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Strong conciseness in profinite groups

Eloisa Detomi, Benjamin Klopsch and Pavel Shumyatsky

Abstract

A group word w is said to be strongly concise in a class C of profinite groups if, for every group
G in C such that w takes less than 2ℵ0 values in G, the verbal subgroup w(G) is finite. Detomi,
Morigi and Shumyatsky established that multilinear commutator words – and the particular
words x2 and [x2, y] – have the property that the corresponding verbal subgroup is finite in a
profinite group G whenever the word takes at most countably many values in G. They conjectured
that, in fact, this should be true for every word. In particular, their conjecture included as open
cases power words and Engel words.

In the present paper, we take a new approach via parametrised words that leads to stronger
results. First we prove that multilinear commutator words are strongly concise in the class of
all profinite groups. Then we establish that every group word is strongly concise in the class
of nilpotent profinite groups. From this we deduce, for instance, that, if w is one of the group
words x2, x3, x6, [x3, y] or [x, y, y], then w is strongly concise in the class of all profinite groups.
Indeed, the same conclusion can be reached for all words of the infinite families [xm, z1, . . . , zr]
and [x, y, y, z1, . . . , zr], where m ∈ {2, 3} and r ≥ 1.

1. Introduction

Let w = w(x1, . . . , xr) be a group word, i.e. an element of the free group on x1, . . . , xr. We
take an interest in the set of all w-values in a group G and the verbal subgroup generated by
it; they are

Gw = {w(g1, . . . , gr) | g1, . . . , gr ∈ G} and w(G) = 〈Gw〉.

In the context of topological groups G, we write w(G) to denote the closed subgroup generated
by all w-values in G.

The word w is said to be concise in a class C of groups if, for each G in C such that Gw
is finite, also w(G) is finite. For topological groups, especially profinite groups, a variation
of the classical notion arises quite naturally: we say that w is strongly concise in a class C of
topological groups if, for each G in C, already the bound |Gw| < 2ℵ0 implies that w(G) is finite.

A conjecture proposed by Philip Hall (e.g. see [18]) predicted that every word w would be
concise in the class of all groups, but almost three decades later the assertion was famously
refuted by Ivanov [10]. On the other hand, Merzlyakov [12] showed already in the 1960s
that every word is concise in the class of linear groups. This naturally leads to the question
whether every word is concise in the class of residually finite groups, or equivalently in the
class of profinite groups. Lately, this question was highlighted by Jaikin-Zapirain [11], who
used Merzlyakov’s theorem in his investigations of verbal width in finitely generated pro-p
groups; compare also [15].

In [2], Detomi, Morigi and Shumyatsky suggested a strengthened profinite version of Hall’s
conciseness conjecture, namely that for every word w and every profinite group G, the bound
|Gw| ≤ ℵ0 implies that w(G) is finite. They verified this for multilinear commutator words,
also known as outer-commutator words (see Section 3), as well as for the particular words
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x2 and [x2, y]. Their considerations relied on the Baire category theorem, but a more direct
argument (see Section 2) allows us to deal with a natural stronger form of the conjecture.

For short, we say that a word w is strongly concise if it is strongly concise in the class of all
profinite groups.

Strong Conciseness Conjecture. Every group word w is strongly concise.

In the present paper, we initiate a systematic investigation of this conjecture and produce
positive evidence for it. Among the words treated in [2], the special power word x2 is the
only one for which a simple replacement of the Baire category theorem by Proposition 2.1
below yields that it is strongly concise. More work is needed to confirm the Strong Conciseness
Conjecture for multilinear commutator words.

Theorem 1.1. Every multilinear commutator word is strongly concise.

Guided by an interest in power words xm of exponent m ≥ 3 and n-Engel words [x,n y] =
[x, y, . . . , y], where y appears n ≥ 2 times, we began an investigation of some specific words,
such as x3 and [x, y, y]. Later we discovered that the relevant computations could be subsumed
under a common approach. The main outcome of this consolidation is the following result.

Theorem 1.2. Every group word w is strongly concise in the class of nilpotent profinite
groups.

A straightforward and well-known argument shows that every group word is strongly concise
in the class of abelian profinite groups; compare Proposition 2.3. But strong conciseness does
not behave well under group extensions; Theorem 1.2 and, more importantly, the considerations
that enter into its proof are new, even for nilpotent groups of class 2.

The following corollaries can be derived from Theorem 1.1 and Theorem 1.2 without further
difficulty.

Corollary 1.3. Let F be a free group of countably infinite rank and let w be a group
word such that F/w(F ) is nilpotent. Then w is strongly concise.

Corollary 1.4. The following group words w are strongly concise:

x2, x3, x6, [x, y, y] and

[x2, z1, . . . , zr], [x3, z1, . . . , zr], [x, y, y, z1, . . . , zr] for r ≥ 1,

where x, y, z1, z2, . . . are independent variables.

Our proof of Theorem 1.2 is based on parametrised words; see Section 5. Nilpotency is a key
ingredient for setting up induction parameters that help us to reduce the complexity of the
word w as well as the complexity of the group G under consideration.

As a byproduct, our approach highlights the relevance of the following two weaker versions
of the Strong Conciseness Conjecture.
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Conjecture 1.5. Suppose that the group word w has less than 2ℵ0 values in a profinite
group G. Then w(G) is generated by finitely many w-values.

Conjecture 1.6. Suppose that the group word w has less than 2ℵ0 values in a profinite
group G. Then there is an open subgroup H of G such that w(H) = 1.

To illustrate the relevance of Conjecture 1.5, we summarise some conditional results that
we obtained. For this we recall that if a group word w ‘implies virtual nilpotency’, then for
a large class of groups G, including all finitely generated residually finite groups, w(G) = 1
implies that G is nilpotent-by-finite, due to results of Burns and Medvedev [1]. Furthermore,
following [7] we say that a group word w is ‘weakly rational’ if for every finite group G and
for every positive integer e with gcd(e, |G|) = 1, the set Gw is closed under taking eth powers
of its elements. We refer to Section 4 for a more detailed discussion of these notions.

Theorem 1.7. Let w be a group word that (i) implies virtual nilpotency or (ii) is weakly
rational. Let G be a profinite group such that |Gw| < 2ℵ0 . If w(G) is generated by finitely many
w-values, then w(G) is finite.

Notation and Organisation. Our notation is mostly standard. All repeated commutators are
left-normed, e.g. γ3(x, y, z) = [x, y, z] = [[x, y], z].

