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Abstract: Divergence functions play a relevant role in Information Geometry as they allow for the
introduction of a Riemannian metric and a dual connection structure on a finite dimensional manifold
of probability distributions. They also allow to define, in a canonical way, a symplectic structure
on the square of the above manifold of probability distributions, a property that has received less
attention in the literature until recent contributions. In this paper, we hint at a possible application:
we study Lagrangian submanifolds of this symplectic structure and show that they are useful for
describing the manifold of solutions of the Maximum Entropy principle.

Keywords: canonical divergence; Lagrangian submanifolds; Morse family; constrained optimization;
geometric phase transitions

1. Introduction

Information Geometry [1,2] provides a sound and fruitful framework for interpreting statistics
using classical differential geometry notions [3]. A principal object in Information Geometry is
the notion of contrast or divergence function, which (informally speaking) measures the degree
of separation between two probability distributions [4–6]. The main thrust of divergence functions is
that they allow to define a Riemannian structure on a finite dimensional submanifold M of probability
distributions endowed with a dual coordinate system, with far reaching implications. A less-studied
spin off of contrast function is the possibility of introducing a symplectic structure on the square
of M by the pull-back of the canonical symplectic structure defined on the cotangent bundle T∗M.
This procedure was introduced in 1995 in the pioneering paper [7], suggesting that symplectic geometry
may have a natural role to play in statistics. In recent times there has been a renewed interest in possible
applications of the symplectic structures introduced, as in [7] for example, to studying the analogies
with the discrete Lagrangian mechanics (see in [8]) or the relations with completely integrable systems
of Hamiltonian mechanics (see in [9,10]).

In this paper, we try to look at a possible role for Lagrangian submanifolds of the above-discussed
symplectic structure on M2 in the case that M is an exponential family M(h, k). Exponential families are
prototypical examples of finite dimensional manifolds admitting a dually flat canonical structure
defined by the canonical divergence, and they play a relevant role in information geometry and
statistics [1,2]. For our argument, their importance is due to the fact that they represent the manifold of
solutions of the variational problem associated to the Maximum Entropy Principle (MEP) with linear
constraints ([11,12]). In some applications to statistical mechanics, e.g., in the descriptions of phase
transitions in Ising spin systems, MEP with nonlinear constraints is considered, see, e.g., in [13–15].
In this case, the set of possible solutions has a richer structure, which is well captured by a Lagrangian
submanifold of T∗M(h, k). In this work, we are concerned with the Lagrangian submanifolds defined
in the square of M(h, k) via the canonical pull-back hinted at above.
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The structure of the paper is as follows. In Section 2, we recall the needed tools of Symplectic
Geometry, and in Section 2.1 we review the canonical pull-back construction via divergence function
construction exposed in [7]. In Section 3, we consider the special case of exponential families associated
with MEP with nonlinear constraints.

2. Synopsis of Symplectic Geometry

We briefly recall the basic facts of symplectic geometry that are necessary for introducing our
argument referring to classical textbooks for the proof of the results. A symplectic manifold (M, ω) is
a smooth even-dimensional manifold M equipped with a non-degenerate, closed two-form ω (dω = 0,
where d is the external derivation operator). A submanifold L of M is a Lagrangian submanifold if
2 dim L = dim M and the two-form restricted to L is vanishing, ω|L = 0. A prototypical example
of symplectic manifold is the cotangent bundle T∗S of a manifold S. If x = (x1, . . . , xn) are local
coordinates on S, and (x, λ) are local coordinates on T∗S, then the Liouville one-form θc on T∗S has
the local expression θc = λidxi (summation over repeated indices is understood) and the symplectic
two form is

ω = dθc = dλi ∧ dxi. (1)

A classical theorem of Darboux says that every symplectic manifold (M, ω) admits an atlas of local
coordinates (x, λ) such that locally ω has the representation (1). A relevant example of Lagrangian
submanifold of T∗S is the graph of the differential of a function g : S→ R, that is,

Lg = {(x, λ(x)) ∈ T∗S : λ(x) = dg(x), x ∈ S}.

