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Abstract:
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chlorine (in the form of PhICl2) oxidative addition to the parent gold(I) complex 1 [Au2(diNHC)2](PF6)2.
The novel compound has been characterized by 1H and 13C NMR and single crystal x-ray structure
analysis. The oxidation of the two gold(I) centres to gold(II), with the formation of a covalent bond
between them, imposes to the complex an axis of chirality, along the Au–Au bond, leading to a chiral
propeller arrangement.
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Structural characterization of a novel dinuclear gold(II) complex with di(N-heterocyclic carbene) ligands,
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Abstract 

A novel dinuclear gold(II) complex with two-fold rotational symmetry 2 of general formula  [Au2Cl2(diNHC)2](PF6)2 
(diNHC=di(N-heterocyclic carbene)) has been obtained in quantitative yield via chlorine (in the form of  PhICl2) oxidative 
addition to the parent gold(I) complex 1  [Au2(diNHC)2](PF6)2. The novel compound has been characterized by 1H and 13C 
NMR and single crystal x-ray structure analysis. The oxidation of the two gold(I) centres to gold(II), with the formation 
of a covalent bond between them, imposes to the complex an axis of chirality, along the Au–Au bond, leading to a chiral 
propeller arrangement.

Graphical Abstract

Structural characterization of a novel dinuclear gold(II) complex with di(N-heterocyclic carbene) ligands, the formation of 
the gold(II)-gold(II) bond imposes to the complex coordination chirality.

Electronic supplementary material The online version of this 
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Introduction

Dinuclear gold(I) complexes with one or two bridging 
di(N-heterocyclic carbene) ligands (diNHC) are an appeal-
ing class of organometallic compounds, because they might 
show high-quality photoemission properties [1, 2], prom-
ising antibacterial and anticancer activity [3, 4] and good 
catalytic performances in the activation of carbon–carbon 
multiple bonds [5, 6]. Focussing on complexes of the general 
formula  [Au2(diNHC)2]2+, i.e. complexes with two bridg-
ing ligands, they feature two peculiar features that govern 
their properties and reactivity: very high stability due to 
the formation of a metallamacrocyclic structure and ligand 
supported intramolecular aurophilic interaction. Aurophi-
licity, irst described by Schmidbaur in the eighties [7], by 
enhancing the probability of electronic transitions [8], is 
responsible for the solid state photoemission properties of 
the complexes. Moreover, also the reactivity of the com-
plexes is inluenced by this weak interaction. In particular, 
we have already demonstrated that dinuclear gold(I) diNHC 
complexes, in which intramolecular aurophilic interaction is 
present, can form stable gold(II) diNHC complexes in the 
oxidative addition reaction of halogens [9]. The oxidation 
state gold(II), bearing an electron coniguration  5d9, is quite 
unusual for gold, as the oxidation states gold(I) and gold(III) 
are much more common (electron coniguration  5d10 and  5d8 

respectively). In the case of dinuclear gold(II) compounds, 
close Au–Au contacts of about 2.6 Å, which appear to rep-
resent a true covalent Au–Au σ-bond, make these complexes 
exclusively diamagnetic [10]. A survey of reported dinuclear 
gold(II) complexes (Cambridge Structural Database, version 
5.40, including updates up to April 2019) [11], shows that 
the majority of structures involves phosphorus ylides [12], 
bis(diphenyphosphino)amines [13], 2-ferrocenyloxazolines 
[14], dithiolates [15], aminidate [16] and cyclometalated 
phenylphosphanes [17] as bridging bidentate ligands. Fewer 
studies refer to dinuclear unsupported gold(II) complexes 
[18–20], that means, complexes in which the two gold cen-
tres are not bound by a bridging ligand. Finally, also a very 
limited number of mononuclear gold(II) complexes was 
found [11, 21–24]. The identiication of molecular motifs 
able of forming gold(II) species is of particular interest for 
the development of novel homogeneous catalysts. In fact, 
systems in which this intermediate oxidation state is achiev-
able have been found to better perform in organic transfor-
mations whose substrate activation starts with an oxidative 
addition to the catalyst [25].

In this frame, we recently reported [26] that in the case 
of dinuclear gold(I) complexes, when a propylene bridge 
is used, a library of four main conformations is observed 
and may be present in solutions, Fig. 1. It is interesting to 
note, that even if the ligand is achiral, one of the possible 

Fig. 1  Stretched-out (I), folded-
syn (II), folded-anti (III) and 
twisted (IV) conformational 
isomers for propylene bridged 
complexes of general formula 
 [Au2(diNHC)2](PF6)2
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conformers is chiral (IV), due to the dimetallic nature of 
the complex having chiral propeller arrangement. Similar 
structures have been reported with gold and also with other 
metal centres [27–30].

