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OVER FINITE SIMPLE GROUPS OF LIE TYPE VI.
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Abstract. We analyse the rack structure of conjugacy classes in simple Suzuki and

Ree groups and determine which classes are kthulhu. Combining this results with

abelian rack techniques, we show that the only finite-dimensional complex pointed

Hopf algebras over the simple Suzuki and Ree groups are their group algebras.

1. Introduction

This paper is part of an ongoing project with N. Andruskiewitsch and G. A. Garćıa,
aimed at understanding finite-dimensional complex pointed Hopf algebras whose group
of grouplikes is a finite simple group of Lie type [1, 2, 3, 4, 5]. We adopt notation and
terminology from these papers, and for further details the reader is referred to them.
We recall that a finite-dimensional pointed Hopf algebra H has a natural filtration
whose associated graded contains a graded associative algebra, the so-called Nichols
algebra B(V ), whose structure depends on a representation V of the finite group G of
grouplike elements of H and a compatible G-grading on V (i.e., V is a Yetter-Drinfeld
module of G). It is therefore crucial for our purposes to classify finite-dimensional
Nichols algebras for Yetter-Drinfeld modules of G.

We recall the following folklore conjecture

Conjecture 1.1. Let G be a finite simple non-abelian group. Then, dimB(V ) = ∞
for every complex Yetter-Drinfeld module V of G. Thus, the only finite-dimensional

complex pointed Hopf algebra whose group of grouplikes is G is the group algebra CG.

In fact Nichols algebras can be defined in a more general setup, whenever we have
an endomorphism c ∈ GL(V ⊗2) for V a vector space, satisfying the braid equation
(c⊗ id)(id⊗c)(c⊗ id) = (id⊗c)(c⊗ id)(id⊗c).

If V is a Yetter-Drinfeld module of G, then c is defined by

c(v ⊗ v′) = g · v′ ⊗ v, v ∈ Vg, v′ ∈ V, V =
⊕
g∈G

Vg.(1.1)

The presentation of B(V ) depends only on the braiding c and not on the Yetter-Drinfeld
module structure itself. Indeed, such a braiding can arise from different actions of
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different groups on V and c can be described in terms of a combinatorial object called
rack and a cocycle for it, [8]. Since important properties of racks are preserved by rack
inclusions and projections, an approach to Nichols algebras done rack-by-rack might be
more convenient than an approach group-by-group. In particular, the reduction to a
(simple) rack is relevant for the problem of classifying finite-dimensional pointed Hopf
algebras whose group of grouplikes is finite but not simple.

In our situation, a simple rack will always be a conjugacy class O in G, with rack
structure g . h = ghg−1 for g, h ∈ O. Conjugacy classes in different groups can be
isomorphic as racks (e.g. unipotent conjugacy classes arising from isogenous algebraic
groups). An important goal is to classify finite-dimensional Nichols algebras for every
conjugacy class in G and every cocycle, and not only those coming from a Yetter-
Drinfeld module of G.

A series of conditions on racks (called type D, F and C) ensuring that the associated
Nichols algebra is infinite-dimensional for any choice of a cocycle were given in [6, 1, 3].
In this case we say that the rack collapses. In group theoretic terms these conditions
are easy to state and well-behaved when passing to subgroups and quotients. The
conjugacy classes that are not of type C, D, or F are called kthulhu: they are essentially
those for which the possible non-empty intersections with a subgroup H ≤ G are either
a single conjugacy class inH or consist of a set of commuting elements. For these classes
we have no general strategy to deal with all cocycles. Yet, one can use the techniques
developed in [6, 7, 10, 14] and the classification in [15] to deal with the Nichols algebras
associated with a kthulhu class and a cocycle coming from a (simple) Yetter-Drinfeld
module of G. These techniques are often enough for dealing with Hopf algebras over
G but might not propagate when passing to overgroups or groups projecting on G.

This paper deals with conjugacy classes in simple Suzuki groups 2B2(q), q > 2 and
Ree groups 2F4(q), q > 2 and 2G2(q), q > 3. They were firstly presented and studied in
[28, 22, 23] but we will use the uniform description in terms of fixed points of a Steinberg
endomorphism as in [11, 20]. Working group-by-group we prove the following result:

Theorem 1.2. Let G be a simple Ree or Suzuki group and let O be the class of x ∈ G.

Then O is kthulhu if and only if

G = 2B2(q) and |x| = 2 or |x| divides q2 + 1;

G = 2F4(q) and |x| 6= 13 and divides q4 − q2 + 1;

G = 2G2(q) and |x| = 3 or |x| 6= 7 and divides q2 − q + 1.

In other words, kthulhu classes are either classes of unipotent elements of prime
order, or they are represented by elements in maximal tori whose normaliser is the
only maximal subgroup containing them. Up to some exception of small order, every
non-trivial element in such a torus lies in a kthulhu class. Then we focus on kthulhu
classes in each group and finally we prove:
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Theorem 1.3. Conjecture 1.1 holds if G is a simple Suzuki or Ree group.

2. Notation and background

For any automorphism σ of an algebraic structure X, we shall denote by Xσ the set of
elements fixed by σ. For G a group, the orbit of an element g ∈ G under the conjugation
action of a subgroup H ≤ G will be denoted by OHg . The superscript will be omitted
if the ambient group is clear from the context. To keep uniformity with the previous
papers in the series, we will denote the conjugation action by: g . h := ghg−1. The
centraliser of an element x ∈ G will be denoted by CG(x), and the set of isomorphism
classes of irreducible representations of a group H will be denoted by Irr(H).

2.1. Preliminaries on racks. In this section we introduce some preliminary notions
on the rack structure specialised to the case of a conjugacy class.

Definition 2.1. ([3, Definition 2.3], [7, Definition 3.5], [1, Definition 2.4]). A conjugacy

class O in a finite group M is said to be of type

C if there are H ≤M and r, s ∈ O ∩H such that

(a) OHr 6= OHs ,

(b) rs 6= sr,

(c) H = 〈OHr , OHs 〉,
(d) either min(|OHr |, |OHs |) > 2 or max(|OHr |, |OHs |) > 4;

D if there are r, s ∈ O such that

(a) O〈r, s〉r 6= O〈r, s〉s ,

(b) (rs)2 6= (sr)2;

F if there are ri ∈ O, for 1 ≤ i ≤ 4 such that

(a) O〈ri, 1≤i≤4〉
ri 6= O〈ri, 1≤i≤4〉

rj , for i 6= j,

(b) rirj 6= rjri, for i 6= j.

A conjugacy class is called kthulhu if it is of none of these types.

The relevance of the above conditions relies on the following results, that we apply
to the special case of conjugacy classes.

Proposition 2.2. ([3, §2.2], [7, §3.2],[1, §2.2]).

(1) If a rack X is of type C, D, or F, then dimB(X,q) = ∞ for every cocycle q

for X, i.e., it collapses.

(2) If a rack contains or projects onto a rack of type C, D, or F, then it is of the

same type.

Remark 2.3. (1) Assume thatM is a finite group withM/Z(M) simple non-abelian.

If m ∈M \Z(M), then there exists g ∈M such that [g .m,m] 6= 1. Otherwise,



4 G. CARNOVALE, M. COSTANTINI

N := 〈OMm 〉 would be an abelian normal subgroup of M and N/(Z(M) ∩ N)

would be an abelian normal subgroup of M/Z(M). Therefore N would be

central, while m 6∈ Z(M), a contradiction.

(2) If r ∈M with |r| odd, and r, s ∈ OMr satisfy rs 6= sr, then for any H ≤M such

that 〈r, s〉 ≤ H we have min(|OHr |, |OHs |) > 2. Indeed, 3 ≤ |O〈r〉s | ≤ |OHs | and

3 ≤ |O〈s〉r | ≤ |OHr |.

Lemma 2.4. Assume M = M1 ×M2 is a finite group such that M1/Z(M1) is simple

non-abelian and let mi ∈ Mi \ Z(Mi) for i = 1, 2. If |m1| is odd, |m2| 6= 2 and m2 is

real in M2, then OM(m1,m2) is of type C.

Proof. By Remark 2.3 (1) there is g1 ∈M1 such that [g1 .m1,m1] 6= 1. Let g2 ∈M2 be

such that g2.m2 = m−1
2 . We set r = (m1,m2), s := (g1, g2).(m1,m2) and H = 〈r, s〉 ≤

〈m1, g1 . m1〉 × 〈m2〉. By construction rs 6= sr and H = 〈OHr ,OHs 〉. The inequality

m2
2 6= 1 implies OHr ∩ OHs = ∅. In addition |OHr | = |O〈m1,g1.m1〉

m1 | ≥ |O〈g1.m1〉
m1 | ≥ 3

because |m1| = |g1 . m1| ≥ 3, and similarly for |OHs |. �

In the following Remark we recall an argument used in [3, Proposition 5.5] in order
to prove that certain classes are kthulhu.

