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Abstract: This paper proposes a novel method for pole placement in linear vibrating systems through
state feedback and rank-one control. Rather than assigning all the poles to the desired locations
of the complex plane, the proposed method exactly assigns just the dominant poles, while the
remaining ones are free to assume arbitrary positions within a pre-specified region in the complex
plane. Therefore, the method can be referred to as “regional pole placement”. A two-stage approach
is proposed to accomplish both the tasks. In the first stage, the subset of dominant poles is assigned to
exact locations by exploiting the receptance method, formulated for either symmetric or asymmetric
systems. Then, in the second stage, a first-order model formulated with a reduced state, together
with the theory of Linear Matrix Inequalities, are exploited to cluster the subset of the unassigned
poles into some stable regions of the complex plane while keeping unchanged the poles assigned in
the first stage. The additional degrees of freedom in the choice of the gains, i.e., the non-uniqueness
of the solution, is exploited through a semidefinite programming problem to reduce the control gains.
The method is validated by means of four meaningful and challenging test-cases, also borrowed from
the literature. The results are also compared with those of classic partial pole placement, to show the
benefits and the effectiveness of the proposed approach.

Keywords: vibrating systems; active control; pole placement; state-feedback; receptance method;
Linear Matrix Inequalities

1. Introduction

1.1. State of the Art

The assignment of the dynamic response of vibrating mechanical systems, such as structures,
mechanisms, or multibody systems, is often performed by properly assigning the poles of the controlled
systems. Both active feedback control [1–19] and passive approaches (i.e., parameter modifications, see
e.g., [19–21]) or are exploited to accomplish this important task. Indeed, the system poles, which are
often denoted as the eigenvalues, define the system stability as well as the properties of the transient
response such as the damping ratio, the rise time, and the settling time. Therefore, pole placement
(also denoted as “pole assignment” or “eigenvalue assignment”) is a broadly adopted vibration control
technique, due to the simple definition of the aforementioned specifications.

The goal of pole placement through active control is to find the gains, usually exploiting state
feedback, to ensure that the closed-loop poles are exactly the desired ones, to feature the desired
dynamic performances. The literature proposes several computational methods to compute the gains,

Appl. Sci. 2020, 10, 5494; doi:10.3390/app10165494 www.mdpi.com/journal/applsci

http://www.mdpi.com/journal/applsci
http://www.mdpi.com
https://orcid.org/0000-0002-9819-0652
https://orcid.org/0000-0003-1180-3004
https://orcid.org/0000-0003-0333-4420
http://www.mdpi.com/2076-3417/10/16/5494?type=check_update&version=1
http://dx.doi.org/10.3390/app10165494
http://www.mdpi.com/journal/applsci


Appl. Sci. 2020, 10, 5494 2 of 21

assigning the whole set of system poles through active control. A ground-breaking advancement in
the field of pole placement in active vibration control is the receptance method proposed by Ram
and Mottershead in [1] that uses only the measured receptances of the system, in lieu of a first-order
model. Such a formulation has been later exploited and extended by other researchers, for example to
damp friction-induced vibrations [2], in robust pole placement [3], to control of flexible multibody
systems [4], or to avoid resonances in planetary gear trains [5].

A practical issue often affects the attempt of assigning all the system poles to prescribed locations
of the complex plane. Indeed, usually just few dominant poles define the system response, the so-called
“dominant poles”, which are often the lowest frequency ones or those with higher degree of observability.
The remaining ones, in contrast, provide marginal contributions to the system response. In the light
of this need, Partial Pole Placement (PPP) has gained more attentions in the last years in the field of
vibration control, to assign just the reduced set of dominant poles. The difficulty of PPP relies in the
fact that spillover on the unassigned poles might occur, which might result in instability or in the
establishment of other low-frequency undamped poles that would negatively dominate the system
response. This issue is usually solved by imposing that the remaining open-loop poles, i.e., those
which are not dominant, are retained in the closed-loop configuration [6–10]. Unfortunately, imposing
the exact locations to these poles might leads to high control gains since high-frequency poles are often
weakly controllable.

In the light of all these issues and considering that the exact locations of the dominated poles is
not critical as long as they belong to suitable regions of the complex plane, the idea of Regional Pole
Placement (RPP) is very attractive. The underlying idea is to place some poles in predefined regions
of the complex plane, in lieu of placing them in predefined locations. In practice, it is a “non-strict”
assignment of some poles. Some solutions have been proposed for some simple electronic power
systems or chemistry plants in [11–14]; however, such methods employ mathematical methods that
are not numerically reliable (e.g., the characteristic polynomial, the controllability matrix). Therefore,
these approaches are not appropriate for vibrating systems modelled through medium or large
dimensional and ill-conditioned matrices. For example, in [14] the polynomial matrix, which defines
the stability region in the coefficient space should be approximated by choosing it heuristically,
by leading to approximate and sub-optimal results. In contrast, only a few and recent works develop
RPP in the field of vibrating systems due to some numerical challenges of these systems, although
their goals differ from those of this work. An example of RPP to vibrating systems is developed in [15],
where some poles of the open-loop systems are kept unchanged by the controller, while the remaining
ones are clustered within prescribed regions of the convex plane. In [16] a kind of RPP is developed to
place the latent roots of a time-delayed vibrating system in the left half-plane. All these examples of
RPP exploit the powerful theory of Linear Matrix Inequalities (LMI), since such a mathematical theory
represents complicated requirements on the location of poles in the complex plane.