When more species are in equilibrium, the capability 
to orchestrate the system via chemical [31, 32] or physi-
cal stimuli [33] to achieve selection mechanisms is of para-
mount importance, especially if we want to exploit the fea-
tures of a speciic conformer. In this study, it is demonstrated 
that we can quantitatively drive the diferent conformers in 
order to select the chiral conformation of a dinuclear gold 
complex supported by diNHC ligands bearing a propyl-
ene linker between the coordinating units. The selection is 
based on the oxidative addition of chlorine (in the form of 
iodobenzene dichloride) to a gold(I) complex leading to the 
clean and exclusive formation of a novel dinuclear gold(II) 
diNHC complex. The ligand used in this study is based on 
imidazolidin-2-ylidene donors [34].

Experimental

Synthesis and Crystallization

All manipulations were carried out using standard Schlenk 
techniques under an atmosphere of argon. The reagents were 
purchased by Aldrich as high-purity products and gener-
ally used as received; all solvents were used as received as 
technical grade solvents. Complex 1 [35] and iodobenzene 
dichloride [36] were synthesized according to literature pro-
cedures. NMR spectra were recorded on a Bruker Avance 
300 MHz (300.1 MHz for 1H and 75.5 for 13C); chemical 
shifts (δ) are reported in units of parts per million (ppm) 
relative to the residual solvent signals.

For the synthesis of 2, complex 1 (10.0  mg, 
9.05·10–3 mmol) was dissolved in acetonitrile (10 mL), sub-
sequently iodobenzene dichloride (6.0 mg, 2.17·10–2 mmol) 
was added and the reaction mixture was stirred at room tem-
perature for 1 h. Afterwards the solvent volume was reduced 
to 2 mL under vacuum and a yellow solid was precipitated 
by adding diethyl ether (10 mL). The product was isolated 
by iltration and dried under vacuum (yield 95%). Com-
pound 2 was characterized by means of 1H and 13C NMR 
spectroscopy.

1H NMR (300.1 MHz,  CD3CN, 298 K): δ 1.85 (m, 4H, 
 CH2), 3.07 (s, 12H,  CH3), 3.25–4.08 ppm (m, 24H, N-CH2). 
13C NMR (75.5  MHz,  CD3CN, 298  K): δ 24.2  (CH2), 
37.3  (CH3), 46.5 (N-CH2), 50.6 (N-CH2), 53.1 (N-CH2), 
184.7 ppm (NCN).

Single crystals of 2 were obtained from a NMR sample of 
the complex in  CD3CN by slow evaporation of the deuter-
ated solvent. A suitable crystal was recovered directly from 

the NMR tube, ixed on the top of a Lindemann glass capil-
lary with perluorinated oil and moved to the difractometer.

Reinement

Crystal data, data collection, and structure reinement details 
are summarized in Table 1. H atoms could not be located in 
diference Fourier maps and were placed in calculated, ideal 
positions and treated using a riding-model approximation. 
Methyl H atoms were reined as part of rigid rotating groups, 
with a C—H distance of 0.96 A and  Uiso(H) = 1.5Ueq(C) 
while methylene H atoms were placed in calculated posi-
tions and reined using a riding model, with C–H distances 
of 0.97 and with  Uiso(H) = 1.2Ueq(C). In the main moiety, 
DFIX restrains were applied to C3–C4, C8–C9, C6–N1 
bonds and EADP constrains to C5, C6 and C10 atoms. The 
anion  PF6

− was split in two parts the occupancies of which 
were constrained to sum to 1.0 while the relative occupan-
cies of these two sites were reined freely. The disorder was 
reined with same distance (SADI) restrains for P···F and 
F···F in order to restrain the model to an octahedral geometry 
and with anisotropic displacement (EADP) constrains for P 
and F atoms. Rigid-bond restraints (RIGU) were applied. A 
Flack parameter close to 0.5 suggested the compound was 
an inversion twin, hence the TWIN and BASF instructions 
of Shelx were applied; the twin domain ratio was reined to 
48:52. Finally, a void analysis using the program PLATON 
[37] revealed the presence a total solvent accessible volume 
of 921 Å3 with a total electron-count/cell of 200 electrons. 
These values are consistent with the presence of approxi-
mately ten molecules of acetonitrile in the unit cell voids as 
difuse electron density. The SQUEEZE routine of PLATON 
was applied [37], that is, the contribution of the unidentiied 
solvent to the structure factors was assessed by back-Fourier 
transformation and the data were corrected accordingly. The 
reinement using the modiied dataset improved the overall 
structure.

