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Abstract

This note provides a discussion on the manuscript by Wang et al.
(2005), who aim to robustify inference for longitudinal data analy-
sis by replacing the ordinary generalized estimating function with an
influence-bounded, possibly biased, version. To adjust for the bias
of the ensuing robust estimator, the authors provide its analytic ap-
proximation by means of asymptotic expansions, and estimate it by
pluging-in a non-robust estimate of the parameter of interest. In this
letter, we argue that the proposed bias-corrected estimator is, in fact,
non-robust.
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1 Framework and notation

Consider a response variable Yi = (Yi1, . . . , Yini) and a set of predictors
(xi1, . . . ,xini)

T observed over time on a subject i, i.e. xit is a p-dimensional
vector (t = 1, . . . , ni, i = 1, . . . ,K). Assume that g(µi) = (xi1, . . . ,xini)

Tβ,
for some link function g(·), µi = µi(β) = E(Yi), and β the p-dimensional pa-
rameter of interest, with true value β0. Let F (y;β, φ,α) =

∏K
i=1 Fi(yi;β, φ,α)

be the distribution function of the central model, assumed to underlie Y =
(Y1, . . . , YK), Fit(yit;β, φ,α) the marginal distributions of Yi, and φ, α
governing the dispersion and the working intra-subject correlation matrix,
respectively. To ease notation, hereafter we remove dependence on φ and
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α, which are supposed to be known. To account for outliers, the true distri-
bution function is assumed to lie in a λ-neighborhood of F , i.e. H(y;β) =
(1 − λ)F (y;β) + λδ(y), with δ(·) an arbitrary distribution function and
λ ∈ [0, 1].

Within this framework, Wang et al. (2005) aim to robustify the infer-
ence based on the unbounded generalized estimating function UG(β) via
an influence-bounded, possibly biased, version UR(β). The associated M-
estimators, roots of the estimating equations Ul(β) = 0, l ∈ {G,R}, are β̂G
and β̂R. Since the bias of an estimating function reflects on the bias of the
associated estimator, which, in turn, may not even vanish as K → ∞, a
long-standing practice is to correct for the bias of the estimating function.
Wang et al. (2005) follow a different route and correct directly for the bias
of β̂R by deriving its analytic approximation

E(β̂R)− β0 ' ∆(β0) = ∆[E{UR(β0)}] = O(1), (1)

where ∆(·) takes over the dependence of the bias of β̂R on the bias of UR(·).
The authors define the robust bias-corrected estimator

β̂N = β̂R −∆(β̂G), (2)

where ∆(β̂G) = ∆{UR(β̂G)} is meant to estimate ∆(β0). The estimator β̂G
is assumed asymptotically unbiased for β0, i.e. E(Yi) = µi(β0), otherwise
its estimation would introduce a bias of the same order of the estimand
∆(β0).

We argue that the aim of robustifying generalized estimating functions
and simultaneously limiting the bias of the robust estimator risks to be
vanished when the bias is estimated by means of a non-robust estimator.
Intuitively, since UR(β) is biased, β̂R is asymptotically unbiased for βR0 6= β0

so that the leftmost approximate equivalence in (1) results in

βR0 − β0 ' ∆(β0).

With the same argument of Wang et al., once estimands are replaced by
their asymptotically unbiased estimators, we get

β̂R − β̂G ' ∆(β̂G).

Hence, from (2), β̂N is roughly equivalent to β̂G, thus there is no guarantee
about its robustness. A more detailed proof is available upon request.
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2 Empirical study: epileptic seizure count data

In the empirical work which follows we provide some evidence of our claim.
We first show via simulations a gross equivalence of β̂N and β̂G. Then, we
illustrate, through a sensitivity analysis, that β̂N is as exposed to contami-
nations as β̂G.

Data are simulated by mimicking the features of the epileptic seizure
count data analyzed, among others, by Diggle et al. (1994, Ex. 1.6), and
Wang et al. (2005). The study was meant to assess the effectiveness of a
progabide drug, based on data collected over 4 periods from a placebo and a
treatment group. Data exhibited extra Poisson variation and the presence of
at least one outlier within the treatment group (patient 207). Hereafter, we
consider the setting in Diggle et al. (1994) who carried out the analysis by
assuming an exchangeable correlation structure and by specifying log(µit) =

oit+β1+β2x
(1)
it +β3x

(2)
it +β4x

(1)
it x

(2)
it , t = 1, . . . , 5 , i = 1, . . . ,K, with x

(1)
it = 1

if t = 1 and 0 otherwise, x
(2)
it = 1 for treatment and 0 for placebo, oit = log 8

if t = 1 and log 2 otherwise. It follows that the treatment effect is gauged
by β4.