Remark 2.5. Let O be a conjugacy class in a finite group G. Assume that for any

H ≤ G the intersection O ∩ H is either empty, a unique conjugacy class in H, or

consists of mutually commuting elements. Then O is kthulhu. We usually deal with

intersections with subgroups using the list of maximal subgroups as follows. For any

maximal M < G we analyse O∩M . If O∩M = ∅ or consists of commuting elements,

it will be again so for any H ≤ M . Then we show that for the remaining subgroups

O∩M is a single conjugacy class in M and observe that in this case the structure of M

and of its (maximal) subgroups are well-understood. In most cases M will be a finite

simple group of Lie type of the same sort as G but over a smaller field, or PSL2(q).

This way we reduce from the pair (O, G) to the pair (O ∩M,M). The class O ∩M
will usually have the same features as O had in G and we proceed inductively.

In order to implement the above mentioned analysis, we will make use of the following
standard observation.

Remark 2.6. Let M = N o 〈a〉 be a finite group with CN(a) = {1}.
(1) We have the equality OMa = Na. Indeed, the inclusion ⊂ follows from normality

of N , and CN(a) = {1} implies that the two sets have the same cardinality.

(2) For any H ≤M such that a ∈ H, then OHa = (H ∩N)a. Indeed, if a ∈ H, then

H = (N ∩H) o 〈a〉, so (1) applies.
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(3) If G is a finite group containing M and such that OGa ∩ M ⊂ Na, then for

any H ≤ M with a ∈ H we have OGa ∩ H = OHa . Indeed, by (2) there holds

OGa ∩H ⊂ (N ∩H)a = OHa ⊂ OGa ∩H, whence the equality.

2.2. Nichols algebras of Yetter-Drinfeld modules and abelian subracks. In
this section we provide some necessary ingredients for dealing with Conjecture 1.1.
The first key observation is the following.

Remark 2.7. ([7, §1.2]) Let H be a finite group. If dimB(V ) = ∞ for every simple

Yetter-Drinfeld module V of H, then dimB(V ′) =∞ for every Yetter-Drinfeld module

V ′ of H.

Simple Yetter-Drinfeld modules are parametrized by pairs (O, ρ) where the O = OHg
is a conjugacy class in H and is the support of the grading, and ρ ∈ Irr(CH(g)). If
ρ : CH(g) → GL(W ), the corresponding simple Yetter-Drinfeld module M(O, ρ) has
H-module structure and grading defined by:

M(O, ρ) = IndHCH(g)ρ = CH ⊗CCH(g) W, m⊗W ⊂M(O, ρ)m.g, m ∈ H.(2.1)

If O is of type C, D, or F, then Proposition 2.2 (1) ensures that dimB(M(O, ρ)) =∞
for any choice of ρ ∈ Irr(CH(g)). For a kthulhu conjugacy class O = OHh the conclusion
of Proposition 2.2 (1) cannot be inferred. We recall a strategy developed in [6, 7, 10, 14]
and references therein to estimate the dimension of B(M(O, ρ)).

Assume A ≤ CH(g) is an abelian subgroup containing g. Then, O ∩A is an abelian
subrack of O and ρ(A) stabilises a line Cv in W : we call χ its character. We set

O ∩ A = {x0 := g0 . g, . . . , xr := gr . g}, qij := χ(g−1
j gi . g).(2.2)

Then MA = spanC(gi ⊗ v, i = 0, . . . , r) is a braided subspace of M(O, ρ), i.e., c(MA ⊗
MA) = MA ⊗MA, where c is as in (1.1). The restriction of c to MA ⊗MA is given by
c((gi⊗v)⊗(gj⊗v)) = qij(gj⊗v)⊗(gi⊗v), i.e., it is of diagonal type with qii = χ(g) for
every i. Now B(MA) is a subalgebra of B(M(O, ρ)). We can invoke the classification
results for finite-dimensional Nichols algebras for braided spaces of diagonal type in
[15], and if dimB(MA) =∞ we can conclude that dimB(M(O, ρ)) =∞.

2.3. Construction of the groups. Let p be a prime, h ≥ 0, q = p2h+1 and G a
simply-connected simple algebraic group over Fp. We recall the construction of the
groups 2B2(q), 2F4(q) and 2G2(q) from [11, §13], as fixed point sets of certain Steinberg
endomorphism F in G. Let T be a fixed maximal torus in G, with corresponding
root system Φ, root subgroups Uα for α ∈ Φ, and Weyl group W = NG(T)/T. We
fix an isomorphism xα : Fp → Uα for each α ∈ Φ and a set of simple roots ∆, with
corresponding positive roots Φ+. The group W acts by isometries on E = R⊗Z ZΦ.

We will focus on the cases in which the pair (Φ, p) is either (B2, 2), (F4, 2) or (G2, 3).
In the latter case we assume xα is as in [11, §12.4].



6 G. CARNOVALE, M. COSTANTINI

The non-trivial symmetry of the Coxeter graph of G induces a permutation θ : Φ→
Φ, [11, §12.3, 12.4]. We denote by τ the unique involutory isometry of E such that
τ(α) ∈ R>0θα for all α ∈ Φ:

τ(α) =

{
1√
2
θα if α is short,√

2 θα if α is long,
for Φ of type B2 or F4,

τ(α) =

{
1√
3
θα if α is short,√

3 θα if α is long,
for Φ of type G2.

There is a graph automorphism ϑ of G preserving T and such that ϑ(Uα) = Uθα for
all α ∈ Φ, [11, §12.3, 12.4]. It is defined as follows on root subgroups:

ϑ(xα(c)) =

{
xθα(cp) if α is short,

xθα(c) if α is long.

Let Frph be the field automorphism of G induced by the automorphism λ 7→ λp
h

of

Fp and let F : G → G be the Steinberg endomorphism F = ϑ ◦ Frph = Frph ◦ϑ. Then
G := GF = {x ∈ G | F (x) = x} are the Suzuki groups for G of type B2 and the Ree
groups for G of type F4 or G2.

Note that

F 2 : xα(ξ) 7→ xα(ξq)

for every α ∈ Φ, so that G is contained in B2(22h+1), F4(22h+1), G2(32h+1) respectively.
For convenience, we denote G by 2B2(q), 2F4(q), 2G2(q) respectively. Notice that this
is not the only notation for the Suzuki or Ree groups, often the convention q2 = p2h+1

is used. We have∣∣2B2(q)
∣∣ = q2(q − 1)(q2 + 1),

∣∣2G2(q)
∣∣ = q3(q − 1)(q3 + 1),∣∣2F4(q)

∣∣ = q12(q − 1)(q3 + 1)(q4 − 1)(q6 + 1).

We recall that these groups are simple for h ≥ 1.
Let B ≤ G be the Borel subgroup generated by T and the Uα, α ∈ Φ+, let B− ≤ G

be the opposite Borel subgroup and let U and U− be their unipotent radicals. Every
unipotent conjugacy class in G is represented by an element in U and, for any fixed
ordering of Φ+, every element in U can be uniquely written as a product

∏
γ∈Φ+ xγ(cγ)

for cγ ∈ Fq. Also U := UF and U− := (U−)F are Sylow p-subgroups of G, [20, Corollary
24.11] so all unipotent conjugacy classes in G intersect U and U−. We recall that every
F -stable maximal torus in G is of the form gTg−1 for some g ∈ G such that ẇ :=
g−1F (g) ∈ N(T). Two such tori are G-conjugate if and only if the corresponding Weyl
group elements are F -conjugate, [20, Proposition 25.1]. We denote by Tw a maximal
torus whose associated Weyl group element is w = ẇT ∈ W and we set T w = TFw.
Every semisimple element is contained in some T w, for some w ∈ W , [20, Proposition

26.6]. There is a formula for the order of T w. Let Y = Hom(Fp
×
,T) be the cocharacter
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group of T. Then W and F act on Y , hence on Y ⊗R and |T w| = | det
Y⊗R(w−1◦F−1)|,

see [20, Proposition 25.3 (c)]. An element σ ∈ W has a representative in NG(Tw) if
and only if σ ∈ CW (τw), and |NG(Tw)/T w| = |CW (τw)|, [20, Proposition 25.3 (a)].