Results and Discussion

In a previous study [42], we showed that the chlorine and 
bromine oxidative addition to the gold(I) diNHC complex 
3, bearing imidazol-2-ylidene coordinating units and a pro-
pylene linker, leads to a mixture of a gold(II) and a gold(III) 
complex in a 1:9 and 0.5:9.5 ratio for the chlorine and bro-
mine addition, respectively (Fig. 2). In the case of the bro-
mine addition, it was possible to unambiguously demonstrate 
by single crystal difraction, that the gold(II) compound has 
a chiral propeller conformation. This suggested that the halo-
gen oxidative addition can drive a conformational lexible 
complex, with four possible conformations (Fig. 1), towards 
a speciic conformational arrangement, even if the selectivity 
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Table 1  Experimental details

Computer programs: CrysAlis PRO 1.171.38.43b, ShelXT [38], SHELXL [39], Olex2 [40], PLATON [41]

Chemical formula C27H47.5Au2Cl2F12N10.5P2

Mr 1274.02
Crystal system, space group Tetragonal, P41212
Temperature (K) 303
a, c (Å) 11.9792 (3), 30.1944 (19)
V (Å3) 4332.9 (3)
Z 4
Radiation type Mo Kα
µ  (mm−1) 7.04
Crystal size (mm) 0.23 × 0.15 × 0.1
Difractometer Xcalibur, Eos, Gemini
Absorption correction Multi-scan CrysAlis PRO 1.171.38.43b (Rigaku Oxford Difraction, 

2015) Empirical absorption correction using spherical harmonics, 
implemented in SCALE3 ABSPACK scaling algorithm

Tmin, Tmax 0.534, 1.000
No. of measured, independent and
observed [I > 2σ(I)] relections

13702, 4425, 3682

Rint 0.050
(sin θ/λ)max (Å

−1) 0.625
R[F2 > 2σ(F2)], wR(F2), S 0.0553, 0.1179, 1.14
No. of relections 4425
No. of parameters 201
No. of restraints 272
H-atom treatment H-atom parameters constrained

w = 1/[σ2(Fo
2) + (0.0381P)2 + 46.7695P]

where P = (Fo
2 + 2Fc

2)/3
Δρmax, Δρmin (e Å−3) 1.22, -2.17
Absolute structure
Twin domain ratio

Reined as an inversion twin
48:52

CCDC code 1901763

Fig. 2  Oxidative addition of 
chlorine and bromine to com-
plex 3 (above) and oxidative 
addition of chlorine to complex 
1 (below)
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is not complete. Here, we report that using a similar diNHC 
ligand, where the imidazol-2-ylidene coordinating units are 
replaced by imidazolin-2-ylidene donors, the chlorine oxi-
dative addition gives the gold(II) complex 2 in the axially 
chiral arrangement as the only product and in quantitative 
yield establishing 100% selectivity. In this case, no gold(III) 
analogue is observed. Hence, the presence of a diferent 
donor in the carbene ligand changes the reactivity of the 
parent gold(I) complex in the halogens oxidative addition 
reaction leading to a clean and quantitative selection of the 
chiral propeller conformation.

The new complex 2 crystallises in the tetragonal space 
group  P41212. The asymmetric unit contains half of the 
gold(II) complex molecule and a disordered  PF6

− anion; the 
other half of the molecule and anion are symmetry equiva-
lents (Fig. 3). The molecular structure of 2 is depicted in 
Fig. 3 and selected bond distances and angles for the metal 
centre are reported in Table 2.

The structure consists of two gold(II) centres in a square 
planar coordination environment. Each gold(II) atom is coor-
dinated by two carbene donors situated trans to one another, 
a chlorine atom, and the forth coordination site is occupied 
by the other gold centre with a direct gold(II)-gold(II) cova-
lent bond. The presence of the metal–metal bond makes the 
dinuclear complex diamagnetic, by coupling the otherwise 
unpaired electron of the two  5d9 gold centres. The Cl1-Au1-
Au1i-Cli (i = y, x, − z + 1) fragment is almost linear, with 
the Cl1-Au1-Au1i angle close to 180° (179.49(12)°). The 
Au1-Au1i and Au1-Cl1 distances, 2.5602(12) and 2.378(4) 
Å, respectively, compare well with literature data for other 
dinuclear gold(II) complexes obtained via chlorine oxida-
tive addition [43]. Similarly, also the Au(II)-Ccarbene bond 
distances, 2.041(16) and 2.039(16) Å for Au1-C1 and Au1-
C2, respectively, it with literature data [42, 44].