Note that Lg is a n-dimensional submanifold which is transversal to the fibers of the fibration π :
T∗S→ S, that is, its tangent bundle TLg is transversal to the vertical bundle ker Tπ.

According to a theorem of Maslov–Hormander ([16,17]), a general (i.e. not necessarily trasversal)
Lagrangian submanifold of T∗S can be locally described as the graph of a smooth function G depending
on extra parameters. Let us sketch briefly this construction along the lines of the works in [18,19].

Let U be a k-dimensional manifold called supplementary manifold, and let G : S×U → R be a
smooth function whose representation in a local chart is G(x, u). We define the critical set of G as (we
use the notation (Gx)i = ∂G/∂xi and (Gxy)ij = ∂2G/∂xi∂yj) for partial derivatives)

E = {(x, u) : Gu(x, u) = 0}. (2)

If dGu has maximal rank over E , that is,

rk dGu = rk
(
Gxu Guu) = k for all (x, u) ∈ E (3)

then G is called Morse family and the following ΛG is a Lagrangian submanifold of T∗S,

ΛG = {(x, Gx(x, u)) ∈ T∗S where (x, u) ∈ E}. (4)

If there are no extra parameters k = 0, then ΛG is the graph of a differential and thus ΛG is a transversal
submanifold. Note that the above rank condition (3) can be satisfied if the square submatrix Guu has
maximal rank, i.e., det Guu 6= 0 on E . In this case, by the implicit function theorem there exist a locally
defined function u = u(x) such that E is the graph of u and setting Ĝ(x) = G(x, u(x)) we have that

Ĝx(x) = Gx(x, u(x)) + Gu(x, u(x))ux(x) = Gx(x, u(x)) for all (x, u) ∈ E .

Therefore, where det Guu 6= 0 on E , all the parameters u can be eliminated and ΛĜ is locally transversal
to the fibers. The set of points of S where det Guu(x, u) = 0 for (x, u) ∈ E is called the caustic of ΛG.
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These are the points where the Lagrangian submanifold is tangent to the fibers of π : T∗S → S and
trasversality is lost.

2.1. Symplectic Structures Defined by Divergence Functions

Given a smooth n-dimensional manifold, M, let us denote with M2 = M×M the square of M
and with ∆M ⊂ M2 the diagonal of M2. We will use local coordinates x = (x1, . . . , xn) on M and
(x, y) = (x1, . . . , xn, y1, . . . , yn) on M2.

Let D : M2 → [0,+∞) be a smooth non-negative function whose representation in a local chart is
D(x, y) ≥ 0. We use the notations

(Dx)i =
∂D
∂xi , (Dy)j =

∂D
∂yj , (Dyx)ji =

∂

∂yj (
∂D
∂xi ) = −φji

for first and second order derivatives of D. The function D is a yoke (see [7] ) if the following conditions
hold and D is a divergence (see [8]) if iii) below holds on the whole M2.

(i) D = 0 only on ∆M
(ii) Dx = 0 and Dy = 0 on ∆M

(iii) φ = −Dxy is positive definite on ∆M

thus points of ∆M are minima of D. A divergence function act as a pseudo-distance but it does
not satisfy the symmetry nor the triangle inequality conditions. In [7], the following fibered map
FD : M2 → T∗M over M is considered, whose representation in a local chart is

FD(x, y) = (x, Dx(x, y)). (5)

By condition (iii) above there exist a neighborhood W of ∆M, where FD has a smooth inverse

F−1
D (x, λ) = (x, y(x, λ)).