1.2. Motivations and Contributions of This Paper

In the present work, a different and new method for RPP through state-feedback is proposed
and validated, to solve the issues related to the features of vibrating systems, as previously discussed.
The goal is to compute the control gains that exactly assign the set of dominant poles to the prescribed
locations of the complex plane, while the remaining non-dominant poles are clustered into LMI regions
to feature some dynamic properties. The method relies on two-stages. In the first stage, the receptance
method is adopted to exactly place the dominant poles and to define the non-spillover condition
on such poles. In the second stage, by using a first-order model on a reduced basis, the gains are
modified to cluster the unassigned poles into the desired LMIs without spillover on the previously
assigned dominant poles. The degrees of freedom in the assignment of the poles within the LMI
is, indeed, useful to reduce the control effort. Hence, a norm minimization problem is formulated
to solve the assignment problem in the second stage. The proposed method, therefore, is aimed at
improving performances achievable by complete pole placement and by PPP too, by proposing a new
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mathematical framework that effectively solves a wide range of pole assignment tasks and exploits the
presence of fewer specifications on the pole assignment. Four meaningful and challenging numerical
test-cases, also borrowed from the recent literature, are exploited to validate the method that handles
also asymmetric and unstable or marginally stable systems.

2. Definitions

Let us consider a linear time-invariant vibrating system, modelled through ordinary
differential equations:

M
..
q(t) + C

.
q(t) + Kq(t) = bu(t), (1)

where M, C, K∈RN × N are the mass, damping, stiffness matrices, respectively, and b∈RN × Nb is the
input matrix of the control forces (often named the control force distribution matrix), with N being the
number of degrees of freedom and Nb the number of independent control forces. q is the vector of the
displacement of the N independent coordinates. It is here assumed that the system is controllable,
and that full state feedback is available. The issue related to state estimation are here neglected, and it
is assumed that a wise tuning of the observer does not cause spillover on the assigned poles [17].

Control Specifications

The method is developed for the case of rank-one control, i.e., Nb = 1. Control force is defined
through state feedback as:

u(t) = −
(
fT .

q(t) + gTq(t)
)

(2)

where f, g ∈ RN are the control gain vectors. The reference is omitted since it creates a feedthrough
term that does not alter the closed-loop poles.

The problem to be solved in this paper can be summarized as follows.
Problem: Given the self-conjugate set of desired poles, Σd =

{
µ1,µ2, . . . ,µp

}
, with p≤ 2 N, compute

the controller gains f and g such that:

1. the controlled system has exactly the p desired poles in
{
µ1,µ2, . . . ,µp

}
,

2. the remaining 2N − p poles must belong to some prescribed regions of the complex plane.

The novel method proposed in this paper is performed through two steps. In the first one,
the gains that solve requirement 1 are computed, and the receptance method can be exploited. In the
second one, the gains are modified to meet requirement 2.

3. First Step: Exact Placement of the Dominant Poles

3.1. Formulation for Symmetric Systems

The method is first introduced with reference to a system with symmetric matrices. To understand
the genesis of the method, let us consider the case of complete pole placement, i.e., p = 2N as
proposed in [1]. The gains ensuring exact placement of all the poles are those that solves the following
linear system 

µ1tT
1 tT

1
µ2tT

2 tT
2

...
...

µptT
p tT

p


{

f
g

}
=


−1
−1
...
−1


, (3)

where it is defined that
ti = H(µi)b, (4)

with H being the receptance matrix of the open-loop system,

H(λ) =
[
λ2M + λC + K

]−1
. (5)
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If p = 2N, the coefficient matrix of the linear system in Equation (3), henceforth denoted as T

T =


µ1tT

1 tT
1

µ2tT
2 tT

2
...

...
µptT

p tT
p

, (6)

is a square matrix. Whenever the system is controllable, i.e., rank
[
λ2

i M + λiC + K
∣∣∣b] = N for all the

open-loop poles λi (i = 1, . . . , 2N) and µ1, . . . ,µ2N ∈ C is self-conjugate, matrix T is invertible, hence the
solution of Equation (3) exists, it is real and unique. A linear system can be formulated in the case of
higher-rank control too (see e.g., [18]).

In contrast, if p < 2N then matrix T is rectangular and Equation (3) is an underdetermined
linear system. Hence, infinite solutions can be found. The parametrization of the set of solutions is
helpful to perform RPP, as required in the second stage, while accomplishing a secondary task, such as
reducing the controller gains. Without loss of generality, it can be assumed that rank(T) = p. Hence,
the solutions can be written as {

f
g

}
=

{
f0
g0

}
+ Vkr, (7)

where k0 =

{
f0
g0

}
∈ R2N is a particular solution of Equation (7), V is a 2N × (2N − p) matrix whose

columns span ker(T) and kr ∈ R2N−p is a vector of parameters that are to be properly determined.
The particular solution k0 can be calculated either through a least-squares problem, to compute

the minimum norm solution, or by imposing arbitrary values to 2N − p entries of the gain vector (such
as 0, for example). Additionally, 2N − p rows can be wisely added to T. If a least-squares solution is
sought, the analytic solution is

{
f0
g0

}
=

(
TTT

)−1
TT


−1
−1
...
−1


, (8)

although numerical solutions of the minimum-norm problem can be exploited too.

Regardless of how
{

f0
g0

}
is computed, and for arbitrary choices of kr ∈ R2N−p, the gains

f, g solving Equation (7) lead to a controlled system that has the poles µ1, . . . ,µp.

3.2. Extension to Asymmetric Systems

Even though the linear system in Equation (3) has been introduced in [1] for symmetric systems,
the receptance method has been extended to some asymmetric systems with non-symmetric damping
and stiffness matrices in [2] and [4]. In these cases, the linear system in Equation (3) should be slightly
adjusted. First of all, matrices C and K should be decomposed into the sum of the symmetric parts
Cs, Ks ∈ RN×N and asymmetric ones Ca, Ka ∈ RN×N, namely:

C = Cs + Ca, K = Ks + Ka. (9)

Even if such a decomposition is not unique, the result is not affected by such a choice. Then, it is

introduced HS(λ) =
[
λ2M + λCs + Ks

]−1
the receptance matrix of the symmetric part of open-loop

system. It follows that the receptance of the asymmetric, open-loop system can be written in terms of
HS(λ):

H(λ) = (I + (λCa + Ka)HS(λ))
−1HS(λ). (10)
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This formulation of H(λ) can be exploited to obtain vector ti as in Equation (4) and hence the
linear system as in Equation (3). More details can be found in [4,6,19].

