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A B S T R A C T

In this study, we investigated the effect of global temporal prediction on the brain capability to implicitly adjust
proactive motor control. We used the Dynamic Temporal Prediction (DTP), in which local and global predictions
of an imperative stimulus were manipulated by using different stimulus-onset asynchronies (SOAs), presented
with several distribution probabilities. At a behavioural level, the results show a performance adjustment (re-
action time decrease) depending on the implicit use of global prediction. At a neurophysiological level, three
separate computational steps underlying motor control were investigated. First, the expectancy implementation
was associated with global probability-dependent contingent negative variation (CNV) modulation supported by
the recruitment of a frontoparietal network involving the anterior cingulate, the left intraparietal sulcus, the
occipital, and the premotor areas. Second, the response implementation was modulated by the global prediction
fostering stimulus processing (P3 increase) at the motor response level, as suggested by both oscillatory (beta
desynchronization), as well as source analysis (frontal cortical network). Third, the expectancy violation lead to a
negativity increase (omission-detection potential) time locked to the global rule violation and additionally, to
delta and theta power increase interpreted as inhibitory control and rule violation detection, respectively. The
expectancy violation further engaged a left lateralized network including the temporal parietal junction (TPJ) and
the motor cortex, suggesting involvement of attentional reorienting and a motor adjustment. Finally, these
findings provide new insights on the neurocognitive mechanisms underlying proactive motor control, suggesting
an overlapping between implicit and explicit processes.

1. Introduction

The ability to control our motor behaviour by preactivating (proac-
tive control) or stopping (reactive inhibition) a response to task-relevant
stimuli is shaped by both top-down, explicit instruction and bottom-up,
implicit factors that may be unbeknownst to participants (Braem and
Egner, 2018). Among these, the possibility to exploit either local or global
temporal regularities to generate and update a prediction about the
temporal onset of an imperative stimulus is crucial (Nobre and Van Ede,
2018; Bekinschtein et al., 2009; Chennu et al., 2013; Marti et al., 2014).
Indeed, local and global statistical rules represent hierarchically-nested
orders of information that can be extracted from sequential patterns
and used to build-up a predictive internal model of world’s regularities
and, consequently, bias attention and action. In this study we investi-
gated how distinct neurocomputational mechanisms underlying motor

control are affected by the implicit use of global temporal prediction.
Specifically, in a sequence of sensory events, the local prediction refers

to the stimulus expectancy bias induced by the narrow transitional prob-
abilities, which do not need a long-term, ‘historical’ statistical knowledge.
By contrast, the globalprediction refers to the ability to extract higher-level
rules besides local transitions. In the case of motor preparation, the local
prediction can be identified as the effect of the stimulus hazard rate on
reaction times (RTs). In fact, the subjective probability of a stimulus onset
will increaseover timegiven that it has not occurredyet (Karlin, 1958; Los,
2010; Luce, 1986; Niemi and N€a€at€anen, 1981; Nobre et al., 2007;
Woodrow,1914). For instance, in the caseof three discrete foreperiod (FP)
intervals (e.g., 0.5, 1 or 1.5 s) participants will be significantly fastest at
detecting targets occurring at the shortest FP (for a review, see Los, 2010).
By contrast, global prediction refers to the history-driven probability of an
event occurrence in the long period (Baumeister and Joubert, 1969; Los
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et al., 2017; Trillenberg et al., 2000). Indeed, participants become faster to
detect shortly-expected targets when these are globally more probable to
occur. By contrast, a low global probability to receive a short preparatory
interval implies a slowing down of RTs to stimuli presented at short FPs
(Los et al., 2017; Trillenberg et al., 2000). In summary, the way partici-
pants will prepare to respond to an upcoming event will depend not only
on how long they are waiting it (hazards rate or local prediction) but also
on when this event is overall more likely to occur on the basis of past
experience (global prediction). Thefirst one operateswithin-trialwhile the
second one across-trials and are supposed to exert independent but inter-
active effects on subjective temporal expectancy and motor control.

1.1. Temporal prediction turns into specific expectancy-related brain
activity

A functional implication of the ability to make use of temporal pre-
diction consists in the possibility to translate this knowledge into stim-
ulus anticipatory brain activity (Cui et al., 2009; Mento, 2013; Miniussi
et al., 1999), a computational stage defined as expectancy implementation
(Mento and Vallesi, 2016; Cotti et al., 2011). One of the most reliable
neural marker of expectancy implementation is the Contingent Negative
Variation or CNV, a sustained event-related potential (ERP) arising be-
tween two contingently associated sensory events and reflecting antici-
patory processes (Walter et al. 1964; Mento et al., 2013; Mento, 2017).
The CNV is locally enhanced following explicit predictive cues (Miniussi
et al., 1999; Mento et al., 2015; Correa et al., 2006; Capizzi et al., 2013)
but also implicit predictive information (Coull and Nobre, 2008) such as
temporally regular vs. irregular target presentation (Breska and Deouell,
2014; Praamstra et al., 2006), sequential effects (Los and Heslenfeld,
2005; Mento, 2017; Capizzi et al., 2013) or simple associative learning
(Mento et al., 2013; Mento and Valenza, 2016). While the neural gen-
erators of this component are not entirely known, there is converging
evidence that a distributed fronto-parietal cortical network mainly
including the premotor, the supplementary motor and the parietal areas
is involved in its generation (Mento et al., 2013, 2015; Mento, 2017;
Macar and Vidal, 2004).

In line with behavioural evidence, the pre-allocation of neural activity
translates into the convey of attentional and motor resources to task-
relevant stimuli, a mechanism that can be defined as response imple-
mentation. In the context of motor preparation tasks, this is revealed by
the larger post-stimulus late ERP amplitude (i.e., the P3 response)
following predicted than unpredicted stimuli (Capizzi et al., 2013;
Doherty et al., 2005; Correa and Nobre, 2008; Mento, 2017; Nobre, 2001;
Zanto et al., 2011).

Finally, besides translating prediction into anticipatory activity, in
order to flexibly adjust the behavioral outcome, the brain must also be
able to online update its internal predictive models according to the
incoming environmental stimuli and requests (Friston, 2010). This im-
plies that when the system experiences an error prediction, such as in the
case of expectancy violation, the internal model needs to be updated
(Friston, 2010; Clark, 2013; Wacongne et al., 2012; Visalli et al., 2019;
Zandbelt et al., 2013). The possibility to gain advantage from errors al-
lows indeed to re-tune perceptual andmotor processes toward an optimal
re-preparation. This is what happens, for instance, when a response is
prepared shortly but must be stopped since the stimulus actually arrives
late. While expectancy implementation, response implementation and
expectancy violation are crucial mechanisms for regulating motor con-
trol, only few studies have tried to address the question whether these
distinct computational stages are differently modulated by local vs.
global prediction.