Using the local diffeomorphism FD a symplectic structure (W, ωD) is defined in [7] via the pull-back
ωD = F∗Dω of the canonical two form (1) on T∗M. The local form of ωD can be computed as follows,

ωD = F∗Dω = F∗D(dθc) = d(F∗Dθc) = d
(
(Dx)idxi) (6)

thus (see Section 3.2 in [7])

ωD =
∂2D

∂xj∂xi dxj ∧ dxi +
∂2D

∂yj∂xi dyj ∧ dxi = −φjidyj ∧ dxi

because the first term ∂2D/∂xj∂xi is symmetric in the i, j indices. For the applications that we have in
mind of the above theory, we will assume in (iii) above that −Dyx is positive definite on the whole M2

so that FD is a global diffeomorphism.
Simple examples of Lagrangian submanifolds of M2 with respect to ωD are (with a little abuse of

notation) the n-dimensional submanifolds Mx = M×{y} ≈ M, which are also transversal to the fibers
of π1 : M2 → M, π1(x, y) = x. Moreover, as ωD(u, u) = 0, ∆M is also a Lagrangian submanifold.

Note also that (6) implies that FD is a symplectomorphism, thus L = F−1
D (Λ) is a Lagrangian

submanifold of M2 whenever Λ ⊂ T∗M is a Lagrangian submanifold. In this paper, we will be mainly
concerned with the study of Lagrangian submanifolds of M2 defined in this way.

In the following Section 2.2, we will compute the above introduced objects for the relevant case of
exponential families of probability distributions and canonical divergence.
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In [7], the Hamiltonian H : T∗M → [0,+∞) associated to a divergence function is defined as
H = D ◦ F−1

D and locally it has the form

H(x, λ) = D(x, y(x, λ)). (7)

2.2. Canonical Divergence and Exponential Families

In this section, we recall the basic definitions of exponential family and canonical divergence,
as described, e.g., in [1,2]. Let (X,B, dx) be a probability space, where X may be a discrete set or
X = Rk. We stipulate that in case of a discrete set the integrals over X with respect to the measure dx
are substituted by summations. Let

P(X) = {p : X → [0,+∞), p(x) ≥ 0,
∫

X
pdx = 1}

and suppose that q ∈ P(X) for suitable k, where q(x) = ek(x) > 0. Consider n independent observables

h : X → Rn, rk dh(x) = n ∀ x ∈ X

and define the related free energy ψ : Θ ⊂ Rn → R as (here θ · h = θihi)

eψ(θ) =
∫

X
eθ·h(x)+k(x)dx. (8)

The n real numbers θi are called canonical parameters. They define uniquely a probability distribution
p(·; θ) which belongs to the exponential family defined by h, k,

M(h, k) = { p(x; θ) = eθ·h(x)+k(x)−ψ(θ), θ ∈ Θ} ⊂ P(X). (9)

The relevant fact is that M(h, k) is a n-dimensional submanifold of the infinite dimensional set P(X)

and that the canonical parameters θ are local coordinates. Note that q ∈ M(h, k) as ψ(0) = 0 and
q(x) = p(x; 0). Another system of local coordinates is provided by the so-called expectation parameters
defined by

η = ψθ(θ) = Epθ
[h] =

∫
X

h(x)p(x; θ)dx.

As ψ is a convex function, the gradient map ψθ(θ) = η is globally invertible with inverse θ = θ̂(η),
which is also a gradient map θ̂(η) = ϕη(η), where

ϕ(η) = θ̂(η) · η − ψ(θ̂(η)) (10)

is the Legendre transform of ψ (see, e.g., in [1]). We will denote with p(x; η) the point in M(h, k)
associated to η. The Kullback–Leibler divergence is defined for general (p, p̃) in P(X)2 as

DKL(p, p̃) =
∫

X
p(x) log

p(x)
p̃(x)

dx.

The restriction of DKL to M(h, k)2, the square of M(h, k), DKL : M(h, k)2 → [0,+∞) is called canonical
divergence. It can be shown (see in [1]) that when M(h, k) is referred to the coordinates (η, θ), DKL has
the local representation

D(η, θ) = ϕ(η) + ψ(θ)− η · θ. (11)

Note that as p(·; θ) = q for θ = 0

DKL(p, q) = DKL(p(·; η), p(·; 0)) = ϕ(η) + ψ(0)− η · 0 = ϕ(η). (12)
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A key object is the map FD introduced in (5) associated to M(h, k) and the canonical divergence (11).
It has the local form in coordinates (η, θ), see (5) and (11),

FD(η, θ) = (η, Dη) = (η, ϕη(η)− θ), (13)

with the explicit inverse, using local coordinates (η, λ) in T∗M(h, k),

F−1
D (η, λ) = (η, θ(η, λ)) = (η, ϕη(η)− λ) = (η, θ̂(η)− λ). (14)

A simple but elegant result of the above-introduced framework is the following.