Remark 2.8. When dealing with mixed classes, i.e., classes of elements x ∈ G that

are neither semisimple (i.e. of order coprime with p) nor unipotent (i.e. of order a

power of p) we adopt the strategy developed in [5, §3]. Let x = xsxu be the Jordan

decomposition of x. We recall that [CG(xs), CG(xs)] is a semisimple group whose root

system has a base that can be indexed by a set of nodes Σ in the extended Dynkin

diagram of G, [20, Remark 14.5]. In addition, Σ must be stable by Ad(ẇ) ◦ F for

some w ∈ W . Since W preserves the root lengths and ϑ does not, if it is non-empty,

Σ, identified with the corresponding subset of Φ, can only have the same amount of

short and long roots, providing a strong restriction on the possibilities for Σ. Also,

[CG(xs), CG(xs)]
F ' 〈T,U±α | α ∈ Σ〉Ad(ẇ)F and the following natural rack inclusion

O[CG(xs),CG(xs)]F

xu ' xsO[CG(xs),CG(xs)]F

xu = O[CG(xs),CG(xs)]F

xsxu ⊂ OGF
xsxu(2.3)

shows that if O[CG(xs),CG(xs)]F

xu is not kthulhu, then OG
x is again so.

Remark 2.9. Since in B2, F4 and G2 the longest element w0 in W is − id, for any

w ∈ W there is always a representative of w0 in NG(Tw) and therefore all semisimple

classes in G are real.

Remark 2.10. Since X ± 1 divides X2m+1 ± 1, if q = q2m+1
0 and (d, qk ± 1) = 1, then

(d, qk0 ± 1) = 1. So, if an element of 2B2(q), 2F4(q) or 2G2(q) lies in a torus whose order

is coprime to qk ± 1, and it also lies in a subgroup isomorphic to 2B2(q0), 2F4(q0) or
2G2(q0), respectively, then it will lie in a torus therein whose order is coprime to qk0 ±1.

Remark 2.11. If F ′ is a Steinberg automorphism of G such that GF ′ ≤ G and g ∈ G

is semisimple, then OG
g ∩GF ′ ⊂ OG

g ∩GF ′ . Since OG
g is semisimple, the right hand side

is either empty or a unique semisimple conjugacy class in GF ′ by [27, §3.4 (c), p. 177],

so the same holds for the left hand side.

3. The Suzuki groups 2B2(22h+1)

In this section p = 2, q = 22h+1, h ≥ 0, G = 2B2(q) a Suzuki group. We recall some
basic facts from [28].

We will need the automorphism δ = Fr2h+1 of Fq, so that δ2 = Fr2 and Fδq = F2.

Remark 3.1. (1) Let k ∈ Fq be such that kδ(k) = 1. Then, 1 = δ(kδ(k)) = δ(k)k2,

so k = k2 ∈ F2.
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(2) The group morphism ϕ : F×q → F×q given by ϕ(k) = kδ(k) is injective, therefore

it is an isomorphism.

We realize G = Sp4(F2) as the group of matrices in GL4(F2) preserving the bilinear

form associated with the matrix J =

(
0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

)
. Then T can be chosen to be the

subgroup of diagonal matrices and B the subgroup of upper-triangular matrices. The
Sylow 2-subgroup U− of G is given by the matrices of the form

U(a, b) :=


1
a 1

aδ(a) + b δ(a) 1
a2δ(a) + ab+ δ(b) b a 1

 , a, b ∈ Fq.

with multiplication rule

U(a, b)U(c, d) = U(a+ c, aδ(c) + b+ d), a, b, c, d ∈ Fq,(3.1)

For any k ∈ F×q we have tk := diag(ξ1, ξ2, ξ
−1
2 , ξ−1

1 ) ∈ T where δ(ξ1) = kδ(k) and
δ(ξ2) = k. There holds:

t−1
k U(a, b)tk = U(ak, bkδ(k)), a, b ∈ Fq, k ∈ F×q .(3.2)

It follows from [28, Proposition 1, 2, 3, 7] that if x is a non-trivial element of a Sylow
2-subgroup Q of G, then CG(x) ≤ Q. In particular, the order of the elements in G is
either a power of 2 or odd.

It follows from (3.1) that all non-trivial involutions are conjugate to an element of
the form U(0, b), so by Remark 3.1 and (3.2) all non-trivial involutions are conjugate.

The elements of odd order are semisimple, and therefore their conjugacy classes are
represented by an element in a maximal torus T w, where w runs through a set of
representatives of F -conjugacy classes in W . Up to conjugacy they are: T , of order
q−1 and the two cyclic subgroups T s1 and T s1s2s1 whose orders are 22h+1±2h+1 + 1 =
q ±
√

2q + 1, so |T |, |T s1| and |T s1s2s1| are mutually coprime.
The maximal subgroups of G are the conjugates of the following subgroups, [28,

Theorems 9, 10]:

(1) B− = T n U− of order q2(q − 1);
(2) NG(T) of order 2(q − 1);
(3) NG(Ts1) and NG(Ts1s2s1) of order 4(q ±

√
2q + 1);

(4) 2B2(22m+1) for (2h+ 1)/(2m+ 1) a prime number.

3.1. Collapsing racks.

Lemma 3.2. If O consists of elements of order 2, then O is kthulhu.

Proof. The class O is contained in a unipotent class in Sp4(Fq) and all classes of non-

trivial involutions therein are kthulhu [2, Lemma 4.22(2), Lemma 4.26], [3, Lemma

2.14]. We conclude by [4, Lemma 2.5]. �
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Lemma 3.3. Assume h > 0. If O consists elements of order 4, then it is of type F.

Proof. By (3.1) any element of order 4 has a representative r = U(a, b) for some a 6= 0,

a, b ∈ Fq. Since h > 0, there are distinct kj ∈ F×q for j = 0, 1, 2, 3 and we set

rj := tkj . r = U(akj, bkjδ(kj)). For any c, d ∈ Fq we have U(c, d)−1 = U(c, d′) for some

d′ ∈ Fq and U(c, d) . U(a, b) = U(a, b′) for some b′ ∈ Fq. As 〈ri, i = 0, 1, 2, 3〉 ≤ U−,

we deduce that O〈ri, i=0,1,2,3〉
ri 6= O〈ri, i=0,1,2,3〉

rj for i 6= j. In addition,

rirj = U(a(ki + kj), aδ(a)kiδ(kj) + bkiδ(ki) + bkjδ(kj))

so rirj = rjri if and only if kik
−1
j = δ(kik

−1
j ) if and only if ki = kj if and only if i = j.

Whence, O is of type F. �

Lemma 3.4. Let 1 6= t ∈ T .Then OG
t is of type C.

Proof. Recall that t 6= t−1 ∈ OG
t by Remark 2.9 and that CG(U(1, 0)) ≤ U−, [28,

Proposition 1, 2, 3, 7]. It follows from Remark 2.6 that U− . t = tU− ⊂ OG
t and

similarly, U− . t−1 = t−1U− ⊂ OG
t . Let H := 〈t, U−〉, r = t, s = t−1U(1, 0) ∈ OG

t ∩H.

Then, rs 6= sr by (3.2). Also, OHr = OU−t = tU− and OHs = OHt−1 = OU−t−1 = t−1U−, the

two sets are clearly disjoint and

〈OHr ,OHs 〉 = 〈tU−, t−1U−〉 = 〈t, U−〉 = H.

In addition |OHr | = |OHs | = |U−| = q2 > 2, so OG
t is f type C. �

Remark 3.5. All classes in 2B2(2) are khtulhu. Indeed, |2B2(2)| = 20 and its elements

have either order 2, 4 or 5. We realize it as the subgroup of matrices m(a, x) = ( 1 0
x a )

where x ∈ F5 and a ∈ F×5 . Let g ∈ 2B2(2) with |g| = 5. Then, g = m(0, x) for some

x ∈ F5 and all such elements form an abelian normal subgroup of 2B2(2). Hence, all

elements in the class of g commute, so classes of elements of order 5 cannot be of type

C, D nor F. Let now |g| = 4. Then g = m(a, x), for a = 2 or 3 in F5 and some x ∈ F5

and h ∈ Og if and only if h = m(a, y) for some y ∈ F5. But then 〈g, h〉 contains

elements of order 4 and it is either cyclic of order 4 or the whole group. Hence, Og is

kthulhu. For non-trivial involutions we invoke Lemma 3.2.

Lemma 3.6. The non-trivial classes represented by elements in the subgroups T s1 and

T s1s2s1 are kthulhu.

Proof. We use the inductive argument from Remark 2.5. Let T ′ be one of these tori,

let g ∈ T ′ \ {1} and let O = OG
g . Since |g| divides (q +

√
2q + 1)(q −

√
2q + 1) =

q2 + 1, a maximal subgroup M of G meeting O cannot be conjugate to B− or NG(T).

Also by order reasons, if it meets NG(Tw) for w = s1 or s1s2s1, then T ′ = T w and
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since NG(Tw) ' T w o C4, all its elements of odd order are contained in T w. Thus,

O∩NG(Tw) consists of commuting elements. We finally consider M = 2B2(22m+1) with

(2h+1)/(2m+1) a prime. If M ∩O 6= ∅, then it is a unique semisimple conjugacy class

in M by Remark 2.11. By Remark 2.10, this class is represented in a torus of order

coprime with 22m+1 − 1, i.e., a torus as in the hypotheses. If m = 0, the intersection

is non-trivial only if |g| = 5 and by Remark 3.5 it consists of commuting elements.