Noteworthy, while the effect of local prediction on motor control has
been well elucidated (Miniussi et al., 1999; Coull et al., 2011; Mento
et al., 2015; Mento, 2017; Vallesi, 2010), as far as we know, only few
studies investigated the effect of global prediction on motor control.
Among these, Trillenberg et al. (2000) reported a CNV amplitude mod-
ulation related to the FP probability distribution. Though, this study

examined the effect of global probability neither on the response
implementation nor on the violation expectancy. On the other side, in a
recent study Visalli et al. (2019) adopted a bayesian computational
approach and a neuroimaging method (fMRI) to map the neural corre-
lates of the updating of temporal expectations in the human brain.
Notably, in both the studies mentioned above, the authors provided
participants with explicit instructions about the change in the global FP
properties. Hence, the question whether implicit proactive motor control
draws on similar neural mechanisms as those described for explicit
control is still to be addressed.

To this purpose we recorded and analyzed the high-density electro-
encephalographic (hdEEG) activity from healthy participants undergoing
the Dynamic Temporal Prediction task (DTP; Mento and Granziol, 2020;
Mento et al., 2020). TheDTP is a task consisting in a changedversionof the
variable FP task (Niemi and Naatanen, 1981; Los, 2010; Vallesi, 2010;
Woodraw, 1914) purposely modified to introduce different hierarchies of
stimulus predictability. In particular, we manipulated block-wise the
probability distributionof three discrete FP intervals in order to generate a
global expectationbias towardeither the short or the longFP.To shed light
on the neural bases of implicit proactive motor control we provided a
multiple-domain brain investigation. In particular, we analyzed the ERP
activity to depict the effects of global prediction on the temporal locus of
expectancy implementation, expectancy violation and response imple-
mentation as three temporally distinct computational stages underlying
proactive motor control. We also explored the oscillatory patterns to shed
light on the functional dynamics in terms of neural synchronization/de-
synchronization induced by global task properties. Finally, we recon-
structed the spatial geography of the same effects at the source-level to
provide a whole picture of the phenomena and compare our findings with
previous neuroimaging literature.

To investigate how global prediction affects expectancy imple-
mentation, we targeted the Contingent Negative Variation (CNV) in
relation to the global probabilistic context. In line to the results reported
by Trillenberg et al. (2000), we expected to find a CNV increase related to
the global prediction, so that, for the same interval, a block-wise higher
percentage of FP should lead to a large CNV amplitude. To test the effect
of prediction on response implementation we targeted stimulus-locked
neural activity. As previously shown for explicit temporal prediction
(Capizzi et al., 2013; Doherty et al., 2005; Mento, 2017), we expected to
observe a global-dependent modulation of the late ERPs (P3 component)
reflecting massive recruitment of motor resources. Finally, the expec-
tancy violation was investigated by targeting the omission-evoked po-
tential elicited by the missed presentation of the target at the time when
it was expected based on global prediction. In this case the we hypoth-
esized the onset of the omission potential synchronized with the rule
violation (i.e. the stimulus was supposed to appear after 500 ms, but the
onset was delayed at 1500). To further unravel the neural mechanisms
underlying the effect of global prediction on proactive motor control we
also investigated the event-related oscillatory activity. According to
previous literature we hypothesized the involvement of the delta, theta
and beta frequency bands. Specifically, we expected the global prediction
to instantiate a beta power desynchronization in both the prestimulus
(expectancy implementation) and postimulus (response implementation)
windows (Jasper and Penfield, 1949; Tzagarakis et al., 2010; Pfurtsch-
eller and Berghold, 1989; Sanes and Donoghue, 1993; Murthy and Fetz,
1996; Pfurtscheller and Neuper, 1997; Formaggio et al., 2008).
Furthermore, we expected a modulation of delta and theta bands, espe-
cially considering their relation with inhibitory control (Prada et al.,
2014) and expectancy violation (Cavanagh and Frank, 2014), respec-
tively. More specifically, we expected to observe a delta and theta rule
violation-dependent power increase, as previously demonstrated for
endogenously-driven motor control. Finally, we performed the source
reconstruction of all significant ERP effects to further depict the under-
lying neural generators in the spatial domain.
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2. Method

2.1. Participants

The sample size was a priori computed with G*Power3 (Faul et al.,
2007). Starting from the effect size reported in Mento and Granziol
(2020) and Mento et al. (2020) we defined an effect size of d ¼ 0.45.
Sample size was computed using a two tails t-tests as Test family, α ¼
0.05; power (1-β) ¼ 0.90, resulting in a total sample of 44 participants.
Data were collected from 50 healthy adult participants. Two participants
were excluded due to equipment failure. The final sample included 48
participants (mean age ¼ 22.96 years, [SD ¼ 1.14], range 20–27, 8
males). All participants reported normal or corrected-to-normal vision
and had no history of neurological and/or psychiatric disorders. All
participants gave their informed consent before the experiment. All
experimental procedures were approved by the Ethics Committee of the
School of Psychology at the University of Padua (protocol n" 2536) and
were conducted according to the principles expressed in the Declaration
of Helsinki.

2.2. Experimental procedure

Stimuli were presented on a 17-inch monitor at a resolution of 1280
# 1024 pixels. Participants were seated comfortably in a chair at a
viewing distance of around 60 cm from the monitor. All participants
performed a warned simple reaction time (RT) task adapted from an
experimental paradigm previously employed from our lab to investigate
voluntary and automatic temporal attention effects in adults and school-
aged children (Mento and Tarantino, 2015). This task, defined as Dy-
namic Temporal Prediction (DTP) (Mento and Granziol, 2020; Mento
et al., 2020) was originally conceived to investigate children’s behavioral
performance in relation to either local or global probabilistic rules as two
distinct sources of temporal predictability. We used here a modified
version adapted for ERP investigation.

2.3. Trial structure

Each trial began with the display of a warning visual stimulus (S1),
followed by the presentation of an imperative visual stimulus (S2) that
stayed on the screen for a maximum of 3000 ms. S1 consisted of a picture
of a black camera lens (see Fig. 1) surrounded by a circle (total size of the
stimulus: 840 # 840 pixels, 144 dpi, 10.62" # 10.54" of visual angle). S2
consisted of a picture of a cartoon character, which was displayed

centrally within the camera lens. The inter-trial-interval was randomly
manipulated between 600 and 1500 ms. The task consisted of speeded
target detection. Participants were required to press a button of the
response box with the index finger of the dominant hand as quickly as
possible at S2 occurrence.