4. Second Step: Regional Pole Placement

4.1. Overview

The aim of this section is to formulate the condition ensuring that the remaining 2N − p poles
belong to certain regions of the complex plane in a way that is computationally reliable, and then to
explain how to properly choose kr that fulfils such a requirement. First, the first-order representation
of the controlled system is employed: { .

x = Ax + Bu
u = −kTx

, (11)

where

x =

{ .
q
q

}
A =

[
−M−1C −M−1K

I 0

]
B =

{
M−1b

0

}
k =

{
f
g

}
. (12)

Then, the system is transformed into a reduced one representing the 2N − p poles whose location
is not exactly imposed. Such a reduction introduces the state of the reduced system, x̂ ∈ R2N−p,
by exploiting the following transformation

x = Vx̂, (13)

where V has been defined in Equation (7). Let U ∈ R(2N−p)×2N be the pseudoinverse of V. Since the
columns of V are linearly independent and U is its left inverse, it follows that UV = I2N−p. Hence the
reduced subsystem is defined as follows:{ .

x̂ = UAVx̂ + UBû
û = −kTVx̂

(14)

Since it has been defined k = k0 + Vkr (see Equation (7) and (13)) can be further manipulated
as follows: 

.
x̂ = U(A−Bk0)Vx̂ + UBû

û = −
(
VTVkr

)T
x̂

(15)

By defining Â = U(A−Bk0)V, B̂ = UB and k̂ = VTVkr, for brevity of representation, the reduced
system can be finally written as 

.
x̂ = Âx̂ + B̂û

û = −k̂
T

x̂
(16)

4.2. Linear Matrix Inequalities

Once the reduced system is written in a state-space form, LMIs can be exploited. A brief
explanation of the basic theory of LMI is provided in the present section. More details can be found in
the literature, such as in book [22].

LetD be a subset of the complex plane. A first-order system
.
x = Ax isD-stable if all its poles lie in

D. There is a class of regions that have a straightforward characterization ofD-stability: the so-called
LMI regions. D ⊆ C is denoted as a LMI region if there exist a symmetric matrix R ∈ Rd×d and a matrix
S ∈ Rd×d (for a suitable size d depending on the shape of the LMI region) such that

D =
{
z ∈ C : fD(z) ≺ 0

}
, (17)
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where fD(z) = R + zS + zST, and ≺ 0 means negative definite. LMI regions are convex and are
symmetric respect to the real axis. For example, conic sectors, vertical half-planes, horizontal strips,
ellipses, parabolas and hyperbolic sectors are LMI regions, as well as any intersection of the above.
For instance, the left half-plane is an LMI region obtained by setting R = 0 and S = 1. Some samples
of LMI regions, and their relations with the properties of the system dynamic response, are shown in
Figure 1.
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The following theorem, whose proof is provided in [13], characterizesD-stability for LMI regions.

Theorem 1: LetD be an LMI region. The system
.
x = Ax isD-stable if and only if there exists a symmetric

matrix X � 0 such that
R⊗X + S⊗ (AX) + ST

⊗ (AX)T
≺ 0. (18)

The symbol ⊗ is the Kronecker product and R, S are the matrices used to define the LMI.

Theorem 1 generalizes the Lyapunov stability, that is a special case of Equation (18) (by setting
R = 0 and S = 1).

4.3. Control Gain Synthesis

In accordance with the LMI theory proposed, k̂ ensures that the closed-loop poles of the system in

Equation (11) lie in the prescribed LMI regionD if Equation (18) holds for ÂCL = Â− B̂k̂
T

:

R⊗X + S⊗
(
ÂX− B̂k̂

T
X
)
+ ST

⊗

(
ÂX− B̂k̂

T
X
)T

(19)

It should be noted that such a matrix inequality becomes non-linear. Indeed, both k̂ and X are
unknown and hence Equation (19) has bilinear terms of the unknowns. Linearity is restored, defining

the auxiliary variables l = k̂
T

X, thus leading to the following LMI:

F (X, l) = R⊗X + S⊗
(
ÂX− B̂l

)
+ ST

⊗

(
ÂX− B̂l

)T
≺ 0 (20)

The LMI can be exploited as a constraint in the control gain synthesis, by defining a suitable cost
function to be accounted for in a semidefinite programming (SDP) problem. It is here proposed to solve
the following problem, since it is convex and hence global optimal solution can be effectively found:

Appl. Sci. 2020, 10, x FOR PEER REVIEW 7 of 22 

( ) ( ) ( )ˆ ˆˆ ˆ, 0
TT= ⊗ + ⊗ −⊗− +A BX R X S X AX BS l l l  (20) 

The LMI can be exploited as a constraint in the control gain synthesis, by defining a suitable cost 
function to be accounted for in a semidefinite programming (SDP) problem. It is here proposed to 
solve the following problem, since it is convex and hence global optimal solution can be effectively 
found: 

( )
2

, 0
0

min
X
X
l

l





. (21) 

Once l  and X  are obtained, k̂  is computed from the relation 1ˆT −= Xk l . Finally, f  and g  
are computed from Equation (7). Under mild hypotheses, which will be discussed in the Section 4.4, 
the closed-loop system with such gains (i.e., CL = −A A Bk ) features a set of poles Σ  which includes 

{ }d 1, , pμ μΣ = … , and the other ones belong to  , i.e., dΣ Σ ⊂  . Additionally, it should be 

noticed that 

ˆ ˆT= =X Xl k k  (22) 

and, since X  is a positive definite matrix, minimizing the norm of l  guarantees that the controller 
effort is kept small. 

