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ABSTRACT. In the setting of the unbounded derived category D(R) of a ring
R of weak global dimension at most one we consider t-structures with a de-
finable coaisle. The t-structures among these which are stable (that is, the
t-structures which consist of a pair of triangulated subcategories) are precisely
the ones associated to a smashing localization of the derived category. In this
way, our present results generalize those of to the non-stable case. As
in the stable case Im, we confine for the most part to the commutative
setting, and give a full classification of definable coaisles in the local case,
that is, over valuation domains. It turns out that unlike in the stable case
of smashing subcategories, the definable coaisles do not always arise from ho-
mological ring epimorphisms. We also consider a non-stable version of the
telescope conjecture for t-structures and give a ring-theoretic characterization
of the commutative rings of weak global dimension at most one for which it is
satisfied.
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INTRODUCTION

An extensive effort has been expended on the study of various subcategories of
the unbounded derived category D(R) of a ring R. Since this category is in most
cases too complicated to permit any chance of understanding all of its objects, one
can instead attempt to study certain kinds of subcategories with good approxi-
mation properties. One source of these is provided by Bousfield localizations, or
rather, by taking their kernels. Particularly useful are those localizations which
commute with coproducts, these are called the smashing localizations because of
their origins in algebraic topology. Smashing localizations are abundant as any set
of compact objects naturally generates one. Since thick subcategories of compact
objects often allow for a full classification (e.g. [NB92|, [Tho97]), a particularly
desirable situation occurs when any smashing localization is compactly generated.
This was formulated by Ravenel [Ra84] as the Telescope conjecture in the case of
stable homotopy category of spectra. For derived categories, the Telescope con-
jecture is known to be false in general, see Keller [Ke94]. On the other hand, the
Telescope Conjecture was settled in the affirmative for large classes of rings. Here
we mention the result of Neeman’s [NB92| for commutative noetherian rings and
of Krause-Stovicek [KS10] for one-sided hereditary rings. In both works, a classi-
fication of the compactly generated localizations is given, where in the first case
these are parametrized by the specialization closed subsets of the Zariski spectrum,
while in the second case the parametrization is by the universal localizations of the
ring in the sense of Schofield. Although the failure of the Telescope Conjecture is
usually viewed as a pathological behavior, there are rings for which the Telescope
conjecture does not hold in general, but still a full classification of smashing local-
izations is possible, and a simple ring theoretic criterion is available characterizing
when the Telescope conjecture is true. This is a result due to the first author and
Stovicek |BS17]:

Theorem A. (|[BS17, Theorem 3.10, Theorem 6.8, Theorem 7.2]) Let R be a ring
of weak global dimension at most one. Then there is a bijection between:
(i) smashing subcategories of D(R),
(ii) epiclasses of homological ring epimorphism R — S.
Furthermore, if R is commutative, then the following conditions are equivalent:

(i) the Telescope Conjecture holds in D(R),
(ii) any homological ring epimorphism R — S is flat,
(iii) for any prime ideal p of R, the prime ideal p R, is idempotent only if it is
zero in Ry.

A more general supply of subcategories of triangulated categories inducing nice
approximations is provided by the notion of a t-structure, as introduced by Beilinson,
Bernstein, and Deligne in [BBD82]. By definition, a t-structure is an orthogonal
pair of full subcategories, called usually the aisle and the coaisle, satisfying some
axioms ensuring a behavior similar to that of a torsion pair in an abelian category.
In case these subcategories are themselves triangulated, the t-structure is called
stable, and the aisles of stable t-structures are precisely the kernels of Bousfield
localizations. The smashing property generalizes easily to t-structures - it simply
requires the coaisle to be closed under coproducts. However, unlike in the case of
stable t-structures, the smashing property for t-structures is too weak to allow for
a classification even in basic cases; for example, there is a proper class of smashing
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t-structures over the ring of integers, cf. [GS85] together with [SSV17, Example
6.2]. Instead, more restrictive conditions were considered for t-structures forming
the following hierarchy:

{compactly generated t-structures}
Nl
{t-structures with definable coaisle}
NI
{homotopically smashing t-structures}
Nl
{smashing t-structures}

The subtlety of this hierarchy is only appreciated in case of non-stable t-structures,
as the latter three conditions collapse in the stable case, as shown by Krause [Kr00].
Homotopically smashing t-structures were introduced in [SSVl?], where the au-
thors prove that the heart of such t-structures has exact direct limits, and is even a
Grothendieck category under mild conditions. An a priori stronger condition is to
require the coaisle to be a definable subcategory. This condition was recently consid-
ered in the setting of silting theory in compactly generated triangulated categories,
see e.g. [MV18|, [AMV17], [Lal8|. In particular, Laking [Lal8] proved that under
mild assumptions, a left non-degenerate t-structure is induced by a pure-injective
cosilting object if and only if its coaisle is definable. Therefore, a classification of
t-structures with definable coaisles yields a description of pure-injective cosilting
objects in D(R) up to equivalence. Furthermore, it is also proved in [Lal8] that for
left non-degenerate t-structures, the homotopically smashing property is actually
equivalent to the coaisle being definable. Not before this paper was submitted,
Saorin and Stovicek [SS20, Remark 8.9] employed a result on cotorsion pairs of
Saroch [Sal& Theorem 6.1] to show that the coaisle of an arbitrary homotopically
smashing t-structure in any algebraic compactly generated triangulated category is
definable. In particular, the two middle classes of the hierarchy above collapse in
the case of D(R), and as a consequence, our results could be formulated equally
for homotopically smashing t-structures.

The following question comes naturally as a strengthening of the Telescope Con-
jecture from the stable case to general t-structures.

Question A. For which rings is it true that every t-structure in D(R) with a
definable coaisle is compactly generated?

In particular, an affirmative answer to Question |[A] implies, in light of [MV1§],
that all t-structures induced by bounded cosilting complexes over R are compactly
generated, a sort of cofinite type result in silting theory. Very recently, it was
shown that commutative noetherian rings [HN19] and one-sided hereditary rings
[AHH19, Theorem 3.11] are among answers to Question generalizing the two
results about Telescope Conjecture cited above. One of the goals of this paper is
to consider Question [A] for rings of weak global dimension at most one and give an
analog of Theorem[A]for t-structures which are not necessarily stable. In particular,
we prove the following:

Theorem B. (Theorem Let R be a commutative ring of weak global dimension
at most one. Then Question [A] has a positive answer for R if and only if the
Telescope conjecture holds in D(R).
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The first step in this direction will be to prove that any definable subcategory
of the derived category of a (not necessarily commutative) ring of weak global di-
mension at most one is determined on the cohomology (Theorem [3.4]). This gener-
alizes the results for hereditary and von Neumann regular rings of Garkusha-Prest
[GP05]. Similarly to the case of smashing subcategories in [BS17], the Kiinneth
formula plays an essential role in the proof Theorem [3.4] This reduction to coho-
mology classes will readily allow us to answer Question [A]in the affirmative for not
necessarily commutative von Neumann regular rings (Corollary also see the
references preceding it).

As in [BS17|, we then switch our focus to the commutative case. The basis
for our findings is the structure of compactly generated t-structures which were
described in terms of certain filtrations of the Zariski spectrum in [AJSI0] and
this was further generalized to not necessarily noetherian rings in [Hr1S]|; also see
[St10] for a different but related kind of result. The property of being compactly
generated localizes well, and this allows us to consider the commutative rings of
weak global dimension at most one locally - that is, to confine to valuation domains.
As one of the main results of this paper, we give a full classification of t-structures
with definable coaisles over valuation domains (Theorem by establishing a
bijective correspondence between them and certain invariants defined on the Zariski
spectrum which we call “admissible filtrations”.

Given a valuation domain R, an admissible filtration is an integer-indexed se-
quence of systems of formal intervals in Spec(R) satisfying certain axioms. Such
systems were already used in the classification of the smashing subcategories in
[BS17], as well as in the study of cotilting modules in [Ba07] and [Bal5]. In the
stable case in [BS17], the bijective correspondence was established between smash-
ing localizations and admissible systems satisfying a condition of being ‘nowhere
dense”. However, as shown in [Bald, Example 5.1], there are cotilting modules
which correspond to an admissible system which is not nowhere dense. Cotilting
modules naturally give raise to Happel-Reiten-Smalg t-structures with definable
coaisles — this suggests that the classification for general t-structure should be in
terms of sequences of admissible systems satisfying the non-density condition only
locally in some sense, with respect to cohomological degrees. This is indeed the
case, see Definition [6.12

The possibility of having dense intervals in the members of the admissible fil-
tration is connected to a new phenomenon which was not visible in case of sta-
ble t-structures. Given a ring R of weak global dimension at most one, not all
t-structures with definable coaisle can be described in terms of homological ring
epimorphisms. More precisely, in [AHH19, §5], Angeleri Hiigel and the second au-
thor establish an injective map of the following form (the statement will be made
precise in the body of this paper, see :

(%) homological ring epimorphisms

Z-indexed chains of
-
of R up to equivalence

t-structures with definable
coaisles in D(R)

By Theorem the image of the assignment (ED always contains all of the t-
structures which are in addition stable. However, already over the Kronecker al-
gebra over a field, the assignment is not surjective, as it misses precisely all the
shifts of the Happel-Reiten-Smalg t-structure associated to the dual of the Lukas
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tilting module [AHH19, §6.4]. In this paper, we will demonstrate that over val-
uation domains, the map (ED can potentially miss a lot of t-structures, provided
that the Zariski spectrum of the domain is “topologically rich enough” to allow
density to occur in an admissible filtration, see Remark We compile the re-
lations between the various kinds of t-structures and invariants over a valuation
domain R established in Sections 8 and 9 in the following commutative diagram of
1-1 correspondences and inclusions.

admissible -1 t-structures with
filtrations — definable coaisle
in Spec(R) in D(R)
Ul Ul
nowhere dense 1-1 t-structures 1—1 chains of homological
admissible — in the image — ring epimorphisms
filtrations of over R up to equiv.
Ul ul Ul
simple admissible -1 compactly 11 chains of flat
filtrations of s generated e ring epimorphisms
Proposition@ t-structures over R up to equiv.

The paper is concluded by discussing the non-degeneracy condition of the classi-
fied t-structures. In general, there is the following chain of conditions that one can
impose on a definable coaisle in the derived category of any ring R:

{co-intermediate definable coaisles}
Nl
{non-degenerate definable coaisle}
Il

{non-degenerate coaisles of homotopically smashing t-structures}

By results of [MVIS8] and [Lal8|, respectively, the smallest class above corre-
sponds to equivalence classes of (bounded) cosilting complexes over R, while the
two larger classes coincide and correspond to equivalence classes of pure-injective
cosilting objects. The usual definition ([WZ17], [MV18]) demands the cosilting com-
plex to be a bounded complex of injective R-modules, ensuring that the induced
t-structure is co-intermediate, while one makes no such assumption when defining
a general cosilting object ([NSZ19|, [PV18]) in a triangulated category. We use our
classification over a valuation domain to show that while any pure-injective cosilting
object is in this setting cohomologically bounded below (Corollary @D, the induced
t-structure may not be co-intermediate in general (Example @ , obtaining that
the inclusion of the two classes above is strict.

The paper is organized as follows. Sections 1 and 2 compile the necessary facts
and recent results about t-structures, definability in triangulated categories, homo-
topy colimits, and the cosilting theory. This is done in the generality of triangulated
categories which underlie a compactly generated Grothendieck derivator. In Sec-
tion 3 we study the definable subcategories of the unbounded derived category of
a ring of weak global dimension at most one, showing in particular that these are
determined on cohomology (Theorem . The definable coaisles are parametrized
by certain increasing sequences of definable subcategories of the module category
(Proposition . As a consequence, we answer Question |A|in the affirmative for
von Neumann regular rings (Corollary . After that, we confine to the case of
a valuation domain, and give a full classification of the module-theoretic cosilting
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classes via “admissible systems” of intervals in Section 4, mainly Theorem [£.11]
Section 5 introduces the topological notion of (non-)density, computes the cosilting
classes by homological formulas (Proposition @ , and provides a construction of
dense-everywhere cotilting modules (Proposition @, which is needed for the se-
quel. In the next two Sections 6 and 7, the assignments between definable coaisles
in the derived category and the “admissible filtrations” on the Zariski spectrum
are established (Proposition and Proposition . In Section 8 we prove that
these assignments are mutually inverse, and thus induce the promised bijective
correspondence (Theorem . Finally, in the last Section 9 we show that the con-
dition of being “nowhere dense” of the admissible filtrations corresponds precisely
to the t-structure being induced by a chain of homological ring epimorphisms via
(E[) (Theorem and conclude with several examples.

Acknowledgement. The authors would like to thank the anonymous referee for
many valuable suggestions, one of which helped us discover a mistake in an earlier
version of the manuscript. This led us to the correct notion of the degreewise
non-density condition (Definition which in turn allowed us to describe the
definable coaisles as tensor-orthogonal classes (Proposition .

Conventions. Throughout the paper, all subcategories are strict, full and additive,
and all functors are additive.

Unless specified, by a module we always mean a right module over a ring R, and
the category of right R-modules will be denoted as Mod-R, while the category of
abelian groups is denoted as Ab. The chain complexes of R-modules are written
in the cohomological notation, that is, the degree increases along the differential.

1. T-STRUCTURES WITH DEFINABLE COAISLES

Let 7 be a triangulated category with all small coproducts. We will always
denote the suspension functor of 7 by [1], and the cosuspension functor by [—1].
A t-structure ([BBDS82]) in 7 is a pair t = (i, )V) of subcategories satisfying the
following three conditions:

(i) Homp(U,V)=0forallU e Y and V € V,
(ii) for each object X € T there is a triangle

U—=X—->V =U[]

with U e Y and V € V, and

(iii) U[1] C U, or equivalently, V[-1] C V.

The subcategory U is called the aisle of the t-structure t, and the subcategory V
is the coaisle of t. We will call a subcategory of 7 an aisle if it fits as an aisle into
a t-structure, and the same custom will be used for coaisles. Given a subcategory
C of T we adopt the notation

Cto={X €T |Hom+(C,X)=0VC € C},
and

to¢ = {X € T |Hom 7(X,C) =0 VC € C}.
It is not hard to see that conditions (i) and (i) imply that & = LoV and V = Uo.
As a consequence, all aisles and all coaisles are closed under extensions and direct

summands in 7. Moreover, any aisle is closed under all coproducts in 7, and any
coaisle is closed under all products existing in 7.
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The triangle from condition (¢4) is unique up to a unique isomorphism of trian-
gles. Indeed, it is always isomorphic to the triangle

TM(X) — X = Tv(X) — Tu(X)[l],

where 7y and 1y are the right and left adjoint to the inclusions / C 7 and V C T,
respectively. Moreover, the existence of (any of) these adjoints under (¢) and (i4i) is
equivalent to condition (ii) (see [KV88|, Proposition 1.1]). We will call the triangle
from (i) the approximation triangle of X with respect to the t-structure t. We
will be especially interested in the reflection functor 7, which will be called the
coaisle approximation functor.

1.1. Definability in compactly generated triangulated categories. Recall
that an object C' € T is compact if the functor Homs(C, —) sends coproducts in T
to coproducts in Ab, and let 7¢ denote the triangulated subcategory of all compact
objects of 7. From now on we will assume that 7 is a compactly generated
triangulated category, that is, that 7 has small coproducts, T¢ is skeletally small,
and that Hom7(7¢, X) = 0 implies X = 0 for any X € 7. For any category C, let
Mor(C) denote the morphism category of C.

Definition 1.1. We say that a subcategory C of T is definable if there is a subset
® of Mor(7°) such that

C={X €T |Hom7(f, X) is surjective for all f € ®}.

A recent result from [Lal8| shows that, under mild assumptions, definable sub-
categories can be characterized by their closure properties, in a way analogous to
definable subcategories of module categories. Before stating this result, we need to
recall the notions of purity in compactly generated triangulated categories, and of
derivators and homotopy (co)limits.

1.2. Purity in compactly generated triangulated categories. Consider the
category Mod-T° of all T°-modules, that is, of all contravariant functors 7¢ — Ab.
Welety : T — Mod-T*° be the restricted Yoneda functor, by which we mean the
functor defined by restricting the standard Yoneda functor on 7 to T°. Explicitly,

y(+) = Hom 7(—, 4)7e.
This functor can be used to build a useful theory of purity in 7.