2.4. Local predictive context

To investigate the effect of the local predictive context on behavioral
performance, the S1–S2 stimulus-onset-asynchrony (SOA) was varied
trial by trial within each experimental block so that three possible fixed
FP intervals were created (Fig. 1). These included a short (500 ms), a
medium (1000 ms), or a long (1500 ms) FP, resulting in three discrete
levels of hazard rate. (Karlin, 1958; Los, 2010; Luce, 1986; Niemi and
N€a€at€anen, 1981; Woodrow, 1914).

2.5. Global predictive context

As illustrated in Fig. 2, to assess the effect of the global changes in the
predictive context, different probability distributions per each SOA in-
terval were introduced and manipulated block-wise, as described below.

2.5.1. Uniform (U) block
In this block, a rectangular distribution of the three SOAs was used

(33,3%, for each SOA) so that the probability of each SOA in the block
was equally distributed. This type of distribution is the most classic
probabilistic distribution employed in both adult (Los, 2010; Mento,
2017; Mento et al., 2015; Vallesi, 2010) and developmental (Johnson
et al., 2015; Mento and Tarantino, 2015; Mento and Vallesi, 2016; Vallesi
and Shallice, 2007) SOA literature.

The use of an a priori uniform distribution has long been described to
translate into a biased a posteriori temporal preparation. Indeed, as time
goes by, the conditional probability of S2 onset increases exponentially in
virtue of the fact that it has not occurred yet (Los, 2010; Los et al., 2017;
Luce, 1986). As a consequence, motor preparedness will be lowest at the
shortest SOA and highest at the longest SOA.

2.5.2. Short-biased (SB) block
In this case, an a priori distribution biased toward the short SOA was

delivered. In particular, the relative percentage was 50%, 33,33%, and
16,67% for the short, medium, and long SOA, respectively.

2.5.3. Long-biased (LB) block
In this block, the relative percentage was 16,7%, 33,3%, and 50% for

the short, medium, and long SOA, respectively. This kind of distribution,
also known in the literature as aging distribution (Los et al., 2017; Tril-
lenberg et al., 2000), is purposely intended to exacerbate the hazard-based
increment of temporal expectancy as a function of SOA length.

2.6. Experimental design

The experimental manipulations yielded a factorial design in which
either the SOA (short vs.medium vs. long) and the block type (SB vs. U vs.
LB) factors were orthogonally contrasted to investigate the effect of local
and global predictive context, respectively (Fig. 2).

Each single block included60 trials andwasdelivered three times, for a
total of nine experimental blocks and 540 trials. Specifically, the number
of trial were 90, 60 and 30 for SB-S, SB-M and SB-L conditions, respec-
tively; 60 trials for each SOA in the U block and 30, 60 and 90 trials for LB-
S, LB-M and LB-L conditions, respectively. All blocks were matched for
sensorimotor requirements, as thevisual stimuli and the required response
were always the same across the experiment. The only differences were
related to the changes in the predictive context experienced through the
task. The total length of the experiment was about 25 min. It is important
to note that participants were unbeknownst of both local and global ma-
nipulations since no explicit information were given about this.

Fig. 1. Trial structure. The circle (S1) warned participants on the presentation
of the imperative S2 stimulus (a cartoon character; here represented with
colored disks for illustrative purposes due to copyright restriction). Participants
had to make speeded reaction times at S2 onset by pressing a button on the
keyboard. The effect of local prediction was assessed by manipulating S1–S2
stimulus onset asynchrony (SOA) within each experimental block.
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Furthermore, no pauses were introduced between blocks. Instead, a blank
slidewas insertedat themiddleof eachblock to allowparticipant to rest. In
this way we avoided participants to become aware about global changes
occurring at any block switch. The block-type order was randomly sorted
between subjects. This ensured that spurious effects due to introducing
either local or global predictive contexts induced by a fixed SOA or block
sequence did not bias the performance. To ensure that the experimental
manipulation was effective in inducing implicit prediction, after
completing the task we asked all participants if they realized that the task
could change in speed, becoming faster or slower over time. Before
starting the experimental session, participants were presented with a
block of 20 training trials for each condition to ensure they understood
task instructions. During training, all participants received a feedback at
every trial according to their performance. Specifically, a neutral yellow
smile was displayed in cases in which either anticipatory (before target
onset) or premature (<150 ms before target onset) responses were pro-
vided. A yellow smilewas displayed if the RTwas between 1000 and 1500
ms from target onset. Finally, a green smile was displayed if the RT was
between 150 and 1000 ms. E-prime 2 software (Psychology Software
Tools, Pittsburgh, USA) was used to create and administer the stimuli.
Behavioral data are available on Figshare public repository (10.6084/
m9.figshare.12246218).

2.7. Behavioral analysis

We used mean accuracy and mean RTs as response variables on
which testing our hypotheses. In particular, accuracy refers to the
mean percentage of not anticipated responses across all experimental
conditions (i.e., between 150 ms and 1500 ms from target onset). To
calculate response speed, we considered only RTs measured in correct
trials, i.e., without premature responses. We analyzed the effects on
response accuracy and speed by setting a 3 ✕ 3 within subject
experimental design, that we tested through generalized linear mixed-
effect models (GLMMs). In particular, we defined two separate GLMMs
for response speed and accuracy, respectively. Both SOA (i.e., Short vs.
Medium vs. Long) and block (i.e., SB vs. U vs. LB) were considered
within subject fixed factors. We set random intercept models, with
participants as the clustering variable. We adopted the procedure
suggested by Westfall, Kenny, and Judd (2014) to calculate Cohen’s
d for each comparison used the R statistical software (R Core Team,
2018) to run statistical analyses, using the following packages: lme4
(Bates et al., 2015) to test the GLMMs, emmeans (Lenth, 2018) to test
multiple comparisons and car (Fox and Weisberg, 2011) to estimate
p-value, which were adjusted with a false discovery rate correction
(Benjamini and Hochberg, 1995). Behavioral analysis code is available
on Figshare (10.6084/m9.figshare.12249302).

2.8. EEG recordings

We used a Geodesic high-density EEG System (EGI® GES-300) with a
pre-cabled 128-channel HydroCel Geodesic Sensor Net (HCGSN-128)
and electrical reference to the vertex. EEG data were recorded during the
entire experiment. The sampling rate was 500 Hz. The impedance was
kept below 60 kW for each sensor. In order to reduce signal contami-
nation, participants were instructed to limit eye blinks and eye move-
ments as much as possible during task trials. EEG data are available on
Figshare public repository (10.6084/m9.figshare.12246218).