Proposition 1. Let ΛG be a Lagrangian submanifold of T∗M(h, k) described by the Morse family G(η, u)
as in (4). Then, LS = F−1

D (ΛG) is a Lagrangian submanifold of M(h, k)2 described by the Morse family
S(η, u) = ϕ(η)− G(η, u).

Proof. From (4) we have that λ = Gη(η, u) on ΛG and from (14)

F−1
D (ΛG) = {(η, θ) = (η, ϕη(η)− Gη(η, u)) = (η, Sη(η, u)), (η, u) ∈ E}

where S(η, u) = ϕ(η) − G(η, u). Moreover, as Su(η, u) = Gu(η, u) the critical set E in (2) is the
same.

As a consequence of the above proposition, if ΛG is transversal to the fibers of T∗M(h, k) (no extra
parameters u), then its image in M(h, k)2 is transversal to the fibers of π1.

Another interesting consequence is that the zero section of the cotangent bundle T∗M(h, k),
locally represented as Z = {(η, 0) : η ∈ E}, is mapped by F−1

D into

Z0 = F−1
D (Z) = {(η, θ̂(η)) : η ∈ E}

which is contained into D−1(0), the zero-level set of the canonical divergence. Indeed, from (10) and (11)
we have that

D(η, θ̂(η)) = ϕ(η) + ψ(θ̂(η))− η · θ̂(η) = ϕ(η)− ϕ(η) ≡ 0 (15)

thus Z0 ⊂ D−1(0) in the general case and Z0 = D−1(0) if n = 1. For later use, we compute from (7)
the Hamiltonian associated to the canonical divergence

H(η, λ) = D ◦ F−1
D (η, λ) = ϕ(η) + ψ(θ̂(η)− λ)− η · (θ̂(η)− λ).

We set for the sake of simplicity θ̂(η) = θ̂ and we compute from (8) the free energy ψ(θ̂(η)− λ)

eψ(θ̂−λ) =
∫

X
e(θ̂−λ)·h+kdx =

∫
X

e(θ̂−λ)·h+k +ψ(θ̂)−ψ(θ̂)dx

= eψ(θ̂)
∫

X
e−λ·heθ̂·h+k−ψ(θ̂)dx = eψ(θ̂)Epθ̂

[e−λ·h]. (16)

Using (15) and (16), the Hamiltonian can be written using relation (10) as

H(η, λ) = ϕ(η) + ψ(θ̂) + lnEpθ̂
[e−λ·h]− η · θ̂ + η · λ

= lnEpθ̂
[e−λ·h] + η · λ. (17)

It is interesting to investigate more in detail the structure of the Lagrangian submanifold
LS = F−1

D (ΛG) ⊂ M(h, k)2 by studying the form of the two probability distributions
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F−1
D (η, λ) = (η, θ̂ − λ) in LS associated to the coordinates respectively η and θ̂ − λ. We compute

from (9)
p(x; η) = eθ̂·h(x)+k(x)−ψ(θ̂)

and using (17)

p(x; θ̂ − λ) = e(θ̂−λ)·h+k−ψ(θ̂−λ)

= eθ̂·h−λ·h+k−ψ(θ̂)−lnEp
θ̂
[e−λ·h ]

= p(x; η)
e−λ·h(x)

Epθ̂
[e−λ·h]

. (18)

Note that setting

p(x; λ) =
e−λ·h(x)

Z(λ)
=

e−λ·h(x)∫
X eλ·h(x)dx

relation (18) can be given the form

p(x; θ̂ − λ) =
p(x; η)e−λ·h(x)∫

X p(x; η)e−λ·h(x)dx
=

p(x; η)p(x; λ)∫
X p(x; η)p(x; λ)dx

. (19)

We will give an interpretation of this relation in the case of discrete probability distributions in
Section 3.2 below.