Definition 1.2. A triangle X Ly % 7. X[1] in T is a pure triangle if the
induced sequence

0 - y(x) X y(v) Y2, y(2) - 0

is exact in Mod-T°. If this is the case, we call f a pure monomorphism and g
a pure epimorphism in 7. We remark that, of course, pure monomorphisms in
T will usually not be monomorphisms in the categorical sense, and the same is the
case with pure epimorphisms.

Moreover, we call an object E € T pure-injective if any pure monomorphism
E — X in T splits.

The purity in 7T is closely tied to the definable subcategories in T via the notion
of the Ziegler spectrum. Here, we follow [Pr09] §17]. The Ziegler spectrum Zg(7)
of T is the collection of isomorphism classes of all indecomposable pure-injective
objects of T. Then Zg(T) is always a set, and it is equipped with a topology
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given as follows: A subset U of Zg(T) is closed if and only if there is a definable
subcategory C of T such that U = Zg(7) N C. The following result due to Krause
says in particular that every definable subcategory of 7T is fully determined by the
indecomposable pure-injective objects it contains.

Theorem 1.3. ([Kx02]) Let T be a compactly generated triangulated category.
Then there is a bijective correspondence:

{ closed subsets U of Zg(T) } “ { definable subcategories C of T }

Both correspondences are given by the mutually inverse assignments

Uw— {X €T | there is a pure monomorphism X — HP“ where P; € U},
i€l
C— CNZg(T).

1.3. Derivators and homotopy (co)limits. Triangulated categories usually do
not have many useful limits and colimits apart from products and coproducts. A
way to remedy this is to introduce an additional structure on them and compute the
homotopy (co)limits instead. In our case, this extra structure comes from assuming
that 7 is the underlying category of a strong and stable derivator. Since we will
very soon restrict ourselves to the case of derived categories, we omit most of the
details on derivators, and refer the reader to [Lal8] and references therein for an
exposition of the theory well-suited for our application.

A derivator is a contravariant 2-functor D : Cat®® — CAT from the category
of small categories to the category of all categories, satisfying certain conditions.
We denote by x the category consisting of a single object and a single map. The
category D(x) is called the underlying category of the derivator D. For every
small category I, we consider the unique functor 7y : I — *. The definition of a
derivator implies that the functor D(r;) : D(x) — D(I) admits both the right and
the left adjoint functor. We denote the right adjoint by holim : D(I) — D(x) and
the left adjoint by hocolim : D(I) — D(x). We omit the definition of a strong and
stable derivator, but we remark that amongst the consequences of these properties
is that the category D(T) is triangulated for all T € Cat.

Given a small category I and an object ¢ € I, let ¢ also denote the functor
i : x — I sending the unique object of x onto 7. Then we have the induced functor
D(i) : D(I) — D(x). For any 2 € D(I) we denote Z; = D(i)(Z") € D(x) and
call it the i-th component of 2. Together, the component functors induce the
diagram functor d; : D(I) — D(x)!. The objects of D(I) are called the coherent
diagrams in the underlying category of shape I. Via the diagram functor, any
coherent diagram can be interpreted as a usual (or incoherent) diagram in the
underlying category.

1.4. Standard derivator of a module category. Here we follow [St14, §5].
Let R be a ring, and let Mod-R be the abelian category of all right R-modules.
For any small category I € Cat, we let (Mod-R)! be the category of all I-shaped
diagrams in Mod-R, that is, the abelian category of all functors I — Mod-R. Let
D((Mod-R)!) denote the unbounded derived category of (Mod-R)!. Recall that
there is a natural equivalence between the category of chain complexes of objects in
(Mod-R)!, and the I-shaped diagrams of chain complexes of R-modules. Therefore,
D((Mod-R)!) can be considered as the Verdier localization of the category of I-
shaped diagrams of chain complexes. There is the standard derivator associated
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to Mod-R which assigns to any small category I € Cat the triangulated category
D((Mod-R)!). The underlying category D(Mod-R) will be denoted simply by D(R).
This assignment defines a strong and stable derivator, and the homotopy limit and
colimit functors can be in this case described by derived functors in the following
way. Let I € Cat, then we define the homotopy colimit functor hocolim;¢; :
D((Mod-R)!) — D(R) to be the left derived functor L colim;¢; of the usual colimit
functor colim;e; : (Mod-R)! — Mod-R. Dually, we define the homotopy limit
functor as holim;c; := Rlim;ecr : D((Mod-R)!) — D(R).

The objects of D((Mod-R)?), that is, the coherent diagrams of shape I, are all
represented by diagrams of chain complexes of R-modules. Let 2~ € D((Mod-R)!)
be represented by a diagram (X; | ¢ € I) of chain complexes. Then clearly, 2; ~ X;
as objects of D(R) for any i € I.

We will be especially interested in the homotopy colimit construction in the
case when the small category I is directed. In this situation, we call hocolim;c; a
directed homotopy colimit. Because the direct limit functor li_lr)ni€ = colim;¢r
on the category of chain complexes of R-modules is exact, we have for each object
Z € D((Mod-R)!), represented by a diagram (X; | i € I) of chain complexes, the
isomorphism hocolim;ec; 2~ ~ li_r)nie ;Xi in D(R). In particular, we have for any
n € Z the following isomorphism on cohomologies

H (hogé)}lm )~ %H (X5).
For more details, we refer to [St14) Proposition 6.6].

1.5. Definable coaisles. We now assume that 7 is an underlying subcategory of
a compactly generated derivator, that is, a strong and stable derivator D such
that the underlying category D(x) (and by [Lal8] Lemma 3.2], consequently also
any of the categories D(I) for any small category I) is compactly generated. This
implies that 7 is a compactly generated triangulated category, in which we can
compute homotopy colimits and limits.

Definition 1.4. We say that a subcategory C of T is

e closed under directed homotopy colimits if for any directed small
category I and any coherent diagram 2" € D(I) such that £2; € C for all
1 € I we have hocolim;c; 2" € C,

e closed under pure monomorphisms if for any pure monomorphism
Y — X such that X € C we have Y € C.

Following [SSV17|, we call a t-structure (i4,V) homotopically smashing if the
coaisle V is closed under directed homotopy colimits. We point out here that any
aisle is closed under arbitrary homotopy colimits, and any coaisle is closed under
arbitrary homotopy limits, this is [SSV17, Proposition 4.2].

We are now ready to state the result from [Lal8] characterizing definable sub-
categories of 7 by their closure properties.

Theorem 1.5. ([Lal8| Theorem 3.11]) A subcategory C of T is definable if and only
if C is closed under products, directed homotopy colimits, and pure monomorphisms.

We will be especially interested in the situation when a coaisle of a t-structure is
a definable subcategory. The following result shows that in this case the existence
of the triangles from condition (ii) is automatic.
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Theorem 1.6. (JAMVIT, Proposition 4.5]) Let V be a definable subcategory of T
closed under extensions and cosuspensions. Then the pair (+°V,V) is a t-structure.

Putting the last two results together, we have a nice intrinsic characterization of
the notion of a definable coaisle.

Corollary 1.7. A subcategory V of T is a definable coaisle if and only if V is
closed in T under extensions, cosuspensions, products, directed homotopy colimits,
and pure monomorphisms.

2. COSILTING OBJECTS AND T-STRUCTURES INDUCED BY THEM

In this section we recall the results of [MV18] and |[Lal8|, which show that
definability of coaisles is closely related to cosilting theory. For any object C' € T,
we define the following two subcategories of T

Lo = {X € T | Hom +(X, C[i]) = 0 Vi < 0}, and

200 ={X € T | Hom 7(X, C[i]) = 0 Vi > 0}.
An object C of a triangulated category 7 is cosilting provided that the pair t =
(f=0C,+>0C) forms a t-structure in 7. In this situation, we say that the t-structure
t is a cosilting t-structure, and it is induced by the cosilting object C'. Among
the consequences of the definition (see [PV18], Proposition 4.3]) is that any cosilting
object C is a (weak) cogenerator in T, that C' € +>°C, and that any cosilting t-
structure is non-degenerate in the following sense: .

Definition 2.1. A (U,V) t-structure in a triangulated category T is called non-
degenerate provided that (1, ,U[n] = 0 and (., V[n] = 0.

Now we are ready to state the following result due to Laking.

Theorem 2.2. (|[Lal8 Theorem 4.6]) Let T be an underlying triangulated category
of a compactly generated derivator, and consider a non-degenerate t-structure t =
(U,V) in T. Then the following conditions are equivalent:

(i) t is induced by a pure-injective cosilting object C,

(i) the subcategory V is definable,

(iii) the t-structure t is homotopically smashing,

(iv) the subcategoryV is closed under coproducts, i.e. t is a smashing t-structure,

and the heart H :=U NV[1] is a Grothendieck category.

Since any t-structure induced by a cosilting object is non-degenerate, we have
also the following reformulation:

Corollary 2.3. Let T be an underlying triangulated category of a compactly gen-
erated derivator, and let t = (U, V) in T. Then the following conditions are equiv-
alent:
(i) t is induced by a pure-injective cosilting object C,
(iii) the t-structure t is non-degenerate and V is definable.

Now we confine to the case of T = D(R) for a ring R. We say that a subcategory
V of D(R) is co-intermediate if there are integers m < n such that D="CVC
D=™, where
D=F ={X ¢ D(R) | H(X) =0Vl < k}.
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We say that a cosilting object C' € D(R) is a bounded cosilting complex if C' is
isomorphic to a bounded complex of injective R-modules in D(R). As an example,
any large n-cotilting R-module (in the sense of [GT12, §15]) is a bounded cosilting
complex when considered as an object of D(R). Then [MV18] shows that any
bounded cosilting complex of D(R) is pure-injective, and we have the two following
characterization of the t-structures induced by bounded cosilting complexes:

Theorem 2.4. ([MVIS8| Theorem 3.14]) Let R be a ring, and V a subcategory of
D(R). Then the following conditions are equivalent:

(i) V is the coaisle of a t-structure induced by a bounded cosilting complez,
(ii) V is definable, co-intermediate, and closed under extensions and cosuspen-
sL0MS.

2.1. Module-theoretic cosilting torsion-free classes. We start by a well-known
construction due to Happel, Reiten, and Smalg. To do this, we must first recall the
notion of a torsion pair in a module category. Let R be a ring. A torsion pair
in Mod-R is a pair (T, F) of subcategories of Mod-R such that Hompg(7,F) = 0
and both the subcategories are maximal with respect to this property. We call T
a torsion class and F a torsion-free class. It is well-known that a subcategory
T of Mod-R is a torsion class (belonging to some torsion pair) if and only if T is
closed under extensions, coproducts, and epimorphic images. Dually, torsion-free
classes are characterized by the closure under extensions, products, and submod-
ules. Finally, a torsion pair is hereditary if 7 is closed under submodules, or
equivalently, F is closed under taking injective envelopes. We call a subcategory of
Mod-R definable if it is closed under products, pure submodules, and direct limits.
In particular, a torsion-free class is definable if and only if it is closed under direct
limits. We refer the reader to [Pr09] as a main reference for the theory of definable
subcategories in the setting of a module category.

Then we define the Happel-Reiten-Smalg t-structure (i, V) induced by the
torsion pair (7,)) to be the pair of subcategories of D(R) given as

U={XecDR)|H"(X)=0Vn>0and H'(X) € T},

and
V={XeD(R)| H*(X)=0Vn<0and H(X) € F}.

By [HRS96], this construction induces an injective assignment from the class of
torsion pairs in Mod-R to the class of t-structures in D(R). Clearly, the coaisle V
of any Happel-Reiten-Smalg t-structure satisfies D=! C 'V € D=, Conversely, any
t-structure with coaisle satisfying the latter property is Happel-Reiten-Smalg, see
[Po07), Lemma 1.1.2]. Tt is an easy task to characterize the Happel-Reiten-Smalg t-
structures which are induced by a cosilting object.

Lemma 2.5. Let R be a ring and (U, V) a t-structure in D(R). Then the following
conditions are equivalent:
(i) (U,V) is a cosilting t-structure such that D=* CV C D=°,
(ii) (U,V) is a Happel-Reiten-Smalg t-structure induced by a torsion pair (T, F)
in Mod-R such that F is closed under direct limits.

Proof. In view of Theorem the only thing we need to check is that if (U, V)
is a Happel-Reiten-Smalg t-structure induced by a torsion pair (7, F), then V is
definable in D(R) if and only if F is closed under direct limits in Mod-R. By the



12 SILVANA BAZZONI AND MICHAL HRBEK

definition of V we have that X € V if and only if H°(X) € F for any X € D=0, If
2 € D((Mod-R)!) for some directed diagram I with 2; € V for all i € I, then we
have H°(hocolim;c; 2;) ~ @iel H°(Z;). Therefore, hocolim;c; Z; € V provided
that F is closed under direct limits. On the other hand, any I-shaped directed
system of modules in F can be regarded as a coherent diagram in D((Mod-R)!)
with coordinates being stalk complexes from V. Therefore, if V is closed under
directed homotopy colimits then F is closed under direct limits. Finally, since
(U,V) is non-degenerate, V is definable if and only if V is closed under directed
homotopy colimits by Theorem [2.2] O

Finally, we discuss the connection to the cosilting and cotilting modules. Fol-
lowing [AMV15] and [BP17], an R-module T is cosilting if there is an injective
copresentation

0—>T— QO i) Ql,
such that C, = Cogen(T), where C, = {M € Mod-R | Hompg(M, o) is surjective}.
A class C C Mod-R is called cosilting if there is a cosilting module T such that
C = Cogen(T). It is easy to infer from a result due to Breaz-Zemlitka and Wei-
Zhang that cosilting classes are precisely the torsion-free classes closed under direct
limits, in other words, the definable torsion-free classes in Mod-R.

Theorem 2.6. ([BZ16],[WZ17]) A class C € Mod-R is cosilting if and only if C is
a definable torsion-free class.

Proof. In [WZ17] it is proved that a torsion-free class is cosilting if and only if it is
a covering class. Any definable subcategory is covering, and [BP17, Corollary 4.§]
shows that any cosilting class is definable. O

Cosilting modules are precisely the module-theoretic shadows of 2-term cosilting
complexes. A cosilting complex is 2-term if it can be represented by a complex
of injective R-modules concentrated in degrees 0 and 1. We say that two cosilting
objects are equivalent if they induce the same t-structure, and that two cosilting
modules are equivalent if they cogenerate the same cosilting class.

Theorem 2.7. ([WZ17, Theorem 4.19]) Let R be a ring. Then there are bijections
between the following sets:

(i) equivalence classes of 2-term cosilting complexes C,
(i) equivalence classes of cosilting R-modules T = Ker(Qo — @Q1), where
Qo, Q1 are injective R-modules.

The bijection composes of two mutually inverse assignments
C — H°(C), and
T (- —=0=Q0 >Q —0—---).
Proposition 2.8. Let R be a ring and t = (U, V) a t-structure. Then the following

conditions are equivalent:

(i) t is induced by a 2-term cosilting complex C,
(ii) t is a Happel-Reiten-Smalg t-structure induced by a torsion pair (T,F),
where F is a cosilting class.
Furthermore, the cosilting class F is cogenerated by the cosilting module H°(C) for
any choice of the equivalence representative C.
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Proof. If (i) holds, then the coaisle of the cosilting t-structure clearly squeezes
between D= and D=°, and therefore is Happel-Reiten-Smalg by Lemma Fur-
thermore, the torsion pair inducing this t-structure necessary has the torsion-free
class cogenerated by the cosilting module H°(C) by [Pol7, Proposition 2.16]. Con-
versely, if t is Happel-Reiten-Smalg induced by a torsion pair (7, F) with F cosilt-
ing, then t is a cosilting t-structure by Theorem [2.6] and Lemma [2.5] Let T be a
cosilting module cogenerating F, and let ¢ : Qp — @1 be a map witnessing that T'
is a cosilting module. Then ¢ is a 2-term cosilting complex by Theorem and o
induces t by [Pol7, Proposition 2.16]. O

As a summary, studying the Happel-Reiten-Smalg t-structures induced by a
cosilting object in D(R) boils down to studying definable torsion-free classes in
Mod-R.