4.4. Insights on the Reduced Model and on the Inclusion Principle 

In order to justify the procedure employed for gain computation, a discussion on the Inclusion 
Principle [23] is proposed for the case under investigation, i.e., on the fact that a “part” of the overall 
system behavior is reproduced by its contraction having smaller dimension. It should be noted that 
the formulation of the first-order model through a reduced state is beneficial to reduce the size of the 
matrix adopted to define the LMI. Hence, the numerical computation of the gains benefits of this 
system scale reduction. This is another important and novel feature of the proposed method. 

The following notation is introduced: let us denote V  a matrix whose columns span ( )ker U , 

and U  the unique left inverse of V  such that ( ) ( )ker im=U V . Let us also define  =  W V V , 

which is clearly invertible. We want to prove that: 

1 CL CL
CL

CL CL

ˆ
−  

=  
  

A UA VW A W
UA V UA V



  
. (23) 

First, it must be noted that + =VU VU I   (the proof is tedious but straightforward, so it will be 
omitted). Hence, 

( ) ( )CL CL CL

CL CL

CL CL

.

| = + + 
 

=  
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A W VU VU A V VU VU A V

UA V UA VW
UA V UA V

    



  

 (24) 
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( )
( ) ( )

CL 01
CL

0 0

ˆ T

T T

−
 −
 =
 − − 

A U A Bk V
W A W

U A Bk V U A Bk V



  
. (25) 

Provided that: 

(21)
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Once l and X are obtained, k̂ is computed from the relation k̂
T
= lX−1. Finally, f and g are computed

from Equation (7). Under mild hypotheses, which will be discussed in the Section 4.4, the closed-loop
system with such gains (i.e., ACL = A−Bk) features a set of poles Σ which includes Σd =

{
µ1, . . . ,µp

}
,

and the other ones belong toD, i.e., Σ\Σd ⊂ D. Additionally, it should be noticed that

‖l‖ = ‖k̂
T

X‖ = ‖Xk̂‖ (22)

and, since X is a positive definite matrix, minimizing the norm of l guarantees that the controller effort
is kept small.

4.4. Insights on the Reduced Model and on the Inclusion Principle

In order to justify the procedure employed for gain computation, a discussion on the Inclusion
Principle [23] is proposed for the case under investigation, i.e., on the fact that a “part” of the overall
system behavior is reproduced by its contraction having smaller dimension. It should be noted that
the formulation of the first-order model through a reduced state is beneficial to reduce the size of
the matrix adopted to define the LMI. Hence, the numerical computation of the gains benefits of this
system scale reduction. This is another important and novel feature of the proposed method.

The following notation is introduced: let us denote Ṽ a matrix whose columns span ker(U), and Ũ
the unique left inverse of Ṽ such that ker

(
Ũ
)
= im(V). Let us also define W =

[
V Ṽ

]
, which is clearly

invertible. We want to prove that:

W−1ACLW =

[
ÂCL UACLṼ

ŨACLV ŨACLṼ

]
. (23)

First, it must be noted that VU + ṼŨ = I (the proof is tedious but straightforward, so it will be
omitted). Hence,

ACLW =
[(

VU + ṼŨ
)
ACLV

∣∣∣∣(VU + ṼŨ
)
ACLṼ

]
= W

[
UACLV UACLṼ
ŨACLV ŨACLṼ

]
.

(24)

The claim is a consequence of the fact that UACLV = ÂCL. The result of Equation (23) can be
further simplified, by using the well-known fact that the null space of the transpose of a matrix is equal
to the null space of the pseudoinverse. In our case, ker

(
VT

)
= ker(U), and then VTṼ = 0. Therefore,

W−1ACLW =

 ÂCL U
(
A−BkT

0

)
Ṽ

Ũ
(
A−BkT

0

)
V Ũ

(
A−BkT

0

)
Ṽ

. (25)

Provided that:
U
(
A−BkT

0

)
Ṽ = 0, (26)

it is demonstrated that the set of closed-loop poles is constituted by the poles of ÂCL (which are
constrained into the LMI regionD) and the poles of Ũ

(
A−BkT

0

)
Ṽ, which are µ1, . . . ,µp, as can be seen

from the numerical results obtained in this work. Although a proof that Equation (26) always holds is
not provided, it has been experienced in all the test cases studied (also including dozens of examples
not shown in the paper, with random requirements and parameters) that such a condition is satisfied.

5. Results

In this section, the proposed method is applied and validated by means of four test-cases with
increasing complexity, as summarized in Table 1.
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Table 1. Summary of the four test-cases.

Test-Case Section 5.1 5.2 5.3 5.4

System matrices M, C, K
Symmetric

M, C Symmetric
K Asymmetric

M Symmetric
C, K Asymmetric

M Symmetric
C, K Asymmetric

Number of DOFs 3 4 3 16

Modeling
approach

Lumped
parameters

Lumped
parameters

Lumped
parameters ERLS with FEM

Number of
Assigned poles µp

2 complex
conjugate pole pair

2 complex
conjugate pole

pairs

1 complex
conjugate pole

pairs

2 real poles and 3
complex conjugate

pole pairs

LMI constraint

Real part,
minimum damping

and maximum
natural frequency

Real part Shifted disk Minimum
damping

In the first stage of the method k0 is solved by means of Equation (8), i.e., computing the minimum
Euclidean norm solution. In the second stage, the SDP programming is solved exploiting the Yalmip
toolbox [24] for Matlab and the MOSEK solver. The negative definiteness of the LMI and the positive
definiteness conditions for X have been approximated as follows to improve the numerical solvability
of the SDP problem:
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( )
2

,
min

i
i

ε
ε

−X I
X I
l

l





, (27) 

where I denotes identity matrices of suitable dimensions and iε  is a scalar approaching zero. All the 
tests have been solved by setting 81 10iε −= ⋅ . 