Arguing by induction on the number of prime factors of 2h + 1, we conclude that for

any K ≤ G, the intersection K ∩O is either empty, a conjugacy class in K, or consists

of commuting elements. �

Remark 3.7. Let u ∈ G be a non-trivial involution. Then, there exists v ∈ OG
u such

that (uv)2 6= (vu)2. Indeed, since there is a unique conjugacy class of elements of order

2 in G, we may always assume that u ∈ 2B2(2) and a direct computation using the

realisation in Remark 3.5 shows that any v ∈ O
2B2(2)
u \ {u} has the required property.

3.2. Nichols algebras over Suzuki groups. In this subsection we consider Nichols
algebras attached to simple Yetter-Drinfeld modules M(O, ρ) for O a kthulhu class in
G and we prove Theorem 1.3 for simple Suzuki groups for h > 0.

Proposition 3.8. Let g ∈ G with |g| 6= 1 and odd. Then dimB(Og, ρ) =∞ for every

irreducible representation ρ of CG(g).

Proof. Every such element is semisimple, hence real by Remark 2.9. The claim follows

from [10, Lemma 2.2]. �

Lemma 3.9. Assume h > 0. Let H = 〈T , U(0, b), b ∈ Fq〉 = TZ(U−) and let

O = OHU(0,1). Then dimB(M(OHU(0,1), ρ)) =∞ for every ρ ∈ IrrCH(U(0, 1)).

Proof. The proof is obtained mutatis mutandis from the proof of [14, Proposition 3.1,

case c2]. We sketch it here for completeness’ sake and we use notation and strategy from

Subsection 2.2. For k ∈ F×q we consider the elements tk . U(0, 1) = U(0, ϕ(k)−1). By

Remark 3.1 all non-trivial involutions in H are conjugate to U(0, 1) by an element in T

and A := CH(U(0, 1)) = Z(U−) ' (Fq,+) is abelian. We parametrise the elements in

O = O∩A by elements in H/Z(U−) ' T ' F×q . Let χ be an irreducible representation

of Z(U−), i.e., a group morphism χ : (Fq,+) → C×. The image is in {±1}. Assume

that dimB(M(O, χ)) <∞. The coefficients of the braiding associated with (O, χ) are

given by qkl = χ(t−1
l tk.U(0, 1)) = χ(U(0, ϕ(lk−1)) so qklqlk = χ(U(0, ϕ(kl−1)+ϕ(lk−1))

for every k, l ∈ F×q . By [10, Remark 1.1] we necessarily have qkk = χ(U(0, 1)) = −1 for

every k ∈ F×q . Let k ∈ Fq − F2 and let d be its multiplicative order. Then d ≥ 3 and
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if we had q1kqk1 = −1, then we would have a cycle in the generalised Dynkin diagram

associated with the braiding: q1kqk1 = qkk2qk2k = · · · = qkd−1,1q1kd−1 = −1. This is

excluded by [14, Lemma 2.3]. Thus, q1kqk1 = χ(U(0, ϕ(k) + ϕ(k−1))) = 1. However,

the additive subgroup of Fq generated by the elements of the form ϕ(k) + ϕ(k−1),

k ∈ Fq − F2 contains 1, so this would imply χ(U(0, 1)) = 1, a contradiction. �

Proof of Theorem 1.3 for simple Suzuki groups. Proposition 2.2 covers the cases of
simple Yetter-Drinfeld modules associated with classes of elements of odd order or of
order 4 by Lemma 3.3 and Proposition 3.8. We consider the class O of non-trivial
involutions, represented by U(0, 1). Lemma 3.9 ensures that dimB(M(OHU(0,1), χ)) =

∞ for every χ ∈ IrrCH(U(0, 1)). By [6, Lemma 3.2], dimB(M(O, ρ)) = ∞ for every
ρ ∈ IrrCG(U(0, 1)). We conclude by Remark 2.7. �

4. The Ree groups 2F4(22h+1)

In this section p = 2, q = 22h+1, h ≥ 0, G = 2F4(q) a Ree group of type F4.

4.1. Collapsing racks. In this Subsection we list the kthulhu and non-kthulhu con-
jugacy classes in G, when it is simple. We consider unipotent, semisimple and mixed
classes separately.

4.1.1. Unipotent classes. We make use of the list of representatives of each conjugacy
class in [24, Table II] and notation from [23, 7, 13] and [16], with the understanding
that our q is q2 therein. Roots in Φ+ are indicated as follows: an index j stands for
εj; the symbol i± j stands for εi± εj and 1± 2± 3± 4 stands for 1

2
(ε1± ε2± ε3± ε4).

For 1 ≤ i ≤ 12, and t ∈ Fq there are elements αi(t) ∈ U such that every u ∈ U

can be written uniquely as an ordered product u =
∏12

i=1 αi(di) with di ∈ Fq for each
i = 1, . . . , 12. Commutation rules between αi(t) and αj(t) are given in [25]: the case
(i, j) = (2, 3) contained a mistake pointed out in [19] and corrected in [16, Table 1].
We will also make use of the subsets Ui := {αi(t) | t ∈ Fq} for 1 ≤ i ≤ 12 and of the

subgroups U≥i :=
∏12

j=i Uj E U .

Lemma 4.1. Any non-trivial unipotent conjugacy class in G, different from the one

represented by u1 in [24, Table II] is of type D.

Proof. Each representative of the 19 unipotent conjugacy classes of G in [24, Table II]

is defined over F2, i.e. it lies in the subgroup 2F4(2). Conjugacy classes in Tits’ group
2F4(2)′ and in 2F4(2) = Aut(2F4(2)′) are studied in [7] and [13] respectively. By [7,

Table 2] and [13, Table 1] every conjugacy class of 2F4(2), apart from the one labeled

by 2A, is of type D. This class is represented by a non-trivial involution in Z(U), hence

it is the one represented by u1 = α12(1). �

It has been shown in [13, Proposition 4.1] that the class of u1 is not of type D. Next
Lemma deals with this class provided h > 0.
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Lemma 4.2. Let h > 0. The class O of u1 is of type F.

Proof. Observe that u1 = α12(1) = x1(1)x1+2(1). The Weyl group element s1−3s2−4 lies

in CW (τ) so it has a representative σ̇ in 2F4(2)∩NG(T). Hence σ̇ .u1 = x3(1)x3+4(1) =

α2(1) ∈ O. For 1 ≤ j ≤ 4, let ξj be distinct elements of Fq. We consider the involutions

α3(ξj) = x1−2−3−4(ξ2h

j )x2−3(ξj) ∈ U and we set

rj := α3(ξj) . u1 = α3(ξj) . α2(1) ∈ O.

Thus,

rirj = α3(ξi)α2(1)α3(ξi)α3(ξj)α2(1)α3(ξj) = α3(ξi)α2(1)α3(ξi + ξj)α2(1)α3(ξj)

where we have used Chevalley’s commutator formula. Hence rirj = rjri if and only if

α3(ξi + ξj)α2(1)α3(ξi + ξj)α2(1) = α2(1)α3(ξi + ξj)α2(1)α3(ξj + ξi)

and this happens if and only if the commutator of α3(ξi+ξj) and α2(1) is an involution.

Making use of the commutation relations in [25, 16] we deduce

(α2(1)α3(η)α2(1)α3(η))2 = (α5(η2h+1

)α6(η)α7(η)α8(η2h+1+1)α9(η2h+1+1))2 ∈ α10(η)U≥11

so rirj 6= rjri whenever i 6= j. By direct computation:

ri = α2(1)α5(ξ2h+1

i )α6(ξi)α7(ξi)α8(ξ2h+1+1
i )α9(u2h+1+1) ∈ U2U5U≥6

and V = U2U5U≥6 is a subgroup of U with V/U≥6 abelian. Let H = 〈r1, r2, r3, r4〉.
Then H ≤ V and so OHri ⊂ O

V
ri
⊂ α2(1)α5(ξ2h+1

i )U≥6. Since ξ2h+1

i = ξ2h+1

j only if

ξi = ξj, the classes OHri for i 6= j are disjoint and O is of type F. �

4.1.2. Mixed classes.

Lemma 4.3. Let O be the class of an element x ∈ G with Jordan decomposition

x = xsxu with xs, xu 6= 1. If x2
u 6= 1, then O is not kthulhu.