2.2. Cotilting modules. We also need to recall the basics on (large) 1-cotilting
modules. Let C be a subcategory of Mod-R. We will use the notation

+C = {M € Mod-R | Ext 5,(M,C) =0 VC € C}, and
Ct = {M € Mod-R | Ext L(C, M) = 0 VYC € C},
and if C = {C} is a singleton, we will drop the curly brackets. An R-module
C' is called (1-)cotilting provided C has injective dimension at most one and
L C = Cogen(C). It is easily seen that any 1-cotilting module is a cosilting module,
and this is witnessed by any injective coresolution 0 — C' — Qo = Q1 — 0. The
cosilting class Cogen(C') is in this case called a (1-)cotilting class induced by C.

Clearly, any 1-cotilting class contains all projective R-modules. Conversely, any
cosilting class containing R is a cotilting class by [JAPST14), Proposition 3.14].

3. DEFINABLE SUBCATEGORIES IN THE DERIVED CATEGORY OF RINGS OF WEAK
GLOBAL DIMENSION AT MOST ONE

Recall that a ring R is of weak global dimension at most one if any sub-
module of a flat R-module is flat, or equivalently, that Tors'(—, —) is a zero functor
Mod-R x Mod-R°? — Ab, which also demonstrates that this is a left-right symmet-
ric property of a ring.

The main aim of this section is to use the Kiinneth formula to prove that definable
subcategories in the derived category of a ring of weak global dimension at most one
are fully determined by cohomology. We start with a reformulation of the definition
of a definable subcategory in the derived category of a ring. Given a ring R, let
R°P be the opposite ring, so that Mod-R°P is identified with the category of all left
R-modules.

3.1. Determination on cohomology.

Lemma 3.1. Let R be a ring, and let C be a subcategory of D(R). Then the
following are equivalent:

(i) C is definable in D(R),
(i) there is a set ® C Mor(D(R)) such that

C ={X € D(R) | Hom p(g)(f, X) is injective for each f € ®},
(ili) there is a set @ C Mor(D(R)) such that
C={X € D(R) | Homp(g)(f,X) is zero for each f € @},
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(iv) there is a set ® C Mor(D(R°P)°) such that
C={X € D(R) | H'(X ®% [) is zero for each f € ®}.
Proof. Let f:C — D be a map in D(R)¢, and consider the induced triangle
cLpLehon,

in the triangulated category D(R). Applying Hompg)y(—, X), we obtain an exact
sequence

Hom p(g) (f,X) Hom D(R)(h[—l],X)
_—

Hom D(R) (D, X)

Hom p(ry (h[-1],X)

Hom D(R)(CaX)

Hom p gy (g[—1],X)

Hom p(g)(E[-1], X) Hom p(g)(D[-1], X)
of abelian groups. It follows that Hom pg)(f, X) is surjective if and only if
Hom p(g)(h[—1],X) is zero if and only if Hom p(g(g[—1], X) is injective. This
establishes the equivalence of (i) — (4i7).

Suppose that @ is a set of maps between objects from D°(R) such that

C ={X € D(R) | Hom p(g)(f, X) is zero for each f € ®}.
We define the set @* of maps in D(R°P) as follows:
& = (RHom g (f. ) | f € ®}.

Recalling that RHompg(—, R) induces an equivalence D°(R) — D°(R°P), we have
that ®* is actually a set of maps between objects from D¢(R°P). Then the equiv-
alence of (ii¢) and (iv) comes from the following standard isomorphism in D(Ab),
natural in C € D°(R):

RHom(C, X) ~ X ®% RHom r(C, R),
which implies that for any f € ® we have the following isomorphism of maps in
Ab:
Hom p(g)(f, X) ~ H* RHom(f, X) ~ H*(X ®F RHom g(f, R)).
O

Definition 3.2. Let V be a subcategory of D(R). We say that the subcategory
V is determined on cohomology if the following equivalence holds for each
X € D(R):

X eV < H"(X)[-n]€eVVneZ.

The characterization (iv) of Lemma of definable subcategories using tensor
product will be useful here, and as in the proof of an analogous statement for
localizing pairs in [BS17, §3], the Kiinneth’s theorem will play a crucial role.

Lemma 3.3. Let R be a ming of weak global dimension at most one, let X be any
object in D(R), and let
E% oL D En
be any triangle in D(R). Then the following conditions are equivalent:
(i) H"(X ®% f) is a zero map in Ab,
(ii) the following two conditions hold:
o for allp+ q=n the map HP(X) @ HI(f) is zero in Ab, and
e forallp+q=n+1 the map Tor B(HP(X), Hi(h)) is surjective.
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Proof. We start by making the assumption that f : ¢ — D and h : E — C are
actually (represented by) maps of chain complexes. This is a harmless assumption,
as we can for example replace C' by a quasi-isomorphic K-projective replacement
C' (these always exist by [Sp88|, Corollary 2.8]), then replace f by its image f’ in
the isomorphism Hompg)(C, D) ~ Homg gy (C’, D), and finally replace h by the
mapping cocone of f’.

Next, let P be a K-projective complex of right R-modules which is quasi-
isomorphic to X. Then the components of P are projective R-modules, and since
R has weak global dimension at most one, all coboundary and cocycle modules of
P are flat R-modules. Therefore, we can use the Kiinneth’s formula [CE99, §VI
Theorem 3.1|, and its naturality [CE99] §IV Theorem 8.1], in degree n for the chain
maps PRr f: Pr(C - P®r D and PRrh: P®r E — P®g C, to obtain the
following commutative diagram

0+ @ H(P)® rHY(E) » H'(P®rE)™S @5 Tor{(H(P),H'(E)) »0
ptg=n p+g=n+1

lEB HP (P)® R H (h) H™(PORK) lEB Tor R(HP (P), 1 (h))

0+ @ H(P)® rH'(C) » H'(P@rC)™S @5 Tori(H*(P),H!(C)) - 0.

ptg=n pHg=n+1

lﬁB HP (P& R H(/) HPeRS)

J{@ Tor {{(HP (P),HI(f))

0+ @ HY(P)® rHYD) » H"(P®@rD) » €P Tor{'(H"(P),HY(D)) > 0

p+g=n ptg=n+l

with rows being the short exact sequences provided by the Kiinneth formula. Also,
the middle column of the diagram is exact, because it is a part of the long exact
sequence on cohomologies induced by the triangle

L L L
Pl p L9 pol o PE1 p oL p PER9, p oL gy,

and by the fact that P ®% — : D(R°?) — D(Ab) is represented by the ordinary
tensor product P ® g —, because P is K-projective.

Assume first that H™(X ®}'z f) is a zero map. Since P is the K-projective
replacement of X, we have an isomorphism of maps H"(X ®% f) ~ H"(P ®p f).
Then H"(P ®pg f) is a zero map, and the exactness of the rows and commutativity
of the diagram implies that @ H?(P) @z H(f) and @ Tor F(HP(P), Hi(f)) are
zero maps in Ab, and therefore all of their direct sum components are zero maps.
By the exactness of the middle column, H"(P ®p f) being zero forces H"(P Qg h)
to be surjective. The commutativity of the upper right square then implies that
the map @ Tor £(HP(P), H1(h)) is surjective, and therefore the component maps
are surjective as well. Because HP(P) ~ HP(X) for all p € Z, we have proved

Now suppose that (i) holds. Then @@ HP(P) ®r H(f) is a zero map, and
therefore H"(P ®p f) factors through the epimorphism n¢ : H"(P ®p C) —

Dy+ g1 Tory' (HP(P), HI(C)), say

H"(P®g f) =ponc



16 SILVANA BAZZONI AND MICHAL HRBEK

for some map ¢ : @, ;=11 Torf(H?(P), H1(C)) — H"(P ®g D). Using the
commutativity of the diagram, we can compute the composition of maps as follows

o o @D Tor f(HP(P), HI(h)) o mpp = p om0 H" (P ©p h) =

=H"(P®gr f)o H"(P®gr h) =0.

But by (ii), the map € Tor f(HP(P), Hi(h)) is an epimorphism, and so is 7.
Therefore, ¢ = 0, and thus H"(P ®pg f) is a zero map. Again, as P is the K-
projective replacement of X, this means that H™(X ®Ié f) is a zero map, proving
the implication (i1) = (i). O

Theorem 3.4. Let R be a ring of weak global dimension at most one, and let V be
a definable subcategory in D(R). Then V is determined on cohomology.

Proof. Since V is definable, there is by Lemma a set ® of maps from D“(R°P)
such that V = {X € D(R) | H(X ®% f) is zero for each f € ®}. For each f € ®,
let f/ € D°(R°P) be a map such that there is a triangle of the form

efsc LD EQ
in D°(R°?). By Lemma we have for any X € D(R) and any f € @ the
equivalence
H°(X @% £) is a zero map <=

— H"(X)®@pH "(f) is zero and Tor {(H™(X), H'~"(f’)) is surjective Vn € Z.

Since the latter condition is formulated just by means of the cohomology modules
of X, we see that for any X € D(R) we have the equivalence

XeV = [[HX)|-neV.
nez
As V is closed under products and direct summands, it follows that V is determined
on cohomology. (I

Proposition 3.5. Let R be a ring of weak global dimension at most one. Then
there is a 1-1 correspondence:

definable subcategories V o collections {V,, | n € Z} of
in D(R) definable subcategories of Mod-R |

The correspondence is given by assignments
V=V, ={H"(X)| X €V} VneZ,
{VnlneZ—»V={XeD(R)|H"(X)€V, VneZ}.

Proof. By Theorem any definable subcategory V is determined on cohomology,
and thus V is uniquely determined by a collection of subcategories V,, = {H"(X) |
X €V}, n € Z. Also, since V,[-n] C V for all n € Z, then clearly the classes
V), are closed under direct products and direct limits by the closure properties
of V. Recall that any pure-exact sequence in Mod-R becomes a pure triangle in
D(R), this follows e.g. from the characterization [Lal8, Proposition 3.7] of pure
triangles together with [Pr09, Theorem 16.1.16]. Thus, since V is closed under pure
monomorphisms in D(R), it follows that V,, is closed under pure submodules in
Mod-R. Therefore, V), is a definable subcategory of Mod-R for each n € Z.



DEFINABLE COAISLES OVER RINGS OF WEAK DIMENSION ONE 17

Conversely, let {V, | n € Z} be any collection of definable subcategories of
Mod-R and let us prove that V = {X € D(R) | H"(X) € V,, Vn € Z} is a
definable subcategory of D(R). Let 2 € D((Mod-R)!) be a coherent diagram of
a directed shape I such that 2; € V for all i € I. In particular, H"(Z2;) € V,
for all n € Z. Then H"(hocolim;e; Z7) ~ h_r)niel H™(Z;) € V, for all n € Z, and
thus hocolim;c; 2~ € V. Similar argument shows that V is closed under products.
Finally, consider a pure monomorphism f : ¥ — X in D(R) with X € V. For
each n € Z we have that Homg(R[—n], f) ~ H"(f) is a pure monomorphism of
R-modules by [Pr09l 17.3.17]. Therefore, H"(Y') € V,, for all n € Z, and therefore
Y € V. Using Theorem we conclude that V is a definable subcategory. This
establishes the correspondence. ([l

3.2. Ziegler spectra. We can reformulate Proposition[3.5|using the Ziegler spectra
of the derived category and of the module category. We refer to [Pr09] for the theory
of Ziegler spectra of module categories. If R is a ring, the natural embedding
Mod-R[—n] € D(R) for some n € Z induces a closed embedding Zg(R)[—-n] —
Zg(D(R)). Clearly, U, ¢z, Zg(R)[—n] forms a disjoint union inside Zg(D(R)). One
can ask for which rings it is true that Zg(D(R)) = U, ¢ Zg(R)[—n]. Equivalently,
for which rings is it true that every indecomposable pure-injective object inside
D(R) is quasi-isomorphic to a stalk complex. This is not true in general, but it is
known to hold for example for right hereditary or von Neumann regular rings, see
[Pr09, 17.3.22 and 17.3.23]. The following provides a common generalization for
those two results.

Corollary 3.6. Let R be a ring of weak global dimension at most one. Then we

have Zg(D(R)) = U,cz Zg(R)[—n].

Proof. Let V be the definable subcategory of D(R) corresponding to the closed
subset U = |, ¢z Zg(R)[—n] of Zg(D(R)) (cf. [Pr09, Theorem 17.3.20]). As
Zg(R)[—n] C U, we see that Mod-R[—n] C V for all n € Z. But this means
that V,, = {H"(X) | X € V} = Mod-R for all n € Z, which in turns means that
VY = D(R) by Proposition and therefore U = Zg(D(R)). O

3.3. Definable coaisles. In the rest of the paper, we will be concerned with the
definable subcategories which are coaisles of t-structures, that is, in view of Corol-
lary definable subcategories of D(R) closed under extensions and cosuspen-
sions. We therefore restrict the correspondence of Proposition [3.5 to such definable
subcategories.

Proposition 3.7. Let R be a ring of weak global dimension at most one. The 1-1
correspondence of Proposition [3.5] restricts to another 1-1 correspondence between
the following collections:

(i) definable coaisles V in D(R),

(ii) increasing sequences -+ Vy, C Vyui1 C -+ of definable subcategories closed
under extensions in Mod-R indexed by n € Z, satisfying the following con-
dition: Whenever f : V, — V41 is a map with V,, € V,, and V41 € Vit
for some n € Z, then Ker(f) € V,, and Coker(f) € V1.

Proof. Let V be a definable coaisle and let {V,, | n € Z} be the sequence of definable
subcategories of modules corresponding to V via Proposition Since V,[—n| =
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VY N Mod-R[—n] by Theorem this already implies that V), is closed under exten-
sions, and that V,, C V, 11 for each n € Z. Suppose now that f:V, = V,41 is a
map as in the condition (i7). Then f induces a triangle

Valn— 1) 2222 v e — 1] = Z = V[0

in D(R). Since V,, € V,, and V41 € Vy11, we have V,,[—n], V,,11[—n — 1] € V, and
thus Z € V. Consider the following part of the long exact sequence of cohomologies
induces by the triangle:

0— H™(Z) = Vi, L Vipsr — H"™1(Z) = 0.

The leftmost and the rightmost term are zero, because they are equal to the coho-
mologies of the stalk complexes — namely, H"(V,,11[—n — 1]), H"2(V,,[-n — 1]).
Since Z € V, then Ker(f) ~ H"(Z) € V, and Coker(f) ~ H""(Z) € V,41,
showing that the condition (1) is satisfied.

Suppose now that {V,, | n € Z} is a collection of definable subcategories of R-
modules satisfying all of the conditions in (4¢), and let us show that ¥V = {X €
D(R) | H*(X) € V,, ¥n € Z} is a definable coaisle. We already know by Proposi-
tion[3.5] that V is definable. By Corollary it is enough to check that V is closed
under cosuspensions, and extensions. The closure under cosuspensions clearly fol-
lows from V,, C V), 4 for each n € Z. Next, suppose that

X =Y —>Z7Z—- X][1]
is a triangle with X, Z € V), and consider the long exact sequence on cohomologies:
L H YN 2) L B (X)) - HY(Y) = HYZ) S HYYX) - -
By the assumption from (ii), we have that Ker(g) € V,, and Coker(f) € V,.

Because V), is closed under extensions, this implies that H™(Y) € V, using the
short exact sequence

0 — Ker(g) - H"(Y) — Coker(f) — 0.
Therefore, H*(Y') € V,, for all n € Z, and thus Y € V. O

Convention 3.8. Given a coaisle V in D(R), we will from now on always implicitly
use the notation V,, = {H"(X) | X € V} for the essential image of the n-th
cohomology functor of V in Mod-R.

Remark 3.9. A similar condition to (ii) of Proposition appears in a slightly
different formulation in [SvR12], where sequences of subcategories of the module
category determining a coaisle of a t-structure over a hereditary ring are called
“reflective co-narrow sequences”. In our setting, the reflectivity is ensured by the
definability of the members of the sequence.

3.4. Compactly generated coaisles. Under some extra conditions, we are also
able to prove a useful criterion for deciding whether a definable coaisle is compactly
generated, meaning by this that the associated t-structure is compactly generated.

Proposition 3.10. Let R be a ring of weak global dimension at most one, and let
V be a definable coaisle in D(R). Consider the two following conditions:

(i) V is compactly generated,
(ii) V, is closed under taking injective envelopes for alln € Z.
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If R is commutative, then (i) <= (it). If R is right semihereditary, then (i) =
(2).