5.1. Test-Case 1: Three-Mass System 

Let us consider a simple three-mass system modeled as follows: 

( )
− −   

   = = − − = − − =      
   − −   

b
2 1 0 6 3 0

diag 1,1,1 0.01 1 3 1 3 9 3 1,0,0
0 1 3 0 3 9

TM C K . (28) 

This simple system is often used in the literature to provide simplified models of more complex 
structures, to represent their low-frequency dominant dynamics (see e.g., [25]). 

The assignment task consists of assigning two dominant pair of complex conjugate poles at 
μ = − ±1,2 0.001 1.500i  and μ = − ±3,4 0.001 3.000i , while the remaining closed-loop poles iμ  must 

(27)

where I denotes identity matrices of suitable dimensions and εi is a scalar approaching zero. All the
tests have been solved by setting εi = 1 · 10−8.

5.1. Test-Case 1: Three-Mass System

Let us consider a simple three-mass system modeled as follows:

M = diag(1, 1, 1) C = 0.01


2 −1 0
−1 3 −1
0 −1 3

 K =


6 −3 0
−3 9 −3
0 −3 9

 b = [1, 0, 0]T. (28)

This simple system is often used in the literature to provide simplified models of more complex
structures, to represent their low-frequency dominant dynamics (see e.g., [25]).

The assignment task consists of assigning two dominant pair of complex conjugate poles at
µ1,2 = −0.001 ± 1.500i and µ3,4 = −0.001 ± 3.000i, while the remaining closed-loop poles µi must
belong to the intersection of the LMI regions D1, D2 and D3 ensuring that Re(µi) ≤ −0.10, ξ(µi) ≥ 0.02
and max

(
ωnp,i

)
≤ 5, where ωnp,i denotes the i-th pole natural frequency and ξ(µi) its damping ratio.

Figure 2 shows the resulting open-loop and closed-loop poles in the complex plane. The pair
of closed-loop poles computed by means of k0 is exactly assigned, while the unassigned ones are
unstable and do not feature the desired dynamic properties. Conversely, the modified control gain
vector k stabilizes the system and clusters the unassigned poles within the prescribed LMI region.
The open-loop and closed-loop poles are also summarized in Table 2, while the control gains are
reported in Table 3.
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Table 2. Open-loop and closed-loop poles (test-case 1).

Open-loop poles Desired Closed-Loop Poles Closed-Loop Poles with k0 Closed-Loop Poles with k

−0.006 ± 1.896i −0.001 ± 1.500i −0.001 ± 1.500i −0.001 ± 1.500i
−0.013 ± 2.769i −0.001 ± 3.000i −0.001 ± 3.000i −0.001 ± 3.000i
−0.021 ± 3.569i - 0.010 ± 3.520i −0.146 ± 3.430i

Table 3. Gains (test-case 1).

Stage 1: k0 Stage 2: k=k0+Vkr

k0 k0 k k

−0.0962 −0.3545 0.2185 −0.9705
0.1581 −1.6452 −0.5433 −0.2314
−0.0349 −3.3434 0.2670 −4.0191

5.2. Test-Case 2: Slider-Belt System

The second test-case exploits the asymmetric model of a slider-belt system with friction, proposed
in [2,6,19,26]. The system is sketched in Figure 3. This system has marginally stable, or even unstable,
poles depending on the friction coefficient, here denoted as η. For this reason, this test-case is here
considered to show that the proposed method can handle both the instability and the asymmetry issues.

The model independent coordinates are the translations of the three masses: q = [x1, y3, x2, y2]
T.

The asymmetric stiffness matrix K is the sum of two parts: the symmetric part Ks and the asymmetric
part Ka. The latter is caused by the pre-compression normal force and the friction force that acts at the
slider-belt interface. The resulting system matrices are reported in Equation (29):
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M = diag(m1, m3, m2, m2) C =


c1 0 −c1 0
0 0 0 0
−c1 0 c1 0

0 0 0 c0

 b = [1, 0, 0, 0]T

Ks =


k1 + k2 0 −k2 0

0 k4 + k5 0 −k4

−k2 0 k2 + 0.5k3 −0.5k3

0 −k4 −0.5k3 k4 + 0.5k3 + kc

 Ka =


0 0 0 0
0 0 0 0
0 0 0 ηkc

0 0 0 0


. (29)

The model parameters have been assumed as in [19]: m1 = m2 = m3 = 1 kg, k1 = k2 = k3 = k4 =

k5 = 100 Nm−1, kc = 2 k1, c0 = c1 = 0.5 Nsm−1. The value of the friction coefficient is the one at the
flutter instability, i.e., η = 0.3868. Indeed, a pair of complex conjugate poles with real part appears:
0.00 ± 8.73i [19].
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The control is designed to exactly place two pairs of dominant poles into prescribed locations of
the complex plane, to ensure stability and the desired dynamic responses, while the remaining two
pairs of dominated poles are constrained into an LMI.

The results are compared with the standard PPP methods used in vibration control, such as for
example those proposed in [6,7]. Traditional PPP techniques differ from the RPP technique proposed
in this paper, since they assign p poles while the remaining 2N − p poles are kept unchanged, i.e.,
2N − p open-loop poles will coincide with the closed-loop ones. To this purpose, the two desired
complex conjugate pole pairs in Table 4 are assigned at −1 ± 9i and −1 ± 13.5i, while the remaining
two complex conjugate pole pairs (−0.51 ± 16.75i and −0.19 ± 19.86i) are kept unchanged. The control
gains computed by this benchmark, denoted as kB, are reported in Table 5.

Table 4. Open-loop and closed-loop poles comparison: traditional technique and the proposed method
(test-case 2).

