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Abstract. In the setting of the unbounded derived category D(R) of a ring
R of weak global dimension at most one we consider t-structures with a de-
finable coaisle. The t-structures among these which are stable (that is, the
t-structures which consist of a pair of triangulated subcategories) are precisely
the ones associated to a smashing localization of the derived category. In this
way, our present results generalize those of [BŠ17] to the non-stable case. As
in the stable case [BŠ17], we confine for the most part to the commutative
setting, and give a full classification of definable coaisles in the local case,
that is, over valuation domains. It turns out that unlike in the stable case
of smashing subcategories, the definable coaisles do not always arise from ho-
mological ring epimorphisms. We also consider a non-stable version of the
telescope conjecture for t-structures and give a ring-theoretic characterization
of the commutative rings of weak global dimension at most one for which it is
satisfied.
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Introduction

An extensive effort has been expended on the study of various subcategories of
the unbounded derived category D(R) of a ring R. Since this category is in most
cases too complicated to permit any chance of understanding all of its objects, one
can instead attempt to study certain kinds of subcategories with good approxi-
mation properties. One source of these is provided by Bousfield localizations, or
rather, by taking their kernels. Particularly useful are those localizations which
commute with coproducts, these are called the smashing localizations because of
their origins in algebraic topology. Smashing localizations are abundant as any set
of compact objects naturally generates one. Since thick subcategories of compact
objects often allow for a full classification (e.g. [NB92], [Tho97]), a particularly
desirable situation occurs when any smashing localization is compactly generated.
This was formulated by Ravenel [Ra84] as the Telescope conjecture in the case of
stable homotopy category of spectra. For derived categories, the Telescope con-
jecture is known to be false in general, see Keller [Ke94]. On the other hand, the
Telescope Conjecture was settled in the affirmative for large classes of rings. Here
we mention the result of Neeman’s [NB92] for commutative noetherian rings and
of Krause-Šťovíček [KŠ10] for one-sided hereditary rings. In both works, a classi-
fication of the compactly generated localizations is given, where in the first case
these are parametrized by the specialization closed subsets of the Zariski spectrum,
while in the second case the parametrization is by the universal localizations of the
ring in the sense of Schofield. Although the failure of the Telescope Conjecture is
usually viewed as a pathological behavior, there are rings for which the Telescope
conjecture does not hold in general, but still a full classification of smashing local-
izations is possible, and a simple ring theoretic criterion is available characterizing
when the Telescope conjecture is true. This is a result due to the first author and
Šťovíček [BŠ17]:

Theorem A. ([BŠ17, Theorem 3.10, Theorem 6.8, Theorem 7.2]) Let R be a ring
of weak global dimension at most one. Then there is a bijection between:

(i) smashing subcategories of D(R),
(ii) epiclasses of homological ring epimorphism R→ S.
Furthermore, if R is commutative, then the following conditions are equivalent:
(i) the Telescope Conjecture holds in D(R),
(ii) any homological ring epimorphism R→ S is flat,
(iii) for any prime ideal p of R, the prime ideal pRp is idempotent only if it is

zero in Rp.

A more general supply of subcategories of triangulated categories inducing nice
approximations is provided by the notion of a t-structure, as introduced by Bĕılinson,
Bernstein, and Deligne in [BBD82]. By definition, a t-structure is an orthogonal
pair of full subcategories, called usually the aisle and the coaisle, satisfying some
axioms ensuring a behavior similar to that of a torsion pair in an abelian category.
In case these subcategories are themselves triangulated, the t-structure is called
stable, and the aisles of stable t-structures are precisely the kernels of Bousfield
localizations. The smashing property generalizes easily to t-structures - it simply
requires the coaisle to be closed under coproducts. However, unlike in the case of
stable t-structures, the smashing property for t-structures is too weak to allow for
a classification even in basic cases; for example, there is a proper class of smashing
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t-structures over the ring of integers, cf. [GS85] together with [SŠV17, Example
6.2]. Instead, more restrictive conditions were considered for t-structures forming
the following hierarchy:

{compactly generated t-structures}

⊇

{t-structures with definable coaisle}

⊇

{homotopically smashing t-structures}

⊇

{smashing t-structures}
The subtlety of this hierarchy is only appreciated in case of non-stable t-structures,
as the latter three conditions collapse in the stable case, as shown by Krause [Kr00].
Homotopically smashing t-structures were introduced in [SŠV17], where the au-
thors prove that the heart of such t-structures has exact direct limits, and is even a
Grothendieck category under mild conditions. An a priori stronger condition is to
require the coaisle to be a definable subcategory. This condition was recently consid-
ered in the setting of silting theory in compactly generated triangulated categories,
see e.g. [MV18], [AMV17], [La18]. In particular, Laking [La18] proved that under
mild assumptions, a left non-degenerate t-structure is induced by a pure-injective
cosilting object if and only if its coaisle is definable. Therefore, a classification of
t-structures with definable coaisles yields a description of pure-injective cosilting
objects in D(R) up to equivalence. Furthermore, it is also proved in [La18] that for
left non-degenerate t-structures, the homotopically smashing property is actually
equivalent to the coaisle being definable. Not before this paper was submitted,
Saorín and Šťovíček [SŠ20, Remark 8.9] employed a result on cotorsion pairs of
Šaroch [Ša18, Theorem 6.1] to show that the coaisle of an arbitrary homotopically
smashing t-structure in any algebraic compactly generated triangulated category is
definable. In particular, the two middle classes of the hierarchy above collapse in
the case of D(R), and as a consequence, our results could be formulated equally
for homotopically smashing t-structures.

The following question comes naturally as a strengthening of the Telescope Con-
jecture from the stable case to general t-structures.

Question A. For which rings is it true that every t-structure in D(R) with a
definable coaisle is compactly generated?

In particular, an affirmative answer to Question A implies, in light of [MV18],
that all t-structures induced by bounded cosilting complexes over R are compactly
generated, a sort of cofinite type result in silting theory. Very recently, it was
shown that commutative noetherian rings [HN19] and one-sided hereditary rings
[AHH19, Theorem 3.11] are among answers to Question A, generalizing the two
results about Telescope Conjecture cited above. One of the goals of this paper is
to consider Question A for rings of weak global dimension at most one and give an
analog of Theorem A for t-structures which are not necessarily stable. In particular,
we prove the following:

Theorem B. (Theorem 8.8) Let R be a commutative ring of weak global dimension
at most one. Then Question A has a positive answer for R if and only if the
Telescope conjecture holds in D(R).
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The first step in this direction will be to prove that any definable subcategory
of the derived category of a (not necessarily commutative) ring of weak global di-
mension at most one is determined on the cohomology (Theorem 3.4). This gener-
alizes the results for hereditary and von Neumann regular rings of Garkusha-Prest
[GP05]. Similarly to the case of smashing subcategories in [BŠ17], the Künneth
formula plays an essential role in the proof Theorem 3.4. This reduction to coho-
mology classes will readily allow us to answer Question A in the affirmative for not
necessarily commutative von Neumann regular rings (Corollary 3.12; also see the
references preceding it).

As in [BŠ17], we then switch our focus to the commutative case. The basis
for our findings is the structure of compactly generated t-structures which were
described in terms of certain filtrations of the Zariski spectrum in [AJS10] and
this was further generalized to not necessarily noetherian rings in [Hr18]; also see
[St10] for a different but related kind of result. The property of being compactly
generated localizes well, and this allows us to consider the commutative rings of
weak global dimension at most one locally - that is, to confine to valuation domains.
As one of the main results of this paper, we give a full classification of t-structures
with definable coaisles over valuation domains (Theorem 8.3) by establishing a
bijective correspondence between them and certain invariants defined on the Zariski
spectrum which we call “admissible filtrations”.

Given a valuation domain R, an admissible filtration is an integer-indexed se-
quence of systems of formal intervals in Spec(R) satisfying certain axioms. Such
systems were already used in the classification of the smashing subcategories in
[BŠ17], as well as in the study of cotilting modules in [Ba07] and [Ba15]. In the
stable case in [BŠ17], the bijective correspondence was established between smash-
ing localizations and admissible systems satisfying a condition of being “nowhere
dense”. However, as shown in [Ba15, Example 5.1], there are cotilting modules
which correspond to an admissible system which is not nowhere dense. Cotilting
modules naturally give raise to Happel-Reiten-Smalø t-structures with definable
coaisles — this suggests that the classification for general t-structure should be in
terms of sequences of admissible systems satisfying the non-density condition only
locally in some sense, with respect to cohomological degrees. This is indeed the
case, see Definition 6.12.