2.8.1. EEG preprocessing
Signal preprocessing was performed through EEGLAB 14.1.2b

(Delorme and Makeig, 2004). The continuous EEG signal was first
downsampled at 250 Hz and then bandpass-filtered (0.1–45 Hz) using a
Hamming windowed sinc finite impulse response filter (filter order ¼
8250). The signal was successively epoched between $500 and 1996 ms
from S1 onset. Epochs related to trials containing premature responses
were rejected. Epoched data were subjected to an automated
bad-channel and artifact detection algorithm by using the TBT plugin
(Ben-Shachar, 2020) implemented in EEGLAB. This algorithm identified
the channels that exceeded a differential average amplitude of 250 μV
and marked those channels for rejection. Channels that were marked as
bad on more than 30% of all epochs were excluded. Epochs having more
than 10 bad channels were also excluded. Successively, we automatically
detected possible flat channels with the Trimoutlier EEGLAB plug in,
with the lower bound of 1 μV. Data cleaning was performed by means of
an independent component analysis (Stone, 2002), using the Infomax
algorithm (Bell and Sejnowski, 1995) implemented in EEGLAB. The
resulting independent components were visually inspected in topography
and time-series, and those related to eye blinks, eye movements and
muscle artifacts were discarded. The remaining components were then
projected back to the electrode space to obtain cleaner EEG epochs.
Finally, bad channels were reconstructed with the spherical spline
interpolation method (Ferree, 2006; Perrin et al., 1989). The data were
then re-referenced to the average of all electrodes, and baseline correc-
tion was applied by subtracting the mean signal amplitude in the
pre-stimulus interval. Epoched data were imported in Brainstorm (Tadel
et al., 2011) to generate the individual average for each electrode site and
experimental condition. We applied a weighted average in order to
control for the unbalanced number of epochs per condition (Kotowski
et al., 2019; Lęski, 2002). The mean number of epochs and standard
deviation (SD) in brackets for each condition are listed in Table 1.

2.8.2. Oscillatory EEG analysis
The oscillatory activity of each trial was calculated using Morlet

wavelet analysis (central frequency ¼ 1 Hz; time resolution (FWHM) ¼ 3

Fig. 2. Experimental Design. The effect of global prediction was assessed by manipulating the between-block, a priori percentage of each SOA to create three
probabilistic distributions in which the SOAs were equally distributed (uniform) or skewed toward the short (short-biased) or long (long-biased) SOA.
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s) using the Brainstorm software. The time-frequency (TF) activity was
studied from 1 to 45 Hz, diving the frequency range in 60 bins with a
logarithmic frequency definition. Data were then averaged obtaining a
TF map for each subject and each experimental condition. Successively,
event related synchronization/desynchronization percentage (ERSD)
was calculated, according to Pfurtscheller and Lopes (1999), by using the
following formula: ERS/ERD ¼ (E-μ)/μ # 100 where E indicates the
power density during the event condition and μ indicates the mean of the
power density during the baseline. Finally, we grouped TF maps in fre-
quency bands by averaging the power spectrum density as it follows:
Delta (2–4 Hz); Theta (5–7 Hz), Alpha (8–12 Hz); Beta1 (13–21 Hz),
Beta2 (21–30 Hz), Gamma (30–45 Hz).

2.8.3. Cortical source modelling
Baseline-corrected epochs were imported in Brainstorm (Tadel et al.,

2011) to model their cortical generators. We used the ICBM152

anatomical template to approximate the individual anatomy of each
participant (Evans et al., 2012). Co-registration of EEG electrodes posi-
tion was performed via Brainstorm, by projecting the digitized EEG
sensor positions GSN Hydrocel 128 E1 available in Brainstorm on the
head surface. We then derived an EEG forward model using the
three-layer boundary element method (BEM) from OpenMEEG imple-
mented as a Brainstorm routine (Kybic et al., 2005; Gramfort et al.,
2011). The source space was constrained to the cortex and modeled as a
grid of 15.002 orthogonal current dipole triplets. We used sLORETA as a
source model, with Brainstorm’s default parameter settings. The empir-
ical noise covariance model was obtained from the average of ERP
baseline signals. The sources were projected to the standard anatomical
template (MNI) and their activity was transformed in Z scores relative to
the baseline. Finally, a spatial smooth with a FWHM of 3 mm, was
applied to each source.

2.9. EEG statistical analysis

We applied a whole-scalp analysis approach at all electrode sites using
a paired t-test (α ¼ .05) permutation approach to control the family-wise
error rate (Groppe et al., 2011). A similar technique was employed in
previous ERP studies (Duma et al., 2019;Mento et al., 2018; Mento, 2017;
Strauss et al., 2015; Capizzi et al., 2016). To control for the 1-type errorwe
performed 2000 Monte-Carlo permutations and applied cluster-based

Table 1
Mean number of trials and standard deviation between brackets of each exper-
imental condition.

SB-S ¼ 89,29 (3,30) SB-M ¼ 57, 35 (2,55) SB-L ¼ 28,91 (1,42)

U–S ¼ 56, 26 (3,33) U-M ¼ 57,58 (2,71) U-L ¼ 57,14 (2,93)
LB-S ¼ 28,66 (1,68) LB-M ¼ 56,25 (3,10) LB-L ¼ 85,89 (3,96)

Fig. 3. Temporal windows of interest for the statistical analyses. A) Expectancy implementation was investigated by comparing the CNV amplitude in the last 100 ms
of the preparatory activity. B) Expectancy violation was tested by contrasting the condition where the global probabilistic rule was violated SB-L in which the stimulus
occurs before the expected onset) against the LB-L condition, in which the global probability was respected. We expected to find an ODP wave for the SB-L condition.
C) Response implementation was examined in the P3 time window, comparing the condition with maximum expectancy (SB–S) to the one with the lowest expectation
(LB-S).
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correction over all 128 electrode locations using the Fieldtrip functions
(Oostenveld et al., 2011), accessible via Brainstorm (Tadel et al., 2011).
The ERP effect size was estimated by computing Cohen’s d of the effect
averaged over all the electrodes included in the significant clusters for
each comparison (Buiatti et al., 2019). Our experimental manipulation
allowed us to test specific hypotheses about the effect of the global pre-
dictive context on distinct cognitive mechanisms underlying proactive
motor control. These encompassed expectancy implementation, expec-
tancy violation and response implementation (Fig. 3). The EEG analysis
pipeline, with all the computational steps and the functions used from
EEGLAB (Delorme andMakeig, 2004) andBrainstorm (Tadel et al., 2011),
is available on Figshare (10.6084/m9.figshare.12249302).

