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The von Hippel–Lindau protein (pVHL) is a tumour suppressor mainly
known for its role as master regulator of hypoxia-inducible factor (HIF)
activity. Functional inactivation of pVHL is causative of the von Hippel–
Lindau disease, an inherited predisposition to develop different cancers.
Due to its impact on human health, pVHL has been widely studied in the
last few decades. However, investigationsmostly focus on its role in degrading
HIFs, whereas alternative pVHL protein–protein interactions and functions
are insistently surfacing in the literature. In this review, we analyse these
almost neglected functions by dissecting specific conditions in which pVHL
is proposed to have differential roles in promoting cancer. We reviewed its
role in regulating phosphorylation as a number of works suggest pVHL to
act as an inhibitor by either degrading or promoting downregulation of
specific kinases. Further, we summarize hypoxia-dependent and -independent
pVHL interactions with multiple protein partners and discuss their
implications in tumorigenesis.
1. Introduction
Functional inactivation of the von Hippel–Lindau protein (pVHL) is causative of
the so-called von Hippel–Lindau (VHL) disease, a familiar predisposition to
develop cancer [1–3]. VHL disease is characterized by the progressive develop-
ment of multiple tumours affecting specific target organs, such as the retina,
adrenal glands, epididymis, pancreas and kidneys [1,4,5]. It is a severe autosomal
dominant genetic condition with inheritance of one in over 35 000 [6,7]. The
homonymous VHL gene codifying for pVHL protein localizes on chromosome
3p25 and is constitutively expressed in both fetal and adult tissues [8]. It contains
three exons, namely E1, E2 and E3 that encode a full length 213 amino acids
protein pVHL30 [4] (also referred as pVHL213). A second internal translation
initiation at the codon 54 methionine produces a shorter 160 amino acid protein
named pVHL19 [9] (also known as pVHL160). A third 172 amino acids isoform,
pVHL172, is generated by an alternatively spliced mRNA in which exon E2 is
excluded [8,10]. To add complexity to the humanVHL splicing regulation, further
pVHL isoforms were recently proposed [11]. These putative isoforms are gener-
ated by inclusion of a novel E10 cryptic exon of unknown function that contains
an intronic sequence [11]. In particular, Lenglet et al. propose a promising novel
193 amino acids X1 protein isoform which seems to be conserved only in
higher primates [11]. Both the two major gene products, pVHL30 and pVHL19,
act as tumour suppressor and form an ubiquitin E3 ligase complex known as
VCB [12,13] binding elongins B and C and cullin 2, whereas pVHL172 is thought
to contribute to renal carcinoma development by upregulating a subset of pro-
tumorigenic genes [14]. The main difference between the two main isoforms is
that pVHL19 lacks the first 53 residues which form a mainly acidic and intrinsi-
cally disordered N-terminal tail [15]. The best known pVHL function is the
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ubiquitin-mediated degradation of hypoxia-inducible factor 1-
alpha (HIF-1α) [3] under physiological oxygen concentrations.
The interaction between pVHL andHIF-1α requires the prolyl-
4 hydroxylase domain enzymes (PHD1, -2 and -3)-dependent
hydroxylation [16] of at least one of two specific proline resi-
dues of HIF-1α (i.e. Pro402 and Pro564) localized within a
conserved LxxLAP consensus sequence [17]. This motif was
initially believed to be highly specific for PHD activity, while
recent findings show that PHD can hydroxylate other prolines
in a LxxLAP-independent fashion [18–22]. Hypoxic conditions
inhibit PHD activity allowingHIF-1α to escape proteolysis and
translocate to the nucleus, where it promotes transcription of
many genes involved in angiogenesis, glucose metabolism,
cell survival and tumour progression [3,23]. The pVHL is com-
monly described as a molecular hub, mediating interactions
with more than 500 different proteins [24,25]. pVHL has negli-
gible sequence identity to other human proteins, and although
being well conserved among mammals [26], it shows impor-
tant differences within this group. In particular, pVHL30
presents an intrinsically disordered [27] N-terminus contain-
ing multiple repetitions of an acidic pentamer in human
and higher primates, whereas this same region is shorter and
almost lacking repeated elements in rodents and lower
mammals [15]. Kidney-specific pVHL inactivation causes the
development of kidney cysts in a mouse model [28], while
reintroduction of a wild-type gene interrupts malignant pro-
gression [29]. Nevertheless, pVHL somatic inactivation is
calculated to affect about 75% of sporadic clear cell renal cell
carcinomas (ccRCC) [30,31], while a number of studies
suggests a role for pVHL in the regulation of the cellular
tumour antigen p53 (p53) [32–34].