Data have been simulated according to a joint distribution Hi with
marginal distributions Hit; details are provided in Table 1, along with the
complete simulation setting. Coherently with Wang et al. (2005), the con-
tamination is set to guarantee that E(Yi) = µi(β0), so that β̂G is asymp-
totically unbiased. To mimic the mechanism giving rise to outlier 207 in
the real data, contamination occurs within the treatment group and after
the baseline period; hence, β̂G4, i.e. the β4-component of β̂G, is the only af-
fected by contamination. The estimators β̂G and β̂R are computed from the
associated estimating functions with correct specification of the mean, cor-
relation structure, and Var(Yit) = φµit. See details in the online Supporting
Information.

Table 2 displays the Monte Carlo correlations between pairs of associ-
ated components of β̂G, β̂R, and β̂N and shows that all the considered
components are almost perfectly correlated. While the correlation between
(β̂R, β̂N ) would be expected to be higher than the one between (β̂G, β̂N ),
the inspection of the table reveals that the opposite is in fact true.

As a further step of the numerical work, we have performed a sensitivity
analysis to illustrate the exposure of the bias-corrected estimator β̂N to
data contamination, compared to β̂G and β̂R. For a specific random sample
generated from F , one observation has been replaced with a point mass
contamination having increasing value. Figure 1 displays the percentage
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Table 1: Simulation settings. The true value of β,α, and φ have been set
equal to the corresponding estimates of Diggle et al. (1994, Example 1.6) on
the real seizure count data when patient 207 is removed from the sample.
Hit = (1− λ)Fit + (λ/2)δ+it + (λ/2)δ−it
Fit = NegBin{ωit, ωit/(ωit + µit)}
δ+it = NegBin{ω+

it , ω
+
it/(ω

+
it + µ+it)}

δ−it = NegBin{ω−
it , ω

−
it/(ω

−
it + µ−it)}

log(µit) = oit + β1 + β2x
(1)
it + β3x

(2)
it + β4x

(1)
it x

(2)
it

log(µ+it) = oit + β1 + β2x
(1)
it + β3x

(2)
it + β+4 x

(1)
it x

(2)
it

log(µ−it) = oit + β1 + β2x
(1)
it + β3x

(2)
it + β−4 x

(1)
it x

(2)
it

λ = 0.03, α = 0.598, φ = 10.385
β1 = 1.348, β2 = 0.112, β3 = −0.107
β4 = −0.302, β+4 = 0.389, β−4 = −5.958
ωit = µit/(φ− 1) ⇒ VarFit(Yit) = φµit
ω+
it = µ+it/(φ− 1) ⇒ Varδ+it

(Yit) = φµ+it
ω−
it = µ−it/(φ− 1) ⇒ Varδ−it

(Yit) = φµ−it
K = 60, n0 = n1 = K/2
# Monte Carlo replications = 20000

variation of the estimates of β4 based on contaminated data with respect
to the associated estimates based on original data versus the value of the
point mass contamination. It is immediate to note how, while β̂R4 remains
broadly constant for increasing contamination, the bias-corrected estimate
β̂N4 is sensitive to the outlier, sharing a behavior similar to β̂G4.
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Supporting Information

Additional information to reproduce the analyses, along with further simu-
lations, may be found online in the Supporting Information Section at the
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Table 2: Monte Carlo estimates of correlation for pairs of components of
estimators referring to the same component of β. For greater clarity, the
remaining correlations are not reported.

β̂G1 β̂G2 β̂G3 β̂G4 β̂N1 β̂N2 β̂N3 β̂N4 β̂R1 β̂R2 β̂R3 β̂R4

β̂G1 1.00 · · · 1.00 · · · 0.96 · · ·
β̂G2 · 1.00 · · · 1.00 · · · 0.90 · ·
β̂G3 · · 1.00 · · · 1.00 · · · 0.96 ·
β̂G4 · · · 1.00 · · · 1.00 · · · 0.91

β̂N1 · · · · 1.00 · · · 0.95 · · ·
β̂N2 · · · · · 1.00 · · · 0.90 · ·
β̂N3 · · · · · · 1.00 · · · 0.95 ·
β̂N4 · · · · · · · 1.00 · · · 0.91

β̂R1 · · · · · · · · 1.00 · · ·
β̂R2 · · · · · · · · · 1.00 · ·
β̂R3 · · · · · · · · · · 1.00 ·
β̂R4 · · · · · · · · · · · 1.00
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Figure 1: Sensitivity analysis. Plot of 100{β̂l4(δy)/β̂l4 − 1} versus different

point mass contaminations δy, with β̂l4 the estimate of βl4 for uncontam-

inated data, and β̂l4(δy) the estimate of βl4 when data are contaminated,
l ∈ {G,N,R}.

end of the letter.
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