2.9.1. Expectancy implementation
To investigate the functional locus of expectancy implementation, the

Contingent Negative Variation (CNV; Walter et al., 1964; Mento, 2013)
was targeted as a neural signature of response preparation and measured
in the last 100 ms of the preparatory activity, from S1 onset (Mento,
2017). In line with previous findings (Trillenberg et al., 2000), we
speculated that the CNV was affected by the global predictive context,
resulting in larger amplitude for the SB-S as compared to the LB-S.

2.9.2. Response implementation
Finally, in order to investigate response implementation, we exam-

ined the post target onset activity comparing SB-S and LB-S conditions.
Specifically, we expected a modulation in the amplitude of the P3 po-
tential. Therefore, we focused on the mean activity between 250 and 400
ms from S2 onset, where the P3 is usually expressed.

2.9.3. Expectancy violation
As shown in Fig. 3b, in our task the expectancy violation occurred in

the SB-L condition, since in this case the participants were implicitly
biased to expect the imperative stimulus at the short SOA but this was
actually delivered at a longer interval. A violation of the learnt global
probabilistic rule should yield to a more difficult inhibition of the motor
response since this had been proactively maximally prepared. At the
behavioural level, we expected to find the lowest accuracy (i.e., more
premature responses) in the SB-L condition. The neurofunctional corre-
lates (both ERP and oscillatory activity) of the expectancy violation were
investigated between 100 and 200 ms from the missed S2 onset (i.e.,
600–700 ms from S1 onset). In particular, we expected to find a global
omission-detection potential (ODP) similar to the one we reported for
local expectancy violation in our previous study using a similar task
(Mento and Vallesi, 2016). In order to partial out any potential diverging
pre-S1 baseline slopes deriving from different SB-LB inter-trial prepara-
tory effects, we applied a baseline correction over the entire pre-target
time window (0–1500 ms) of the long SOA.

The permutation statistic with cluster correction was also applied in
the statistical analyses of oscillatory activity in the same temporal win-
dows of the ERP analysis. Finally, concerning the source statistic, a per-
mutation paired t-test was run over the mean amplitude of the Z-scored
maps, in the same window of interest of the ERP and oscillatory analyses.

3. Results

3.1. Behavioral results - accuracy

As expected, the mean accuracy was affected by the local predictive
context. This was revealed by the effect of the SOA (χ2(2) ¼ 54.99; p <

.001). Specifically, participants were more accurate in trials with short
thanmedium (t(376)¼ 2.56; p¼ .03; d¼ 0.27) or long SOA (t(376)¼ 7.31; p
< .001; d¼0.79) aswell as inmedium than longSOA trials (t(376)¼4.74; p
< .001; d ¼ 0.51) (degrees of freedom are calculated accordingly to the
kenward-roger approximation; Kenward and Roger, 1997). The mean
accuracywas affected by the global predictive context, as suggested by the
significant effect of the Block (χ2(2) ¼ 15.34; p < .001). The participants

showed overall lower accuracy in the SB than in the U (t(376)¼$3.44; p<
.01; d¼ 0.37) or the LB blocks (t(376)¼$3.39; p< .001; d¼ 0.36). On the
contrary, the accuracywasnot statisticallydifferent between theUand the
LB blocks (t(376) ¼ $0.1; p ¼ .99; d ¼ 0.01). We also found a statistically
significant SOA✕ Block interaction (χ2(4)¼ 15.34; p< .001). As shown in
Fig. 4, this was explained by lower accuracy in the SB as compared to the
LB (t(376)¼$5.05; p< .001; d¼0.95) orUblocks (t(376)¼$5.11; p< .001;
d ¼ 0.96), but only for long SOA trials. All the other differences did not
reach statistical significance.

3.1.1. Reaction times
Also for RTswe observed a statistically significant effect of SOA onRTs

(χ2(2)¼ 870.4; p< .001), so that participantswere faster in trialswith long
than medium (z ¼ $6.15; p < .001; d ¼ 0.51) or short (z ¼ $28.93; p <
.001; d ¼ 2.63) SOA (with model fitting asymptotic distribution, the
emmeans package computes z statistics to calculate multiple compari-
sons). Participants were also faster in medium than short SOA trials (z ¼
$22.94; p < .001; d ¼ 2.12). We observed a statistically significant effect
of Block on the RTs (χ2(2) ¼ 63.73; p < .001), since participants were
overall faster in SB rather thanU (t(376)¼$3.33; p< .01; d¼ 0.29) and LB
trials (t(376)¼$8.69; p< .001; d¼ 0.77). Furthermore, participants were
overall faster in trials administered within the U than the LB blocks (z ¼
$5,37; p< .001; d¼ 0.48). The SOA✕ Block interaction (χ2(4)¼ 30.09; p
< .001) further confirmed that the global effect affected differently the
three SOA intervals. As displayed in Fig. 4b, the participants were faster in
the SB as compared to theU (z¼$4.55; p< .001; d¼ 0.77) and the LB (z¼
$8.32; p< .001; d¼ 1.43) blocks, aswell as in theU as compared to the LB
(z ¼ $3.76; p < .001; d ¼ 0.66) blocks. Remarkably, these block-related
differences were maximally observed for the short SOA. A similar, but
minor effectwas alsoobserved for themediumSOAtrials, since in this case
participants were slower in the LB as compared to the SB (z ¼ 4.12, p <
.001, d ¼ 0.6) and uniform (z ¼ 3.25; p < .001; d ¼ 0.47) blocks. No sta-
tistically significant block-related differences emerged for the long SOA
trials. Importantly, despite the participants’ performance was signifi-
cantly affected by the block-type, none of them reported having noticed
this changes, thus confirming that the global prediction had an implicit
impact on behaviour.

3.2. EEG results

3.2.1. Expectancy implementation
The permutation analyses in the anticipatory time window in which

the expectancy implementation was investigated revealed a negative
cluster of centro-parietal electrodes (p ¼ .04; cluster size ¼ $43; cluster
statistic ¼ 38; d ¼ $0.32), which exhibited a negativity increase of the
CNV amplitude for the SB-S condition as compared to the LB-S one (see
Fig. 5A; Supplementary Fig. 1). No significant results in the frequency
domain were found in the same time window of ERP and source analyses.
The statistical analyses of the source maps reconstructed over the CNV
significant time window showed a larger recruitment of cortical activity
in the SB-S compared to the LB-S (p< .01). This consisted of a distributed
network including the left intraparietal sulcus (IPS), the bilateral sup-
plementary motor area (SMA), the middle and caudal cingulate cortex
and the bilateral activation of the cuneus (see Fig. 5B).