Several other HIF-1α independent functions are emerging
in the literature [35–41]. In this review, we focus our efforts in
describing these almost neglected pVHL functions.
1.1. von Hippel–Lindau protein and the regulation of
kinases activity

Since its discovery pVHL was associated with hypoxia
sensing and angiogenesis [42,43]. However, other functions
in addition to the degradation of HIF-1/2α transcription
factors were immediately proposed. In particular, early
evidence suggested an alternative role for pVHL in the regu-
lation of kinases activity (figure 1). In 1999, Shuin and
co-workers [44] observed that the pVHL β-domain, which is
the HIF-1/2α recognition module, interacts directly with
atypical PKC isotypes, PKCz and PKC λ/l. The PKCλ/l
belongs to the third group of the PKC family [45] and they
play a relevant role in many cellular functions such as pro-
liferation, differentiation and cell survival [45,46]. Shuin and
co-workers also reported that the regulatory domain of PKC
is sufficient for pVHL-PKCz and -PKC λ/l interactions.
Further, their work demonstrated that the association
between pVHL and aPKC occurs after aPKC activation
suggesting that pVHL may directly impair or limit the
aPKC function. Confirmation of this data was produced a
few years later when the pVHL-dependent ubiquitination
and degradation of aPKC was reported [47]. aPKC isoforms,
in particular PKCδ and PKCζ, have been shown to upregulate
vascular endothelial growth factor (VEGF) expression, which
is one of the HIF-1α main gene targets, by activating MAPK
(mitogen-activated protein kinase) in pVHL defective cells
[48]. More recently, the direct interaction between pVHL
and PKCδ (protein kinase C δ) was also described [49]. Con-
versely to what was observed in aPKC, the interaction with
PKCδ seems to not yield degradation but rather kinase inhi-
bition. The interactions described so far are not mediated by
proline hydroxylation, suggesting that they may occur irre-
spective of hypoxia conditions. An opposite scenario is
proposed for the interaction between pVHL and AKT1 [21].
AKT1 is the isoform one of the AKT kinase family, which
regulates many processes including metabolism, prolifer-
ation, cell survival, growth and angiogenesis. The
interaction with pVHL requires the hydroxylation of specific
proline residues of AKT1 [21] (table 1). AKT1 hydroxylation
is mediated by PHD2, which in turn is the main regulator of
HIF-1α hydroxylation [23,50–52]. The interaction promotes
AKT1 functional inhibition, while, similarly to what was
observed for PKCδ, it seems to have no effect on AKT1 degra-
dation. Similar results are obtained for both AKT1 and AKT2
but not for AKT3. Intriguingly, the authors observed that the
hydroxyl-prolines mediating these interactions reside within
two FOXO-like linear motifs rather than the expected
CODD-like motif. Further, the authors conducted site-
directed mutagenesis of residues within the pVHL
hydroxyl-proline binding pocket, showing that residues driv-
ing the binding to AKT1 and HIF-1α partially overlap but are
not identical. These data, coupled with the difference in the
linear motifs required for the interaction, strongly suggest
that the pVHL β-domain may evolved to exert other functions
over the sole HIF-1/2α recognition. Recently, NEK8 (never in
mitosis gene A (NIMA)-related kinase 8) was reported to be
downregulated by pVHL [53,54]. In particular, it was pro-
posed to be a novel target of pVHL [54]. The best
understood function of NEK8 is its role in cilia development
in kidney cells [55], which is also one of the main HIF-1α inde-
pendent pathways attributed to the pVHL function. NEK8 is
also known to be an effector of the ATR-mediated replication
stress response, a component of the DNA damage response
linked to cystic kidney disorders [56]. pVHL is thought to
either downregulate NEK8 through HIF-1α to maintain the
primary cilia structure in human renal cancer cells [53] or to
directly ubiquitinate NEK8 for proteosomal degradation
[54]. These data show that functional interplays between
kinases and pVHL can be achieved following different
paths. Further, correlation between pVHL and kinase activity
is not limited to the direct association with kinases. In a pre-
vious work, we reported the direct interaction between
pVHL and the CDKN1 kinase inhibitor protein family [57].
We found that the CDKN1 proteins share a conserved
region mimicking the HIF-1α motif responsible for pVHL
binding. Of note, the binding does not require proline
hydroxylation, while CDKN1b site-specific mutation associ-
ated with cancer is shown to modulate this novel
interaction. The pVHL is also a substrate of different kinases
[58–62] and the functional meaning of these modifications is
only partially understood. Roe et al. [60] reported that the
phosphorylation of pVHL Ser111 by Chk2 (checkpoint
kinase 2) enhances pVHL-mediated transactivation of p53
on DNA damage by recruiting p300 and Tip60 to the chroma-
tin of p53 target genes. pVHL is also known to bind p53 [63],
this interaction promotes p53 stabilization through inhibition
of MDM2-mediated degradation in a HIF-1α independent
fashion. The observation that Chk2 regulates the pVHL-
mediated transactivation of p53 suggests a novel rationale
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to understand how pVHL mutants may regulate cancer
insurgence in VHL disease.
1.2. von Hippel–Lindau protein targets for degradation
RNA polymerase II subunits