3. Application to Maximum Entropy Principle with Nonlinear Constraints and Phase Transitions

A relevant application of the above-introduced framework concerns the use of the Maximum
Entropy Principle with nonlinear constraints. Let us consider a physical system X whose description is
given in terms of a probability distribution q ∈ P(X). The Maximum Entropy Principle (E.T. Jaynes,
see in [11,12]) is a general inference procedure that allows to update an initial probability distribution
q on the basis of subsequent information on the system represented by the average values Ep[h] of
some observables h of interest for the system. The sought distribution p is the one that minimizes the
relative entropy DKL(p, q) on the set of the distributions which satisfy the constraints on Ep[h]. From a
mathematical point of view, we are faced with a constrained extremization problem to be solved below
using the Lagrange multipliers method.

We will see that the set of solutions for different values of the constraints defines a Lagrangian
submanifold of a cotangent space of a manifold M(h, k). We are interested in describing the
corresponding Lagrangian submanifold in M(h, k)2.

This section has a pedagogical character, so for the sake of simplicity we will avoid technicalities
and assume that X = {1, . . . , n} is a discrete space and that there is only one observable of interest
defined by assigning h = (h1, . . . , hn). The case of k observables can be dealt with along the same lines
with no extra effort. The case of a continuous space X ⊂ Rn presents more technical difficulties and it
is considered in [20].

Let qi = eki ∈ P(X) be the a priori distribution describing X. The Kullback–Leibler divergence is
called relative entropy in this setting and has the form

D(p, q) = ∑
i

pi ln
pi
qi

.
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Let f : R → R be a smooth globally non-invertible function (think for example of a cubic
f (x) = x(x2 − a2) for a ∈ R, see Figure 1 below). We look for the minima of D on the set of p ∈ P(X)

that satisfy the nonlinear constraint on p in the form g : Rn
+ → R, g(p) = y that is

g(p) = f (Ep[h])= f (
n

∑
i=1

hi pi) = y. (20)

The choice of this type of constraints is motivated by classical applications in statistical physics.
For example in the Ising model in the Curie–Weiss (mean field) approximation the average energy of
the spin lattice is a quadratic function of the average magnetization Ep[s], see [14,15]. We have that

dg(p) = f ′(Ep[h])h = ( f ′(Ep[h])h1, . . . , f ′(Ep[h])hn). (21)

Note that we do not take into account at this stage of the procedure the normalization constraint
stipulating that we will enforce it by dividing any candidate extremum point p̂ by ∑i p̂i.
After introducing the Lagrange function where λ is the Lagrange multiplier associated to the
constraint (20)

G(y, p, λ) = D(p, q)− λ( f (Ep[h])− y) (22)

we see that the candidate extrema are the solutions (p, λ) for given y of (here i = 1, . . . , n)

(Gp)i = ln
pi
qi

+ 1− λ f ′(Ep[h])hi = 0, Gλ = f (Ep[h])− y = 0 (23)

that is, setting qi = eki , we have to face a trascendental equation for the unnormalized probability

pi = c eλ f ′(Ep [h])hi+ki , f (Ep[h]) = y. (24)

After normalization, (24)1 becomes

pi = eλ f ′(Ep [h])hi+ki−ψ(λ,p), eψ(λ,p) = ∑ eλ f ′(Ep [h])hi+ki . (25)

Let us denote with f←(y) ⊂ R the set of pre-images of y along f (see, e.g., Figure 1 below)

f←(y) = {η ∈ R : f (η) = y} = {η1, .., ηα, .., ηA}, ηα = ηα(y) (26)

where we have supposed that, for every y, f←(y) is a finite set of cardinality A(y) < +∞. The crux is
that we can substitute the constraint f (Ep[h]) = y in (24)2 with the following equivalent one

f (Ep[h])) = y ⇐⇒ Ep[h] ∈ f←(y)

therefore we can describe the—possibly non-unique—solution (25) of the extremum problem (23) as

pα
i = eλ f ′(ηα)hi+ki−ψ(λ,α), eψ(λ,α) = ∑ eλ f ′(ηα)hi+ki (27)

where α = 1, . . . , A(y), showing that the candidate solution belongs to an exponential family M(h, k).
Note that in Information Geometry, the critical points of the MEP extremum problem are computed as
geodesic projections over a submanifold which is an exponential family and multiplicity of solutions are
related to the non-uniqueness of the geodesic projection, see in [1,15].