3.2.2. Response implementation
The statistical analysis highlighted a significant modulation between

250 and 400 ms showing a mean amplitude increase of the P3 potential
expressed over centro-parietal electrodes for the stimuli occurring in the
maximally expected temporal interval (SB–S) compared to those pre-
sented in the less probable (LB-S) (positive cluster: p ¼ .010; cluster size
¼ 70, cluster statistic ¼ 50; negative cluster: p ¼ .013; cluster size ¼ 68,
cluster statistic ¼ 50; d ¼ 0.34) (see Fig. 6A; Supplementary Fig. 1).

The statistical analysis over the TF maps revealed a desynchroniza-
tion increase in the beta band over frontal electrodes (p ¼ .008; cluster
size¼$182; cluster statistic¼ 144) with a preferential left lateralization
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(see Fig. 6B). Furthermore, a significant theta desynchronization increase
has been identified in the SB-S condition compared to the LB-S over
centralized frontal electrodes (p ¼ .008; cluster size ¼ $182; cluster
statistic ¼ 144) (see Fig. 6C).

Finally, the source statistic revealed an engagement of a clear-cut
network spreading over the bilateral motor and premotor areas as well
as over the superior and the middle frontal gyrus (p< .01). Additionally,
significant activations have been identified in the cingulate cortex (see
Fig. 6D).

3.2.3. Expectancy violation
We found a transient, significant negative increase in the ERP activity

between 600 and 700 ms from S1 onset. This latency corresponded to an
interval between 100 and 200 ms following the omission of the

imperative stimulus, which was expected at 500 ms on the basis of the
global prediction (Fig. 7A; Supplementary Fig. 2; Supplementary Fig. 1).
This effect, here defined as the ODP (Mento and Vallesi, 2016) was
observed in the SB-L vs. the LB-L condition and was expressed over a
negative central cluster of electrodes (negative cluster: p ¼ .002 cluster
size ¼ $128, cluster statistic ¼ 70; d ¼ $0.76).

The oscillatory results showed that the expectancy violation elicited a
synchronization in the delta and theta frequency bands (p¼ .015; clusters
size ¼ 186; cluster statistic ¼ 148). Specifically, the delta increase ex-
hibits a diffuse scalp distribution, covering frontal, central and posterior
electrodes while the theta modulation is more localized, closely reflect-
ing the location of the identified ERP effect (see Fig. 7B).

The source analysis revealed a violation-related increase in the elec-
trical activity of the left temporal parietal junction (TPJ), left pre-central

Fig. 4. The figure shows the rainclouds and box plot of the single-subject data for mean accuracy (panel A) and reaction times (panel B) per block-type (SB, U and LB)
and SOA (short, medium and long).
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gyrus and bilateral cuneus (p < .01) (Fig. 7C).

4. Discussion

In this study we investigated how different sources of implicit tem-
poral prediction shape distinct neurocomputational mechanisms under-
lying proactive motor control. To this purpose we recorded and analyzed
the hdEEG activity from healthy participants undergoing the Dynamic
Temporal Prediction task (DTP; Mento et al., 2020; Mento and Granziol,
2020). The DTP is a simple reaction time task purposely designed to elicit
both local (i.e., within-trial stimulus hazard rate) and global (i.e.,
between-block stimulus expectancy bias) temporal prediction. Specif-
ically, the preparatory interval was manipulated within the trial to
generate temporal expectancy on the basis of local probabilistic rules. In
addition, we introduced a higher-order (global) predictive rule by
introducing different types of blocks with different SOA probabilities,
leading to a U (same probability per each SOA), an SB (higher probability
of short SOA), and an LB (higher probability of long SOA) distribution.
The behavioural results revealed that participants were faster at detect-
ing stimuli when these were preceded by long than medium or short
preparatory intervals after a warning signal. This finding replicates pre-
vious literature, confirming that motor promptness is proactively biased
by the local probability of stimulus onset, which accumulates progres-
sively within each single trial, also known as the ‘variable foreperiod
effect’ (Niemi and Naatanen, 1981; Los, 2010; Vallesi, 2010). As ex-
pected, this higher anticipatory preparedness occurred at the expenses of
reactive inhibitory control, given that participants committed more
premature responses in the trials with the longest preparatory foreperiod.
In other words, the more participants waited for the stimulus onset, the
faster they were to detect it and the higher was the number of premature
responses they committed.

In addition to the expected effect of local prediction on behaviour, we
showed that the participants’ performance was shaped by the global

predictive context. This refers to the overall statistical probability to
receive the imperative stimulus after a short or long foreperiod, which in
the present study was implicitly manipulated between-block by creating
block-wise short- and long-biased probabilistic distributions. Importantly,
weobserved that participantswere overall faster at detecting stimuli in the
short-biased blocks (in which most of the foreperiods were short) than in
the long-biases ones. This pattern suggests that proactive motor control is
sensitive to high-level statistical regularities, although people were not
explicitly aware of it. As for local prediction, even in this case a higher
excitatory threshold during the anticipatory interval turned out into a
disruptionof reactive inhibitory control. Thiswas revealed byparticipants
committing more premature responses in long trials when these were
globally less probable, that is, in the short-biased blocks. In other words,
the ability to prepare for a response is guided not only by the local accu-
mulation of preparation but also by the ‘history of events’ temporal
occurrence over time. From a theoretical point of view, our data nicely
support the “multiple trace theory of temporal preparation” (Los et al.,
2014; Los et al., 2017), which assume that a sort of temporal tag is expe-
rienced on each trial and stored to build up a predictive internal model
which, in turn, biases attentional and motor resources trial-by-trial.
Noteworthy, in the context of the present paradigm it may be important
to investigate the presence of transitional effects in the behavioural
adaptation in terms of trial-by-trial task speed changes when shifting be-
tween two global distributions. However, the use of a random block order
presentation did not allow us to further explore any time-on-task learning
effect. We are currently planning a follow-up study to address this
important issue.