Themain function of pVHL as E3-ligase is to direct proteasomal
degradation of HIF1/2-α under physiological oxygen con-
ditions via the ubiquitin-proteasome pathway [64]. Two RNA
polymerase II subunits, i.e. RBP1 and RBP7, are also reported
to be marked for ubiquitination by pVHL [65,66]. Although
both are essential components of RNA polymerase II complex,
the interaction with pVHL is driven by two different mechan-
isms yielding different fates. Ubiquitination of RBP1 requires
hydroxylation of a proline (i.e. Pro1465) within a CODD-like
motif [67] partially resembling the pVHL/HIF-1α interaction
[66]. Unexpectedly, the authors report [67] that RBP1
ubiquitination does not promote degradation but rather it cor-
relates with intracellular accumulation of RBP1. Further, they
observed that the ubiquitination of RBP1 is promoted by ultra-
violet C (UVC) irradiation, which induces pVHL to associate
with only active RBP1 that is engaged in transcription
elongation. Coupling this finding with the pVHL-mediated
transactivation of p53 on DNA damage [60] is easy to propose
that these two mechanisms might cooperate for maintaining
efficient DNA repair in response to DNA damaging factors.
Different fate is for the pVHL/RBP7 interaction [65]. Indeed,
this interaction is reported to be hydroxylation-independent
and promote proteasomal degradation of RBP7. RBP7 is an
essential protein [68,69] that plays a relevant role in starving
cells that enter stationary phase [70]. The functional meaning
of this association is not completely understood. Considering
the independency from hydroxylation, it can be argued that
association with pVHL is increased after hypoxic events and
it may participate in the modulation of cell stress response.



Table 1. Overview of pVHL interactors.

protein
hydroxylated
residue enzyme degradation

hydroxylation dependent

HIF-1α P402, P564 PHD Y

EPAS1 P405, P531 PHD Y

HIF-3α P492 Y

AKT1 P125, P313 PHD2 N

SPRY2 P18, P144, P160 PHD Y

RBP1 (POLR2A) P1465 PHD1 N

ADRB2 P382, P395 PHD3 Y

MYBBP1A P695 PHD1 Y

EPOR P443, P450 PHD3 Y

hydroxylation independent

AR N.A. N.A. N.A.

RBP7 (POLR2G) N.A. N.A. Y

aPKC N.A. N.A. N
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1.3. von Hippel–Lindau protein associates with the
androgen receptor

Sex is a key factor affecting the etiology, pathogenesis andprog-
nosis of specific types of cancer. About 4.6% male and 2.7%
female individuals develop kidney cancer, and the genetic
basis for this sex discrepancy is unknown. The two- to fourfold
higher riskofmales todevelop cancer comparedwith females is
independent of geographical regions and socio-economic level,
thereby implying that this sex disparity results from unknown
genetic biological factors [71–73]. Rather, the higher incidence
of renal cell carcinoma (RCC) in males compared with females
suggests a role for sexhormonesand their receptors in theonset,
progression and outcome of disease. Androgen receptor (AR)
and its natural ligands, testosterone and dihydrotestosterone,
regulate the development of primary and secondary sexual
characteristics during development. Mutations in the AR
cause different types of androgen-related diseases depending
on the mechanism involved. AR is expressed in about 15–20%
of cancer tissues derived from RCC patients [74–78]. Impor-
tantly, sex hormone-based therapy showed effects in RCC
patients that may suggest tumour endocrine dependence, yet
not responsiveness [75,79–81]. Interestingly, the higher inci-
dence of RCC in males has been shown to correlate with
higher ARexpression, suggesting the involvement of androgen
signalling in the gender discrepancy of RCC [82,83]. Recently,
the AR degradation-promoting compound, dimethylcurcumin
(ASC-J9), has been shown to suppress RCC proliferation
through a mechanism involving VEGF and HIF1α, providing
experimental evidence for a role of AR and androgen signalling
in RCC progression. pVHL has been shown to form a complex
withAR inculturedcells [84,85].However, the functional role of
the pVHL/AR interaction remains unclear. pVHL has been
shown to polyubiquitinate AR at lysines 845 and 847 and
inhibit its transactivation [84]. However, it was not clear
whether pVHL interaction with AR also regulates AR
turnover. On the other hand, pVHL has been shown to
enhance AR deubiquitination and reduce AR transactivation,
suggesting non-canonical functions of pVHL in the regulation
of AR function [85].