Open-Loop
Poles

Desired
Closed-Loop Poles

Closed-Loop Poles
with kB

Desired
Closed-Loop Poles

Closed-Loop Poles
with k0

Closed-Loop
Poles with k

0.00 ± 8.73i −1 ± 9i −1 ± 9i −1 ± 9i −1 ± 9i −1 ± 9i
−0.05 ± 12.19i −1 ± 13.5i −1 ± 13.5i −1 ± 13.5i −1 ± 13.5i −1 ± 13.5i
−0.51 ± 16.75i −0.51 ± 16.75i −0.51 ± 16.75i - −5.55 ± 12.4i −5.55 ± 12.4i
−0.19 ± 19.86i −0.19 ± 19.86i −0.19 ± 19.86i - −0.15 ± 19.98i −0.23 ± 20.0
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Table 5. Gains comparison: traditional technique, kB, and the proposed method, k (test-case 2).

kB Stage 1: k0 Stage 2: k=k0+Vkr

fB gB f0 g0 f g

3.8949 43.7930 13.9035 −12.3773 14.0522 −8.9368
−4.2244 −150.4119 −13.0355 −6.5512 −13.0777 −33.0146
4.3004 26.3084 −1.8911 −5.1848 −1.9718 −16.8434
−2.3322 −79.6829 −10.6007 −3.5384 −10.6159 51.3344

To ensure a fair comparison, the proposed method performs RPP within the LMI Re(µi) ≤ −0.19
that includes the two open-loop pairs of poles at −0.51 ± 16.75i and −0.19 ± 19.86i. Clearly, kB is a
possible solution of the assignment problem, although it is expected that the proposed method is able
to improve it. The gains after the first and second stage of the proposed method are summarized in
Table 5 and compared with kB. The desired and the obtained poles are shown in Table 4 and in Figure 4,
where they are compared with those provided by the traditional partial pole placement as well.
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Figure 4. Open-loop and closed-loop poles of the slider-belt system (test-case 2).

The comparison of the control gains in Table 5 reveals that RPP leads to a smaller norm compared
to PPP: ‖kB‖2 = 177.9, while ‖k0‖2 = 26.7 and ‖k‖2 = 67.6.

To better compare the control effort, the actuator energy in a free response of the controlled system
tracking the zero-vibration condition can be evaluated ([19,27]), by assuming a meaningful set of initial
conditions of the state and by simulating a time interval T covering several oscillation periods:

E =

T∫
0

(
fT .

q(t) + gTq(t)
)2

bTbdt. (30)

The following velocity and displacement initial conditions have been set:
.
q(0) = 1 ·

10−3
{

1 1 1 1
}T

and q(0) = 1 · 10−3
{

1 1 1 1
}T

. The system response has been computed by
numerically solving the system ODEs with the ODE45 solver, as shown in Figures 5 and 6. The resulting
control effort is drastically lower, since it decreases from 0.0123 J to 0.0053 J, as shown in Figure 7.
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Figure 5. Velocities of the controlled system comparison: traditional PPP and the proposed method
(test-case 2).
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Figure 6. Displacements of the controlled system comparison traditional PPP and the proposed method
(test-case 2).
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This test also compares the effectiveness of the RPP and of the PPP in vibration control, by analyzing
the speed and displacement responses of the controlled system shown in Figures 5 and 6. Despite lower
gains, the proposed method reduces considerably the settling time and the transient oscillations of
coordinate x2, while those of x1, y1 and y2 are, in practice, unchanged. The settling time of x2, within a
band of 0.02 mm, decreases from 8.25 s to 4.93 s.

The benefits of gain reduction can be also appreciated through the theory of robust control. Indeed,
although the proposed method is not explicitly addressed to robustness, the gain decreases due to
the RPP in lieu of the exact pole placement can be very effective to robustness. The robustness of the
two controllers is compared by means of the H-infinity norm of the transfer function HZW from the

model uncertainty to the nominal state
{ .

q(t)
q(t)

}
, i.e., through ‖HZW‖∞. By assuming, without loss of

generality, the structure of a state-multiplicative perturbation, HZW is defined through the following
state space realization [4]: [

A−BkT
−BkT

I 0

]
. (31)

In accordance with the Small Gain Theorem, smaller values of ‖HZW‖∞ denote higher robustness
with respect to the uncertainty. The application of such a theory to the example under investigation
shows that the proposed method leads to higher robustness compared to the benchmark since
‖HZW(k)‖

∞
= 20.5 while ‖HZW(kB)‖∞ = 190.2. Figure 8 corroborates the results, by showing the

maximum singular value for both the controllers: σ(HZW(k)) is smaller than σ(HZW(kB)) in the whole
frequency range, leading to a system with increased robustness.
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Figure 8. Maximum singular value: traditional PPP and the proposed method (test-case 2).

All these results are remarkable and proves the advantages and the novelty of the method
proposed in this paper over traditional PPP. Indeed, relaxing the constraint on the less relevant poles
allows optimizing a secondary task without worsening the system response, or even by improving it.

5.3. Test-Case 3: Aircraft Wing System

The third test-case is another common benchmark in the literature on pole assignment. It consists
of an aircraft wing under an air stream, as proposed in [15,28,29]. The system matrices are:

M =


17.6 1.28 2.89
1.28 0.824 0.413
2.89 0.413 0.725

 C =


7.66 2.45 2.1
0.23 1.04 0.223
0.6 0.756 0.658

 K =


121 18.9 15.9

0 2.7 0.145
11.9 3.64 15.5

 b =


1
1
1

. (32)

The system is unstable, and the stiffness and damping matrices are both asymmetric, and are
hence decomposed into a symmetric and an asymmetric part: K=Ks+Ka and C=Cs+Ca.