In Section 2 we collect some known results and several basic observations; the elementary
Proposition 2.1 is one of the early key insights. In Section 3 we prove that multilinear
commutator words are strongly concise. The main results in Section 4 are Propositions 4.7,
4.8 and 4.9; in particular, the latter two yield Theorem 1.7. In Section 5 we set up the
reduction arguments based on parametrised words. In Section 6 we prove Theorem 1.2 as
well as Corollaries 1.3 and 1.4.

2. Preliminaries

In this section we collect some known results as well as several straightforward consequences
and basic observations.

For simplicity and to steer clear of the Continuum Hypothesis (or Martin’s Axiom), we record
the following proposition that helps us to avoid references to the Baire category theorem, which
appear frequently in [2] and related articles.

Proposition 2.1. Let ϕ : X → Y be a continuous map between non-empty profinite spaces
that is nowhere locally constant, i.e. there exists no non-empty open subset U ⊆o X such that
ϕ|U is constant. Then |Xϕ| ≥ 2ℵ0 .

Proof. For every non-empty closed open subset U ⊆ X choose a continuous map ϑU : Y →
ZU onto a finite discrete space ZU such that ϕϑU : X → ZU is not constant on U . Choose non-
empty distinct fibers U1, U2 of the restriction of ϕϑU to U ; then U1, U2 ⊆ U are non-empty
closed open subsets of X with U1ϕ ∩ U2ϕ = ∅.

Fix a non-empty closed open subset A ⊆ X, e.g. A = X. For every sequence i = (i1, i2, i3, . . .)
in {1, 2}, the consideration above yields a descending chain of non-empty closed open subsets
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Ai1 ⊇ (Ai1)i2 ⊇ ((Ai1)i2)i3 ⊇ . . ., and we set

Ai =
⋂

n∈N
(···((Ai1)i2)i3 · · · )in ⊆c X.

Since X is compact, each Ai is non-empty, and we choose ai ∈ Ai. By construction we have
aiϕ 6= ajϕ for i 6= j. Hence

B =
{
ai | i ∈ {1, 2}N

}
⊆ X

is mapped injectively into Y under ϕ, and |Xϕ| ≥ |Bϕ| = 2ℵ0 .

Lemma 2.2. Let G be a profinite group and let x ∈ G. If the conjugacy class {xg | g ∈ G}
contains less than 2ℵ0 elements, then it is finite.

Proof. The set {xg | g ∈ G} is in bijection with the coset space G/CG(x), a homogeneous
profinite space. Alternatively, one can adapt the proof of [2, Lemma 3.1], using Proposition 2.1
in place of the Baire category theorem.

Proposition 2.3. Every group word is strongly concise in the class of abelian profinite
groups.

Proof. Let G be an abelian profinite group. It is enough to consider power words w(x) = xn,
where n ∈ N. For these we observe that w(G) = {gn | g ∈ G} = Gw, as G→ G, g 7→ gn is a
homomorphism. Hence w(G) = Gw is finite or has cardinality at least 2ℵ0 .

Lemma 2.4. Let w ∈ F be an element of a free group F such that w 6∈ [F, F ]. Let G be a
profinite group such that |Gw| < 2ℵ0 . Then G is periodic.

Proof. Write w(x1, . . . , xr) = x e11 · · ·x err v, where e1, . . . , er ∈ Z are not all zero and v ∈
[F, F ]. Then the word ym = w(yf1 , . . . , yfr ), where m =

∑r
i=1 eifi = gcd(e1, . . . , er) ∈ N, takes

less than 2ℵ0 values in G. By Proposition 2.3, every procyclic subgroup of G is finite, and thus
G is periodic.

3. Multilinear commutator words

In this section we prove that every multilinear commutator word is strongly concise. Recall
that a multilinear commutator word, also known as an outer-commutator word, is obtained by
nesting commutators and using each variable only once. Thus the word [[x1, x2], [x3, x4, x5], x6]
is a multilinear commutator word while the 3-Engel word [x, y, y, y] is not. An important family
of multilinear commutator words consists of the repeated commutator words γk on k variables,
given by γ1 = x1 and γk = [γk−1, xk] = [x1, . . . , xk] for k ≥ 2. The verbal subgroup γk(G) of a
group G is the kth term of the lower central series of G. The derived words δk, on 2k variables,
form another distinguished family of multilinear commutators; they are defined by δ0 = x1 and
δk = [δk−1(x1, . . . , x2k−1), δk−1(x2k−1+1, . . . , x2k)]. The verbal subgroup δk(G) = G(k) is the kth
derived subgroup of G.

Relying on the Baire category theorem, Detomi, Morigi and Shumyatsky [2] proved that, if
w is a multilinear commutator word, then for every profinite group G the bound |Gw| ≤ ℵ0
implies that w(G) is finite. Proposition 2.1 enables us to strengthen this result: we show –
without recourse to the Continuum Hypothesis (or Martin’s Axiom) – that every multilinear
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commutator word is strongly concise. For this we employ combinatorial techniques that were
developed in [3, 4] specifically for handling multilinear commutator words.

Throughout this section, we fix r ∈ N and a multilinear commutator word

w = w(x1, . . . , xr).

Furthermore, G is a profinite group. For A1, . . . , Ar ⊆ G, we denote by

w(A1, . . . , Ar)

the subgroup generated by all w-values w(a1, . . . , ar), where ai ∈ Ai for 1 ≤ i ≤ r. For I ⊆
{1, . . . , r} we write I = {1, . . . , r}r I. For families of variables y = (yi)i∈I , z = (zi)i∈I we
define

wI(y; z) = w(u1, . . . , ur), where us =

{
ys if s ∈ I,

zs if s 6∈ I.

The notation extends to families A = (Ai)i∈I , B = (Bi)i∈I of subsets of G in the natural
way: wI(A;B) denotes the subgroup generated by the relevant w-values. For short, we write
wI(yi; zi) in place of wI(y; z) and wI(Ai;Bi) in place of wI(A;B).

The following are corollaries of [4, Lemma 2.5] and [3, Lemma 4.1].

Corollary 3.1. Let H Ec G. Suppose that g1, . . . , gr ∈ G and g ∈ G are such that
w(g1h1, . . . , grhr) = g for all h1, . . . , hr ∈ H. Then wI(giH;H) = 1 for every proper subset
I $ {1, . . . , r}.

Corollary 3.2. Let H Ec G, and suppose that I ⊆ {1, . . . , r} is such that wJ(G;H) = 1
for all J $ I. Then wI(gihi;hi) = wI(gi;hi) for all gi ∈ G, i ∈ I, and all h1, . . . , hr ∈ H.

Next we employ the hypothesis |Gw| < 2ℵ0 .