Proof. Using strategy and notation from Remark 2.8 we see that Σ can only be of type

A1× Ã1, A2× Ã2, or B2. By looking at the action of F and the order of the centralisers

given in [24, Table IV] we deduce that [CG(xs), CG(xs)]
F is either PSL2(q), PSU3(q),

or 2B2(q) and xu lies in there. By [4, Proposition 5.1] and Lemma 3.3 we see that if

x2
u 6= 1, then O[CG(xs),CG(xs)]F

xu is not kthulhu. �

Lemma 4.4. Let O be the class of an element x ∈ G with Jordan decomposition

x = xsxu with xs, xu 6= 1. Then O is not kthulhu.
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Proof. By Lemma 4.3 we may assume that x2
u = 1. We argue as in the proof of [5,

Lemma 3.2] to show that O is of type D. Since w0 = − id, there is representative

ẇ0 ∈ NG(T̃) for every F -stable maximal torus T̃ containing xs. Then, ẇ0 . x =

x−1
s x′u, where xs 6= x−1

s because xs 6= 1 and x′u is a non-trivial involution in K :=

[CG(x−1
s ), CG(x−1

s )]F = [CG(xs), CG(xs)]
F . The latter is in turn isomorphic to PSL2(q),

PSU3(q) or 2B2(q). All non-trivial involutions are conjugate in these groups, so OKx′u =

OKxu . By [4, Lemma 3.6(a)], [5, Lemma 2.9] and Remark 3.7 there is v ∈ OKx′u such that

(xuv)2 6= (vxu)
2. Thus, s := x−1

s v ∈ OG
x and we have:

(xs)2 6= (sx)2, O〈x,s〉x ⊂ xsOKxu , O〈x,s〉s ⊂ x−1
s OKxu , xsOKxu ∩ x

−1
s OKxu = ∅.

The claim follows. �

4.1.3. Semisimple classes. The conjugacy classes of maximal tori in G, the correspond-
ing Weyl group elements, their orders and the order of their normalisers are listed in
[24, §3, Table III]. They are represented by T i, for 1 ≤ i ≤ 11, with |T i| = di as follows:

d1 = (q − 1)2, d2 = (q − 1)(q + 1),

d3,4 = (q − 1)(q ±
√

2q + 1), d5 = (q2 + 1),

d6,7 = (q ±
√

2q + 1)2, d8 = (q + 1)2,

d9 = (q2 − q + 1), d10 = (q2 −
√

2q3 + q −
√

2q + 1),

d11 = (q2 +
√

2q3 + q +
√

2q + 1).

We denote by Ti, for i ≤ 11 the corresponding F -stable tori in G. Observe that

(q −
√

2q + 1)(q +
√

2q + 1) = q2 + 1,

(q3 + 1) = (q2 − q + 1)(q + 1),

(q2 −
√

2q3 + q −
√

2q + 1)(q2 +
√

2q3 + q +
√

2q + 1) = q4 − q2 + 1,

(q4 − q2 + 1)(q2 + 1) = (q6 + 1).

According to [19, §2.2], G contains subgroups isomorphic to 2B2(q) × 2B2(q) and
SL2(q) × SL2(q) and all such isomorphic subgroups are conjugate. By looking at the
maximal tori in 2B2(q) and SL2(q) we see that every torus T i for i ≤ 8 is contained in
a subgroup M = M1×M2 with either M1 'M2 ' 2B2(q) or M1 'M2 ' SL2(q). This
inclusion induces a decomposition of T i into a product of 2 subtori T i,Mj

:= T i ∩Mj

for j = 1, 2 whose orders follows from the decomposition of di given above. If we write
xs = (x1, x2) for an element in T i, we are referring to this decomposition. Also, we
shall write Ti,Mj

for the corresponding tori in Sp4(Fq) or SL2(Fq).

Lemma 4.5. Let O be the class of an element of order 3 in G. Then, O is of type D.
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Proof. According to [24] there is a unique conjugacy class of elements of order 3 in G.

Recall that |2F ′4(2)| = 211 · 33 · 52 · 13, so the class O meets 2F ′4(2) ≤ 2F4(2) ≤ 2F4(q).

Since the only non-trivial class of 2F ′4(2) which is not of type D consists of involutions

[7], we have the statement. �

Lemma 4.6. Assume h > 0. Let O = OG
xs for xs = (x1, x2) ∈ T i for i ≤ 8. If

x1 6= 1, x2 6= 1, then, O is of type C.

Proof. We consider the inclusion of T i ≤M1 ×M2 with Mj ' SL2(q) or Mj ' 2B2(q)

for j = 1, 2. The statement follows from Lemma 2.4 and Remark 2.9. �

Lemma 4.7. Assume h > 0. Let O = OG
xs for xs = (x1, x2) ∈ T i \ 1 for i ≤ 8. If

x1 = 1 or x2 = 1, and |xs| 6= 3, then, O is of type C.

Proof. We assume that x1 6= 1, x2 = 1, the other case is treated the same way. If

OG
xs ∩T i contains x′s = (x′1, x

′
2) with x′1 6= 1, x′2 6= 1 then we invoke Lemma 4.6. Hence

we assume from now on that OG
xs ∩ T i = (OG

xs ∩ T i,M1) ∪ (OG
xs ∩ T i,M2). The inclusion

xs ∈ M1 ×M2 imply that xs ∈ T i for i ∈ {1, 6, 7, 8}. Also, if xs = (x1, 1) ∈ T 1, then

it lies in a split torus in SL2(q) = PSL2(q) or 2B2(q) and the claim follows either from

[3, Lemma 3.9] or Lemma 3.4.

Thus, for the rest of the proof xs ∈ T i for i = 6, 7, 8, and |xs| 6= 3. Observe that

CG(xs) ⊃ T i,M1 ×M2, so CG(xs) is not abelian. The structure of the centralisers of

semisimple elements in G is described in [24, Theorem 3.2] and most of them are tori.

By inspection we see that xs is necessarily conjugate to some tj from [24, Table IV], with

j ∈ {5, 7, 9} and in these cases CG(ti) = T i,M1M2 with |T i,M1| ∈ {q + 1, q ±
√

2q + 1},
so x1 is regular in M1. Observe that M1 ' M2 ' PSL2(q) when xs ∈ T 8 and xs is

conjugate to t5 and M1 ' M2 ' 2B2(q) when xs ∈ T 6 or T 7 and in these cases xs is

conjugate to t9 or t7.

The inclusion ONG(Ti)
xs ⊆ OG

xs ∩ T i yields the inequality

|OG
xs ∩ T i| ≥ |NG(Ti)/(NG(Ti) ∩ CG(xs))| = |NG(Ti)/T i,M1NM2(Ti,M2)|

= |NG(Ti)/T i|/|NM2(Ti,M2)/T i,M2|.

By [24, §3, Table III] the quotient NG(Ti)/T i has order 96 (for i = 6, 7) or 48 (for

i = 8). In addition, |NM2(Ti,M2)/T i,M2| equals either 4 (for i = 6, 7) or 2 (for i = 8).

In all cases, |OG
xs ∩ T i| ≥ 24.

On the other hand, |OM1×M2
xs ∩ T i| = |OM1

xs ∩ T i,M1| cannot exceed the order of the

Weyl group of Sp4(Fq) for i = 6, 7 and of SL2(Fq) for i = 8, so |OM1×M2
xs ∩ T i| ≤ 8.
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This shows that in our situation:

OM1×M2
xs ∩ T i,M1 = OM1×M2

xs ∩ T i ( OG
xs ∩ T i = (OG

xs ∩ T i,M1) ∪ (OG
xs ∩ T i,M2).

The estimate |OM1×M2
xs ∩ T i| ≤ 8 and its proof hold as well as if we replace xs by any

x′s in OG
xs ∩T i,M1 or in OG

xs ∩T i,M2 . Therefore the elements in OG
xs ∩T i lie in at least 3

distinct (M1×M2)-orbits and each of these is contained either in M1 or in M2. Without

loss of generality we may assume that two of them are contained in OG
xs ∩M1, say OM1

s

and OM1

s′ , with s, s′ ∈ T i,M1 and by construction both regular in M1. By Remark 2.3

(1) there is g ∈M1 such that r := g . s′ 6∈ CM1(s
′) = T i,M1 = CM1(s) so [r, s] 6= 1. By

Remark 2.3 (2) the class is of type C with H = 〈r, s〉. �

Lemma 4.8. Assume h > 0. Let O = OG
xs for xs ∈ T 9 \ 1 and |xs| 6= 3. Then O is of

type C.

Proof. According to [19], G contains a subgroup isomorphic to SU3(q), which contains

a maximal torus of order d9, so we may assume xs ∈ T 9 ≤ SU3(q). This torus consists

of elements in SU3(q) which are conjugate to diagonal matrices in SL3(Fq) of the form

diag(x, xq
2
, x−q), for xq

2−q+1 = 1. An element of this form could be real in SU3(q)

only if the set of its eigenvalues would coincide with its inverse set, which is impossible

in our case, so OSU3(q)
xs is not real. However, O is real in G by Remark 2.9. Since

|xs| 6= 3, it is not central in SU3(q) so by Remark 2.3 (1), there is g ∈ SU3(q) such

that [g . x−1
s , xs] 6= 1. We take r = g . x−1

s , s = xs and H = 〈r, s〉 ≤ SU3(q) so

OHs 6= OHr and since |xs| is odd, O is of type C by Remark 2.3 (2). �

Lemma 4.9. Let O = OG
xs for xs ∈ T i \ 1 and i = 10, 11. If |xs| 6= 13, then O is

kthulhu.