Fig. 3  ORTEP-style view of the molecular structure of complex 2. 
 PF6

− anions and hydrogen atoms have been omitted for clarity, ellip-
soids are drawn at the 50% probability level. Symmetry code i = y, 
x, − z + 1

Table 2  Selected geometric parameters (Å, º)

Symmetry code(s): (i) y, x, − z + 1

Au1–Au1i 2.5602 (12) Au1–C1 2.041 (16)
Au1–Cl1 2.378 (4) Au1–C2 2.039 (16)
Cl1–Au1–Au1i 179.49 (12) C1–Au1–C2 175.6 (7)

C1–Au1–Au1i 91.9 (5) C2–Au1–Au1i 92.2 (5)

Fig. 4  Depiction of part of the molecular structure of complex 2 
highlighting the bridging coordination mode of the di(NHC) ligand 
and the relative orientation of the carbene rings. View along the 

A-Aui axis (left) and view along the C7-C12 axis (right). Colour code 
for atoms: gold (yellow), chlorine (green), carbon (grey) and nitrogen 
(blue)
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The mean planes deined by the two imidazol-2-ylidene 
rings of the same ligand are almost parallel, forming a dihe-
dral angle of 4.6(13) (Fig. 4). In 2, each bidentate ligand is 
coordinated in a bridging fashion between the two gold cen-
tres forming a sixteen membered metallamacrocyclic ring.

The arrangement of the macrocyclic ring is very intrigu-
ing. The covalent bonded gold(II) centres are located at 
opposite sides of the ring resulting in a chiral propeller con-
formation of the complex (Fig. 5) with an axis of chirality 
along the Au–Au bond. The compound is isolated as a race-
mate with the right- (P) and the left-handed (M) conforma-
tion both present in solution and in the solid state. For the 
measured crystal, inversion twinning with a domain ratio of 
48:52 was observed.

The crystal packing of 2 is reported in Fig. 6. The Au 
complexes are arranged with the Cl1-Au1-Au1i-Cl1i axis 
running approximately parallel to the crystallographic c axis. 

Along this crystallographic direction, the cationic part of the 
complexes, the gold(II) centres, and the anionic part thereof, 
the chloride ligands and the  PF6

− anions, are organized in 
alternate layers. Nevertheless, in the molecular packing, 
hydrogen bonding interactions are not detected.

Conclusions

In this study, we reported on the synthesis of a novel 
dinuclear gold(II) complex 2 obtained by oxidative addi-
tion of chlorine to the parent dinuclear gold(I) complex 1. 
The employment of a ligand bearing imidazolin-2-ylidene 
instead of imidazol-2-ylidene donors leads to the gold(II) 
complex as the only product of the reaction in quantitative 
yield, avoiding the formation of the gold(III) complex. The 
structural characterization of the dinuclear gold(II) complex 

Fig. 5  Molecular structure of complex 2 highlighting the eight-shape of the sixteen-membered metallamacrocyclic ring (left). Representation of 
the P and M enantiomers of complex 2. Colour code for atoms: gold (yellow), chlorine (green), carbon (grey) and nitrogen (blue)

Fig. 6  Crystal packing of 2, 
view along the a (left) and b 
(right) axis. Colour code for 
atoms: gold (yellow), chlorine 
(green), carbon (grey), nitrogen 
(blue), phosphorus (purple) and 
luorine (light green)
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showed that the two gold(II) centres are covalently bonded 
(Au1-Au1i 2.5602(12) Å). The formation of the gold(II)-
gold(II) bond imposes a propeller like conformation with 
a two-fold axis to the metallamacrocyclic structure of the 
complex. The twisted arrangement of the bidentate ligand 
allows the two gold(II) centres to be at the proper distance 
for a covalent bond. Hence, the oxidative addition can oper-
ate as driving force to select a speciic isomer in a complex 
mixture of possible conformational isomers. In particular, 
the ability to select a chiral compound is very intriguing 
concerning its potential application in asymmetric catalysis.
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