The control design task prescribed to assign the dominant complex conjugate pole pair µ1,2 =

−1.500 ± 3.000i, while the remaining closed-loop poles µi must belong to the LMI region proposed
in [15], which is a disk of radius equal to 1 and center at coordinates (−3,0).

The gain k0, computed by means of the receptance method for asymmetric systems (see Section 3.2),
is unable to stabilize the unstable open-loop system, leading to an unstable right half complex conjugate
pole pair. Finally, the gain k computed through the second stage can stabilize the system and cluster
the unassigned poles into the prescribed LMI region. The gains are reported in Table 6 while the
open-loop and closed-loop poles are reported in Table 7 and shown in Figure 9. It should be pointed
out that, unlike [15], the method proposed here is able to modify the open-loop pole in −0.918 ± 1.7606i,
by moving it, for example, to −1.500 ± 3.000i. This modification is effective in speeding up the
closed-loop system response due to the increase of the pole natural frequency compared to the
open-loop poles. This is a relevant feature and novelty of the method proposed in this paper, compared
to the methods already available in the literature.
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Table 6. Gains (test-case 3).

Stage 1: k0 Stage 2: k=k0+Vkr

f0 g0 f g

1.0479 −0.0053 7.0008 25.6070
1.1222 3.8335 1.709 1.9598
2.8765 1.3771 4.5693 1.8524

Table 7. Open-loop and closed-loop poles (test-case 3).

Open-Loop
Poles

Desired
Closed-Loop Poles Closed-Loop Poles with k0 Closed-Loop Poles with k

−0.918 ±1.7606i −1.500 ± 3.000i −1.500 ± 3.000i −1.500 ± 3.000i
0.0947 ± 2.5229i - 0.1306 ± 2.7016i −2.6323 ± 0.2707i
−0.8848 ± 8.4415i - −4.6282 ± 5.5858i −3.134 ± 0.3095iAppl. Sci. 2020, 10, x FOR PEER REVIEW 16 of 22 
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5.4. Test-Case 4: Four-Bar Flexible-Link Multibody System

The method has been applied to the four-bar flexible-link multibody system proposed in [4,17].
The dynamic of these systems is nonlinear and disturbed by gravity forces. Even if the dynamic of
such a system is non-linear, linearized or piecewise-linear models have been proved to be effective in
the synthesis of control schemes [4,17,30–32].

To apply the proposed method, the system has been modeled through ODE by exploiting an
Equivalent Rigid Link System (ERLS) from which elastic displacements are defined. Euler-Bernoulli
beam finite elements are adopted to model the link flexibility. The resulting non-linear model,
formulated through the Principle of Virtual Work, has then been linearized about an equilibrium
configuration of interest. The model accounts for the mutual coupling between the “rigid-body motion”
of the ERLS and the small elastic displacements with respect of the ERLS itself. Additionally, it accounts
for the effect of gravity on both the “rigid-body” and the elastic dynamics. More details are provided
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in [4,17,28]. The finite element model of the mechanism is shown in Figure 10 while the system
parameters are reported in Table 8. All the links, except the frame, are flexible.Appl. Sci. 2020, 10, x FOR PEER REVIEW 17 of 22 
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Table 8. Four-bar flexible-link mechanism parameters ([16]).

Link Parameters [unit] Value

Young modulus [Pa] 210 · 109

Second area moment [m4] 11.1 · 10−10

Width [m] 6 · 10−3

Thickness [m] 6 · 10−3

Linear mass density [kg m−1] 272 · 10−3

Link 0 length [m] 0.360
Link 1 length [m] 0.390
Link 2 length [m] 0.535
Link 3 length [m] 0.632

Rayleigh coefficients [s−1], [s] αR = 8.5·10−2, βR = 2·10−5

Nodal lumped masses [kg]:
Joint B 70 · 10−3

Joint C 70 · 10−3

Joint inertia [kg m2]
Joint A 5 · 10−4

Joint D 12 · 10−6

Sixteen DOFs are adopted to model the system: one coordinate is the rotation of the ERLS,
to represent the “rigid-body” motion. The remaining DOFs are the displacement of the 15 elastic
coordinates. The mechanism is moved by a motor driving the crank rotation. Such an actuator
ensures controllability of all the modes, although higher frequency modes are less controllable [17].
The open-loop system is unstable due to the presence of gravity, as it can be inferred from Table 9.
The system stiffness and damping matrices are both asymmetric and can be decomposed into a
symmetric and an asymmetric part, as done in the second test-case: K = Ks + Ka and C = Cs + Ca.
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Table 9. Open-loop and closed-loop poles for the test-case 4.

Open-Loop
Poles

Desired
Closed-Loop Poles

Closed-Loop Poles
with k0

Damping Ratio
with k0

Closed-Loop Poles
with k

Damping ratio
with k

3.17 −15 −15 1 −15 1
-3.17 −20 −20 1 −20 1

−1.20 ± 226.2i −10 ± 220i −10 ± 220i 0.045 −10 ± 220i 0.045
−2.40 ± 322.3i - 28.6 ± 244.7i −0.116 −74.0 ± 215.7i 0.324
−5.33 ± 483.1i −15 ± 320i −15 ± 320i 0.047 −15 ± 320i 0.047
−20.86 ± 958.4i −50 ± 500i −50 ± 500i 0.100 −50 ± 500i 0.100
−46.24 ± 1427.4i −22.19 ± 966.96i 0.023 −66.59 ± 923.49i 0.072
−58.49 ± 1605.3i - −46.41 ± 1429.3i 0.033 −85.13 ± 1426.8i 0.060
−121.1 ± 2308.9i - −121.1 ± 2308.5i 0.052 −121.1 ± 2308.5i 0.052
−287.6 ± 3551.7i - −287.6 ± 3551.7i 0.080 −287.6 ± 3551.7i 0.081
−390.8 ± 4134.8i - −390.7 ± 4134.9i 0.094 −390.7 ± 4134.9i 0.094
−947.0 ± 6396.2i - −947.0 ± 6396i 0.147 −947.0 ± 6396.2i 0.147
−1820 ± 8777.4i - −1820.0 ± 8777i 0.203 −1819.8 ± 8777.3i 0.203
−3440.7 ± 11835i - −3440.1 ± 11834i 0.279 −3439.9 ± 11834i 0.279
−6348.2 ± 15491i - −6348.2 ± 15490i 0.379 −6348.3 ± 15490i 0.379
−23417 ± 22033i - −23417 ± 22033i 0.728 −23417 ± 22033i 0.728
−40747 ± 11774i - −40747 ± 11773i 0.961 −40747 ± 11774i 0.961