1.4. Multiple hydroxy-degrons regulate protein sprouty
homologue 2, erythropoietin receptor, beta2-
adrenergic receptor and Myb-binding protein 1A

As E3-ligase component, pVHL seems to be specialized to bind
short intrinsically disordered region containing a hydroxylated
proline residue. The original linearmotif described to be critical
for pVHL/HIF-1α recognition was the LxxLAP motif within
the so-called NODD and CODD fragments of HIF-1α [23].
The same motif was also believed to be highly specific for
PHD-mediated hydroxylation [17]. A significant body of
findings has extended these initial evidences. So far other
different proteins were described to interact with pVHL upon
hydroxylation of specific proline residues [18–20,22], which
in turn are targets of PHD enzymes (figure 2). It is almost
clear that different linear motifs mediate the interaction with
pVHL and collectively can be referred as hydroxy-degrons.
The hydroxy-degron, similarly to what observed for other
post-translational modification (PTM)-mediated degrons (e.g.
the phospho-degron) requires direct activation by PTM, in
this case promoted by 4-prolyl-hydroxylase enzymes. Consist-
ent with the evidence that hypoxia conditions dictate the arrest
of HIF-1α degradation, it can be argued that a range of diverse
oxygen concentrations within different tissues may differen-
tially impair hydroxy-degrons function. Because rapidly
growing cells in developing organs and tumours experience
hypoxia are easy to understand how hydroxy-degrons
impairment may affect cancer progression.

1.4.1. Protein sprouty homologue 2

Patel and co-workers demonstrated that protein sprouty homol-
ogue 2 (Spry2) is under PHD/pVHL-mediated regulation [20].
Spry2 is a modulator of MAPK/ERK pathway [87] acting as
growth factors antagonist [88]. It mediates the endothelial quies-
cence and barrier integrity in endothelial cells and is suspected to
playarole incancerprogression.PHDhydroxylateSpry2on three
Pro residues (i.e. 18, 144 and 160) to form three putative hydroxy-
degrons that share poor sequence similarity with the LxxLAP
motif (figure 2). Unfortunately, the author did not investigate
which region of pVHL mediates the interaction. Considering
the dependency from proline hydroxylation it can be presumed
that themediatorof pVHL/Spry2 interaction is theHIF-1α recog-
nition surface. Intriguingly, Spry protein family is thought to
inhibit activation of ERK in response to FGF [89] VEGF [90].
This suggests pVHL to perform a double regulation of VEGF.
One promoting HIF-1α-dependent expression of VEGF, while
on the other side, the Spry2 stabilization induced by hypoxic
conditions may itself serves to co-modulate the VEGF action.

1.4.2. Erythropoietin receptor

Recently, another example of hydroxy-degronwas described by
Ohh and co-workers for the erythropoietin receptor (EPOR)
[22]. EPOR is hydroxylated on Pro419 and Pro426 via PHD3,
the resulting degrons have no sequence identity to LxxLAP
motif, while localize within a proline-rich region (figure 2).
The functional importance of this novel interaction is given by
detailed mutagenesis investigations. Indeed, the authors
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reported examples of pVHLmutants that retain proper binding
and regulation of HIF-1α while showing severe defect in
binding EPOR. In particular, pVHL mutations classified as
promoting VHL disease sub-phenotype 2C, showed a marked
defect in binding to hydroxylated EPOR [22]. These findings
suggest at least one novel molecular framework to explain
the wide phenotypic variability in VHL disease. EPOR is the
receptor for the erythropoietin (EPO) hormone whose gene is
transactivated by HIF-2α [91] and mediates erythropoietin-
induced erythroblast proliferation and differentiation. EPOR
binds EPO upon phosphorylation-dependent conformational
change mediated by JAK2 (Janus Kinase 2) [92]. Mutations of
EPOR are causative of familiar erythrocytosis [93,94], which is
also a common manifestation of either VHL disease [95] and
hypoxia-sensing impairment [96–98]. Indeed, mutations of
pVHL are also known to promote congenital erythrocytosis
(e.g. the Chuvash polycythemia [99,100], a familiar hypoxia-
sensing disorder characterized by increased production of red
cells). It was proposed that pVHL forms with SOCS1 a hetero-
dimeric E3 ligase complex which targets JAK2 for degradation
[101]. The same authors also report that two pVHL homozy-
gous mutations (i.e. p.Arg200Trp and p.His191Asp) are
causative of erythrocytosis by impairing pVHL-SOCS1 associ-
ation and yielding JAK2 stabilization [101]. Collectively, these
data point to the existence of a signalling axis formed by
VHL-EPOR/JAK/SOCS/STAT3 which may play important
roles in supporting cancer cells proliferation. In this direction,
it is interesting that recent work from Bento et al. where
pVHL was demonstrated to also regulate JAK2/STAT3
signalling pathway in hemangioblastoma cells [102].