Lemma 3.3. Let H Eo G and I $ {1, . . . , r} be such that

wJ(G;H) = 1 for all J $ I. (∗)

Suppose that |Gw| < 2ℵ0 . Let (gi)i∈I be an arbitrary family in G. Then there exists U Eo G,
with U ⊆ H, such that

wI(gi;U) = 1.

Proof. The image of the continuous map

H × · · · ×H → G, (h1, . . . , hr) 7→ wI(gihi;hi)

contains less than 2ℵ0 elements. By Proposition 2.1, there exist b1, . . . , br ∈ H and U Eo G,
with U ⊆ H, such that

wI(gibiui; biui) = wI(gibi; bi) for all u1, . . . , ur ∈ U.

As I $ {1, . . . , r}, we conclude from Corollary 3.1 that

wI(gibiU ;U) = 1. (3.1)

On the other hand, based on (∗) and the fact that biU ⊆ H, we deduce from Corollary 3.2 that

wI(gibiU ;U) = wI(gi;U). (3.2)

From (3.1) and (3.2) we conclude that wI(gi;U) = 1.
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Lemma 3.4. Suppose that |Gw| < 2ℵ0 . Suppose further that H Eo G satisfies w(H) = 1.
Then Gw is finite.

Proof. Below we construct V Eo G such that

wJ(G;V ) = 1 for every proper subset J $ {1, . . . , r}. (3.3)

Let S be a transversal, i.e., a set of coset representatives, for V in G. From (3.3) and
Corollary 3.2 we deduce that

w(g1v1, . . . , grvr) = w(g1, . . . , gr) for all g1, . . . , gr ∈ S and all v1, . . . , vr ∈ V .

Since G =
⋃
{gV | g ∈ S}, this shows that Gw = {w(g1, . . . , gr) | g1, . . . , gr ∈ S} is finite.

It remains to produce V Eo G such that (3.3) holds. Indeed, we prove for I $ {1, . . . , r}, by
induction on |I|, that there exists UI Eo G such that wI(G;UI) = 1. The group V then results
from intersecting the finitely many groups UI , where I $ {1, . . . , r}.

Let I $ {1, . . . , r}. If I = ∅ then U∅ = H satisfies w∅(G;U∅) = w(H) = 1. Now suppose
that |I| ≥ 1. For each J $ I induction yields UJ Eo G such that wJ(G;UJ) = 1. Then U =⋂
{UJ | J $ I} Eo G satisfies

wJ(G;U) = 1 for every proper subset J $ I. (3.4)

Let R be a transversal for U in G. For each family g = (gi)i∈I in R, Lemma 3.3 yields
Ug Eo G, with Ug ⊆ U , such that wI(gi;Ug) = 1. Intersecting the finitely many groups Ug,
parametrised by g, we obtain UI Eo G, with UI ⊆ U , such that

wI(gi;UI) = 1 for all families g = (gi)i∈I in R.

From (3.4) and Corollary 3.2 we deduce that

wI(giU ;UI) = wI(gi;UI) = 1 for all families g = (gi)i∈I in R.

Since G =
⋃
{gU | g ∈ R}, this shows that wI(G;UI) = 〈

⋃
g wI(giU ;UI)〉 = 1.

With these preparations we are ready to prove Theorem 1.1.

Proof of Theorem 1.1. Recall that w = w(x1, . . . , xr) is a multilinear commutator word
and that G is a profinite group such that |Gw| < 2ℵ0 . Clearly, we may assume that r ≥ 1. By
Proposition 2.1 and Corollary 3.1, there exists H Eo G such that w(H) = 1. Thus Lemma 3.4
shows that |Gw| <∞ and the claim follows from [19, Theorem 1] (or [2, Theorem 1.1]).

4. The case where w(G) is generated by finitely many w-values

In theory, the task of establishing the strong conciseness of a group word w for a class C of
profinite groups can be divided into two steps: Given w and a profinite group G in C such that
|Gw| < 2ℵ0 , it suffices to show that

◦ w(G) is generated by finitely many w-values and
◦ using this extra information, the group w(G) is finite.

If w(G) is a pro-p group, for some prime p, the situation simplifies further: the verbal
subgroup w(G) is generated by finitely many w-values if and only if it is finitely generated.
Indeed, it suffices to look at the Frattini quotient of w(G), an elementary abelian pro-p group.
In addition, we have the following useful lemma.
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Lemma 4.1. Let w be a group word and let G be a profinite group such that |Gw| < 2ℵ0 .
Suppose that N = w(G) is a pro-p group, for some prime p, and that N/[N,G]Np is finite.
Then w(G) is generated by finitely many w-values.

Proof. Let X be a finite set of w-values such that N = 〈X〉[N,G]Np. Since N is a pro-p
group, the set {xg | x ∈ X, g ∈ G} generates N modulo N ∩K for every open normal subgroup
K Eo G. Hence N = 〈xg | x ∈ X, g ∈ G〉, and from Lemma 2.2 we conclude that {xg | x ∈
X, g ∈ G} is finite.

We recall that a group word w has finite width in an abstract group G if there exists m ∈ N
such that every element g ∈ w(G) can be written as a product g = g1 · · · gm, where each gi is
a w-value or the inverse of a w-value in G. This notion extends naturally to profinite groups.
If w has finite width in a profinite group G, then w(G) coincides with the abstract subgroup
generated by Gw; see [15, Proposition 4.1.2].

Corollary 4.2. Let w be a group word and let G be a profinite group such that |Gw| <
2ℵ0 . Suppose that w(G) is a pro-p group, for some prime p, and that w has finite width in
every finitely generated subgroup H of G. Then N = w(G) is finite if and only if N/[N,G]Np

is finite.

Proof. Suppose that N/[N,G]Np is finite. By Lemma 4.1, N is generated as a subgroup
by finitely many w-values. Thus we may further suppose that G is finitely generated. By our
assumptions, w has finite width in G. Hence |w(G)| < 2ℵ0 and w(G) is finite.

We now extend our considerations to general profinite groups G, but impose a priori the
condition that w(G) is generated by finitely many w-values.

Lemma 4.3. Let w be a group word and let G be a profinite group such that |Gw| < 2ℵ0 .
Suppose that w(G) is generated by finitely many w-values. Then the commutator subgroup of
w(G) is finite.

Proof. Suppose that w(G) = 〈g1, . . . , gr〉 for g1, . . . , gr ∈ Gw. Lemma 2.2 implies that
CG(g1), . . . , CG(gr) are open inG. Therefore CG(w(G)) =

⋂n
i=1 CG(gi) ≤o G andG/CG(w(G))

is finite. By Schur’s Theorem (see [13, p. 102]), the commutator subgroup of w(G) is finite.