Note that where f ′(ηα) 6= 0 setting λ f ′(ηα) = θα the solution (27) can be given the standard form
(see in [1,14]) of MEP solution

p̂i = eθ̂hi+ki−ψ(θ̂), θ̂(η) = ϕη(η)
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with linear constraint E[h] = ηα, hence (25) becomes

pα
i = eθαhi+ki−ψ(θα), eψ(θα) = ∑ eθαhi+ki . (28)

The multipliers θα = θ̂(ηα(y)), α = 1, . . . , A(y) are uniquely determined (see (10)) by the equation

ψθ(θ) = η i.e. θ̂(η) = ϕη(η) (29)

for η = ηα(y) and accordingly we can compute the multipliers λ as

λα(y) =
θ̂(ηα(y))
f ′(ηα(y))

. (30)

Note that the solution to our constrained extremization problem (28) has the form of a curved
exponential family (see [1]) with respect to the discrete parameter α. We will see in the next Section 3.1
that the framework of Lagrangian submanifold is useful to describe the global picture of the solutions
in case of multiple solutions.

3.1. The Global Picture via Lagrange Submanifold

If we set in the Lagrange function (22) (p, λ) = u, we see that for G(y, u) the set of points (y, u)
satisfying the first order necessary condition for unconstrained extremum (23) is the critical set

E = {(y, u) : Gu(y, u) = 0}.

We can check if the Lagrange function G(y, u) defines a Morse family using the rank condition (3)

rk
(
Gyu Guu

)
= n + 1 for all (y, u) ∈ E

where in this case (
Gyu Guu

)
=

(
0 Gpp −dgT

1 −dg 0

)
(31)

and Gpp is the n-dimensional Hessian matrix (here δij is Kronecker symbol)

(Gpp)ij = (Dpp)ij − λ f ′′(Ep[h])hihj =
δij

pi
− λ f ′′(Ep[h])hihj. (32)

If G(y, u) is a Morse family, then by Maslov–Hormander theorem

ΛG = {(y, Gy) where (y, u) ∈ E} (33)

is a Lagrangian submanifold of T∗R. We claim that (33) provides a global description of the set
of solutions (28). We have seen in Section 1 that a sufficient condition for the elimination of all
extra parameters u is that Guu has maximal rank for all (y, u) ∈ E . A criterion for this is given
by the following classical result in constrained optimization theory, here adapted to our notations,
which express the second order sufficient condition for maxima or minima (see in [14,21] for the proof).

Proposition 2. If the symmetric matrix Gpp in (32) is (positive or negative) definite on ker dg for (y, u) ∈ E ,
then the square matrix Guu in (31) has maximal rank.

From (21), we have that for (y, u) ∈ E

ker dg(p) = {u ∈ Rn : f ′(ηα)h · u = 0}



Entropy 2020, 22, 983 9 of 13

and from (32), that

Gppu · u =
(

∑
i

u2
i

pi

)
− λ f ′′(ηα)(h · u)2.

It is straightforward to derive from the above relations that the two cases below hold
f ′(ηα) 6= 0 ⇒ ker dg(p) = {u : h · u = 0} ⇒ Gppu · u > 0 ∀ u 6= 0,

f ′(ηα) = 0 ⇒ ker dg(p) = Rn ⇒ Gppu · u ∈ R.