Proof. Let us start by assuming (ii). For each n € Z, let C,, be the closure of
the class V,, under submodules. One can argue the same way as in [HSl?, Lemma
5.6] that C, is a definable torsion-free class closed under injective envelopes. In
particular, there is a hereditary torsion pair (7,,C,) for each n € Z. Using [Hr16
Lemma 2.4], it follows that there is for each n € Z a set Z, of finitely generated
ideals such that C, = {R/I | I € T,}*°. Put V' = {R/I[-n] | VI € I, ¥n €
Z}*o, which defines a coaisle of a t-structure. If R is right semihereditary, then
R/I[—n] is a compact object in D(R) for any finitely generated ideal I. If R is
commutative, then V' can be written as a right orthogonal to a set of suspensions
of Koszul complexes (see [Hrl8, Lemma 5.4]). In both cases, V' is a compactly
generated coaisle, and therefore is determined on cohomology by Theorem [3.4] Let
(V). | n € Z) be the sequence of definable subcategories of Mod-R associated to V'
via Proposition We will show that V,, = V/, for all n € Z. The subcategory
Vi = Nisn Nyez, Ker Ext}y ™ (R/I, —) of Mod-R is closed under injective envelopes
for all n € Z. Therefore, both the subcategories V,, and V! are closed under injective
envelopes, and by the construction they contain the same injective objects. For any
module M € V,,, we consider the minimal injective coresolution

0+M—>Ey—>FE —Ey—---.

By induction, it follows that Ej € V, 4y for all k > 0, and therefore Ej, € V!, 4, for
all £ > 0. But that implies M € V), and thus V,, C V). A symmetrical argument
shows that V!, C V), for all n € Z, proving that V =V’ by Proposition

Finally, suppose that R is commutative, and that ) is a compactly generated

coaisle. Because V,[—n] C V, we have that V, is closed under injective envelopes
by |[HrlS, Lemma 3.3]. d

Remark 3.11. The semiheredity imposed on the ring R in the last part of Propo-
sition [3.10] can be weakened to the following condition: R is right coherent and any
finitely presented cyclic R-module has a finite projective dimension. Indeed, this is
enough to ensure that any finitely presented cyclic module R/I is compact as an
object of the derived category.

At this point we are ready to answer Question E in the affirmative for any (not
necessarily commutative) von Neumann regular ring. In particular, the telescope
conjecture holds for these rings, generalizing [St14, Theorem 4.21] and the corre-
sponding result in [BS17].

Corollary 3.12. Let R be a von Neumann regular ring. Then any definable coaisle
in D(R) is compactly generated. In particular, the Telescope Conjecture holds for
R.

Proof. Recall that over any von Neumann regular ring, the injective envelopes
coincide with the pure-injective envelopes. Therefore, any definable subcategory
of Mod-R is closed under injective envelopes by [Pr09, Theorem 3.4.8]. Since R is
semihereditary, the rest follows from Proposition |[3.10 O

3.5. Definable coaisles induced by homological epimorphisms. There is a
general construction described in [AHH19, §5] which assigns a definable coaisle to
a double-infinite chain of homological ring epimorphisms based in a ring of weak
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global dimension at most one. We refer the reader to loc. cit. for more details.
Recall that a homological ring epimorphism is an epimorphism A : R — S in
the category of rings, such that Tor[(S,S) = 0 for all i > 0. Equivalently, this
means that the forgetful functor Mod-S — Mod-R induces a fully faithful functor
D(S) — D(R). By a chain of homological ring epimorphisms we mean an
Z-indexed chain

(1) VIR RIS APL I NP R

of ring epimorphisms such that there are homological ring epimorphisms A, : R —
Sn, and such that pu, 1A, = A\,_1 for all n € Z. This in particular implies that
tn 2 Sne1 — Sy is a homological epimorphism for each n € Z. A subcategory B
of Mod-R is called bireflective if it is closed under products, coproducts, kernels,
and cokernels. Equivalently, it is a subcategory B of Mod-R such that the inclusion
B C Mod-R admits both the left and the right adjoint, called the reflection and
coreflection, respectively. Recall that two ring epimorphisms A : R — S and
o : R — 8 are in the same epiclass if there is a ring isomorphism ¢ : S — S’ such
that ¢ = t\. Then we have the following result:

Theorem 3.13. (|BS17, Proposition 4.2]) Let R be a ring of weak global dimension
at most one. Then the assignment

(A: R— 8) — Mod-S ~ Im(— ®g S) € Mod-R
induces a bijection between the following sets:

(i) epiclasses of homological ring epimorphisms A : R — S,
(ii) extension-closed bireflective subcategories B of Mod-R.

Using this correspondence, it is not hard to see that if R is of weak global
dimension at most one, then chains of homological ring epimorphisms as in , up
to a choice of epiclass representatives, correspond bijectively to chains

Bn—lanan+1g

of extension-closed bireflective subcategories of Mod-R, via the assignment S, —
B, := Mod-S, ~ Im(— ®g S,) € Mod-R. To this data, we assign a subcategory V
of D(R) as follows:

V={X € D(R) | H"(X) € Cogen(B,) N B,+1 ¥Yn € Z}.

Proposition 3.14. ([AHHI9, Proposition 5.4]) Let R be a ring of weak global
dimension at most one. Then for any chain of homological ring epimorphisms over
R, the subcategory V of D(R) defined above is a definable coaisle.

Proof. We include a sketch of the proof from [AHH19| here for convenience. It is
enough to check the conditions of Proposition for the chain of subcategories
V,, = Cogen(B,,) N By4+1. First recall that any bireflective subcategory of Mod-R
is definable. By [Pr09, 3.4.15], also Cogen(B,,) is definable for any n € Z, and
therefore V,, is definable for any n € Z. Let A\, : R — S,, be a homological ring
epimorphism corresponding to the bireflective subcategory B,,. Since R is of weak
global dimension at most one, the character dual E,, := Homgz(S,,Q/Z) of S, as a
right R-module is of injective dimension at most one. Since F,, is an injective cogen-
erator of the category B,, it follows that Exty (M, E,,) = 0 for any M € Cogen(B,,).
Therefore, the class Cogen(B,,) = Cogen(E,,) is closed under extensions. Together,
V), is a definable subcategory of Mod-R closed under extensions.
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Let now f: M — N be a map such that M € V,, and N € V,,;1, and let us show
that Ker(f) € V,, and Coker(f) € V,,41. Consider the induced exact sequences:

0—-K—-M—1—0, and

0—>1—>N—C—0,

where K = Ker(f), C = Coker(f), and I = Im(f). Then clearly K € Cogen(,,),
and I € Cogen(B,,+1). Also, as I is an epimorphic image of M € B,,;1, it follows
by a diagram chasing argument that the reflection I — I, , € By4q of I with
respect to the subcategory By, 11 is an isomorphism, and thus I € B,, 1. Since K is
the kernel of the morphism M — I between two objects in 5,41, then K € B, 1.
Thus, K € V,. The Four Lemma implies that the reflection ¢ — Cp,., is a
monomorphism, and therefore C € Cogen(B,,4+1). Finally, as C is an epimorphic
image of N € B,, 12, it follows again that C € By, y2. O

Remark 3.15. In other words, we have an assignment from the chains of homo-
logical epimorphisms over R to definable coaisles in D(R). It is straightforward
to extend the notion of epiclass to introduce an equivalence relation of chains of
epimorphisms, and then the induced assignment is easily checked to be injective. In
general however, this assignment is not surjective, and there are definable coaisles
which do not arise in this way. For the case of valuation domains, this will be
discussed in Section [O

4. VALUATION DOMAINS AND THE MODULE-THEORETIC COSILTING CLASSES

From now on we will focus on commutative rings of weak global dimension at
most one. We will do most of the investigation in the local case, that is, over a
valuation domain. A posteriori, this will be enough to fully answer Question [A]
even in the global case. In this section, we start by studying the definable coaisles
in the Happel-Reiten-Smalg situation, which in the light of Section [2] amounts to
studying the cosilting classes in the module category. The main aim of this section
is to build on the results from [Ba07| and [Bal5] and establish for any valuation
domain a bijective correspondence between cosilting classes and certain systems of
formal intervals in the Zariski spectrum.

4.1. Valuation domains. A commutative domain R is a valuation domain if
the ideals of R are totally ordered. We gather some basic properties of valuation
domains which we will use freely throughout the paper. Given a prime ideal q
of a commutative ring R, we let R, denote the localization of R at q, and more
generally, My = M ®g R4 the localization of an R-module M at q.

Lemma 4.1. (i) Valuation domains are precisely the local commutative rings

of weak global dimension at most one.

(ii) Any idempotent ideal in a valuation domain is a prime ideal.

(ili) If p C q are primes of a valuation domain R, then p is an Rq-module.

(iv) Whenever S C Spec(R) is a non-empty subset with no mazimal element
with respect to C, then | J S is an idempotent prime.

(v) For any prime p € Spec(R), either p is idempotent or p R, is a principal
ideal in Ry.

Proof. (i) See [GI&9, Corollary 4.2.6].
(ii) Obvious.
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(iii) Obvious.
(iv) This is [BS17, Lemma 5.3].
(v) See [FSO1L 8§11, Lemma 4.3 (iv) and (d), p.69].
(I

4.2. Torsion, annihilators, divisibility, and socle. Let R be a commutative
ring and q a prime in Spec(R). For any R-module M and an element m € M,
let Anng(m) = {r € R | rm = 0}, and similarly we put Anng(M) = {r € R |
rM = 0}, both these define ideals of R. There is a torsion pair (7, Fy) in Mod-R,
where 7, consists of all modules M such that Anng(m) contains an element from
R\ q for any m € M. This torsion pair is hereditary, that is 7 is closed under
submodules and Fy is closed under taking injective envelopes. Modules from 7
will be called g-torsion, and modules from F; are g-torsion-free. We denote the
torsion functor induced by this torsion pair by I'y : Mod-R — 74, and the torsion-
free counterpart by Fy : Mod-R — F;. Recall that I'; is a left exact functor,
while F; preserves monomorphisms and epimorphisms, a fact which we will use
freely throughout the paper. We call an R-module M g-divisible provided that
M = sM for all s € R\ q. Recall that an R-module M is an Rq-module if M is
both g-torsion-free and g-divisible.

It will be useful to recall that given an R-module M and a prime ideal q €

can

Spec(R), we have the natural identifications I'q(M) = Ker(M — M ®pr Rq) and
Fy(M) ~Im(M =% M ®g Ry). Also, note that Coker(M % M ®pr Ry) = 0 if
and only if Fy(M) is g-divisible if and only if Fy(M) € Mod-R,.

Given a prime ideal p and a module M, we define the p-socle of M to be the
submodule Soc, (M) ={m € M | rm =0 Vr € p} of M.

4.3. Systems of intervals of Spec(R). Let R be a valuation domain. By an
interval in Spec(R) we mean a formal interval x = [p,,q,], where p, C q, are
primes from Spec(R). We consider intervals together with a partial order < defined
as follows: for intervals x = [p,,q,] and £ = [p,, q¢] we have x < ¢ if and only if
dy, & pe- Any interval denoted by a greek letter will have boundaries denoted like
above, e.g. 0 = [py, qy] etc. In other occasions, we will denote intervals just by their
boundaries, that is, by writing just [p, q] for a couple of primes p C q of Spec(R).

Definition 4.2. Following [Bal5|, we impose the following conditions on a set X
of intervals of Spec(R):
(i) (disjointness) The system is disjoint, that is, whenever x,§{ € X are two
distinct intervals such that p, C p, then q, C p,.
(ii) (idempotency) For any x € X we have p, = pi.
(iii) (completeness) For any non-empty subset } C X, there is an interval
p € X such that p, = Uxey Py, and there is an interval v € X’ such that
4y = Nyey Iy
Let us call a system of intervals satisfying these conditions an admissible sys-
tem. We remark that as a consequence of the definition, any admissible system X’
together with the above defined partial order < forms a totally ordered set (X, <)
such that any non-empty subset ) of X has a supremum and an infimum.

4.4. From intervals to cosilting classes. Recall that given an ideal I, we define
the prime ideal attached to [ as I# = {r € R | rI C I}. By Q we always
denote the quotient field Q(R) of the valuation domain R. It will be also useful to
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extend the definition of an attached prime to any submodule of Q. If J C @ is an
R-submodule, then J# = {re R|rJ # J} = Ureavs rot.

Notation 4.3. For any interval x in Spec(R), we write (x) = (p,,q,) for the set
of all ideals I of R satisfying p, C T C I#* C 0y

Lemma 4.4. Let X be an admissible system, let A be a cardinal and let {Ix, A € A}
be a set of ideals such that for each A € A there is xx € X with I\ € (xx). Then:

(i) there is £ € X such that (Nycp In € (£),
(ii) there is & € X such that | Jycp I € (§).

Proof. (i) Denote I = (¢, Ix. Obviously, we have [y cx Py, © 1 C[yea Gy, - By
the completeness, there is § € X' with q, = Mxeca dy,- It is then enough to prove
that p, C I and I # C qe, which we do by distinguishing two cases:

Case I: There is A € A such that q; = q,,. Then we have p, C I C q¢, and we are
left to show that I# C qe- Then we can assume without loss of generality
that I € (§) = (p¢, q¢) for all A € A. Therefore, for any r € R\ q, and any
i€l r~% €I, for all A\ € A. Tt follows that r—%i € I for any ¢ € I, and
thus r & I# for all r € R\ q, proving that I € (£).

Case II: There is no A € A such that g, = q,,. By the disjointness of &X', we have

that necessarily
ﬂpm =I= ﬂ 9 xxo
AEA A€A

and thus, in particular, I is a prime ideal, and whence I = I by [FS01} p.
70], which establishes that I € (p, q;).

(i4) Completely analogous. (I

Next, we explain what exactly it means for an ideal I that I# C q for some
prime q.

Lemma 4.5. Let I be a proper ideal of R. Then I# is a prime ideal and the
following conditions are equivalent for any q € Spec(R):
(i) I* Cq,
(ii) I is an Rq-module,
(iii) R/I is a g-torsion-free R-module, i.e. T'q(R/I) = 0.

Proof. That I# is a prime ideal is clear.

(1) © (it): For a given q € Spec(R), the canonical map f : I — I, is injective
since it is the restriction of the canonical map R — Rg. Therefore I is an Rg-
module if and only if f is surjective, which amounts to say that for each y € I and
each s € R\ q, there exists a y' € I such that sy’ = y. That is, if and only if the
equality sI = I holds, for all s € R\ q, if and only if I# C q.

(#) = (741): Clear.

(#4i) = (¢): The canonical map R/I — (R/I)4 is injective since its kernel is
I'y(R/I) = 0. This amount to say that (I : s) = I, for all s € R\ q, where
(I:s)={a€ R:saclI} Itfollowsthat R\ qC R\ and so Rs € I, which
implies that I C Rs due to the totally ordered condition of the lattice of ideals of
R. If now y € I and we write y = sa, with a € R, then a € (I : s) = I and so
I = sI. That is, we have s € R\ I# for all s € R\ q, and hence I# C q. O
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Lemma 4.6. Let X be an admissible system of intervals on Spec(R). Then the
class

Cx ={M € Mod-R |YO#m e M Ix € X : Anng(m) € (x)}

s costlting.

Furthermore, an R-module M belongs to Cx if and only if for each mon-zero
element m of M there is x € X such that p, m =0 and mR is q, -torsion-free. In
particular, if I is a proper ideal of R then R/I € Cx if and only if I € (x) for some
x € X.

Proof. First, we remark that the equivalence of the two descriptions of the class Cy
in the statement follows from Lemma (5]

We will check that C = Cy is closed under subobjects, direct products, exten-
sions, and direct limits.

(a) Subobjects: Obvious.