For n, k ∈ N0, the nth power of the derived word δk is written as δ nk . We say that a quantity
is (a, b, c, . . .)-bounded if it can be bounded from above by a number depending only on the
specified parameters a, b, c, . . ..

Lemma 4.4. [17, Lemma 3.2] Let k, n, t ∈ N. Let G be a group satisfying δ nk (G) = 1. Let
H be a nilpotent subgroup of G generated by a set of δk-values and suppose, in addition, that
H is t-generated. Then the order of H is (k, n, t)-bounded.

Lemma 4.5. [5, Lemma 2.1] Let d, k ∈ N. There exists a number t = t(d, k), depending on
d and k only, such that, if G is a finite d-generated group, then every δk−1-value in elements
of G′ is a product of at most t elements that are δk-values in elements of G.
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Lemma 4.6. [5, Lemma 2.2] Let G be a soluble group of derived length l, and suppose
that X is a symmetric, normal and commutator-closed set of generators for G. Let g be an
arbitrary element of G, written as g = x1 · · ·xt, where xi ∈ X for all i ∈ {1, . . . t}. Then, for
every n ∈ N, we have

gn
l

= y n1 · · · y ns ,

where y1, . . . , ys ∈ X and s is (n, t, l)-bounded.

Proposition 4.7. Let w = δ nk , where k, n ∈ N0. Let G be a profinite group such that
|Gw| < 2ℵ0 . Suppose that the kth derived subgroup G(k) is pronilpotent and that w(G) is
finitely generated. Then w(G) is finite.

Proof. We argue by induction on n. For n ≤ 1, the result is immediate from Theorem 1.1.
Now suppose that n ≥ 2. Let π be the set of prime divisors of n. If G(k) is a pro-p′ group for
some p ∈ π, then for v = δ

n/p
k the map x 7→ xp provides a bijection from Gv onto Gw and, by

induction w(G) = v(G) is finite. Hence, we may suppose that G(k) has non-trivial Sylow pro-p
subgroup for each p ∈ π. Moreover, if P is the Sylow pro-p subgroup of G(k) for some p ∈ π,
then the image of w(G) in G/P is finite. Suppose that |π| ≥ 2, and let P1 and P2 be the Sylow
subgroups of G(k) for distinct primes p1, p2 ∈ π. Then images of w(G) in G/P1 and G/P2 are
finite, and from P1 ∩ P2 = 1 we deduce that w(G) is finite.

Thus, it is sufficient to deal with the case where n is a p-power for some prime p. Passing to
the quotient G/Op′(G

(k)), we may suppose that G(k) is a pro-p group. Since w(G) is a finitely
generated pro-p group, it is actually generated by finitely many w-values. By Lemma 4.3, the
commutator subgroup of w(G) is finite. Passing to the quotient G/w(G)′, we may suppose that
w(G) is abelian. If k = 0, we deduce from Lemma 2.4 that G is periodic, hence w(G) is finite.

Suppose that k ≥ 1. Since w(G) is generated by finitely many w-values, we may choose
finitely many elements g1, . . . , gd ∈ G such that w(〈g1, . . . , gd〉) = w(G). It is sufficient to work
with 〈g1, . . . , gd〉 in place of G and so without loss of generality we suppose that G is finitely
generated, by d elements, say. By Lemma 4.5 there exists a number t = t(d, k), depending on
d and k only, such that every δk−1-value in elements of G′ is a product of at most t elements
which are δk-values in elements of G.

Consider a subgroup H = 〈x1, . . . , xt〉, where x1, . . . , xt are δk-values in G. By Lemma 4.4,
applied to finite quotients of G/w(G), every finite quotient of H/(H ∩ w(G)) and hence the
entire group H/(H ∩ w(G)) is finite of (k, n, t)-bounded order. In particular, H is soluble of
derived length at most l, where l = l(k, n, t) depends on k, n, t only.

Set v = (δk−1)n
l

. By Lemma 4.6, every v-value in elements of G′ is a product of an
(n, t, l)-bounded number of w-values and inverses of w-values. This gives |(G′)v| < 2ℵ0 and,
by induction on k, the verbal subgroup v(G′) is finite.

Passing to the quotient G/v(G′), we may suppose that δk−1-values in elements of G′ are of
finite order. Then also δk-values in elements of G are of finite order. As w(G) is abelian and
finitely generated, we conclude that w(G) is finite.

Recall that a group word w is a law in a group G if w(G) = 1. We say that w implies virtual
nilpotency if every finitely generated metabelian group for which w is a law has a nilpotent
subgroup of finite index. Burns and Medvedev [1] showed that if w implies virtual nilpotency,
then for a much larger class of groups G, including all finitely generated residually finite groups,
w(G) = 1 implies that G is nilpotent-by-finite. Moreover, the word w implies virtual nilpotency
if and only if, for all primes p, the word w is not a law in the wreath product Cp o C∞ of the
cyclic group of order p by the infinite cyclic group; see [1]. In particular, every word of the form
uv−1, where u and v are positive words (i.e. semigroup words in finitely many free generators),
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implies virtual nilpotency. Furthermore, by a result of Gruenberg [6], all Engel words imply
virtual nilpotency. Other examples of words implying virtual nilpotency include generalisations
of Engel words, such as words of the form w = w(x, y) = [xe1 , ye2 , . . . , yer ], where r ∈ N and
e1, . . . , er ∈ Z r {0}. To see that such a word implies virtual nilpotency, we employ the criterion
of Burns and Medvedev. The case r = 1 is easy; now suppose that r ≥ 2. Let p be a prime and
consider the wreath product

Cp o C∞ = 〈a, t | ap = 1, [at
i

, at
j

] = 1 for i, j ∈ Z〉
∼=−→ Fp[T, T−1] o 〈T 〉,

where a 7→ 1 ∈ Fp[T, T−1] in the base group and t 7→ T ∈ 〈T 〉 ≤ Fp[T, T−1]∗ in the top group.
We may suppose that e1 > 0. Then the indicated isomorphism maps w(ta, t) to

(T e1−1 + . . .+ T + 1)(T e2 − 1) · · · (T er − 1) 6= 0,

in the base group. Thus w(ta, t) 6= 1 and w is not a law in Cp o C∞.

Proposition 4.8. Let w be a word implying virtual nilpotency and let G be a profinite
group such that |Gw| < 2ℵ0 . If the verbal subgroup w(G) is generated by finitely many w-values,
then w(G) is finite.

Proof. Without loss of generality we may assume that G is finitely generated. Using
Lemma 4.3, we may further assume that w(G) is abelian. Clearly, w is a law in G/w(G). Hence
[1, Theorem A] shows that G/w(G) is nilpotent-by-finite. Thus G is abelian-by-nilpotent-by-
finite. Every word has finite width in every finitely generated abelian-by-nilpotent-by-finite
group; compare [15, Theorem 4.1.5].