1.4.3. Beta2-adrenergic receptor

Another hydroxy-degron is associated with hypoxia-regulated
beta2-adrenergic receptor (ADRB2) [18] degradation.
Beta-adrenergic receptors (βAR) play a relevant role in the
regulation of cardiovascular and lung function, and βAR
impairment is associated with heart failure [103] and
pulmonary diseases [104]. ADRB2 is also thought to modulate
the intracellular oxygen homeostasis modulating the AMP/
ATP ratio, ROS production and PHD activity [105,106].
PHD3 hydroxylates ADRB2 in position Pro382 and Pro395
yielding formation of two pVHL binding sites. These, similarly
to the other hydroxy-degron discussed here present low simi-
larity with the LxxLAP motif of HIF-1α reinforcing the
observation that pVHL β-domain can be evolved to recognize
different hydroxy-motifs. It has been proposed that ADRB2 is
critical for the modulation of hypoxia response as beta blocker
treatment significantly reduces HIF-1α–specific binding to
promoter sequences [106]. Due to its role in oxygen sensing,
the PHD3–ADRB2–pVHL axis might be operating in cancer
progression and deserves deeper investigation.

1.4.4. Myb-binding protein 1A

The Myb-binding protein 1A (MYBBP1A) is a transcriptional
regulator that interacts with DNA-binding proteins; in
particular it regulates AhR-dependent gene expression [107],
suppresses mitochondrial respiration [108] and in concert with
CRY1 acts as a co-repressor of the Period2 promoter in mam-
mals [109]. Hydroxylation of Pro695 of MYBBP1A activates a
degron signal which promotes its pVHL-mediated degradation
[19]. The role of MYBBP1A in cancer insurgence is not comple-
tely clear; however, recent studies linked this nuclear protein to
the regulation of anoikis [110], a particular programmed cell
death that occurs when specific cell detach from the surround-
ing extracellular matrix (ECM). pVHL is known to regulate
ECM deposition [111] and defect in the hypoxia-depend
regulation of MYBBP1Amay have a role in cancer progression.
2. Concluding remarks and future
perspectives

In conclusion, the emerging notion from the studies high-
lighted here is that the pVHL can mediate different cell
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functions depending on the biochemical context in which is
intervening. pVHL, as an E3 component, seems to preferen-
tially interact with hydroxylated proteins, a behaviour that
suggests the existence of an entire novel class of hydroxy-
lation-dependent degrons. Shedding light on these
alternative degradation targets should help in understanding
the role of pVHL on cancer progression as well as suggesting
new therapeutic approaches for cancer treatment. A recent
example of how this knowledge can be used is given by the
application of the PROTAC (proteolysis-targeting chimeras)
technique in development of a mimetic synthetic compound,
which uses hydroxyl-proline to induce pVHL-mediated
degradation of protein targets [112]. Although promising,
these approaches should stimulate some reflection on the
use of such compounds (e.g. VEGF antagonist, hypoxia indu-
cer) when not supported by an exhaustive knowledge of all
pathways involved. Further, the body of knowledge pre-
sented in this review, although extending pVHL role in
degrading different targets, does not support the implication
of having relevant fractions of free pVHL during hypoxic
conditions. An alternative pVHL role as kinase inhibitor is
suggested in both normoxia and hypoxia by several studies.
However, this is a still open question that should be
addressed in the next future. These are questions that will
probably keep pVHL researchers occupied for the next few
years.
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