(b) Products: Follows from Lemma [4.4]i).
(¢) Extensions: Suppose that

0-X—>Y S Z50

is an exact sequence with X, Z € C, and let y € Y be a non-zero element,
and let I = Anng(y). Restricting = to the cyclic submodule yR yields an
exact sequence of the form

(2) 0—J/I—-R/I—-R/J—0,

where J/I,R/J € C. Let K = Anng(J/I) = (\,,c;/; Anng(m). By the
definition of C and by Lemma i), there are x and ¢ such that J € (x)
and K € (£). We show that necessarily £ < . Indeed, K = {re R|rJ C
I} C J#* C qy, and since K C g, we have the desired inequality. Since
pe =p; CJK C I C JNK C g it is enough to show that I# C qg.
In view of Lemma it is enough to show that R/I is q-torsion-free. If
I'q. (R/I) of R/I is non-zero, than by uniseriality of 2/1 it has to intersect
J/I non-trivially, and thus I'q, (J/I) # 0. Since J/I is uniserial, it can be
written as a directed union | J,., /K of cyclic submodules, in particular,
K ={Nyea K. Since I'q (J/I) # 0, there is an s € (R\ q¢) such that R/K)
contains a non-zero element killed by s for any A from a cofinite subset of
A As s ¢ q¢, and K = [,y K, and J/I € C, there is A € A such that

K, C Kf& C sR, and thus R/K) cannot contain a non-zero element killed
by s by Lemma a contradiction. Therefore, I# C q,, and I € (£) as
desired.

(d) Direct limits: We already know that C is closed under submodules and
products, and thus C is closed under direct sums. It is then enough to show
that C is closed under pure epimorphic images. Let 7 : N —, M be a
pure epimorphism with N € C, and let m € M be non-zero element with
annihilator I. For each i € I, there is the natural surjection o; : R/iR —
R/I. As R/iR is finitely presented, the composition no; : R/iR — M
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admits a factorization through :

N—"T——M

S

R/iR -~ R/I

Therefore, for each i € I there is an ideal J; such that .J; is an annihilator
of an element of N, and iR C J; C I. Then I = |J,c;Ji, and because
Ji € (x;) for some y; € X by the definition of C, Lemma (ii) implies
that I € (u) for some p € X.

O

4.5. From cosilting classes to intervals. Here we follow [Ba07] and [Bal5]. We
start with a cosilting class C and assign to it the set G = {I ideal of R | R/I € C}
of all possible annihilators of elements of modules in C. We put K = G N Spec(R).
Note that since C is closed under submodules and direct limits, we can rewrite
K = {p € Spec(R) | k(p) € C}, where k(p) = R,/ p is the residue field of R at p.
Then we define two functions ¢ and v by putting for any p € Spec(R):

p(p) =inf{q € | Ry/p € C},

P(p) =sup{q € K| Ry(y)/q € C}.
Since k(p) € C for any p € K, and R, )/ p € C by the closure of C under direct
limits, it is easily seen that ¢(p) C p C (p).
Finally, we assign to the cosilting class C a system of intervals defined as follows:

Xe = {le(p),v(p)] | p € K}

Remark 4.7. For clarity we rephrase the definition of the admissible system A
associated to a cosilting class C in perhaps a less opaque way (but relying on the
results of Section @ We think of the subset

K = {p € Spec(R) | x(p) € C} = {p € Spec(R) | R/p € C}

of Spec(R) as the support of the admissible system. Since C is closed under products
and direct limits, it is clear that K is closed under intersections and unions of non-
empty subsets. However, the support I does not contain sufficient information
about C because it is unable to recover which cyclic modules belong to C in general.
Nevertheless, it will turn out that it is enough to consider which uniserial modules of
the form R,/ g, for prime ideals p C g, belong to C. In this light, X can equivalently
be defined as follows. Given prime ideals q,p € I, we define an equivalence relation
~ on K by setting p ~ q (and q ~ p) if and only if p C q and R,/ q € C. Then it
follows from Lemma (see also Proposition that the intervals of &, viewed
as closed intervals in the totally ordered set (K, C), are precisely the equivalence
classes of IC with respect to ~.

Proposition 4.8. The system of intervals Xc is an admissible system.

Proof. This is proved for 1-cotilting classes (that is, cosilting classes containing the
projective modules, see in [Bal5l Definition 3.7 and Proposition 3.8] and the
references to [Ba07| therein. Note that the proof only uses that C is a definable
torsion-free class, and therefore applies to cosilting classes as well.
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Alternatively, we prove this more generally in Section[6} Indeed, this is a special
case of Corollary [6.11] applied to the Happel-Reiten-Smalg t-structure induced
by the torsion pair (7,C), and setting ¢ = @g, ¥ = 1. Note that there is no
circularity in our argumentation, as the only part where we need results from this
section in Section |§| is the proof of Proposition (the degreewise non-density
condition). O

Lemma 4.9. Let C be a cosilting class, and I a proper ideal. Then R/I € C if and
only if there is an interval x € X¢ such that I € (x).

Proof. This is proved in precisely the same way as [Bal5l Lemma 3.6]. (]

Lemma 4.10. ([Ba07, Lemma 3.1]) Let R be a valuation domain. Then any sub-
category C of Mod-R closed under submodules, pure epimorphisms, direct limits,
and extensions is the smallest subcategory containing the cyclic modules in C closed
under the listed operations. In particular, any definable torsion-free class in Mod-R
is uniquely determined by the cyclic modules it contains.

Proof. Let C be a cosilting class. Since C is closed under submodules and directed
unions, it is uniquely determined by the finitely generated modules it contains.
By [FS01) §I, Lemma 7.8], any finitely generated R-module admits a finite pure
filtration by cyclic modules. Since definable subcategories of Mod-R are closed
under pure epimorphisms, this shows that C is uniquely determined by the cyclic
modules it contains. (]

4.6. The correspondence. Now we are ready to state the classification of cosilting
classes in the module category of a valuation domain.

Theorem 4.11. Let R be a valuation domain. Then there is a 1-1 correspondence
{ admissible systems X } { cosilting classes C }

in Spec(R) in Mod-R
given by the mutually inverse assignments
X+ Cx, and
C— Xe.

In this correspondence, the 1-cotilting classes C correspond to those admissible sys-
tems X which contain an interval of the form [0, q] for some q € Spec(R).

Proof. The two assignments are well defined by Lemma [£.6] and Proposition [£.8
Two cosilting classes coincide if and only if they contain the same cyclic modules,
this is Lemma [£.10] Together with Lemma [1.9 and Lemma this shows that
C = Cy, for any cosilting class C. On the other hand, we have A, = & for any
admissible system X by Lemma and Lemma [£.9]

A cosilting class C is 1-cotilting if and only if it contains R (see §2.2), which by
Lemma [L.9) occurs if and only if there is an interval in Az which contains the zero
prime ideal, which means that it is of the form [0, q] for some prime q. g

5. DENSITY AND HOMOLOGICAL FORMULAS

In this section we provide an alternative description of cosilting classes in Mod-R
for a valuation domain R using the Tor functor with certain uniserial modules. This
will be useful in the description of definable coaisles in D(R).
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5.1. Maximal immediate extensions of valuation domains. Here, we follow
[F'SO1, §II]. A valuation domain R is maximal if it is linearly compact in the discrete
topology. A ring map R — S between two valuation domains is an immediate
extension if the following two conditions are satisfied:

(i) the assignments I — SI and J — J N R are mutually inverse bijections
between the sets of ideals of R and S, respectively, and it restricts to a
bijection between Spec(R) and Spec(S) ([ES01, p. 59]), and

(ii) if m is the maximal ideal of R, then canonical map R/m — S/m S is an
isomorphism of fields.

We recall (JESOL, §II, Theorem 1.9]) that for any valuation domain R, there is a
maximal immediate extension R — S, i.e. an immediate extension such that
the only immediate extension of S is the trivial one. This is always a faithfully flat
ring extension (see [FSO0Il §II, Exercise 1.5], together with condition (¢)) with the
following properties:

Fact 5.1. (i) S is a maximal valuation domain ([FSOI), §II, Theorem 6.7]),
and an immediate extension R — S is a maximal immediate extension if
and only S is a maximal valuation domain,

(i) for any uniserial module M, the module M ®g S is a pure-injective R-
module ([FSO01l, p. 445]);

(ili) Rq®rS ~ Sy for any q € Spec(R), this follows from ([ESOL, §II, Lemma
1.6]);

(iv) in particular, the quotient field Q(S) of S is equal to QS;

(v) for any proper ideal I, the module Q/I ®r S ~ Q(S)/IS is injective in
Mod-S (JFS01, §IX, Theorem 4.4]).

The maximal immediate extension is not uniquely determined as a ring homo-
morphism, but it is always isomorphic to the pure-injective envelope of R as an
R-module ([FS01, §XIII, Proposition 5.1]). Next we remark some properties of
maximal immediate extensions with respect to localization.

Lemma 5.2. Let R be a valuation domain and R — S a mazimal immediate
extension. Let p C q be primes of R, and denote by U = Rq/p. Then:

(i) U is a valuation domain and the natural map R — U is a ring epimorphism,
(ii) U®r S ~8Sqs/pS is a mazimal valuation domain,
(ili) U = U ®g S is a faithfully flat ring homomorphism.
(iv) QUU)®gr S =Q(U ®r S) as ring extensions of R.

Proof. (i) Obvious.

(ii) See e.g. [Col0), Proposition 5].

(iii) Since S is a flat R-module, U ®g S is a flat U-module. Since R — S is
a faithfully flat ring homomorphism, and R — U is a ring epimorphism,
clearly (U ®g S) ®y M = 0 implies M = 0 for any U-module M.

(iv) The quotient field of U = Ry/p is Ry / p, while QU ®RRrS) = Q(Sqs/pS) =
Sps/pS. Therefore, QU) ®r S = Q(U ®@r S).

(I

Finally, we remark an important property of maximal valuation domains.

Lemma 5.3. Let R be a maximal valuation domain with maximal ideal m and
quotient field Q. The module QQ/ m is an injective cogenerator in Mod-R
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Proof. By Fact [5.1[v), @/m is an injective R-module. Since @/m contains the
unique simple R-module, it is an injective cogenerator in Mod-R. (]

5.2. Uniserial modules over valuation domains. Recall that an R-module is
called uniserial if its lattice of submodules is totally ordered. Over a valuation
domain R with quotient field @ = Q(R), any module of the form J/I is uniserial,
where I C J C @ are R-submodules of the quotient field. Uniserial modules of this
form are called standard. In general there can be uniserial modules not isomorphic
to a standard uniserial module, see [ES01], §X.4]|. However, over a maximal valuation
domain, every uniserial module is standard ([F'SOL, §X Proposition 3.1]). A very
important fact for us is that definable subcategories of the module category of a
valuation domain are completely determined by the standard uniserial modules
they contain. This follows from a result due to Ziegler [Zi84], reproved by algebraic
methods by Monari-Martinez [MM84], which shows that the indecomposable pure-
injective modules over a valuation domain R are up to isomorphism precisely the
pure-injective envelopes of the standard uniserial modules over R. Note also, that
given a standard uniserial R-module .J/I, its pure-injective hull can be expressed
explicitly — it is additively equivalent to JS/IS, where R — S is any maximal
immediate extension of R, see [FS01, §XIII, Corollary 5.5]|.

Lemma 5.4. Let R be a valuation domain and C a definable subcategory of Mod-R.
Then C is determined uniquely as a definable subcategory of Mod-R by the standard
uniserial modules it contains.

Proof. By [ES01, §XIIT Theorem 5.9], an R-module M is indecomposable pure-
injective if and only if it is a pure-injective hull of a standard uniserial module. By
[Pr09, Corollary 5.1.4], any definable subcategory is uniquely determined by the
indecomposable pure-injectives it contains. Finally, an R-module M belongs to a
definable subcategory of Mod-R if and only if its pure-injective hull does ([Pr09,
Theorem 3.4.8]), which concludes the proof. O

Let [p, q] be an interval in Spec(R). We will be especially interested in two kinds
of standard uniserial modules — Ry/p and R,/q. While R;/p is an epimorphic
ring extension of R, the role of R,/ q is clarified by the following observation:

Lemma 5.5. Let R be a valuation domain and S its mazimal immediate extension.
Let [p,q] be an interval in Spec(R). Then the module (Ry/q) ®r S is an injective
cogenerator in the category Mod{(Rq/p) ®r S), and therefore it is a cogenerator
in Mod{Rq/ p).

Proof. Denote U = Rgy/p, let Q(U) = R,/p be the quotient field of U and let
m(U) = q/p be the maximal ideal of U. By Lemma [5.2| we know that Q(U) ®r S
is the field of quotients of the valuation domain U ®pr S and clearly m®@gS is
its maximal ideal. Also by Lemma U ®p S is a maximal valuation domain.
Therefore, Lemmal5.3|implies that (R,/ q)®rS ~ (Q(U)/m(U))®rS is an injective
cogenerator in Mod-U.

Finally, since U — U ®g S is a faithfully flat extension by Lemma [5.2} any U-
module embeds into an (U ® g S)-module. Therefore, (R,/q) ®r .S is a cogenerator
in Mod-U. (I

Now we will be interested in computing the Ext-orthogonal to the modules of
the form (R,/q) ®r S. The following lemma is proved in [Ba07, Lemma 6.6] for
the case in which R is already maximal.
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Lemma 5.6. Let p = p? C q be a couple of prime ideals, and let I be an ideal.
Then Extp(R/I,(Rp/q) @r S) = 0 if and only if either

(i) pCI, or
(ii) I# Cp and I # R,.

Proof. If R is a maximal valuation domain, this is precisely [Ba07, Lemma 6.6].
For general valuation domain, we have

Ext p(R/1, (Ry/ q) ®r S) ~ Ext 5(S/18, (Ry/ q) ®r S)

by flatness of S over R. Using the maximal case, this means that the vanishing of
Extp(R/I,(Ry/q) ®p S) occurs if and only if one of the following conditions hold
over S:

(i) SpCSI, or
(ii") (SI)# C Sp and SI # Sgy.

The condition (i') is clearly equivalent to (). It is easy to see that (SI)# = S(I#),
and thus (SI)# C Sp is equivalent to I# C p. If I ~ R, then clearly ST ~ Sg, ~
R, ®g S. Conversely, if ST ~ Sg,, then there is ¢ € S such that ST = tSg,.
By [FS01), §II Lemma 1.6], there is an element € R and a unit e € S such that
t = re. Therefore, ST =rSg,, and thus I = ST N R, = tR,. This proves that (i)
is equivalent to (i4'). O

5.3. Density and gaps of admissible systems. Let (X, <) be a totally ordered
set. A non-degenerate interval z < y in X is called dense if for any t < s <t <y
there is an element z € X with s < z < ¢t. If X admits a minimal element 0 and a
maximal element 1, we say that X is dense if the interval 0 < 1 is dense. We say
that X is nowhere dense if it contains no dense intervals. We say that a subset
Y C X is dense in X if for any interval x < y in X there is z € Y such that
x < z < y. Say that an element y € X covers an element x € X if x < y and there
is no element z € X such that z < z < y.

If R is a valuation domain and X an admissible system in Spec(R), we say that
X is nowhere dense if the totally ordered set (X, <) is such. We say that X is
dense everywhere if (X, <) is dense and if X contains an interval of the form
[0,q] and an interval of the form [p, m].

Let X be an admissible system of intervals of Spec(R). Following [Bal5l, Notation
6.7], we introduce first an equivalence relation ~ on X by setting x ~ ¢ if either
X = & or whenever the interval y < £ (or £ < x) in (X, <) between the two intervals
is dense. Using the completeness we see that each equivalence class C' € X'/ ~ of X
under ~ has a minimal element [p, q] and a maximal element [p’,q’]. This defines
an interval 7c = [p, q'] associated to C for each C € X/ ~. We let X' denote the
set of intervals {rc | C € X/ ~}. It is not hard to check that X is a nowhere dense
admissible system on Spec(R).

Also, we let H(X) be the collection of all equivalence classes from X/ ~ with
more than one element. Note, that this set corresponds naturally to the set of all
maximal dense intervals in (X, <). We also consider each equivalence class C' as a
totally ordered subset of (X, <).

Let Spec™(R) = Spec(R) U {—o0, R} be an extension of the spectrum of a valua-
tion domain R, where —oo will be understood as a formal symbol satisfying —oo C I
for any ideal I of R. Let q C p be two elements of Spec™(R).
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We say that (q,p) is a gap of the admissible system X if one of the following
conditions is satisfied:

(i) there are intervals [p’,q] < [p,q’] € X such that [p,q’] covers [p’, q],

(ii) 9 = —oo, and the minimal interval of X is of the form [p, q'], where p # 0,
(iii) p = R, and the maximal interval of X is of the form [p’, q], where q # m,
(iv) g= —ocoand p= Rif X = 0.