Thus w(G) has less than 2ℵ0 elements, hence it is finite.

Following [7] we say that a group word w is weakly rational if for every finite group G and
for every positive integer e with gcd(e, |G|) = 1, the set Gw is closed under taking eth powers
of its elements. By [7, Lemma 1], the word w is weakly rational if and only if for every finite
group G, every g ∈ Gw and every e ∈ N with gcd(e, |〈g〉|) = 1 we have ge ∈ Gw. According to
[7, Theorem 3], the word w = [x1, . . . , xr]

q is weakly rational for all r, q ∈ N.

Proposition 4.9. Let w be a weakly rational word and let G be a profinite group such
that |Gw| < 2ℵ0 . If the verbal subgroup w(G) is generated by finitely many w-values, then
w(G) is finite.

Proof. By Lemma 4.3 we may suppose that w(G) is abelian, and it suffices to show that
elements of Gw have finite order.

Let h ∈ Gw, and let g be any generator of the procyclic group H = 〈h〉. For every N Eo G,
there exists e ∈ N with gcd(e, |HN/N ||) = 1 such that g ≡N he and, because w is weakly
rational, we obtain g ∈ GwN . Hence g ∈

⋂
NEoG

GwN = Gw. Therefore the procyclic group

H has less than 2ℵ0 single generators.
This implies that H is finite. Indeed, consider the Frattini subgroup Φ(H) of H. Since

〈g〉 = H for every g ∈ hΦ(H), the group Φ(H) has less than 2ℵ0 elements. Hence Φ(H) is
finite, and without loss of generality we assume that Φ(H) = 1. Then H ∼=

∏
p∈π Cp for a set

of primes π. Each factor Cp has p− 1 single generators. Since H has less than 2ℵ0 single
generators, π and hence H is finite.
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5. Reduction via parametrised words

Throughout this section, we fix a profinite group G, a positive integer r ∈ N and a normal
subgroup G E G× . . .×G of the direct product of r copies of G. A typical situation would be
G = G1 × · · · ×Gr, where G1, . . . , Gr E G.

Our intention is to consider (products of) ‘parametrised group words’ in variables x1, . . . , xr,
with parameters coming from G where each xi is intended to take values in Gi and where
we formally distinguish repeated occurrences of the same variable. This elementary concept
requires a flexible but precise set-up.

Let Ω = ΩG,r be the free group on free generators

ξh, η1,i, η2,i, . . . , ηr,i for h ∈ G and i ∈ N.

Informally, we think of each free generator ξh as a ‘parameter variable’ that is to take the value
h and each free generator ηq,i as a ‘free variable’ that can be specialised to xq, irrespective of
the additional index i.

We refer to elements ω ∈ Ω as r-valent parametrised words for G or, since r is fixed
throughout, simply as parametrised words for G. For g = (g1, . . . , gr) ∈ G, we write

ω(g) = ωG(g) = ω(g1, . . . , gr) ∈ G

for the ω-value that results from replacing each ξh by h and each ηq,i by gq, for all h ∈ G,
q ∈ {1, . . . , r} and i ∈ N. In this way we obtain a parametrised word map ω(·) : G→ G.

The degree deg(ω) of the parametrised word ω is the number of free generators ηq,i, with
q ∈ {1, . . . , r} and i ∈ N, appearing in (the reduced form of) ω; here we care whether a generator
ηq,i appears, but not whether it appears repeatedly. The degree deg(ω) is a non-negative integer
and plays a role in defining appropriate induction parameters. We remark that, if ω has degree 0,
then the map ω(·) is constant, i.e. there exists h ∈ G such that for all g ∈ G we have ω(g) = h.

Example 5.1. Our main interest will be in iterated commutator words, such as
w(x1, x2, x3) = [[x1, x2, x2], [x2, x3]], and the w-values in a profinite group G. We set r = 3,
G = G×G×G and ω = [[η1,1, η2,1, η2,2], [η2,3, η3,1]] to model w in the sense that

w(g1, g2, g3) = [[g1, g2, g2], [g2, g3]] = ω(g1, g2, g3) for all g1, g2, g3 ∈ G.

The 3-valent parametrised word ω has degree 5; moreover, ω is a multilinear commutator word
of weight 5 (meaning that it involves 5 variables). In this example, we are not yet using the
possibility to involve parameters.

We fix a set E = EG,r ⊆ Ω of r-valent parametrised words for G, which we think of as
‘elementary’ words, and we consider finite products of such. To write down these products
we use finite index sets T, S, . . . ⊆ N that are implicitly ordered so that the products are
unambiguous in a typically non-commutative setting.

Formally, an r-valent E-product for G is a finite sequence (εt)t∈T , where εt ∈ E for each
t ∈ T ; more suggestively, we denote it by ∏̇

t∈T
εt,

where the dot indicates that we consider a formal product and not the parametrised word that
results from actually carrying out the multiplication in Ω.

By a length function on E we mean any map ` : E→W from E into a well-ordered set W =
(W,≤) such that elements ε ∈ E whose length `(ε) is minimal with respect to ≤ also have
minimal degree deg(ε) = 0. As usual, we agree that the maximum of the empty subset of W
is the least element of W. A length function ` induces a total pre-order �` on the set of all
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r-valent E-products, as follows:∏̇
s∈S

ε̃s �`
∏̇

t∈T
εt if max{`(ε̃s) | s ∈ S} ≤ max{`(εt) | t ∈ T};

we write
∏̇
s∈S ε̃s ≺`

∏̇
t∈T εt if max{`(ε̃s) | s ∈ S} < max{`(εt) | t ∈ T}. Clearly, there are no

infinite descending chains of E-products, with respect to ≺`. This fact allows us to give the
following recursive definition.

Definition 5.2 Friendly products. Let ` : E→W be a length function. We define
recursively the set F = FG,r,` of `-friendly r-valent E-products for G as follows. An r-valent

E-product
∏̇
t∈T εt for G belongs to F if for every b ∈ G there exists an r-valent E-product∏̇

s∈S(b) ε̃b,s such that

(F1)
∏̇
s∈S(b) ε̃b,s belongs to F and

∏̇
s∈S(b) ε̃b,s ≺`

∏̇
t∈T εt and

(F2) the parametrised words ω =
∏
t∈T εt and νb =

∏
s∈S(b) ε̃b,s satisfy

ω(bg) = ω(b) · ω(g) · νb(g) for all g ∈ G. (5.1)

Remark 5.3. (1) In the definition, the product
∏̇
s∈S(b) ε̃b,s is allowed to be empty, in

which case (5.1) simplifies to

ω(bg) = ω(b) · ω(g). (5.2)

Such a strong relation holds, for instance, if the parametrised word ω =
∏
t∈T εt has degree 1

and defines a homomorphism G→ G that factors through the qth coordinate, if the single free
variable occurring in ω is ηq,i for some i ∈ N. In this special situation, (5.2) holds uniformly
for all b ∈ G.