To understand the functional bases of global prediction impact on
proactive motor control we analyzed the temporal, oscillatory and spatial
neural signatures of different time windows, corresponding to distinct
computational stages. These included expectancy implementation, ex-
pectancy violation and response implementation. The effect of global
prediction on expectancy implementation was reflected in the block-

Fig. 5. Global prediction effect on expectancy implementation. A) The upper part of the panel represents the statistically significant electrodes (p < .05) derived
from the cluster based permutation analysis. The negative cluster indicates that CNV mean amplitude is significantly larger in the short-biased than in the long-biased
blocks in the last part of the preparation, and this difference is expressed over centro-parietal electrodes. The ERP below the scalp map shows the time series of the
negative cluster for the contrasted conditions. The S1 at 0 ms indicates the ERP time locking. The shaded area around the time series represents the standard error. B)
The panel shows the statistical difference of the source maps in the comparison between SB-S and LB-S mean activity, obtained in the same time window of the CNV
modulation. Significant cluster (p < .01) are reported on a template cortex smoothed at 30%.
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dependent CNV increase around 100 ms before stimulus onset (see
Fig. 5A). Remarkably, this marker was modulated as a function of the
block-type, being on average larger in the trials with high-probable short
intervals (i.e., short-biased blocks) as compared the low-probable ones
(i.e., long-biased blocks). This ERP effect nicely aligned with behavioural
data, showing that globally-induced faster responses are explained by
higher expectancy implementation during the anticipatory interval. The
source-level analysis provided further spatial detail to this finding,
showing that the higher expectancy implementation is supported by a

larger recruitment of a distributed brain cortical network. This circuit
mainly entailed the left inferior parietal region (i.e., around the IPS)
together with bilateral frontal areas (i.e., the SMA and the motor/pre-
motor cortex) (see Fig. 5B). Notably, these findings replicate our previous
electrical source-based studies on the effect of temporal expectancy when
this is prompted by either explicit cueing task (Mento et al., 2015, 2018;
Mento and Vallesi, 2016; Mento, 2017) or implicit manipulations (i.e.,
sequential effects; Mento, 2017). As well, they replicate findings from
independent research groups using other neuroimaging techniques

Fig. 6. Global prediction effect on response implementation. A) The upper panel displays the statistically significant electrodes (p < .05) in reddish or bluish
colors, depending on the direction of the t-test. At the level of response implementation, the P3 amplitude shows a mean amplitude increase for the expected stimulus
(SB–S condition) compared to the unexpected one (LB-S condition). The picture below the scalp map shows the S2-locked time-course of the central positive cluster.
The shaded area around the time series represents the standard error. B) The raster plot displays the power density statistical difference elicited by response
implementation at E22 electrode (FP1 in the 10–20 system; gray dot on the scalp map), separately for the beta1 and beta2 frequency bands. The scalp plots represent
the scalp distribution of these effects. C) The raster plot displays the power density statistical difference elicited by response implementation at E6 electrode (FCz in the
10–20 system; gray dot on the scalp map), for the theta frequency band. The scalp plot represents the scalp distribution of this effect. D) The panel shows the statistical
difference of the source maps in the comparison between SB-S and LB-S mean post target activity (250–400 ms). Significant cluster (p < .01) are reported on a template
cortex smoothed at 30%.
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(Coull and Nobre, 1998; Coull et al., 2000; Coull, 2004; Coull et al., 2013;
Cotti et al., 2011; Nobre, 2001; Davranche et al., 2011; Bolger et al.,
2014). This fronto-parietal network has been advocated to functionally
mediate the feedforward generation and orientation of attentional and
motor resources toward future expected events (see Coull, 2011 for a
review). Crucially, for the first time here we report that a similar network
is involved when attention and motor preparation are forecasted
implicitly on the basis of global predictive information. A theoretical
implication of this is that the implementation of expectancy, whether this
is generated explicitly or implicitly, is independent from the mechanisms
accounting for how this expectation has been generated over time. In
other words, the left fronto-parietal network engaged by expectancy
implementation may be akin a by-product of the internal temporal pre-
dictive model generated on the basis of the environmental experience. In
addition to the above mentioned left fronto-parietal network we reported
an engagement of the cingulate cortex. Although the role of this structure
has been not exhaustively elucidated yet, its involvement may reflect an
enhanced need for reactive inhibitory control (Bokura et al., 2001; Braver
et al., 2001; Shen et al., 2015). That is, the more participants will engage

fronto-parietal activity to speed-up their response proactively, the more
they will need to exert reactive inhibitory control to overcome impulsive
responses.

The expectancy implementation translates into an increase of neural
resources allocated to stimulus detection, as confirmed by a larger P3
following high-than low-predicted targets on the basis of the global
predictive context (see Fig. 6A). The neural sources of this effect
encompassed several anterior brain areas, including the SMA, the SFG
and the ACC. This pattern strongly suggests that part of the network pre-
activated during the expectancy implementation was actually involved in
the response implementation stage too, reflecting a continuity between
the proactive and the reactive motor control.

As an alternative hypothesis, this effect may be the result of an
attenuation of the P300 in the LB-S condition, which may be caused by a
higher amplitude of motor activity recruited following the relatively
unexpected response signal in the LB-S condition. Although interesting,
this idea is not entirely supported by the oscillatory patterns we found.
Indeed, this showed globally-induced predictive effect, with expected
targets triggering an increased beta-band desynchronization in frontal