The possibility of having dense intervals in the members of the admissible fil-
tration is connected to a new phenomenon which was not visible in case of sta-
ble t-structures. Given a ring R of weak global dimension at most one, not all
t-structures with definable coaisle can be described in terms of homological ring
epimorphisms. More precisely, in [AHH19, §5], Angeleri Hügel and the second au-
thor establish an injective map of the following form (the statement will be made
precise in the body of this paper, see 3.5):

(?)

 Z-indexed chains of
homological ring epimorphisms

of R up to equivalence

 ↪−→
{

t-structures with definable
coaisles in D(R)

}
.

By Theorem A, the image of the assignment (?) always contains all of the t-
structures which are in addition stable. However, already over the Kronecker al-
gebra over a field, the assignment is not surjective, as it misses precisely all the
shifts of the Happel-Reiten-Smalø t-structure associated to the dual of the Lukas
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tilting module [AHH19, §6.4]. In this paper, we will demonstrate that over val-
uation domains, the map (?) can potentially miss a lot of t-structures, provided
that the Zariski spectrum of the domain is “topologically rich enough” to allow
density to occur in an admissible filtration, see Remark 9.5. We compile the re-
lations between the various kinds of t-structures and invariants over a valuation
domain R established in Sections 8 and 9 in the following commutative diagram of
1-1 correspondences and inclusions.

 admissible
filtrations
in Spec(R)

 1−1←−−→

 t-structures with
definable coaisle

in D(R)



⊆ ⊆ nowhere dense
admissible
filtrations

 1−1←−−→

 t-structures
in the image

of (?)

 1−1←−−→

 chains of homological
ring epimorphisms
over R up to equiv.



⊆ ⊆ ⊆ simple admissible
filtrations of

Proposition 8.5

 1−1←−−→

 compactly
generated
t-structures

 1−1←−−→

 chains of flat
ring epimorphisms
over R up to equiv.


The paper is concluded by discussing the non-degeneracy condition of the classi-

fied t-structures. In general, there is the following chain of conditions that one can
impose on a definable coaisle in the derived category of any ring R:

{co-intermediate definable coaisles}

⊇

{non-degenerate definable coaisle}

=

{non-degenerate coaisles of homotopically smashing t-structures}

By results of [MV18] and [La18], respectively, the smallest class above corre-
sponds to equivalence classes of (bounded) cosilting complexes over R, while the
two larger classes coincide and correspond to equivalence classes of pure-injective
cosilting objects. The usual definition ([WZ17], [MV18]) demands the cosilting com-
plex to be a bounded complex of injective R-modules, ensuring that the induced
t-structure is co-intermediate, while one makes no such assumption when defining
a general cosilting object ([NSZ19], [PV18]) in a triangulated category. We use our
classification over a valuation domain to show that while any pure-injective cosilting
object is in this setting cohomologically bounded below (Corollary 9.8), the induced
t-structure may not be co-intermediate in general (Example 9.10), obtaining that
the inclusion of the two classes above is strict.

The paper is organized as follows. Sections 1 and 2 compile the necessary facts
and recent results about t-structures, definability in triangulated categories, homo-
topy colimits, and the cosilting theory. This is done in the generality of triangulated
categories which underlie a compactly generated Grothendieck derivator. In Sec-
tion 3 we study the definable subcategories of the unbounded derived category of
a ring of weak global dimension at most one, showing in particular that these are
determined on cohomology (Theorem 3.4). The definable coaisles are parametrized
by certain increasing sequences of definable subcategories of the module category
(Proposition 3.7). As a consequence, we answer Question A in the affirmative for
von Neumann regular rings (Corollary 3.12). After that, we confine to the case of
a valuation domain, and give a full classification of the module-theoretic cosilting
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classes via “admissible systems” of intervals in Section 4, mainly Theorem 4.11.
Section 5 introduces the topological notion of (non-)density, computes the cosilting
classes by homological formulas (Proposition 5.10), and provides a construction of
dense-everywhere cotilting modules (Proposition 5.8), which is needed for the se-
quel. In the next two Sections 6 and 7, the assignments between definable coaisles
in the derived category and the “admissible filtrations” on the Zariski spectrum
are established (Proposition 6.16 and Proposition 7.8). In Section 8 we prove that
these assignments are mutually inverse, and thus induce the promised bijective
correspondence (Theorem 8.3). Finally, in the last Section 9 we show that the con-
dition of being “nowhere dense” of the admissible filtrations corresponds precisely
to the t-structure being induced by a chain of homological ring epimorphisms via
(?) (Theorem 9.4) and conclude with several examples.