(2) If the `-friendly E-product
∏̇
t∈T εt is minimal with respect to �`, then

∏̇
s∈S(b) ε̃b,s

is necessarily empty for every choice of b ∈ G. Furthermore, each εt has degree deg(εt) = 0,
so there is h ∈ G such that for all g ∈ G we have ω(g) =

∏
t∈T εt(g) = h. Thus (5.1) yields

h = h · h · 1 = h2, and hence h = 1.
In this sense there is only one parametrised word map coming from an `-friendly E-product for

G that is minimal with respect to �`, namely the constant map with value 1. In particular, for
every `-friendly E-product

∏̇
t∈T εt that is second smallest with respect to �`, the parametrised

word ω =
∏
t∈T εt satisfies (5.2).

Remark 5.4. In this paper we use the terminology introduced above in the context of
nilpotent groups. We indicate how the general set-up specialises.

Let G be a nilpotent profinite group of class at most c, i.e. γc+1(G) = 1. Denote by E the
set of all left-normed repeated commutators in the free generators ξh and ηq,i of Ω, subject to
the restriction that each ηq,i appears at most once. In other words, E consists of all γm-values,
for m ≥ 2, that result from replacing the m variables in γm = [x1, x2, . . . , xm] by arbitrary free
generators ξh and ηq,i of Ω, subject to the restriction that each ηq,i appears at most once.

For instance, given some element a ∈ G,

ε1 = [ξa, η1,1, ξa, η2,1, η2,2, η2,3] ∈ E,

whereas ε2 = [ξa, η1,1, ξa, η2,1, η2,2, η2,1] does not lie in E, even though ε1(·) = ε2(·). We set
W = N0 × N0, equipped with the lexicographic order ≤; so, for instance, (2, 10) ≤ (3, 0) and
(5, 4) ≤ (5, 7).

Every ε ∈ E, by definition, belongs to γ2(Ω). Let k(ε) denote the maximal j ∈ {1, . . . , c+ 1}
such that ε ∈ γj(Ω), and define a length function on E by associating to ε the length

`(ε) =
(
c+ 1− k(ε),deg(ε)

)
∈W.
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For instance, if c = 8 then `(ε1) = (8 + 1− 6, 4) = (3, 4).

Lemma 5.5. Suppose that the profinite group G is nilpotent of class at most c, and let E
be defined as in Remark 5.4. Let ω ∈ γk(Ω), where k ≥ 2, be such that ω(1) = 1. Then there
exists an E-product

∏̇
t∈T εt, with εt ∈ γk(Ω) and deg(εt) ≥ 1 for all t ∈ T , such that

ω(g) =
∏

t∈T
εt(g) for all g ∈ G.

Proof. It suffices to prove, by induction on c+ 1− k, that

ω ≡
∏

t∈T s.t.
deg(εt)=0

εt ·
∏

t∈T s.t.
deg(εt)6=0

εt mod γc+1(Ω). (5.3)

for a suitable index set T and suitable left-normed repeated commutators εt = [κt,1, . . . ,κt,n(t)],
where n(t) ≥ k and the terms κt,j stand for suitable free generators ξh and ηq,i of Ω. Indeed,
using the infinite supply of generators ηq,i, we can rename the free generators entering into
the commutators εt to ensure that εt ∈ E, without changing the resulting word maps εt(·).
Furthermore, the identity

1 = ω(1) =
∏

t∈T s.t.
deg(εt)=0

εt(1) ·
∏

t∈T s.t.
deg(εt)>0

εt(1) =
∏

t∈T s.t.
deg(εt)=0

εt(1)

and the fact that εt(·) is constant whenever deg(εt) = 0, shows that

ω(g) =
∏

t∈T s.t.
deg(εt)>0

εt(g) for all g ∈ G.

For k = c+ 1 the congruence (5.3) holds upon setting T = ∅. Now suppose that k < c+ 1.
As ω ∈ γk(Ω) is a product of γk-values in Ω, basic commutator manipulations (compare [15,
Proposition 1.2.1]) yield that ω can be written as a product

ω =
∏

t∈T (1)
εt · ν

of repeated commutators εt of the form [κt,1, . . . ,κt,k] or [κt,1, . . . ,κt,k]−1, where the terms
κt,j stand for suitable free generators of Ω, and an element ν ∈ γk+1(Ω). Modulo γk+1(Ω), the
basic relation

[κ1,κ2,κ3, . . . ,κk]−1 ≡ [[κ1,κ2]−1,κ3, . . . ,κk] ≡ [κ2,κ1,κ3, . . . ,κk]

holds; thus we can even avoid using terms with exponent −1.
By induction, ν can be written as a product

ν ≡
∏

t∈T (2)
εt mod γc+1(Ω).

of suitable repeated commutators. Denote by T the ordinal sum of T (1) and T (2), i.e. the
disjoint union equipped with the total order in which every t1 ∈ T (1) precedes every t2 ∈ T (2)
and where T (1) and T (2) are ordered as before. This yields

ω ≡
∏

t∈T
εt mod γc+1(Ω).

At the expense of creating extra factors of degree at least 1, we can rearrange the factors in
the product so that, after enlarging the index set and renaming the relevant factors, we arrive
at (5.3).
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Lemma 5.6. Suppose that the profinite group G is nilpotent of class at most c, and let E
be defined as in Remark 5.4. Let k ≥ 2 and let

∏̇
t∈T εt be an E-product, where εt ∈ γk(Ω)

and deg(εt) ≥ 1 for all t ∈ T . Let b = (b1, . . . , br) ∈ G. Then there exists a parametrised word
ν = νb ∈ γk+1(Ω) such that∏

t∈T
εt(bg) =

∏
t∈T

εt(b) ·
∏
t∈T

εt(g) ·
∏
t∈T

ε̃t(b//g) · ν(g) for all g ∈ G,

where ε̃t(b//·) denotes the E-product involving (in some implicit order) the 2deg(εt) − 2 factors
that result from εt by replacing a selection of at least one, but not all distinct free variables
ηq,i occurring in εt by ξbq . Moreover,∏̇

t∈T
ε̃t(b//·) ≺`

∏̇
t∈T

εt and ν(1) = 1.