Proof. The list of conjugacy classes of maximal subgroups in G is the main result in

[19] (note that q2 there is our q). We use Remark 2.5 and consider the intersection

of O with all maximal subgroups of G. Using coprimality of q4 − q2 + 1 with q,

(q2 ± 1) and (q2 − q + 1), we verify that O can have non-empty intersection only with

NG(T i) = T ioC12, for i = 10, 11 and 2F4(q0) where q0 = 22m+1 and (2h+ 1)/(2m+ 1)

is prime. Since q ≡ 2(3) and even, (q4 − q2 + 1, 12) = 1, whence O ∩ NG(T i) ⊂ T i

is a commuting set. Assume O ∩ 2F4(q0) 6= ∅. Then, it is a unique semisimple class

in 2F4(q0) by Remark 2.11 and by Remark 2.10, it has empty intersection with the F -

stable maximal tori T ′i of 2F4(q0) for i 6= 10, 11. Hence, we are in the same hypotheses

as above, with q0 < q. We proceed inductively on the number of prime factors of 2h+1.

When 2h+1 = 1 we have |2F4(2)| = 212 ·33 ·52 ·13. Since 2, 3 and 5 = 22 +1 are coprime

with d10 and d11 and |xs| 6= 13, our assumptions imply that O ∩ 2F4(2) = ∅. �
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Lemma 4.10. Let O = OG
xs for |xs| = 13. Then, O is not kthulhu.

Proof. If xs lies in T i for i ≤ 9, the result follows from Lemmata 4.6, 4.7 and 4.8.

Assume xs ∈ T j for j = 10, 11. The torus T j is cyclic and has empty intersection with

all maximal tori of different order, so 〈xs〉 is the only subgroup of order 13 in T j and

all subgroups of this order are conjugate to it. Therefore O∩ 2F4(2)′ 6= ∅, as 13 divides

the order of 2F4(2)′ By [7, Theorem II] the classes contained in O ∩ 2F4(2)′ are of type

D, whence so is O. �

4.2. Nichols algebras over the Ree groups of type F4. We are now in a position
to prove Theorem 1.3 for G.
Proof of Theorem 1.3 for simple Ree groups of type F4. Proposition 2.2 covers the
cases of simple Yetter-Drinfeld modules associated with unipotent classes by Lemmata
4.1 and 4.2; mixed classes by Lemmata 4.3 and 4.4 and semisimple classes represented
in T i, for i ≤ 9 by Lemmata 4.5, 4.6, 4.7, 4.8. The simple Yetter-Drinfeld modules
associated with classes represented in T 10 or T 11 are covered by the combination of
Remark 2.9 and [10, Lemma 2.2]. We conclude by Remark 2.7. �

5. The Ree groups 2G2(32h+1)

In this section p = 3, q = 32h+1, h ≥ 0, G = 2G2(q) a Ree group of type G2. We fix
a basis {α, β} of Φ with α short. We recall the list of maximal subgroups of G up to
conjugation from [17, Theorem C]:

(1) BF ;
(2) the centraliser of a non-trivial involution σ, isomorphic to 〈σ〉 × PSL2(q) (for

h > 0);
(3) the normaliser of a subgroup isomorphic to C2 × C2 (for h > 0);
(4) NG(T sαsβsα) ' T sαsβsα o C6, of order 6(q −

√
3q + 1) (for h > 0);

(5) NG(T sαsβsαsβsα) ' T sαsβsαsβsα o C6, of order 6(q +
√

3q + 1);

(6) 2G2(32f+1) for (2h+ 1)/(2f + 1) a prime.

If h = 0, then 2G2(3) ' PSL2(8) o 〈ϕ〉 where ϕ acts as Fr2 on PSL2(8) and, up to
conjugation, we have the additional maximal subgroups PSL2(8) and the normaliser of
the Sylow 2-subgroup of upper triangular matrices in PSL2(8), whose order is 23 · 3 · 7.

Remark 5.1. We collect some properties of maximal subgroups of G and fix some

notation:

(1) σ will denote the involution σ = α∨(−1)β∨(−1), whose centraliser is the max-

imal subgroup CG(σ) ' 〈σ〉 × PSL2(q). There is only one class of non-trivial

involutions in G so by Remark 2.11 there is only one class of non-trivial invo-

lutions in G.
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(2) Assume h > 0. We provide a description of the normaliser of a subgroup

isomorphic to C2 × C2 alternative to the one in [17]. There is a unique conju-

gacy class of such subgroups, [30, p. 69]. A representative is given by 〈σ, σ′〉
where σ′ the unique non-trivial involution in the (cyclic) maximal torus T ′ of

PSL2(q) ≤ CG(σ) of order q+1
2

. The subgroup 〈σ〉 × T ′ is a maximal torus

of G of order q + 1 and there is only one class of tori of this order in G,

namely the one represented by T sα . We set T sα = 〈σ〉 × T ′. By construc-

tion T sα ≤ CG(〈σ, σ′〉) ≤ NG(〈σ, σ′〉). By [17, List C] we have NG(〈σ, σ′〉) '
(C2 × D(q+1)/2) o C3, so T sα is normal of index 6 in NG(〈σ, σ′〉). Simplic-

ity of G and maximality of NG(〈σ, σ′〉) give NG(〈σ, σ′〉) = NG(T sα). Also

NG(Tsα) ≤ NG(T sα) and since sατ is a rotation on E we have |CW (sατ)| = 6.

Hence, by order reason, NG(Tsα) = NG(T sα) and there exists an element %

of order 6 in NG(〈σ, σ′〉) such that %3 . t = t−1 for every t ∈ T sα . Therefore

〈%〉 ∩ T sα = 1 and comparing orders we have NG(〈σ, σ′〉) = T sα o 〈%〉.
(3) Let ξ ∈ F×8 with ξ3 +ξ+1 = 0. Then H := 〈

(
1 ξ
0 1

)
,
(

1 ξ2

0 1

)
〉 ≤ PSL2(8) ≤ 2G2(3)

is a representative of the conjugacy class of subgroups isomorphic to C2 × C2.

Its normaliser in 2G2(3) is generated by ϕ and the subgroup of upper triangular

unipotent matrices in PSL2(8). Observe that ϕ permutes cyclically the three

non-trivial elements in H. Since all subgroups isomorphic to H are conjugate

in G, it follows that also %2 as in (2) permutes σ, σ′ and σσ′ cyclically.

5.1. Collapsing racks. In this Subsection we list the kthulhu and non-kthulhu con-
jugacy classes in G, when it is simple. We consider unipotent, semisimple and mixed
classes separately.

5.1.1. Unipotent classes. We see from [18, Table 22.1.5] that G has 5 non-trivial unipo-
tent classes: the regular oneOreg, the subregular oneOsubreg, represented by xβ(1)x3α+β(1),

the class labeled by (Ã1)3, represented by x2α+β(1)x3α+2β(1), and the classes Ã1 and
A1, represented by xα(1) and xβ(1), [26, Table 2, Example 4.3]. The last two classes
are interchanged by F , hence they do not intersect G. The dimensions of the remain-
ing ones are all distinct, hence they are all F -stable. Regular unipotent elements have
order 9, all others have order 3. By [18, Table 22.1.5] the component group of CG(u)
is cyclic of order 2 if u ∈ Osubreg and trivial if u ∈ O(Ã1)3

. In the first case CG(u)
is parted into two F -conjugacy classes, so Osubreg ∩G is the union of two G-classes,
whereas O(Ã1)3

∩ G is a single unipotent conjugacy class. In addition O(Ã1)3
is the

unique unipotent class of dimension 8 in G, hence it is real, and therefore O(Ã1)3
∩G is

again so. The classes of ϕ±1 in 2G2(3) are not real, hence these elements lie in Osubreg
and represent the two unipotent classes in G contained therein.

Lemma 5.2. Let h > 0. If O ⊂ Oreg, then O is of type D.
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Proof. This is [2, Proposition 3.7]. �

Lemma 5.3. If O ⊂ Osubreg ∪ O(Ã1)3
, then O is kthulhu.

Proof. We apply the strategy described in Remark 2.5 and consider the intersection of

O with a maximal subgroup M of G. Notice that if Osubreg ∩H 6= ∅ for some H ≤ G,

then |OG
ϕ ∩H| = |OG

ϕ−1 ∩H| 6= 0. Let M = BF . The inclusion

xα(Fq
×

)xβ(Fq
×

)Uα+βU2α+βU3α+βU3α+2β ⊂ Oreg

and F -invariance imply that O∩M ⊂ Uα+βU3α+βU2α+βU3α+2β and all elements therein

commute, [12, III.6].