Acknowledgement. The authors would like to thank the anonymous referee for
many valuable suggestions, one of which helped us discover a mistake in an earlier
version of the manuscript. This led us to the correct notion of the degreewise
non-density condition (Definition 6.12) which in turn allowed us to describe the
definable coaisles as tensor-orthogonal classes (Proposition 7.10).

Conventions. Throughout the paper, all subcategories are strict, full and additive,
and all functors are additive.

Unless specified, by a module we always mean a right module over a ring R, and
the category of right R-modules will be denoted as Mod-R, while the category of
abelian groups is denoted as Ab. The chain complexes of R-modules are written
in the cohomological notation, that is, the degree increases along the differential.

1. t-structures with definable coaisles

Let T be a triangulated category with all small coproducts. We will always
denote the suspension functor of T by [1], and the cosuspension functor by [−1].
A t-structure ([BBD82]) in T is a pair t = (U ,V) of subcategories satisfying the
following three conditions:

(i) HomT (U, V ) = 0 for all U ∈ U and V ∈ V,
(ii) for each object X ∈ T there is a triangle

U → X → V → U [1]

with U ∈ U and V ∈ V, and
(iii) U [1] ⊆ U , or equivalently, V[−1] ⊆ V.
The subcategory U is called the aisle of the t-structure t, and the subcategory V

is the coaisle of t. We will call a subcategory of T an aisle if it fits as an aisle into
a t-structure, and the same custom will be used for coaisles. Given a subcategory
C of T we adopt the notation

C⊥0 = {X ∈ T | Hom T (C,X) = 0 ∀C ∈ C},
and

⊥0C = {X ∈ T | Hom T (X,C) = 0 ∀C ∈ C}.
It is not hard to see that conditions (i) and (ii) imply that U = ⊥0V and V = U⊥0 .
As a consequence, all aisles and all coaisles are closed under extensions and direct
summands in T . Moreover, any aisle is closed under all coproducts in T , and any
coaisle is closed under all products existing in T .
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The triangle from condition (ii) is unique up to a unique isomorphism of trian-
gles. Indeed, it is always isomorphic to the triangle

τU (X)→ X → τV(X)→ τU (X)[1],

where τU and τV are the right and left adjoint to the inclusions U ⊆ T and V ⊆ T ,
respectively. Moreover, the existence of (any of) these adjoints under (i) and (iii) is
equivalent to condition (ii) (see [KV88, Proposition 1.1]). We will call the triangle
from (ii) the approximation triangle of X with respect to the t-structure t. We
will be especially interested in the reflection functor τV , which will be called the
coaisle approximation functor.

1.1. Definability in compactly generated triangulated categories. Recall
that an object C ∈ T is compact if the functor HomT (C,−) sends coproducts in T
to coproducts in Ab, and let T c denote the triangulated subcategory of all compact
objects of T . From now on we will assume that T is a compactly generated
triangulated category, that is, that T has small coproducts, T c is skeletally small,
and that HomT (T c, X) = 0 implies X = 0 for any X ∈ T . For any category C, let
Mor(C) denote the morphism category of C.

Definition 1.1. We say that a subcategory C of T is definable if there is a subset
Φ of Mor(T c) such that

C = {X ∈ T | Hom T (f,X) is surjective for all f ∈ Φ}.

A recent result from [La18] shows that, under mild assumptions, definable sub-
categories can be characterized by their closure properties, in a way analogous to
definable subcategories of module categories. Before stating this result, we need to
recall the notions of purity in compactly generated triangulated categories, and of
derivators and homotopy (co)limits.

1.2. Purity in compactly generated triangulated categories. Consider the
category Mod-T c of all T c-modules, that is, of all contravariant functors T c → Ab.
We let y : T → Mod-T c be the restricted Yoneda functor, by which we mean the
functor defined by restricting the standard Yoneda functor on T to T c. Explicitly,

y(+) = Hom T (−,+)�T c .

This functor can be used to build a useful theory of purity in T .

Definition 1.2. A triangle X f−→ Y
g−→ Z → X[1] in T is a pure triangle if the

induced sequence

0→ y(X)
y(f)−−−→ y(Y )

y(g)−−−→ y(Z)→ 0

is exact in Mod-T c. If this is the case, we call f a pure monomorphism and g
a pure epimorphism in T . We remark that, of course, pure monomorphisms in
T will usually not be monomorphisms in the categorical sense, and the same is the
case with pure epimorphisms.