Proof. As deg(εt) ≥ 1, basic commutator manipulations (compare [15, Proposition 1.2.1])
yield that, for each t ∈ T , there exists νt ∈ γk+1(Ω) such that

εt(bg) = εt(b) εt(g) ε̃t(b//g) νt(g) for all g ∈ G.

Moreover, by construction each factor of the E-product ε̃t(b//·) has degree at least 1, hence
ε̃t(b//1) = 1.

All the words εt, ε̃t(b//·) and νt, for t ∈ T , commute with one another modulo γk+1(Ω).
Hence there exists ν ∈ γk+1(Ω) such that, for all g ∈ G,∏

t∈T
εt(bg) =

∏
t∈T

(
εt(b) εt(g) ε̃t(b//g) νt(g)

)
=
∏
t∈T

εt(b) ·
∏
t∈T

εt(g) ·
∏
t∈T

ε̃t(b//g) · ν(g).
(5.4)

Since every factor of ε̃t(b//·) has degree strictly smaller than εt, we deduce that∏̇
t∈T

ε̃t(b//·) ≺`
∏̇

t∈T
εt.

Finally, substituting 1 for g in (5.4), we see that ν(1) = 1.

Lemma 5.7. Suppose that the profinite group G is nilpotent of class at most c, and let E
and ` be defined as in Remark 5.4. Let ω ∈ γk(Ω), where k ≥ 2, be such that ω(1) = 1. Then
there exists an `-friendly E-product

∏̇
t∈T εt such that

ω(g) =
∏

t∈T
εt(g) for all g ∈ G.

Proof. We argue by induction on c+ 1− k. If c+ 1− k ≤ 0, then ω(·) is the constant map
with value 1, and the assertion holds trivially; compare Remark 5.3.

Now suppose that c+ 1− k ≥ 1. We may suppose, in addition, that ω 6∈ γk+1(Ω). By
Lemma 5.5, there exists an E-product

∏̇
t∈T εt, with εt ∈ γk(Ω) and deg(εt) ≥ 1 for all t ∈ T ,

such that

ω(g) =
∏

t∈T
εt(g) for all g ∈ G.

We claim that
∏̇
t∈T εt is `-friendly; our task is to check the conditions laid out in

Definition 5.2. We argue by induction with respect to the pre-order �`. Let b ∈ G. By
Lemma 5.6, there exists a parametrised word ν ∈ γk+1(Ω) such that∏

t∈T
εt(bg) =

∏
t∈T

εt(b) ·
∏
t∈T

εt(g) ·
∏
t∈T

ε̃t(b//g) · ν(g) for all g ∈ G, (5.5)
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where the E-product
∏̇
t∈T ε̃t(b//·) and ν satisfy∏̇
t∈T

ε̃t(b//·) ≺`
∏̇

t∈T
εt and ν(1) = 1. (5.6)

By Lemma 5.5 there exists an E-product
∏̇
s∈S ε̃s, with ε̃s ∈ γk+1(Ω) and deg(ε̃s) ≥ 1 for s ∈ S,

such that

ν(g) =
∏

s∈S
ε̃s(g) for all g ∈ G.

Consider the E-product
∏̇
t∈T ε̃t(b//·)

∏̇
s∈S ε̃s, formally based on the ordinal sum of T and S,

and set ω̃ =
∏
t∈T ε̃t(b//·)

∏
s∈S ε̃s. From (5.6) and the fact that ε̃s ∈ γk+1(Ω) we deduce that∏̇

t∈T
ε̃t(b//·)

∏̇
s∈S

ε̃s ≺`
∏̇

t∈T
εt.

Moreover, substituting 1 for g in (5.5), we obtain

ω̃(1) =
∏

t∈T
ε̃t(b//1) · ν(1) =

(∏
t∈T

εt(1)
)−1

= ω(1)−1 = 1.

Hence, by induction with respect to �`, we conclude that
∏̇
t∈T ε̃t(b/·)

∏̇
s∈S ε̃s is `-friendly

and thus all the conditions in Definition 5.2 are satisfied.

Lemma 5.8. Let ` : E→W be a length function and let ω =
∏
t∈T εt, where

∏̇
t∈T εt is an

`-friendly r-valent E-product for G.
Suppose that V ≤c G is such that Vω = {ω(v) | v ∈ V} contains less than 2ℵ0 elements.

Then there exists U ≤o V such that

ω(u) = 1 for all u ∈ U.

Proof. We argue by induction, using the pre-order �`. If
∏̇
t∈T εt is minimal with respect

to �`, the assertion holds for U = V, by Remark 5.3.
Now suppose that

∏̇
t∈T εt is not minimal. As |Vω| < 2ℵ0 , Proposition 2.1 implies that there

are b ∈ V and U1 ≤o V such that ω(·) is constant on the coset bU1, i.e.

ω(b) = ω(bu) for all u ∈ U1.

By Definition 5.2, we obtain

ω(bg) = ω(b) · ω(g) · ν(g) for all g ∈ G,

where ν =
∏
s∈S ε̃s for an `-friendly r-valent E-product

∏̇
s∈S ε̃s for G such that

∏̇
s∈S ε̃s ≺`∏̇

t∈T εt. This yields

ν(u) = ω(u)−1 for all u ∈ U1;

in particular, (U1)ν = {ν(u) | u ∈ U1} has less than 2ℵ0 elements. By induction, we find the
desired U ≤o U1 ≤o V such that

ω(u) = ν(u)−1 = 1 for all u ∈ U.

Proposition 5.9. Let ` : E→W be a length function and let ω =
∏
t∈T εt, where

∏̇
t∈T εt

is an `-friendly r-valent E-product for G. Suppose that V ≤c G is such that Vω = {ω(v) | v ∈
V} has less than 2ℵ0 elements. Then Vω is already finite.
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Proof. We argue by induction, using the pre-order �`. If
∏̇
t∈T εt is minimal with respect

to �`, the assertion holds, by Remark 5.3: indeed, Vω = {1}.
Now suppose that

∏̇
t∈T εt is not minimal. By Lemma 5.8, there exists U ≤o V such that

ω(u) = 1 for all u ∈ U.

Let B be any set of coset representatives for U in V so that |B| = |V : U| <∞.
By Definition 5.2, we see that, for each of the finitely many coset representatives b ∈ B,

ω(bu) = ω(b) · ω(u)︸ ︷︷ ︸
=1

·νb(u) = ω(b)︸ ︷︷ ︸
constant

νb(u) for u ∈ U,

where νb =
∏
s∈S(b) ε̃b,s for an `-friendly r-valent E-product

∏̇
s∈S(b) ε̃b,s for G such that∏̇

s∈S(b) ε̃b,s ≺`
∏̇
t∈T εt. In particular, for each b ∈ B the set

Uνb = {νb(u) | u ∈ U} = {ω(b)−1ω(bu) | u ∈ U} ⊆ ω(b)−1Vω

has less than 2ℵ0 elements. By induction, each Uνb is finite, hence also the finite union

Vω =
⋃
b∈B

ω(b)Uνb .

