the case where F is coercive (indeed the conclusion when � is
just continuous follows as in [1] from the case where the boundary datum is Lipschitz
by means of the maximum principle [12]).
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Remark 4.9. The assumption that � is convex is technical here, however the claim of
the theorem may be false if� is not convex: a celebrated example by Krol’ and Maz’ya
shows that a solution to the p-Laplacian equation, i.e. a minimizer of I when F.�/ D

j�jp, with boundary data in C
1.Rn/, may not be Hölder continuous in a neighborhood

of a boundary point [10]; in their example the domain has a sharp inwardly directed
spine and p 2 .1; n � 1�.

We allow now F not to be convex. In this situation let F �� be the bipolar of F , the
greatest lower semicontinuous function that is pointwise lower than F . The functional
I�� is defined on W 1;1.�/ by

I��.u/ D

Z

�

F ��.ru.x// dx:

The next corollary follows directly from Theorem 4.7 and the fact of the infima of I
and of I�� are equal.

Corollary 4.10. Assume that F is coercive of order p > 1 and that the diameters of

the projections of the faces of the epigraph of F �� are uniformly bounded. Let � be

Lipschitz, and assume that I�;� has a minimum w. Then w is Hölder continuous in�

of order ˛ D .p � 1/=.nC p � 1/. More precisely,

jw.x/ � w.y/j � kjx � yj˛ 8x; y 2 �

where the constant k depends only on k�k1, on the Lipschitz constant of �, on� and

on F .
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