We denote the collection of all gaps of X by G(X). Observe that G(X) = G(X).
The relation between density, gaps, and ideals is the content of the following aux-
iliary result. Given an ideal I and a gap (q,p), we will denote by I € (q,p) the
situation q C I C p.

Lemma 5.7. Let R be a valuation domain and X an admissible system in Spec(R).
The for any ideal I of R, one of the following possibilities occurs:

(i) there is an interval [p,q] € X such thatp CI Cq, or
(ii) there is a gap (q,p) € G(X) such that I € (q,p).

Furthermore, if X is dense everywhere, then G(X) = 0, and therefore only (i) can
occur.

Proof. If X is empty then (—oo, R) is a gap, and (éi) is clearly true. Then we can
assume X non-empty. Let us assume that (¢) is not true. Then X' can be written as a
disjoint union X = AUB, where A= {x € X [I Cp,},and B={x € X' | q, C I}.
If B is empty, then A is non-empty, and by the completeness A has a minimal
element [p4,q4]. Necessarily I C p,, and thus (—oo,p4) € G(X). The case when
A is empty is handled similarly.

Suppose that both A and B are non-empty. By the completeness, there is an
interval of the form [pg,qp], where pg = U, c5p,. Since p, C I for all x € B,
we have pp C I, and thus [pg,qp] belongs to B, and it is the maximal element
of (B,<). Similarly, A has a minimal element [p4,q4]. But then [p,4,q4] covers
[Pg,q5], and therefore there is a gap (qz,p4) € G(X) such that q5 &1 C py.

The furthermore part is clear from the definition of a dense everywhere admissible
system. (I

5.4. Cotilting modules corresponding to dense everywhere admissible
systems. For admissible systems which are dense everywhere, the associated 1-
cotilting modules have a rather special form, which will turn important in The
following proof is a generalization of [Bal5l Proposition 5.4].

Proposition 5.8. Let R be a valuation domain and R C S a mazimal immediate
extension. Suppose that X is a dense everywhere admissible system in Spec(R).
Then the module
C= 1] (Ry/a)®rS)
[p.qleXx
is a 1-cotilting module associated to the 1-cotilting class Cx .

Proof. We show that C is 1-cotilting by proving that Cogen(C) = +C. Since all
the modules of the form R,/q are standard uniserial R-modules, it follows from
Fact that (R,/q) ®r S is pure-injective for all [p,q] € X, and thus C' is pure-
injective, and therefore of injective dimension at most one. In particular, +C is
closed under submodules, pure epimorphic images, and direct limits (see [GT12|
Corollary 6.21]).
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Claim I: 1C = Cy: Recall that
Cx={M eMod-R| YO#me M Tp,q] € X: Anng(m) € (p,q)},

which is a cosilting class by Theorem [4.11] and even a 1-cotilting class, as R € Cx.
To show +C = Cy, it is by Lemma nough to show that both classes contain
the same cyclic modules. If R/I € +C, then by Lemma there is an interval
[p,q] € X such that p C I C q. Using Lemma I# C p’ for any interval
[p’,q'] € X with q C p/, and thus by density of X, necessarily I# C q, proving that
R/I €Cx.

Let R/I € Cx, and let us show R/I € +C. Choose [p,q] € X. If p C I, we apply
Lemma (1) Assume now that I C p. Since R/I € Cx, then necessarily I# C p.
Because I ~ I;#, we infer that I cannot be isomorphic to Ry, and thus R/I o
by Lemma ii).

Claim II: Cogen(C) C +C:

Since C = Cy is a cosilting class, it is enough to show that C' € Cy. This
amounts to checking that (R,/q) ®r S € Cx for any [p,q] € X. As S is a flat
R-module and Cy is closed under direct limits, the task finally reduces to showing
that R,/ q € Cx for all [p,q] € X. For any non-zero element x € R,/ q, we have
Anng(z) = s~*q for some s € Ry \ p. Therefore p C Anng(z) C q, and clearly also
Anng(z)# C q. Therefore, R,/ q € Cx.

Claim III: +C C Cogen(C):

By Claim IT we know that Cogen(C) is closed under extensions, that is, Cogen(C')
is a torsion-free class. Choose M € +C = Cy and let T be its maximal torsion sub-
module with respect to the torsion pair with torsion-free class Cogen(C'). Towards a
contradiction, assume that there is a non-zero element ¢ € T', and let I = Anng(t).
Claim I then implies that I € (p,q) for some [p,q] € X.

Put T" = Socp,(T) = {m € T | pm = 0}. We claim that Homg(7",C) = 0.
Since Hompg(7,C) = 0, it is enough to show that T/T" € +C. Pick m +T' € T/T’
non-zero, and let J = Anng(m 4+ 77) and K = Anng(m). Since T € Cy, there is
[p',q'] € X with K € (p’,q). Asm & T’ = Soc,(T), and p = p?, clearly K C p, and
thus ' C p. Clearly K C J. If r € J\ K, then rm € T’, and we have inclusions
p C Anng(rm) = r~'K C K# C ¢/, which is a contradiction with q' C p. Therefore
J = K, showing that T/T" € Cx = +C, and thus Homp(T"',C) = 0.

Consider the localization map f : 7" — Ty. The module T is an R4/ p-module,
and whence is cogenerated by (Rp/q) ®r S due to Lemma and therefore be-
longs to Cogen(C). Then also 7"/ Ker(f) € Cogen(C), as it is a submodule in Tj.
Together with Hompg(T”,C') = 0, this forces T" = Ker(f), or in other words, 7" is
g-torsion. But since I € (p,q), 0 #t € T'\ I'q(T") by Lemma a contradic-
tion. (]

5.5. Description via homology. It will be useful to express the cosilting classes
homologically, using the derived tensor functor with respect to certain uniserial
modules coming from the intervals and gaps. For this, we introduce the following
notation. Let X be an admissible system and (q,p) € G(X) be a gap. Then we
define a complex

K@p)=(-=0=p5 R0,

where p is in degree 0, and ¢ is the natural inclusion. In the case where q = —o0, the
symbol R, will be interpreted as zero, and thus K(—oo,p) is just a stalk complex
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of the prime ideal p concentrated in degree 0. Note that the zero cohomology of
K(q,p) ®g — is then computed as follows

Torf'(Rq/p,~), ifq € Spec(R)

HY(K(q,p) ®r —) =
(K(q,p) ®r —) {p@m—, ifq = —oo.

Also, it will be convenient to let I'_, be the identity functor, while F_, and
Socg will both stand for the zero functor on Mod-R.

Lemma 5.9. Let R be a valuation domain, and X an admissible system in Spec(R).
Let M be an R-module M and I an ideal of R.

(i) For any interval [p,q] € X we have:
. TorF(Rq/p,R/I) = 0 if and only if either I O p, or if I C p then
I# Cpand I # R,.
(ii) For any gap (q,p) € G(X) we have:
o HY(K(q,p) @r M) =0 if and only if T q(M) C Socy(M).

Proof.
(i) This is [Bal5l Theorem 6.11, Claim (i)].
(i) We start by remarking that p?> = p implies that for any R-module N we have
the equivalence
pRRN =0 pN =0.
Indeed, consider the canonical exact sequence
0 — Tor '(R/p,N) = p&rN = p N =0,

then immediately we see that p ®g/N = 0 implies p N = 0. Conversely, if p N =0
then p(p ®rN) = 0 since Tor¥(R/p, N) gets killed by p. Since p> = p, we obtain
pRrN = 0.

Note that if q € Spec(R), then H(K(q,p) ®r M) = Tori(Rq/p, M) = 0 if
and only if the natural multiplication map p @ gM — M, is injective. We claim
that the kernel of this map is zero if and only if pT'q(M) = 0, or equivalently,
I'q(M) € Socy(M). Indeed, since q C p, we have p Ry = R, and so p@pMq ~
p Ry®@r My ~ M. It follows that the multiplication map p @ g M — M, is identified
with the map (p ®rfar) : pOrM — p QrM,, where far : M — M; is the canonical
map. By flatness of p, one has that Ker(p ®r far) = p @gl'q(M). Finally, it follows
from the first paragraph that p @gI'q(M) = 0 if and only if pI'q(M) = 0.

It remains to address the case of ¢ = —oco. Then H?(K(q,p)@rM) = p@rM =0
is equivalent to p M = 0 by the first paragraph again, and the latter can be rewritten
as M =T _o (M) C Soc,(M). O

We are ready to show that any cosilting class in Mod-R is given by derived tensor
product. Notice that G(X) does not contain a gap of the form (—oo,p) if and only
if the cosilting class does not contain R, which is further equivalent to it not being
a l-cotilting class. In this case, we express the class as a Tor-orthogonal class,
recovering [Balbl Theorem 6.11]. For the definition of the set H(X) we refer the

reader to § 5.3

Proposition 5.10. Let C be a cosilting class corresponding to an admissible system
X via Theorem|{.11l For each C € H(X), let Yo be a dense subset of C. Then

C= (] KerH(K(q,p)®@r—)N N Ker Tor #(Rq/ p, —).
(CI,P)GQ(-)E) [P,q]Eyc,CGH(X)
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Proof. Recall that
C=Cx={M eMod-R |Y0O#meM3IxeX:Anng(m) € (x)}.
Denote

C'= (] KerH(K(q,p)@r—)N N Ker Tor {*(Rq/ p, —),
(9,p)€G(X) [p,9]€Vc,CeH(X)

and let us prove that C = C’. In view of Lemma [4.10] it is enough to show that C
and C’ contain the same cyclic modules. Let R/I € C. Then there is an interval
[p,q] € C such that p C I and I* C q. By Lemmal|5.9(ii), H°(K(q/,p')®r R/I) =0
for any gap (q',p’) € G(X). Indeed, either p’ Cp C I, and thus R/I = Soc, (R/I),
or I# C q C ¢, and thus I'y(M) = 0. Let C € H(X), and let [p',q'] € V. If
I €y, then also I# C p/, and thus Torf'(Ry /p’, R/I) = 0 by Lemma (1)

For the converse, let R/I € C'. Since R/I € (4 »)eqx) Ker HO(K (g, p) ®r ),
we see by Lemma ii) and Lemma that there is an interval [p,q] € X such
that p C I C I# C q. Then either [p,q] € X, and we are done, or there is C' € H(X)
such that [p,q] = 7¢. Again by Lemma there is an interval [p’,q'] € C such
that p’ C I C q'. Because )¢ is dense in C, together with the completeness of C,
there is a sequence of intervals [p,,,q,] € Vo, a < A, such that (),_, b, = q’. Since
R/I € C', we have Tor{'(Ry_/po, R/I) = 0foralla < \. By Lemmai), we have
I# Cp, for all a < A, and therefore I#* C q’. We showed that p’ C I C I# C ¢/,
and since [p’, q'] € X, we conclude that R/I € C. O

6. FROM DEFINABLE COAISLES TO ADMISSIBLE FILTRATIONS

The goal of this section is to associate to a coaisle of a homotopically smashing
t-structure in the derived category of a valuation domain R a sequence of admissible
systems on Spec(R) indexed by the cohomological degrees, in a way which leads to
a bijective correspondence when restricted to definable coaisles.

Definition 6.1. Let V be a coaisle of a homotopically smashing t-structure (so, in
particular, V can be a definable coaisle) in the derived category D(R) of a valuation
domain R. Denote V,, = {M € Mod-R | M[—n] € V}, and let KC,, = {p € Spec(R) |
k(p) € V,,} for each n € Z. Inspired by [Ba07],[Bal5|, we define the two following
assignments on prime ideals in the same way as in Section [4.5

@n(p) = inf{q € Spec(R) | Rq/p € Vn},

Un(p) = sup{q € Spec(R) | Ry, (5)/ a € Vn}
Finally, we define for each n € Z a set X,, = {[pn(p),¥n(»)] | p € K,} of formal
intervals in Spec(R).

In the rest of this section, we will be in the situation of Definition (0.1 over a
valuation domain R and we will show in several steps that X = (X, | n € Z) forms
a nested sequence of admissible systems on Spec(R).

Lemma 6.2. For any p € K,, we have Ry, (y)/p € Vs and Ry, (p)/1n(p) € Vir.

Proof. The first claim is proved by noting that R, )/ b = li_lr)nCI R,/ pev Ry/p, and
sdig n
by the fact that V), is closed under direct limits. The second follows similarly from

Roo)/n(p) =lm, o v, Bon)/ 0 O
Lemma 6.3. For any p € K,, we have p,(p) Cp and ¥, (p) 2 p.
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Proof. Tt is enough to show that x(p) and R, (,)/p are in V,, whenever p € ICy,.
The first claim follows directly from the definition of XC,,, while the second from
Lemma [6.2) O

The following lemma follows from an application of a dévissage technique and is
valid for an arbitrary coaisle in the derived category of any commutative ring.

Lemma 6.4. Suppose that p is a prime, X € V, and that Homp g (x(p)[—n], X) #
0. Then k(p) € V,.

Proof. Recall that
Hom p(g)(k(p)[—n], X) ~ Hom p(g)(k(p), X[n]) ~ H" RHom g(x(p), X).

By [Hrl8| Proposition 2.3|(ii), the complex RHompg(k(p), X) belongs to V. But
RHompg(k(p), X) also lives in the essential image of the forgetful functor D(x(p)) —
D(R), and thus is isomorphic in D(R) to a complex of vector spaces over the field
k(p). In particular, RHompg(x(p), X) is isomorphic in D(R) to a split complex.
Therefore, H" RHompg(x(p), X)[—n] € V. Since H” RHompg(k(p), X) is a non-zero
vector space over k(p), it follows that k(p)[—n] € V, or in other words k(p) € V,,. O

Lemma 6.5. Let p C p’ C p”. Then R,/Ry is isomorphic to a direct limit of
copies of Ry/p”.
Proof. Since p’ C p”, we have Ry ~ p” QrRy =~ @rgp' r~tp”. Then Ry/Ry ~
liglrgp, R, /r~'p”. But since p C p’, we have R,/r~'p” ~ R,/p” for any r €
R\ p'. O
Since the coaisle V is closed under directed homotopy colimits, it follows that
the subcategory V,, = {M € Mod-R | M[—n| € V} = V[n] N Mod-R is closed under
directed limits in Mod-R. We will be mostly interested in the case when V is a
definable subcategory of D(R), and in this situation we know by the results of

Section 3.1] that V,, = {H"(X) | X € V} and that V), is a definable subcategory of
Mod-R.

Lemma 6.6. The assignments pn, Y, are monotone functions IC,, — ICy,.

Proof. First, we show that ¢, and 1, are functions IC,, — KC,,, that is, they take
values in KC,,. To do this, we need to show that x(p,(p)) and (¢, (p)) are in V,
whenever p € K,,. By Lemma we know that R, (p)/¥n(p) € V. Note that
there are non-zero canonical maps

K(pn(p)) — an(p)/wn(p)a and

H(¢7z(p)) — Rgon(p)/¢n(p)'
By Lemma [6.4] we have £(¢n(p)), £(1n(p)) € Va.
Now we need to show that ¢,, and 1, are monotone. Consider p; C p, in /C,,.
If p; € wn(ps), there is nothing to prove in case of ¢,,. Otherwise, if v, (ps) € Py
there is an exact sequence

0— m(p 1) — R%(pz)/p 1 — an(pz)/Rpl — 0.

By our assumption, we have @, (py) € p; C po, and thus we can use Lemmaand
infer that R, (p,)/Rp, is a direct limit of copies of R, (5,)/ P2 € Vi. Therefore, we
conclude that R, (,,)/ 91 € Vpn, and thus 0, (p1) € pn(ps).
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Finally, we show that 1, is monotone. Consider the exact sequence

0— Rga”(p2)/wn(p 1) - Rga”(pl)/wn(p 1) - RSD'n(pl)/RS‘"n(p2) — 0.

The middle term is in V,,, and the rightmost term is in V,, by a similar argument as in
the previous paragraph, since we can assume ¥, (p;) 2 p, (otherwise the monotony
is clear), and apply Lemmal[6.5|to prime ideals ¢, (p1) C ¢n(p2) € ¥n(p;). Then the
leftmost term R, (p,)/¥n(p1) belongs to Vy,, because V, is closed under extensions
and kernels of epimorphisms.

U

Given a couple of intervals y, ¢ in Spec(R), we say that y is contained in &,
denoted x C &, if p C p, C q, C q¢. The following Lemma explains the relation
between the intervals of X, and certain uniserial modules belonging to V.