Therefore, at points (y, u) ∈ E where f ′(ηα) 6= 0 the Lagrangian submanifold ΛG in (33) is transversal.
At points in E where f ′(ηα) = 0, we have dg = f ′(ηα)h = 0, see (21), thus transversality is lost as—see
the form of Guu in (31)—for these points

det Guu(p, λ) = 0, and (y, u) ∈ E .

We remark that the above introduced framework is able to give the global description of the set of
solutions (28), (30) in terms of the Lagrangian submanifold locally described as

Λ(y)
f = {(y, Gy) =

(
y, λ(ηα(y))

)
=
(
y,

θ̂(ηα(y))
f ′(ηα(y))

)
} ⊂ T∗Ry (34)

where λ(ηα(y)) is given by (30). If we consider f : E ⊂ Rη → Ry, y = f (η) as a local change of
coordinates on M(h, k) (since f is locally invertible where f ′(η) 6= 0) it is easy to prove that

Proposition 3. The submanifold Λ(y)
f ⊂ T∗Ry in (34) is the image Λ(y)

f = T∗ f (Λ f ) of

Λ f = {(η, θ̂α(η)) : η ∈ E} ⊂ T∗M(h, k) (35)

where θ̂α(η) is the multiplier in (29) associated to the constraint Ep[h] = ηα and ηα ∈ I(η) = f←( f (η)).

Proof. If y = f (η) is the local change of coordinates in M(h, k), then the tangent map T f : TRη → TRy

has the local form (y, ẏ) = T f (η, η̇) = ( f (η), f ′(η)η̇) and the cotangent map T∗ f : T∗Rη → T∗Ry has
the local form

(y, λ) = T∗ f (η, β) =
(

f (η),
β

f ′(η)
)

if we want that the Liouville one-form (see above (1)) has the same canonical form θc = λdy = βdη

in the two coordinate charts. See, e.g., in [19] for a proof of this last classical result of
differential geometry.

We want to study the Lagrangian submanifold Λ f defined in (35) and its image L f = F−1
D (Λ f ) ⊂

M(h, k)2, where F−1
D is defined in (14), whose local expression is

L f = {(η, θ̂(η)− θ̂(ηα)) : η ∈ E}. (36)

First we consider the case that f is a globally invertible function. In this case, I(η)= f←( f (η)) = {η}
and θ̂(η) = ϕη(η). The Lagrangian submanifold Λ f in (35) is the graph of the differential ϕη(η) and it
is transversal, see Figure 2a. Moreover, see below (9), if η = η0 = Eq[h] then θ̂(η0) = 0. As ψθ(θ) = η

is invertible with inverse θ = θ̂(η), we have

dθ̂

dη
(η) = (

d2ψ

dθ2 )
−1 = varp̂(h) = Ep̂[h2]− η2 > 0
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and θ̂(η) is a monotonically increasing function, see Figure 2a. Its image (36) is L f = M(h, k)× {0},
see Figure 2b.

If we consider a globally non invertible function f as the one depicted in Figure 1, then
I(η) contains multiple points and Λ f is non transversal at points where f ′(η) = 0, see Figure 3a.
The corresponding image L f has multiple branches and it is not a manifold at points (b, c) where
transversality fails, see Figure 3b).
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First we consider the case that f is a globally invertible function. In this case I(η)= f←( f (η)) = {η}
and θ̂(η) = ϕη(η). The Lagrangian submanifold Λ f in (35) is the graph of the differential ϕη(η) and
it is transversal, see Figure 1(a). Moreover, see below (9), if η = η0 = Eq[h] then θ̂(η0) = 0. Since
ψθ(θ) = η is invertible with inverse θ = θ̂(η) we have

dθ̂

dη
(η) = (

d2ψ
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−1 = varp̂(h) = Ep̂[h2]− η2 > 0
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If we consider a globally non invertible function f as the one depicted in Figure 2, then I(η) contains
multiple points and Λ f is non transversal at points where f ′(η) = 0, see Figure 3(a). The corresponding
image L f has multiple branches and it is not a manifold at points (b, c) where transversality fails, see
Figure 3(b).