Let M = CG(σ). It follows from [21, Lemmata 3.2 and 3.3, Corollary 3.4(ii)], that

O ∩M ⊂ PSL2(q) is empty if O ⊂ O(Ã1)3
and a single conjugacy class in PSL2(q) if

O is one of the two G-classes contained in Osubreg. Furthermore, when it is non-empty,

the intersection of O with a subgroup of PSL2(q) is either a single conjugacy class or

consists of commuting elements [1, Lemma 3.5].

Let M = NG(〈σ, σ′〉) = T sα o 〈%〉. Observe that %2 ∈ CG(%3), the centraliser of an

involution, and all elements of order 3 therein are not real. Hence, %2 ∈ Osubreg ∩M =

(OG
ϕ ∩M)∪ (OG

ϕ−1 ∩M). All elements of order 3 in M lie either in T sα%
2 or in T sα%

4,

so (Osubreg ∪ O(Ã1)3
) ∩M ⊂ T sα%

2 ∪ T sα%
4. Setting M1 := T sα o 〈%2〉 we have

Osubreg ∩M = Osubreg ∩M1 = (OG
ϕ ∩M1) ∪ (OG

ϕ−1 ∩M1).

Observe that (q + 1)/4 is odd so T sα ' C2 × C2 × C(q+1)/4 and 〈σ, σ′〉 and C(q+1)/4

are characteristic in T sα . We claim that CT sα (%2) = 1. Indeed, if %2t = t%2 for some

t ∈ T sα , then %2 would commute with the components of t in C2 × C2 and C(q+1)/4.

The first component is trivial by Remark 5.1(3), whereas the second one is trivial by

[30, p. 75]. By Remark 2.6 (2), up to interchanging % and %−1, we have

Osubreg ∩M = Osubreg ∩M1 = T sα%
2 ∪ T sα%

4 = OM1

%2 ∪ O
M1

%4 = OM%2 ∪ OM%4 .

Hence OG
ϕ±1∩M = OM%±2 and O(Ã1)3

∩M = ∅. Let now H ≤M be such that OG
ϕ±1∩H 6=

∅. Replacing if needed H by an M -conjugate of H containing %2 we apply Remark 2.6

(3) to deduce that OG
ϕ±1 ∩H = OH%±2 .

Let w = sαsβsα or w = sαsβsαsβsα and let M be NG(T w) = T w o 〈g〉 for some

g ∈ G with |g| = 6. This case is similar to the case of M = CG(〈σ, σ′〉), but simpler.

Here we use [30, Theorem, part (4)] to show that CTw(g2) = 1 and proceed as before.

Let M = 2G2(q2f+1). There are three conjugacy classes of elements of order 3 in

M : the real one, which is M ∩ O(Ã1)3
, and the two non-real ones, that are M ∩ OG

ϕ
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and M ∩ OG
ϕ2 , so each intersection is a single conjugacy class in M and we proceed

inductively on the number of prime factors of 2h+ 1.

Finally, assume q = 3. Let M = PSL2(8). The only class of elements of order 3 in

M is real, hence M ∩ O(Ã1)3
is this class in M and M ∩ Osubreg = ∅. The intersection

of O(Ã1)3
with any subgroup of PSL2(8) is either empty, a single conjugacy class, or

consists of commuting elements, [3, Proposition 4.2, Case 2].

Let M be the normaliser of a Sylow 2-subgroup in 2G2(3) ' PSL2(8)o 〈ϕ〉. Setting

B1 := {( α x
0 α−1 ) | x ∈ F8, α ∈ F×8 } we take M = B1 o 〈ϕ〉. Clearly, Osubreg ∩M 6= ∅

and since (|B1|, 3) = 1, we have the inclusion (Osubreg ∪ O(Ã1)3
) ∩M ⊂ B1ϕ ∪ B1ϕ

−1.

Now, CB1(ϕ) = 〈( 1 1
0 1 )〉 and OMϕ±1 ⊂ B1ϕ

±1, so |OMϕ±1| = |OB1

ϕ±1| = |B1|/2. The same

argument shows that the orbits of the elements ( 1 1
0 1 )ϕ±1, whose order is 6, have |B1|/2

elements and lie in B1ϕ
±1. Hence, OMϕ±1 = OG

ϕ±1 ∩M and O(Ã1)3
∩M = ∅. Let now

H ≤ M such that H ∩ Osubreg 6= ∅. Conjugating in M we can always make sure

that ϕ ∈ H, so H = (B1 ∩ H) o 〈ϕ〉. If ( 1 1
0 1 ) 6∈ H, then Remark 2.6 (2) shows that

OHϕ±1 = (B1 ∩ H)ϕ±1 = OG
ϕ±1 ∩ H. If, instead ( 1 1

0 1 ) ∈ H, then we use a counting

argument as above to see that OHϕ±1 = OG
ϕ±1 ∩H. �

5.1.2. Mixed classes.

Lemma 5.4. Let h > 0 and let O = OG
x where x has Jordan decomposition x = xsxu

with xs, xu 6= 1. Then O is of type D.

Proof. Arguing as in Remark 2.8 we see that [CG(xs), CG(xs)] is necessarily of type

A1×Ã1. In this case, xs is a non-trivial involution and we take xs = σ = α∨(−1)β∨(−1).

Thus CG(σ) = 〈T,U±(α+β),U±(3α+β)〉, the roots α+ β and 3α+ β are interchanged by

θ and CG(σ) ' 〈σ〉 × PSL2(q). Then xu can be chosen to be xα+β(ε)x3α+β(ε) with

ε = ±1, and the two choices represent two distinct conjugacy classes of elements of

order 6 in G. By construction, there are no others. Let F×q = 〈ζ〉. We consider the

elements v, t, r, s and the subgroup H as follows:

v := x2α+β(1)x3α+2β(1) ∈ G ∩ CG(Uα+βU3α+β),

t := α∨(ζ3h)β∨(ζ) ∈ G,

r := v . xsxu = α∨(−1)β∨(−1)xα+β(ε)x3α+β(ε)x2α+β(1)x3α+2β(1) ∈ O,

s := t . xsxu = α∨(−1)β∨(−1)xα+β(εζ1−3h)x3α+β(εζ3h+1−1) ∈ O,
H := 〈r, s〉 ⊂ 〈Uα+βU3α+βU2α+βU3α+2β, α

∨(−1)β∨(−1)〉.
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where we have used that in characteristic 3 there hold: [xs, s] = 1, [U2α+βU3α+2β, xu] =

1 and that xs . x2α+β(ξ)x3α+2β(η) = x2α+β(−ξ)x3α+2β(−η) for every ξ, η ∈ F3. Hence,

OHs ⊂ α∨(−1)β∨(−1)xα+β(εζ1−3h)x3α+β(εζ3h+1−1)U2α+βU3α+2β,

OHr ⊂ α∨(−1)β∨(−1)xα+β(ε)x3α+β(ε)U2α+βU3α+2β

so OHs ∩ OHr = ∅. In addition

(rs)2 =
(
xα+β(ε(1 + ζ1−3h))x3α+β(ε(1 + ζ3h+1−1))x2α+β(−1)x3α+2β(−1)

)2

= xα+β(2ε(1 + ζ1−3h))x3α+β(2ε(1 + ζ3h+1−1))x2α+β(1)x3α+2β(1),

(sr)2 =
(
xα+β(ε(1 + ζ1−3h))x3α+β(ε(1 + ζ3h+1−1))x2α+β(1)x3α+2β(1)

)2

= xα+β(2ε(1 + ζ1−3h))x3α+β(2ε(1 + ζ3h+1−1))x2α+β(2)x3α+2β(2),

so (rs)2 6= (sr)2 and O is of type D. �

5.1.3. Semisimple classes. There are four G-conjugacy classes of maximal tori repre-
sented by T , T sα , T sαsβsα and T sαsβsαsβsα of order q ∓ 1, q ∓

√
3q + 1, respectively.

Their orders are mutually coprime in all cases except from (|T |, |T sα|) = 2. We realise
T and T sα in CG(σ) as the direct product of 〈σ〉 and a maximal torus in PSL2(q), so
T ∩ T sα is a cyclic group of order 2. The tori T , T sαsβsα and T sαsβsαsβsα are cyclic.

Remark 5.5. Let t ∈ G be semisimple, and such that t2 6= 1. Then [CG(t), CG(t)] is not

of type A1× Ã1, so it is trivial. In other words, t is regular in G and it lies in a unique

maximal torus of G. Hence, if T w = TFw is a maximal torus in G and t1, t2 ∈ T w satisfy

g . t1 = t2 for some g ∈ G and t21 6= 1, then g .Tw = g . CG(t1) = CG(t2) = Tw. Hence,

g ∈ NG(Tw) and
∣∣OG

t1
∩ T w

∣∣ =
∣∣∣ONG(Tw)

t1

∣∣∣ = |NG(Tw)/T w| = |CW (wτ)|.