To tackle the risk of ill numerical conditioning of the SDP programming, due to the different
magnitudes of the entries of the mass, damping and stiffness matrices, the system matrices are scaled
by defining the scaling parameters γ and β:

M̃ = β−2γ−1M, C̃ = β−2γ−1C , K̃ = γ−1K, (33)

which leads to the scaled receptance matrix (adopted in the first stage):

H̃(iω̃) =
(
ω̃

2M̃ + iω̃C̃ + K̃
)−1

with ω̃ = βω. (34)

The issue of numerical conditioning is exacerbated in this kind of problem due to the medium-large
number of DOFs and to the simultaneous presence of low and high frequency vibrational modes.
Therefore, as shown in [4], some numerical methods for pole placement often might fail.

Accordingly to the scaled receptance matrix, scaled gain vectors f̃0 and g̃0 are computed in the
first stage and then in the unscaled model:

f0 = βγ̃f0, g0 = γ̃g0. (35)

In the second stage, the state space system matrices in Equation (12) are scaled accordingly to the
definitions provided in Equation (33) The LMI conditions have been scaled too. The following scaling
parameters have been here adopted: γ = 1 · 105 and β = 1 · 10−4.

The control specifications prescribe to assign the two real poles, that in practice represent the
“rigid-body” motion, and the three lowest-frequency complex conjugate pole pairs, as reported in
Table 9. The remaining closed-loop poles must belong to the LMI ensuring that ξ(µi) ≥ 0.05.

The gain k0 and k are reported in Table 10, while the open-loop and the closed-loop poles are
summarized in Table 9 and shown in the complex plane in Figure 11. The application of k0 alone leads
to an unstable pole pair at 28.6 ± 244.7i. The second stage of the method ensures the stabilization of the
unstable pole pair, which is placed at −74.0 ± 215.7i. At the same time, it damps all the remaining
unassigned poles accordingly with the requirements, as shown in the low frequency detail of the pole
map in Figure 12
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Table 10. Gains for the test-case 4.

Stage 1: k0 Stage 2: k=k0+Vkr

f0 g0 f g

−0.00359 −639.62 0.0738 −639.26
0.00000 -0.01 −9.8664 −4850.30
0.00000 0.13 −5.5614 −3456.7
0.00163 −951.75 0.1526 −950.73
−0.02214 15.34 0.5697 302.04
0.00277 −0.34 −1.8326 −618.71
0.00245 −0.23 2.1344 719.62
−0.000001 −10.26 −1.1898 −587.82

0.00000 0.02 8.7912 5210.00
0.02216 8.43 0.6184 313.22
0.00011 29.19 0.2044 −68.49
0.00000 −2.00 0.3313 53.01
0.00000 1.39 −0.0977 95.78
−0.00008 −27.40 −0.4665 158.70
0.00006 34.45 0.2638 −62.60
0.04228 0.36 0.0343 0.30Appl. Sci. 2020, 10, x FOR PEER REVIEW 19 of 22 
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Figure 11. Open-loop and closed-loop poles of the four-bar linkage (test-case 4).
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6. Conclusions

In this work a novel, two-stage, pole placement method is proposed and an embedded a-priori
stabilizing condition is introduced. In the first stage the receptance method for symmetric or asymmetric
systems is applied to compute the gains that exactly assign a subset of the system poles. These poles
are usually the dominant ones, such as those with the lowest frequency or with higher controllability
and observability. In the second stage, by leverage of a first-order model formulated with a reduced
state and by exploiting the Inclusion Principle, the unassigned poles are clustered into some region of
the complex plane exploiting the LMI theory. An SDP programming is solved to reduce the control
effort, by exploiting the additional degrees of freedom introduced by the RPP, in lieu of the “exact” pole
placement. A novel formulation has been proposed by exploiting the aforementioned mathematical
tools and formulations and some methods to improve the numerical reliability and solvability of
the problem.

Four meaningful and challenging test-cases, also taken from common benchmark in the literature
on pole placement in vibrating systems, are proposed. In the first test-case, a simple three-mass system
and some features of the method are introduced. In the second test-case, it is provided that the method
handles unstable (or marginally stable) and asymmetric systems as well. Moreover, the comparison
with traditional partial pole placement techniques, under comparable requirements, shows the benefits
of relaxing the requirements on the less relevant poles. Not only can the control effort be reduced
and the robustness increased, but the dynamic response of the system can also be improved in term
of reducing the settling time. The third test case tackles the control of an aircraft wing under an
air stream by stabilizing its unstable open-loop behavior and by improving its closed-loop dynamic
response. The fourth test case is the challenging linearized model of a nonlinear flexible multibody
system perturbed by gravity, which makes it unstable. Due to the medium-large number of degrees of
freedom, to the presence of an unstable pole, to the presence of real poles and to a wide spectrum that
includes high-frequency poles, this test case is numerically ill-conditioned and hence very challenging.
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Additionally, if PPP is not performed correctly, spillover on the unassigned poled might lead to unstable
poles. Again, the proposed method has been shown to be effective.

The results in the four test-cases, and the comparison with the existing literature too, confirm the
benefits of the proposed method.
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