3.2. Probability distributions in L f

In this Section we study the structure of the probability distributions in L f . In the local coordinate
systems (η, θ) of M(h, k)2 η and θ̂(η) describe the same probability distribution that we write for
brevity as pi(η) = pi(θ̂). Therefore the probability distributions in L f in (36) associated to η and
θ̂(η)− θ̂(ηα) are respectively

pi(η) = eθ̂hi−ki−ψ(θ̂) (37)
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and, see (18),

pi(θ̂ − θ̂(ηα)) = pi(η)
e−θ̂(ηα)hi

∑i pi(η)e−θ̂(ηα)hi
. (38)

Setting

p̃i(ηα) =
e−θ̂(ηα)hi

Z(λ)
, Z(λ) = ∑

i
e−θ̂(ηα)hi ,

the above (38) can be rewritten as the discrete version of (19), that is

pi(θ̂ − θ̂(ηα)) =
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3.2. Probability Distributions in L f

In this section, we study the structure of the probability distributions in L f . In the local coordinate
systems (η, θ) of M(h, k)2, η and θ̂(η) describe the same probability distribution that we write for
brevity as pi(η) = pi(θ̂). Therefore, the probability distributions in L f in (36) associated to η and
θ̂(η)− θ̂(ηα) are, respectively,

pi(η) = eθ̂hi−ki−ψ(θ̂) (37)

and, see (18),

pi(θ̂ − θ̂(ηα)) = pi(η)
e−θ̂(ηα)hi

∑i pi(η)e−θ̂(ηα)hi
. (38)

Setting

p̃i(ηα) =
e−θ̂(ηα)hi

Z(λ)
, Z(λ) = ∑

i
e−θ̂(ηα)hi ,

the above (38) can be rewritten as the discrete version of (19), that is,

pi(θ̂ − θ̂(ηα)) =
pi(η) p̃i(ηα)

∑i pi(η) p̃i(ηα)
. (39)

This last formula can be interpreted as follows; let A and B be two independent random variables A, B:
Ω → X, where X = {1, . . . , n} is the discrete state space, described by the probability distributions
pi and p̃i, respectively (for example, A and B describe two dices with n faces). Then, ∑i pi p̃i is the
probability that A and B are found in the same state and

Prob(A = i, B = i|A = B) =
pi p̃i

∑i pi p̃i

in (39) is the conditional probability that A and B are found in the state i provided that they are found
in the same state. Note that for pi(η) in (37) we have eki = qi, thus (37) can be rewritten as

pi(η) = qi
eθ̂hi

∑i qieθ̂hi
=

qi p̃(θ̂)
∑i qi p̃i(θ̂)
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and (39) above is equal to

pi(θ̂ − θ̂(ηα)) =
qi pi p̃i

∑i qi pi p̃i
= Prob(A = i, B = i, C = i|A = B = C)

where A, B, C are described by qi , pi = p̃i(θ̂(η)) , p̃i = p̃i(θ̂(ηα)).

4. Discussion

Canonical coordinates η and θ associated to an exponential family M(h, k) are dually flat
coordinates with respect to the duality defined by the canonical divergence. With respect to these
coordinates, a generalization of the Pitagorean theorem is proved in Information Geometry which
provides a generalized formulation of the Maximum Entropy Principle with linear constraints as a
geodesic projection problem (see [2]). Multiplicity of the solutions θ̂(η) of the Maximum Entropy
problem are due to the non uniqueness of the projection. In this paper, we have shown that the set
of couples (η, θ̂(η)) defines a transversal Lagrangian submanifold Λ of T∗M(h, k), and we have seen
with an example that if nonlinear constraints are considered the set of possible multiple solutions
to the Maximum Entropy problem is globally described by a folded (i.e., a possibly non-trasversal)
Lagrangian submanifold Λ f . We have computed their pull-back to the square manifold M(h, k)2 via
the map F−1

D . We think that this framework offers a complementary view to the generalized Pitagorean
Theorem. We plan to address in a subsequent paper a generalization of the theory presented here to a
more general form of nonlinear constraint.
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