Lemma 6.7. (i) For any [p,q] in X, we have Mod{Ry/p) C V.
(i) If Ry/q € Vy for some prime ideals p C q in Spec(R) then there is an
interval x € X, which contains the formal interval [p,q].
(ili) Ifp,q € Ky and [p,q] € Xpy1 then Ry/p € V.

Proof. (i) Since [p,q] € X,, we have R,/q[—n| € V by Lemma Let S be a
maximal immediate extension of R, then also C' = R,/ q®gS € V,, since S is flat
and V), is closed under direct limits. By Lemma C = R,/ q®pgS cogenerates
Mod{R,/p). Therefore, there is a coresolution for any M € Mod{R,/p) of the
form

0—-M-—->C" —=C" -C" — -

for some cardinals »,,n > 0.
Since V is closed under cosuspensions, extensions, products, and homotopy lim-
its, the truncated complex

= 00 50t 50—

with the first non-zero component situated in degree n belongs to V[n], and therefore
M[—n] € V, which in turn means M € V,. (The use of homotopy limits comes
from expressing this complex as a countable directed homotopy limit of its stupid
truncations from above.)

(1) As in the proof of (i), R,/ q € V,, implies that Mod{ R,/ p) C V,. In particu-
lar, k(q) € V,,, and thus q € K,,. Then there is an interval x = [p,(q), ¥n(q)] € X,.
By Lemma q € ¥n(q). On the other hand, the definition of the map ¢,, to-
gether with R,/ q € V,, ensures that ¢, (q) C p. Therefore, x contains the interval
[p. q].

(#4i) There is the following exact sequence
0— Ry/p— r(q) Dr(p) = Ry/q—0

where the map R,/ p — £(q) @ x(p) is given by the canonical projection and injec-
tion, respectively. Since p,q € K,,, the middle term of the sequence belongs to V,,
and since the interval [p, q] belongs to &, 41, we have R,/ q € V41 by Lemma
Therefore, R/ p belongs to V,, by Proposition |

Lemma 6.8. The system of intervals X, is disjoint.
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Proof. With respect to [Ba07, Lemma 6.2] and Lemma and Lemma it is
enough to show that for any n € Z we have the identities

(3) ©On OV = Qn & Pn 0 Yn = Pn,
and

Fix p € K,,. By Lemmas and we have ¢, (p) C @n(¥n(p)). On the other

hand, as R (p)/¥n(p) € V, by Lemma we have ©,(¥,(p)) C ©n(p) by the
definition of ¢,,.

By Lemma ©n(@n(p)) € wn(p). There is an exact sequence

0= Ro(o)/ P = Bozn)/ 0 = Bz o)/ Bop) = 0.

The leftmost term is in V,. If we prove that also the rightmost term belongs
to Vy, then also R,z )/ p € Vi, which in turn implies ¢, (¢n(p)) = ¢n(p) by the
definition of ¢,,. First note that R,z u)/ Ry, (p) is an Ry, (»)/#% (p)-module. Indeed,
Rz (3)/ Ry, (p) is an Ry (py-module, and as it is clearly (R \ ¢2(p))-torsion, it is
annihilated by ¢2(p). Since ¢,, € K,,, we have that [¢2(p), ¢, (p)] is contained in an
interval from &,,. Therefore Lemma i) implies that any R, (p)/%2(p)-module
belongs to V,,, and thus in particular, Rz )/ Ry, (p) € Va-

Again by Lemma and Lemma we have ¥y, (¢n(p)) C ¥n(p). Using p2 =
©n, we have that R, (n)/1n(p) € V, implies the other inclusion.

To finish the proof of ()), we are left with showing that 1, (¢ (p)) = ¥n(p).
Since clearly ¥, (p) C ¥ (¥n(p)), we have using that applying ¢, on the latter
inequality yields ¢, (p) = @n(¥n(p)), and thus Ry, ()/Vn(pn(p)) € Vs. This yields

U (@n () C Y (p), as desired.
Using [Ba07, Lemma 6.2], we conclude that X, is a disjoint system. O

Lemma 6.9. The prime ideal ¢, (p) is idempotent for any p € IC,,.

Proof. If v, (p) is not idempotent, it is well known (see Lemma that @, (p) =
TR, (p) for some element r € ¢, (p). Consider for any n > 0 the exact sequence

0= Ry (/P =1 "Ry (/P = Ry, (p)/T" Ry, (p) = 0.

Then the leftmost element belongs to V,,, and since R, p)/r" R, (p) is isomor-
phic to an (n — 1)-fold extension of R, (p)/¢n(p) ~ K(pn(p)), it also belongs
to V,,. Therefore lim T "Ry )/ P € Va. Since r € pn(p), the localization
li_r>nn>0 77" R, (p) is isomorphic to Ry for some prime ideal q C ¢, (p). Then the di-
rect limit lim 77" R, (y)/ p is isomorphic to Rq/p. But then Rq/p € Vy, which
is a contradiction with the definition of ¢, (p). O

In order to prove the completeness condition, we will make an essential use of
the recent deep result |[SSV17, Theorem A], which states that a t-structure in the
underlying category of a strong and stable derivator can be naturally lifted to the
category of coherent diagrams of any shape. In the case of a homotopically smashing

t-structure, this allows in a sense to “commute” the coaisle approximation functor
with a directed homotopy colimit, as in the following proof.

Lemma 6.10. The set X, satisfies the completeness condition of Definition [[.2
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Proof. Tt is enough to show the following claim: for any n € Z and any non-
empty subset A of KC,, the primes UpeAp and ﬂpeAp belong to IC,,. Indeed,
once we have this, then given any non-empty subset B of X,, we let A = {q |
[p.q] € B}. Suppose that B does not have a maximal element, then J,c,q =
U[p,q]eB p. Therefore, the claim gives U[p,q]eBp € K,,, and so there is an interval

(ea(Up.qjes #): ¥n(Up ges )] € o By Lemma§gand 7 we have p = pn(p)
‘Pn(U[p,q]eB p) for any [p,q] € B, and thus necessarily ¢, (b.alB p) = U[p)q]eBp
by Lemma [6.3] The second part of the completeness condition follows by an anal-
ogous argument.

It remains to prove the claim. Let A be a non-empty subset of K, and let (A, <)
be a totally ordered set (considered naturally as a small category) such that we
can write A = {p, | @ € A} in a way that a < 3 if and only if p, C ps for all
a,B €A Weput p=J,caPo and g = cp Po- We need to prove that x(p) and
%(q) belong to V,.

Let us express x(p) as the direct limit lim Ry/p, of the direct system Y =
(Ry/Po | @ € A) € (Mod-R)* consisting of the natural surjections. Let % €
D((Mod-R)™) be the coherent diagram induced by Y € (Mod-R)*. By [SSV17,
Theorem A], there is a t-structure Uy, Va) in D((Mod-R)*), where Vy (resp. Uy)
consists of all coherent diagrams of shape A with all coordinates in V (resp. U).
Let

AU —Y[-nL v
be the approximation triangle in D((Mod-R)*) of the coherent diagram % [—n] with

respect to the t-structure (Up, Va). For each o € A, denote by U, and V,, the a-th
coordinates of % and ¥. By passing to a coordinate o € A, A induces a triangle

Ao :Us = Ry/pal-n] 25V, = U1,
which is the approximation triangle of R,/p,[—n] with respect to the t-structure
(U,V) in D(R).
Note that for any a € A, there is a canonical embedding R,/p, C K(p,)-
Let 1 : Rp/po[—n] = k(po)[—n] be a map in D(R) inducing this embedding in
the n-th cohomology. Since x(p,) € V, by the assumption, applying the coaisle

approximation functor 7, : D(R) — V onto ¢, yields a commutative diagram in
D(R) as follows:

o

Ry/pal—n] —*= #(py)[-n]

g ‘| |

Va M K’(pa)[_n]

Applying the n-th homology functor on (5| yields a commutative diagram in Mod-R:

Rp/pa < 7 ’i(pa)

)| |

H" (v (ta
(V) e

The latter diagram shows that H"(f.) : Ry/p, — H™(V,) is a monomorphism for
each a € A. By [Grl3l Corollary 4.19], there is a triangle obtained by taking the
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homotopy colimit of triangle A in D((Mod-R)%):

(6) hocolim A : hocolim % — k(p)[—n] hocolimaen 7 pocolim ¥ — hocolim % [1].
acl acl a€A a€A

Since both ¢ (|SSV17, Proposition 4.2]) and V are closed under directed homotopy
colimits, we have that @ is the approximation triangle of x(p)[—n] with respect to
the t-structure (U, V). We compute the n-th cohomology of the coaisle approxima-
tion map,
n : ~ 13 n
H"(hocolim f) =~ %H (fa)s

which together with the previous computation and the exactness of direct limits in
Mod-R shows that H"(hocolimyea f) : x(p) = H"(hocolim,ep ¥') is a monomor-
phism in Mod-R. In particular, we proved that

Hom p gy (k(p)[—n], hoco/l\im V) # 0.
a€

Since hocolimaepy ¥ € V, Lemmal6.4)shows that x(p)[—n] € V, and thus x(p) € V.

We prove that x(q) € V, using a similar argument. This time we express
#(q) as the direct limit lim _ Ry_/q of the direct system J = (R, /q | a €
A°P) consisting of canonical embeddings, which again lifts to a coherent diagram
% € D((Mod-R)A™). We observe that there are monomorphisms R, /q <
I B<acA K(p 5) given by canonical maps in each coordinate § < « of the product,
and Hﬁ<a6A k(pg) € Vy, using that V), is closed under products. As in the previous

part of the proof, these embeddings can be used to show that the coaisle approxima-

tion maps R,_/q[—n] ELR Vo = 1v(Ry, / q[—n]) induce monomorphisms H"(f)

in the n-th cohomology. Repeating the argument with the homotopy colimit to
show that the coaisle approximation map x(q)[—n] — hocolimyep Vi, is non-zero in
n-cohomology, we again conclude that k(q)[—n] € V by Lemma O

Putting together Lemma [6.8] [6.9] and [6.10, we obtain:

Corollary 6.11. In the setting of Definition[6.1], the set X, is an admissible system
on Spec(R) for any n € Z.

The sequence X = (X, | n € Z) of admissible systems in Spec(R) satisfies two
additional properties that will characterize it as a sequence associated to a definable
coaisle.

Definition 6.12. Let R be a valuation domain. We say that a sequence X = (X, |
n € Z) of admissible systems on Spec(R) is a nested sequence if X, is a nested
subsystem of X, for each n € Z, meaning that for any x € &), thereis £ € X, 11
such that y C €.

We say that X = (X, | n € Z) satisfies the degreewise non-density condition
if the following holds:

e For any n € Z and any dense interval xy < £ in &), 41, there is an interval
X <7 <€ in X, 41 such that 7 does not contain any interval from A, .

An admissible filtration in Spec(R) is a nested sequence X = (X, | n € Z) of

admissible systems satisfying the degreewise non-density condition.

Remark 6.13. The condition of 7 € X1 not containing any interval from X,
in the definition of the degreewise non-density condition above can be rephrased
by 7 being strictly contained in a gap from G(&,,). Indeed, assume that 7 does
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not contain any interval from X,,. Let x be the maximal interval in A}, such that
x < 7 and ¢ be a minimal interval in &), with & > 7, such intervals exist by the
completeness condition satisfied by any admissible system (Deﬁnition. Since &,
is a nested subsystem of the admissible system &), 1, we have q, C p, C q, C p,. If
there was an interval § € &,, with xy < 6 < &, then necessarily 8 C 7, a contradiction.
Therefore, (q,,p,) is the desired gap in G(X},) containing the interval 7 strictly.
Conversely, the definition of a gap (§ implies that if 7 is contained in a gap
from G(X,) then 7 cannot contain any interval from X,,. Therefore, the degreewise
non-density condition can be equivalently formulated as follows:
e For any n € Z and any dense interval xy < £ in &), 41, there is an interval
X <7 <¢in X,4q and a gap (q,p) € G(&X,) which strictly contains 7 (that
is, g Cp, Ca, Sp).
Before proving that the sequence we associated to a definable coaisle is indeed
an admissible filtration, we remark a useful equivalent formulation and one con-

sequence of the degreewise non-density condition. We point the reader to the
definition of the set H(X,,) of maximal dense intervals of X, in §

Lemma 6.14. Let X = (X,, | n € Z) be a nested sequence of admissible systems.
Then the degreewise non-density condition is equivalent to the following:

e For any n € Z and for any maximal dense interval C € H(X,4+1), the
subset

Zc ={r € C| 7 does not contain any interval from X,,}
is dense in C' (that is, for any x < & in C there is 7 € Z¢ with x <1 < ).

Proof. This follows easily from the definition of H(X,,+1). Indeed, for any dense
interval x < £ in X, 11 we have x ~ &, and thus there is C' € H(X,,41) such that
for any x < 7 < ¢ we have 7 € C. Since Z¢ is dense in C, we infer that there is
T € Z¢ such that x < 7 < ¢, and thus the condition of the Lemma implies the
degreewise non-density condition. For the converse, let x < £ be in C, then the
interval x < £ is dense by the definition of C, and therefore there is 7 in between
x and ¢ belonging to Z¢ by the degreewise non-density condition. (I

Lemma 6.15. Let X = (X, | n € Z) be an admissible filtration. If x < £ is a dense
interval in X, then there is an interval p € Xp,41 such that x,& C p.

Proof. We define a set
A = {1 € X,41 | T contains an interval from X, in between x and £}.

Since X is nested, each interval from X, between x and £ is contained in some 7 € A.
Our aim is to show that A is a singleton, because then the interval p € X, 11 with
A = {u} has the desired property.

First, we remark that A is clearly non-empty, so it is enough to show that A
does not contain two distinct elements. Suppose that there are intervals 7 < 6 in
A. The intervals 7 and 0 are disjoint by the definition of an admissible system. For
any ideal I with q, C I C py, there is an interval v € X, satisfying p, C I C q,,
and x < v < &, this follows from Lemma Then ~ is contained in some interval
0 € A, and necessarily 7 < § < 0. In this way the density of the interval y < £ in
X, implies the density of the interval 7 < 6 in &), ;1. Since each interval from X,
which lies in between 7 and 6 contains an interval from X,, by Lemma [5.7] again,
this is in contradiction with the degreewise non-density condition. ([
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Proposition 6.16. Let R be a wvaluation domain. The assignment V — X =
(X )nez of Deﬁmtion yields a map

o definable coaisles V . admissible filtrations X
' in D(R) in Spec(R) '

Proof. Let V be a definable coaisle in D(R). Then the sequence of admissible
systems associated to V via Definition is clearly nested, because V,, C V), 41 for
alln € Z.

The only thing which remains to be proved is that the nested sequence X = (X, |
n € Z) associated to V satisfies the degreewise non-density condition. Towards a
contradiction, let us assume that there is n € Z and a dense interval xy < £ in &), 11
such that every interval 7 € &, 41 with x < 7 < £ contains some interval 7y from
X,

The density of the interval together with the completeness property satisfied by
admissible systems implies that for each x < 7 < ¢, we can write p. as the union
P, = UX<0<T pp. By our assumption there is an interval 6y € X, contained in 6 for
each y < 0 < 7, and therefore the completeness property yields an interval of the
form [p,,q] in X,, with p,. C q C q,. By a completely dual argument, there is also
an interval of the form [p,q,] in &, for any x <7 < & with p_. Cp Cq.,.

We claim that the module M = R, /4, belongs to V;, and show that this leads
to the desired contradiction. We prove this in several steps.

Step I. The module [ .. .. M ®r Rq_/p, belongs to V, for any x <7 <&.

Since V), is closed under products, it is enough to show that the factors of the
product belong to V,,. First, M ®r Ry /p, ~ k(q,) € Vp, as there is an interval
[p,q,] € &, and so q, € K,,. For any x < 7 < &, we have M ®r Rq_/p, =~
Ry /p, € Vy by Lemma iii), since there are intervals of the form [p.,q] and
[p,9.] in X, contained both in the interval [p., q,| € Xny1. Finally, M®@pRq, / pe ~
k(pg) € Vi, as there is an interval [p¢, q] € &),

Step IIL. The natural map n: M — [[, ., .. M ®g Rq_/p, is a monomorphism
and Coker(n) € Vp41.