Lemma 5.6. Let h > 0. If xs ∈ T \ {1}, then OG
xs is of type D.

Proof. There is only one class of non-trivial involutions in G so if |xs| = 2 its class

is represented by σ′ ∈ PSL2(q). If, instead, |xs| > 2, we may assume that σ ∈ T so

T ≤ CG(σ) ' 〈σ〉×PSL2(q) and xs is conjugate either to y or to σy for some y 6= 1 in

a maximal torus for PSL2(q). By [3, Corollary 3.5, Lemma 3.9] the racks OPSL2(q)
σ′ and

O〈σ〉×PSL2(q)
σy ' OPSL2(q)

y are of type D. We conclude by using Proposition 2.2 (2). �

Lemma 5.7. Let h > 0. If |xs| = 7, then OG
xs is of type D.

Proof. There is precisely one maximal torus up to conjugacy containing elements of

order 7 and by the structure of the tori, it contains exactly one subgroup of order 7.

Thus, all subgroups of order 7 are conjugate in G. We recall that there is a subgroup

isomorphic to PSL2(8) in 2G2(3) ≤ G. It contains a subgroup of order 7, namely
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its split torus, which intersects OG
xs . We conclude by invoking [3, Lemma 3.9] and

Proposition 2.2 (2). �

Lemma 5.8. Let w = sαsβsα or sαsβsαsβsα and let xs ∈ T w \ {1}. If |xs| 6= 7, then

OG
xs is kthulhu.

Proof. We use the strategy from Remark 2.5. The order of xs divides q2− q+ 1 so it is

odd and coprime with q±1 and q. Hence, the only maximal subgroups intersecting OG
xs

are NG(T w) and 2G2(32f+1) with (2h + 1)/(2f + 1) a prime number. In the first case

OG
xs ∩M consists of commuting elements; in the second case it is a single conjugacy

class (s is semisimple). In addition, Remark 2.10 shows that s cannot lie in a torus

of order 32f+1 ± 1. Working inductively on the number of prime factors of 2h + 1, we

have the statement. �

Lemma 5.9. Let h > 0. If xs ∈ T sα \ {1} and |xs| 6= 2, then OG
xs is of type C.

Proof. We recall from Remarks 5.1 (2) and 5.5 that T sα = 〈σ〉 × T ′ ≤ 〈σ〉 ×PSL2(q)

and that xs is regular. Observe that sατ is a rotation on E so CW (sατ) is cyclic of

order 6. By Remark 5.5 we have∣∣OG
xs ∩ T sα

∣∣ = 6 > 2 =
∣∣{xs, x−1

s }
∣∣ =

∣∣O〈σ〉×PSL2(q)
xs ∩ T sα

∣∣ .
Hence, there is s ∈ (OG

xs ∩ T sα) \ O〈σ〉×PSL2(q)
xs . By Remark 2.3 (1) there is g ∈

〈σ〉 ×PSL2(q) such that r := g . xs 6∈ CG(xs) = T sα = CG(s). If we set H := 〈r, s〉 ≤
〈σ〉 × PSL2(q), then OHs 6= OHr . If |xs| is odd the class is of type C by Remark 2.3

(2). If |xs| is even, then we decompose s = seso into its 2-part and 2-regular part, so

so ∈ H, all prime factors of its order are ≥ 5 and so is regular in G by Remark 5.5.

We thus have
∣∣OHr ∣∣ ≥ ∣∣∣O〈so〉r

∣∣∣ ≥ 5 and therefore OG
xs is of type C. �

5.2. Nichols algebras over the Ree groups of type G2. In this subsection we
consider Nichols algebras attached to simple Yetter-Drinfeld modules M(O, ρ) for O
a kthulhu class in G and we prove Theorem 1.3 for simple Ree groups of type G2 for
h > 0.

Proposition 5.10. Assume h > 0. Let g ∈ G be a non-trivial unipotent element.

Then dimB(OG
g , ρ) =∞ for every irreducible representation ρ of CG(g).

Proof. If g ∈ Oreg, this follows from Proposition 2.2 (1), Lemma 5.2 and [6, Theorem

3.6]. If g ∈ O(Ã1)3
, then OG

g is real and of odd order and the claim follows from [10,

Lemma 2.2]. Assume now g = ϕ ∈ OG
ϕ , the case of g = ϕ−1 is treated similarly.

We will show that dimB(O
2G2(3)
ϕ , ρ) = ∞ for every irreducible representation ρ of
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C2G2(3)(ϕ) and apply [6, Lemma 3.2]. Recall that 2G2(3) = PSL2(8) o 〈ϕ〉, so setting

N := PSL2(8) we see that O
2G2(3)

ϕ±1 ⊂ Nϕ±1. The elements of order 3 in N are real,

so the real class of elements of order 3 in 2G2(3) is all contained therein. Thus, an

element of order 3 lies in O
2G2(3)

ϕ±1 if and only if it lies in Nϕ±1. We proceed as outlined

in Subsection 2.2, from which we adopt notation. We consider

C2G2(3)(ϕ) ' SL2(2)× 〈ϕ〉 ' S3 × 〈ϕ〉, A := A3 × 〈ϕ〉 ≤ C2G2(3)(ϕ).

The intersectionO
2G2(3)
ϕ ∩C2G2(3)(ϕ) = {ϕ, (123)ϕ, (132)ϕ} = O

2G2(3)
ϕ ∩A is a commuting

set and we put x0 = ϕ, x1 = (123)ϕ, x2 = (132)ϕ, so x0x1x2 = 1. We claim that there

is g ∈ 2G2(3) such that gj .xi = xi+j mod 3 for j ∈ Z, i = 0, 1, 2. Let z ∈ 2G2(3) be such

that z.x0 = x1, so [z.x0, x0] = 1, whence z−1.x0 ∈ O
2G2(3)
ϕ ∩C2G2(3)(ϕ) and z−1.x0 6= x0.

If z−1 . x0 = x2, then z . x2 = x0 and so z . x1 = z . (x0x2)−1 = (x1x0)−1 = x2 and we

put g = z. If, instead, z−1 . x0 = x1, then z . x2 = x2 and we consider y ∈ 2G2(3) such

that y .x0 = x2 and repeat the argument. Then either g = y will do, or g = yz will do.

Let ρ be an irreducible representation of C2G2(3)(x0) and let Cv be any line stabilised

by A. Let ρ(xi)v = ωiv for i = 0, 1, 2. We have ω3
i = 1 and ω0ω1ω2 = 1. By (2.2) the

braided vector subspace MA = spanC{gi ⊗ v, i = 0, 1, 2} of M(O
2G2(3)
ϕ , ρ) has braiding

c((gi ⊗ v)⊗ (gj ⊗ v)) = qij(g
j ⊗ v)⊗ (gi ⊗ v), qijv = ρ(g−j+i . x0)v = ωi−jmod3v.

This gives

q01q10 = q12q21 = q02q20 = ω1ω2 = ω2
0, ωii = ω0, i = 0, 1, 2.

If ω0 = 1, then dimB(M(O
2G2(3)
ϕ , ρ)) = ∞ by [10, Remark 1.1]. If, instead, ω0 is a

primitive third root of 1, then the generalized Dynkin diagram of MA is connected

and does not occur in [15, Table 2]. This implies dimB(MA) = ∞, whence again

dimB(M(O
2G2(3)
ϕ , ρ)) =∞. �

Proof of Theorem 1.3 for simple Ree groups of type G2. Proposition 2.2 covers the cases
of simple Yetter-Drinfeld modules associated with unipotent classes by Proposition
5.10; mixed classes by Lemma 5.4 and semisimple classes represented in T w for w = 1
or sα by Lemmata 5.6, 5.7 and 5.9. The simple Yetter-Drinfeld modules associated with
classes represented in T w for w = sαsβsα or sαsβsαsβsα are covered by the combination
of Remark 2.9 and [10, Lemma 2.2]. We conclude by Remark 2.7. �

Remark 5.11. The non-simple groups 2F4(2) and 2G2(3) have simple derived subgroup

G′. The group 2F4(2)′ has been dealt with in [7, 13], whereas 2G2(3)′ ' PSL2(8)

has been treated in [14]. In both cases, dimB(V ) = ∞ for every V ∈ G′

G′YD. The

group 2B2(2) has order 20 and all its classes are kthulhu, see Remark 3.5. Its derived
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subgroup is cyclic of order 5, so it is simple and abelian, and there do exist finite-

dimensional pointed Hopf algebras over C5, for example the Taft algebras in [29], see

also [9, Theorem 1.3].
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