6. Nilpotent groups and specific words

In this section we prove Theorem 1.2 and its corollaries.

Lemma 6.1. Let C be a class of profinite groups such that every commutator word is
strongly concise in C. Then every word is strongly concise in C.

Proof. Let w = w(x1, . . . , xr) ∈ F , where F = 〈x1, . . . , xr〉 is a free group of rank r ≥ 2.
Write w = uv, where u = x e11 · · ·x err with e1, . . . , er ∈ Z and where v = v(x1, . . . , xr) is a
commutator word, i.e. v ∈ F ′.

Suppose that |Gw| < 2ℵ0 . Let m = gcd(e1, . . . , er) and choose f1, . . . , fr ∈ Z such that m =∑r
i=1 eifi. We observe that gm = w(gf1 , . . . , gfr ), for every g ∈ G. Thus {gm | g ∈ G} has less

than 2ℵ0 elements, and consequently Gu has less than 2ℵ0 elements, as m = gcd(e1, . . . , er).
Therefore, also Gv has less than 2ℵ0 elements. Since v is strongly concise in G, the group v(G)
is finite. Working modulo v(G), we may assume that v(G) = 1 and w = u. To simplify the
notation, we may further assume that w = xm1 .

As Gw has less than 2ℵ0 elements, so does Gṽ for the commutator word ṽ = ṽ(x1, x2) =
(x1x2)−mxm1 x

m
2 . Since ṽ is strongly concise in G, the group ṽ(G) is finite. Working modulo

ṽ(G), we may assume that ṽ(G) = 1 and thus

(gh)m = gmhm for all g, h ∈ G.

Hence Gw = w(G) is the image of the homomorphism G→ G, g 7→ gm. From |w(G)| < 2ℵ0 we
conclude that w(G) is finite.

Proof of Theorem 1.2. Let w be a group word, and let G be a nilpotent profinite group of
class c. Suppose that |Gw| < 2ℵ0 . We claim that w(G) is finite. By Lemma 6.1, we may suppose
that w is a commutator word.
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Clearly, G =
∏
pHp, where the product runs over all primes p and Hp denotes the unique

Sylow pro-p subgroup of G. We conclude that Gw =
∏
p(Hp)w and w(G) =

∏
p w(Hp). As

|Gw| < 2ℵ0 , this implies w(Hp) = 1 for all but finitely many primes p.
Consequently, we may suppose that G is a pro-p group. As G is nilpotent, it satisfies the

hypothesis of Corollary 4.2 (see [15, Theorem 4.1.5]). Hence we may further suppose that w(G)
is central and of exponent p. Using Lemma 5.7, we apply Proposition 5.9 to deduce that Gw
is finite. Thus w(G) is a finitely generated elementary abelian group and therefore finite.

Proof of Corollary 1.3. Let G be a profinite group such that |Gw| < 2ℵ0 . Suppose that
F/w(F ) has nilpotency class c. Then γc+1 = [x1, . . . , xc+1] can be written as the product
of finitely many w-values or their inverses. Hence γc+1 has less than 2ℵ0 values in G, and
Theorem 1.1 implies that γc+1(G) is finite. Passing to the quotient G/γc+1(G), we can assume
that G nilpotent and Theorem 1.2 applies.

Lemma 6.2. Let m ∈ N with prime factorisation m = p e11 · · · p
ek
k . Suppose that, for each

i ∈ {1, . . . , k}, the word xp
ei
i is strongly concise in the class of pro-pi groups. Then the word

xm is strongly concise in the class of all profinite groups.

Proof. Put w = xm and let G be a profinite group such that |Gw| < 2ℵ0 . By Lemma 2.4,
the group G is periodic. A theorem of Herfort [8] yields that the group G has non-trivial Sylow
pro-p subgroups for only finitely many primes p.

Suppose that q is a prime not dividing m, and let Q be a Sylow pro-q subgroup of G. Then
every element of Q is an mth power. Consequently, Q is finite and each of its elements has only
finitely many conjugates in G, by Lemma 2.2. Hence Q is contained in a finite normal subset
of G consisting of elements of finite order. By Dicman’s Lemma [14, 14.5.7], the group Q is
contained in a finite normal subgroup of G.

Consequently, there exists a finite normal subgroup N Ec G that contains all Sylow pro-q
subgroups of G, for primes q not dividing m. Passing to G/N , we may suppose that G is a
pro-{p1, . . . , pk} group. Fix i ∈ {1, . . . , k} and let Pi be a Sylow pro-pi subgroup of G. Then
the set of p eii th powers in Pi is the same as the set of mth powers. Thus the set has less than

2ℵ0 elements and our assumptions yield that the group Ki = P
p
ei
i

i = 〈gp
ei
i | g ∈ Pi〉 is finite.

Each element of Ki has only finitely many conjugates in G; compare Lemma 2.2. Thus Ki is
contained in a finite normal subgroup Ni E G, again by Dicman’s Lemma.

Factoring out the finite normal subgroupN1N2 · · ·Nk, we may suppose that each of the Sylow
pro-pi subgroups Pi has exponent dividing p eii . Thus G has exponent dividing m = p e11 · · · p

ek
k

and w(G) = 1

Proof of Corollary 1.4. By Lemma 6.2, the assertion for x6 follows once we have dealt with
the words x2 and x3. Let F be a free group of countably infinite rank, and let w be one of the
specific words, other than x6, that appear in the statement of the corollary. It suffices to show
that F/w(F ) is nilpotent, so Corollary 1.3 can be applied.

(i) w = x2. It is well known that F/w(F ) s abelian.
(ii) w = [x2, z1, . . . , zr]. Extending the argument given in (i), we see that F/w(F ) is

nilpotent of class at most 1 + r.
(iii) w = x3. Since F/w(F ) has exponent 3, it is a 2-Engel group and thus nilpotent of class

at most 3, by a classical result of Hopkins [9]; compare [14, 12.3.6].
(iv) w = [x3, z1, . . . , zr] for r ≥ 1. Extending the argument given in (iii), we see that F/w(F )

is nilpotent of class at most 3 + r.
(v) w = [x, y, y]. Every 2-Engel group is nilpotent of class at most 3.
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(vi) w = [x, y, y, z1, . . . , zr] for r ≥ 1. Extending the argument given in (v), we see that
F/w(F ) is nilpotent of class at most 3 + r.
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