Fig. 7. Global prediction effect on expectancy violation. A) The upper part of the panel represents the statistically significant electrodes (p < .05) derived from the
cluster based permutation analysis. The central negative cluster indicates that the omission evoked potential (ODP) is significantly larger in the SB vs. LB blocks
between 600 and 700 ms. The ERP below the scalp map shows the S1-locked time course of the central negative cluster. The shaded area around the time series
represents the standard error. B) The raster plot displays the statistical differential power density for expectancy violation at the E55 electrode (Cz in the 10–20 system;
black dot on the scalp map), separately for the delta (right scalp map) and theta (left scalp map) frequency bands. The scalp plots represent the scalp distribution of
these effects. C) The panel shows the statistical difference of the source maps in the comparison between SB-L and LB-L mean activity in the 600–700 ms time window.
Significant cluster (p < .01) are reported on a template cortex smoothed at 30%.
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electrodes contralateral to the response hand (right hand) (see Fig. 6B).
The Beta band power decrease has been usually related to the motor
preparation and execution, and seems to be generated by the contralat-
eral peri-rolandic regions (Jasper and Penfield, 1949; Tzagarakis et al.,
2010; (Pfurtscheller and Berghold, 1989; Sanes and Donoghue, 1993;
Murthy and Fetz, 1996; Pfurtscheller and Neuper, 1997; Formaggio et al.,
2008). Noteworthy, it has been shown that this neurophysiological
mechanism is regulated by the local temporal predictability, either when
this is induced voluntarily or implicitly (Mento et al., 2018). Our data
further expand upon previous findings by showing a beta desynchroni-
zation also for stimuli that are implicitly predicted on the basis of a global
predictive context. We also observed an increase in the frontal theta
power for the LB-S compared to the SB-S (see Fig. 6C). The frontal
midline theta has been interpreted as a general neural hallmark reflecting
cognitive control (Cavanagh and Frank, 2014) and rule violation detec-
tion (Tzur and Berger, 2009, 2007). We speculate that in the LB condi-
tion, where participants were biased to expect stimuli to appear late, the
unexpected delivery of the targets in the short interval represented a
violation of the global rule, requiring an increase of reactive control
demand to adjust behaviour, as suggested by the increase of premature
responses. This interpretation may also explain what we observed for the
expectancy violation stage, which was investigated comparing the brain
activity when the stimulus occurred when expected (LB-L) vs. the rule
violation condition (delayed onset; SB-L). Indeed, the participants
implicitly generate a global internal predictive model which drives them
to be more prepared for the stimulus onset at 500 ms, ergo, a target delay
represents a violation of the expectation based on the global prediction.
The analyses revealed that the missed target presentation yielded a
central negativity peaking between 100 and 200 ms from the expected
target onset time (see Fig. 7A). This neural marker has been defined the
omission-detection potential (ODP), in line with the ERP we previously
reported in response to a violation of local expectancy (Mento and Val-
lesi, 2016). The expectancy violation was also associated to a synchro-
nization increase in the delta and theta frequency bands (see Fig. 7B). A
delta synchronization enhancement has been related to transient inhib-
itory control of contextual novelty independently from the exogenous or
endogenous origin (Prada et al., 2014). A fundamental role of delta has
been also purported in the evaluation of internal and external events
based on their behavioural saliency (Knyazev, 2012). According to this
hypothesis, the augmented delta activity could reflect high behavioral
relevance of a change in task context or in the saliency of a stimulus
(Huster et al., 2013). Moreover, delta power has been shown to be sen-
sible to the stimulus sequence context information (Harper et al., 2016).
On the other side, as abovementioned, the theta frequency band seems to
reflect general control process, conveying the information that some-
thing needs to be done, althoughwithout necessarily carrying the content
of what has to be done (Cavangh and Frank, 2014). In our experimental
design, the theta synchronization may signal the need for an update of
the internal predictive model and a consequential behavioral schema
adjustment, such as the inhibition of a prepared response and a subse-
quent reorienting of the attention to the next time interval. On the other
hand, delta synchronization can be related to the active inhibition of the
pre-activated motor schema in order to adapt the behaviour to the
environmental requests. Accordingly with this hypothesis, we observed
an increased activity over of the left precentral gyrus and the TPJ (see
Fig. 7C). The engagement of the motor cortex could be explained as the
effects of the inhibition of the motor response, on the other side the
involvement of TPJ can be linked to the reorienting process. Neuro-
imaging studies advocated a role for TPJ as a core node of the ventral
attentional control network engaged in exogenous (automatic)
attentional-reorienting towards unexpected visual target (Corbetta and
Shulman, 2002; Chica et al., 2013; Wu et al., 2015; Downar et al., 2002).
A complementary interpretation sustains that TPJ engagement can be
better understood in terms of ‘contextual updating’ of an internal model
of the environmental setting based on new incoming sensory information
(Soltani and Knight, 2000; Polich, 2007; Geng and Vossel, 2013). Our

results nicely support both the above interpretations, since the expec-
tancy violation-dependent TPJ activity may underlie an internal model
update based on the experience of the new sensory information (i.e. the
absence of the expected stimulus onset) and a subsequent attentional
re-orienting toward the next, most probable target onset time.

Overall, the present results suggest that cognitive control of motor
response can be implicitly driven by both first- (local) or second-order
(global) predictive rules. The capability to implicitly extract global sta-
tistical patterns of regularities and use them to shift from different pro-
active control sets is likely linked to the individual cognitive flexibility.
Cognitive flexibility has been recognized as a core function of cognitive
control (Diamond, 2013; Miyake et al., 2000) and considered a top-down
process able to guide the action based on internal goals and external
context, requiring therefore volition and attention to down-regulate
behaviour (Diamond, 2013; Miller and Cohen, 2001; Norman and Shal-
lice, 1986). However, our results better support a most recent theoretical
framework positing that cognitive control can indeed be guided by low
level associative learning processes (Braem and Egner, 2018; Crump and
Logan, 2010; Sali et al., 2015; Farooqui andManly, 2015). As we recently
proposed in the context of proactive motor control development (Mento
and Granziol, 2020), cognitive flexibility can be seen as being rooted in
the learning process of ‘stimulus-response’ associations itself rather than
conceived as the by-product of a sort of homuncular, stand-alone su-
perordinate modular structure. An implication of this view is a putative
overlapping between the neurocomputational mechanisms underlying
voluntary vs. implicit proactive motor control. Here we provide empirical
support to this hypothesis, showing for the first time that, when high or
low motor preparation is implicitly induced by global prediction, the
neural signatures in the spatial, temporal and oscillatory domains largely
mimic those observed for endogenous control induced by explicit pre-
dictive information. This suggests that the two processes are not sepa-
rated but indeed the two faces of the same coin, providing further support
for overcoming the dichotomic contraposition between voluntary-driven
cognitive control vs. automatic processes.

5. Conclusions

In this study we provided electrophysiological evidence suggesting
that the brain is capable to implicitly adjust proactivemotor control based
on a simple, low-level associative learning mechanism, i.e., the probabi-
listic context of an event occurrence. Specifically, the implicit use of global
predictive rule translates into an expectancy implementation (CNV in-
crease) and response implementation adjustment (P3 increase), resulting
in a better behavioural performance (RT decrease). The expectancy
violation induced by the omission of expected target resulted in a general
alerting system activation (fronto-central theta synchronization),
signaling the need to update the internal predictive model, and to inhibit
the pre-activated motor schema (delta synchronization), in order to flex-
ibly adapt motor behaviour. Brain areas engaged during expectancy and
response implementation have been identified as part of the fronto-
parietal network including inferior parietal lobule, SMA, motor and
cingulate cortex. On the other side, left motor cortex and TPJ was mainly
involved in the expectancy violation, probably related to the pre-activated
motor schema inhibition and internalmodel update. The limitations in the
spatial resolution of the source reconstruction requires caution in the
interpretation of the results. Nonetheless, considering the convergence
with other source reconstruction and fMRI studies, the present results
could be used as a starting point for future confirmatory studies. Our lab is
currently doing further research to explore the transitional effects in the
behavioural adaptation when shifting between global distributions,
resulting in the possibility to model individual learning effects.
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