Let Y = {7 € X1 | x < 7 < &}. Note that Y is naturally an admissible
system in the spectrum of the valuation domain U = R, ¢ / p,, and that ) is dense
everywhere as such. Recall that the idempotency of p, ensures that the natural
ring homomorphism R — U is a homological ring epimorphism, and therefore both
the homomorphisms and the extensions in Mod-U can be equivalently computed
over R. Let S be a maximal immediate extension of U. Then Proposition [5.§] yields
that

=1, /a-) v 8) = [[(Ry, /a-) ©r 5)

TEY TEY

is a 1-cotilting U-module corresponding to the cotilting class Cyy = Cogen(C) = +1C
in Mod-U. The module M = Rpg/qx is a U-module an clearly belongs to Cy.
Consider the universal map v : M — CHomr(M.C)

Since M € Cy = Cogen(C), the map v is a monomorphism, and by applying
Homy (—, C) we obtain an exact sequence

Homy (

Homo (D, Hom (M, C) — Ext & (Coker(v), C) — Ext L (CHomu (ML.0) 7).
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By the universality of v, Homg(v,C) is an epimorphism, and because C is a 1-
cotilting U-module, we also have Exty,(CHomr(M.C) ) = (. Therefore, we can
infer Extf;(Coker(v),C) = 0, and thus Coker(v) € Cy.

As C = [],ey((Ry_/4,) ®v S), the map v is given coordinate-wise by maps
vyt M = ((Ry_/q,) @y S)Hemr(M.C) Since (R, /q,)®u S is an Rq_/p,-module,
the map v, factors through the natural map M — M ®r Ry_/p,. Therefore, we
have the following commutative diagram:

0 M — [ <r<e M ®r Rq_/p, — Coker(n) —— 0
H 1| d
0 M = CHomr(M,C) — Coker(v) —— 0

The map 7 is a monomorphism, because v is a monomorphism. The module
[I,<;<e M ®r Rq_/p, belongs to Cy, and so does its submodule Ker(f). By
the Snake Lemma, we have Ker(f) ~ Ker(g). Because Coker(n) is an extension of
Ker(g) and a submodule of Coker(v) € Cy, we see that Coker(n) € Cy. We claim
that this implies that Coker(n) € V,,+1. Indeed, since Coker(n) € Cy = Cogen(C) =
+1C, then by iterating the natural map to products of C, we get that Coker(n) ad-
mits a Prod(C)-coresolution (see also [GT12l, Proposition 15.5(a)]), that is, an exact
sequence of the form

0 — Coker(n) - Cy = C; = Cy — -~

where C; is a direct product of copies of C. Since 7 € &), 41 for each x < 7 < ¢,
we have R, /q, € Vni1 by Lemma As S is a flat U-module, the module
(Ry_/4q,) ®u S is isomorphic to a direct limit of copies of R, _/q, for any 7 € ),
and therefore (Rp, /q,) ®u S € Viq1. Since Vy 4 is closed under direct products,
we showed that C' = [ cy,((Ry_/4q,) ®v S) belongs to V41, and thus so does also
the module C; for each i > 0. Arguing as in the proof of Lemma i), we conclude
that Coker(n) belongs to V1.

Step III. The module M belongs to V,,, and this leads to a contradiction.

In Steps I. and II. we showed that M is the kernel of a map HXSTSEM QR
Ry /p, — Coker(n) between a module from V, and from V, 1, respectively.
Therefore, M belongs to V,, by Proposition Now consider the obvious map
M = Ry, /a, — r(ay) @ k(pe). This map is a monomorphism between modules
from V), and its cokernel is Rq /p., which implies Ry /p, € Vy41 by Proposi-
tion again. But then Lemma [6.7](ii) yields that there is an interval in X,
which contains [q,,p,], a contradiction with the interval x < § in A, 41 being
dense. d

Remark 6.17. Let us remark what the degreewise non-density condition means in
two “extremal” cases — that of a stable t-structure, and that of the Happel-Reiten-
Smalg t-structure.

e If V is closed under suspension, then the associated admissible filtration X
is necessarily constant, that is, X, = X,,+1 for all n € Z. The degreewise
non-density then simply means, in view of Lemmal[6.15} that X, is nowhere
dense — cf. [BS17, Theorem 5.23|.
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e If V belongs to a Happel-Reiten-Smalg t-structure, then

0, n<0
A = {{[O,m]}, n>0"

and the only interesting admissible system is Xp, for which the degreewise
non-density condition is vacuous. This fits nicely with Theorem [£.11] where
no condition on density was required.

7. CONSTRUCTION OF DEFINABLE COAISLES

The purpose of this section is to construct an injective assignment from admissi-
ble filtrations to definable coaisles. Given an admissible filtration X = (X,, | n € Z)
in the spectrum of a valuation domain R, we define the following subcategories of
Mod-R (see Lemma [4.6)):

Cn=Cx, ={M € Mod-R |V0O#m e M Ix € X, : Annr(m) € (x)}

and
D, ={M € Mod-R | Fq(M) € Mod-Rq Y[p,q] € X,}.
We recall that for any M € Mod-R we have Fy(M) = Im(M — M ®gR,), and thus
Fy(M) € Mod-R, if and only if Fq(M) is g-divisible. Our goal here is to show that
there is a definable coaisle V defined on cohomology by putting V,, = C,, N D,, 11 for
each n € Z.
We refer the reader to for the definition of the complex K(q,p) for a gap

(a,p)-

Lemma 7.1. Let M be an R-module, q € Spec(R), and J any ideal of R such that
q < J. Then Fq(M) € Mod-Rq if and only if (Rq/J) ®r M = 0. In particular, for
any q € Spec*(R) we have Fy(M) € Mod-Ry if and only if H* (K (q,p) ®r M) =0
for any gap of the form (q,p) for q C p.

As a consequence, the class D,, is closed under pure submodules, direct limits,
extensions, and epimorphic images.

Proof. This is straightforward for J = R. Since for any ideal J such that q C J C R
there is a chain of epimorphisms Rq/sR — Rq/J — Rq/R for some s € (J\ q), it is
enough to check the statement for J being a principal ideal. But for any s € (R\q),
the module Ry/sR is clearly isomorphic to Rq/R, and so this follows from the case
J=R.

For the “in particular” claim, note that H'(K(q,p) ®r M) is always zero if
q = —oo, and is equal to (R,/p) ®r M if q € Spec(R). O

Given an admissible filtration X, let us denote shortly G,, = G(X,,) the set of all
gaps of the admissible system X,,. We recall the definition of the set H(X,,) from
§ and also use the shorter notation H,, = H(X,,). The elements C of H,, can
be viewed as maximal dense intervals in X}, and by Lemma each C € H, 1
contains a dense subset Z¢ consisting of those intervals which do not contain any
interval from the preceding system X,. Our first step is to describe the classes
V,, homologically. Before that, it will be useful to record the following dichotomy
which follows from the degreewise non-density condition.

Lemma 7.2. Let X = (X, | n € Z) be an admissible filtration. Then for any
interval x € X,,, one (and only one) of the following two conditions must be true:
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(i) there is a (possibly not strictly) decreasing sequence ((q,,p,) | @ < A) of
gaps in G, such that [,y da = Gy, OF

(i) there is a limit ordinal A and a strictly decreasing sequence ([p,,q,] | @ < A)
of intervals in Z¢ for some C € Hy, such that (), 4o = -

Proof. Suppose that the first condition is not true. In view of Lemma [5.7] the
condition (%) is not true if and only if there is £ € X, such that y < ¢ and the
interval x < € is dense in &,,. Then there is C' € H,, such that x,£ € C. Let
Z ={1 € Z¢c | x <7 < &}. From the density of Z¢ in C it follows that that
N.cz 9, = 4, Therefore we can choose a strictly decreasing sequence 7o > 71 >
Tg > -+ > T4 > -+ indexed by some limit ordinal A such that | = q,, and
whence (7) holds.

If (i) holds, then x belongs to some C € H,, and x is not maximal in C'. Then
there is a dense interval x < £ in X, and so () cannot hold. O

a< Uz,

Lemma 7.3. Let M be a module from C,,. Then M € D, 1 if and only if the two
following conditions hold:

(i) for any gap (q,p) € Gni1 we have H(K(q,p) ®r M) =0, and
(ii) for any C € Hyy1 and any [p,q] € Z¢ we have (Rq/p) ®r M = 0.

Proof. Let [p,q] € Xn41. We separate the two different cases as prescribed in
Lemma [[.2]

Case 1: There is a decreasing sequence of gaps ((q,,P,) | @ < A) in G, 41 such
that (),., 4, = 9. Then by Lemma for each av < A the condition Fy (M) €
Mod-Rg_ holds if and only if H* (K (q,,p,)®rM) = 0. We can express Fy (M) as the
direct limit hﬂa< N Fy_ (M) where the structure maps are the obvious projections.
If Fy, € Mod-Ry_ for all a < X then the direct limit expression clearly forces
Fy(M) € Mod-R,.

Case 2: There is C' € H,,4+1 and a strictly decreasing sequence ([py, q,] | @ < A)
of intervals indexed by a limit ordinal X in Z¢ such that (), ., q, = q. Suppose that
the condition (ii) holds. Then Ry /p, ®rM = 0 for each a < A. Consequently
also Ry /P, ®rFq, M =0, or equivalently, Fy M =y, Fy M. Writing again Fy =
lim _\ Fy, (M), we see that Fq(M) = p,, Fq(M) for each o < A. Since we also have
Na<x Pa = q, we conclude that Fy(M) is g-divisible, and thus Fy(M) € Mod-R,.

What remains to be proved is that if M € C,, N D,,41 and [p,q] € Z¢ for some
C € X,41 then Ry /p®@rM = 0. Since [p, q] € Z¢ there is a gap (q',p’) € G, which
strictly contains [p, q], see Remark [6.13] Since M € C,,, the inclusions ' Cp C q C
p’ imply that (cf. Lemma and Proposition [5.10)

Py(M) € T (M) = Soc (M) € Ty(M),
and thus Fyq(M) = Fy/(M). Then
Rq/p®@prM >~ Rq/p@pFy(M) = Rq/p @rFy (M).

Since q' C p and C' is dense, there is an interval x € C such that ¢’ C g, C p.
Then M € D,,4; implies that the module qu (M) is q,-divisible, and thus also its
quotient Fy/ (M) is q,-divisible. But then Fy (M) = p Fy/ (M), and so Rq/p QpM ~
Rq/p@rFq (M) =0.

Altogether, the three paragraphs above establish the desired equivalence. O
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Corollary 7.4. Set V,, =C, N Dyy1 for alln € Z, then
Cn = ﬂ KeI‘HO(K(q,p) QR _)m ﬂ KerTor{%(Rq/p,—),

(4,p)EGn [p,9l€Zc,CEHR
and
Va=Cun )| KerH'(K(q,p)®r—)N N Ker(Rq/p @p—).
(4,)EGn+1 [p.a]€Z2c,C€Hn11

Proof. Since Z¢ is a dense subset of C' for any C' € H,,, and because G,, = G(X,) =
G(X,) for each n € Z, Proposition implies

C, = ﬂ Ker H°(K(q,p) ®r —) N ﬂ Ker Tor f(Ry/ p, —).
(9,p)€EGn [p,al€Zc,CeHn
The rest follows from Lemma [T.3l O

Lemma 7.5. Let 0 = X =Y — Z — 0 be an exact sequence. Then:

(i) If Y € Cpq1 and X is an epimorphic image of some Vy, € V,, then Z € Cp41.
(ii) IfY €V, and Z € Cp1q then X € V,.

Proof. Throughout the proof, we will use the description of V,, of Corollary [7.4]
Let (q,p) € Gny1 with q # —oo. Then HO(K(q,p) @ —) = Tor{'(Rq/p, —), and
we have an exact sequence

Torfi(Rq/p,Y) — Torf(Rq/pZ) — Rq/p@rX — Rq/p®RY.

If Y € C,y1 then the leftmost term vanishes, and X being en epimorphic image
of some object from V), ensures that Rq/p®rX = 0. The condition (i) thus
implies Tor f(Ry/p, Z) = 0. In the situation of (i), the rightmost term is zero and
Tor f(Ry/ p, Z) vanishes, and thus Ry/p@pX = 0.

If (—o0,p) is a gap in G,41, then HY(K(—o0,p) ®g —) is identically zero and
H°(K(—00,p),Z) = p®grZ always vanishes because Z is an epimorphic image of
Y € Cn—‘,—l-

Let [p,q] € Z¢ for some C € H,,+1. Then we have an exact sequence

Tor f(Ry/p,Y) — Tor {(Rq/ 9, Z) — Ry/p@rX — Ry/p @rY.

Similarly to the case above, the condition (¢) makes the first and third entry of the
sequence from the left vanish, while condition (i¢) zeros out the second and forth
term of the sequence, both time using Corollary [7.4]

Putting the conditions together, in (i) we have H°(K(q,p),Z) = 0 for all gaps
(9,p) € G, and Tor f(Rq/p,Z) = 0 for all [p,q] € Z¢ for all C € H,41, and
thus Z € C,41 by Proposition m Under the assumptions of (i7) we obtained
that H*(K(q,p) ®g X) = 0 for all gaps (q,p) € Gnt1 and Ry/p@pX = 0 for
all [p,q] € Z¢ and C € Hypq1. It follows that X € Dp4q. Indeed, since X is a
submodule of Y, X belongs to C,, and therefore X € V,, by Corollary [7.4] (Il

Lemma 7.6. Let V,,n € Z be the classes as above. If f : V,, — V41 is a map
fromV,, €V, to Viuy1 € Vg1 then Ker(f) € V,, and Coker(f) € Vy41.

Proof. Consider the induced exact sequences
0—-K—=V,—1-—=0,

and
0—=>1—-V,y1 —-C—0,
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where K = Ker(f), C = Coker(f), and I = Im(f). Since I € Cy41, Lemma [7.5]
shows that K € V,. Because [ is an epimorphic image of a module V,, € V,
and V11 € Cp41, the same lemma establishes that C' € C,, 1. Since C' is also an
epimorphic image of V,, ;1 € D12, also C' € D, 42, and therefore C € V, ;1. O

Lemma 7.7. For each n € Z we have an inclusion C, N D,, € Dy y1.

Proof. Let M € C,, N D,, and consider an interval [p, q] € X, 1. We distinguish the
two cases provided by Lemma,

One possibility is that there is a decreasing sequence ((q,,9,,) | @ < A) of gaps
in G 41 such that (., q, = g. Since &, is a nested subsystem of &1, for each
a < A there is a gap (q,,p,,) € G, which contains the gap (q,,p,) (meaning that
Jo € a0 S Py CP,)-

The only other possibility is that there is C € H, 11 and a strictly decreasing
sequence ([P, q,] | @ < A) of intervals in Z¢ indexed by a limit ordinal A such that
MNa<xr9a = 9. Again, in view of Remark each [p,,q,] is contained in a gap
(46, P5) € Gn-

In both cases, since M € C,, and there is a gap (q.,,p.,) € G, with q,, C q,, C pL,
we have

Ly, (M) C Ty, (M) = Soc , (M) C T, (M),

and thus Fy (M) = Fy (M) for each o < X. Because M € D,, F, (M)
Mod-Ry;, € Mod-R, for each o < X. As a conclusion, we infer that Fy(M)
lim . Fy (M) € Mod-Ry.

a<A o

Ol m

Proposition 7.8. Let R be a valuation domain. Then there s an assignment

) admissible filtrations X definable coaisles V
’ in Spec(R) in D(R) ’

(1]

defined by setting
EX)={X eD(R)| H(X) € C, N Dp11 Vn € Z}.

Proof. Denote V = Z(X). It is enough to check that the classes V,, = C, N Dy41
satisfy the conditions of Proposition By Corollary [7.4] it is clear that V), is
closed under direct limits, pure submodules, and extensions for each n € Z. For
the rest of the proof, we fix n € Z and prove all of the other conditions.

First we check that V,, C V,41. By Lemma [7.7, we have V,, = C, N Dpyq C
Cn+1NDyy1 € Dyyo. Because the inclusion C,, C C,,41 is clear from the description
in Lemma this step is established.

If f:V, — V,y1is amap with V; € V; for i = n,n+ 1, then Ker(f) € V,, and
Coker(f) € V41 by Lemma

Finally, we need to show that V,, is closed under direct produ