Moreover, we call an object E ∈ T pure-injective if any pure monomorphism
E → X in T splits.

The purity in T is closely tied to the definable subcategories in T via the notion
of the Ziegler spectrum. Here, we follow [Pr09, §17]. The Ziegler spectrum Zg(T )
of T is the collection of isomorphism classes of all indecomposable pure-injective
objects of T . Then Zg(T ) is always a set, and it is equipped with a topology
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given as follows: A subset U of Zg(T ) is closed if and only if there is a definable
subcategory C of T such that U = Zg(T ) ∩ C. The following result due to Krause
says in particular that every definable subcategory of T is fully determined by the
indecomposable pure-injective objects it contains.

Theorem 1.3. ([Kr02]) Let T be a compactly generated triangulated category.
Then there is a bijective correspondence:{

closed subsets U of Zg(T )
}
↔
{

definable subcategories C of T
}

Both correspondences are given by the mutually inverse assignments

U 7→ {X ∈ T | there is a pure monomorphism X →
∏
i∈I

Pi, where Pi ∈ U},

C 7→ C ∩ Zg(T ).

1.3. Derivators and homotopy (co)limits. Triangulated categories usually do
not have many useful limits and colimits apart from products and coproducts. A
way to remedy this is to introduce an additional structure on them and compute the
homotopy (co)limits instead. In our case, this extra structure comes from assuming
that T is the underlying category of a strong and stable derivator. Since we will
very soon restrict ourselves to the case of derived categories, we omit most of the
details on derivators, and refer the reader to [La18] and references therein for an
exposition of the theory well-suited for our application.

A derivator is a contravariant 2-functor D : Catop → CAT from the category
of small categories to the category of all categories, satisfying certain conditions.
We denote by ? the category consisting of a single object and a single map. The
category D(?) is called the underlying category of the derivator D. For every
small category I, we consider the unique functor πI : I → ?. The definition of a
derivator implies that the functor D(πI) : D(?) → D(I) admits both the right and
the left adjoint functor. We denote the right adjoint by holim : D(I) → D(?) and
the left adjoint by hocolim : D(I)→ D(?). We omit the definition of a strong and
stable derivator, but we remark that amongst the consequences of these properties
is that the category D(I) is triangulated for all I ∈ Cat.

Given a small category I and an object i ∈ I, let i also denote the functor
i : ?→ I sending the unique object of ? onto i. Then we have the induced functor
D(i) : D(I) → D(?). For any X ∈ D(I) we denote Xi = D(i)(X ) ∈ D(?) and
call it the i-th component of X . Together, the component functors induce the
diagram functor dI : D(I)→ D(?)I . The objects of D(I) are called the coherent
diagrams in the underlying category of shape I. Via the diagram functor, any
coherent diagram can be interpreted as a usual (or incoherent) diagram in the
underlying category.

1.4. Standard derivator of a module category. Here we follow [Šť14, §5].
Let R be a ring, and let Mod-R be the abelian category of all right R-modules.
For any small category I ∈ Cat, we let (Mod-R)I be the category of all I-shaped
diagrams in Mod-R, that is, the abelian category of all functors I → Mod-R. Let
D((Mod-R)I) denote the unbounded derived category of (Mod-R)I . Recall that
there is a natural equivalence between the category of chain complexes of objects in
(Mod-R)I , and the I-shaped diagrams of chain complexes of R-modules. Therefore,
D((Mod-R)I) can be considered as the Verdier localization of the category of I-
shaped diagrams of chain complexes. There is the standard derivator associated
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to Mod-R which assigns to any small category I ∈ Cat the triangulated category
D((Mod-R)I). The underlying categoryD(Mod-R) will be denoted simply byD(R).
This assignment defines a strong and stable derivator, and the homotopy limit and
colimit functors can be in this case described by derived functors in the following
way. Let I ∈ Cat, then we define the homotopy colimit functor hocolimi∈I :
D((Mod-R)I)→ D(R) to be the left derived functor L colimi∈I of the usual colimit
functor colimi∈I : (Mod-R)I → Mod-R. Dually, we define the homotopy limit
functor as holimi∈I := R limi∈I : D((Mod-R)I)→ D(R).

The objects of D((Mod-R)I), that is, the coherent diagrams of shape I, are all
represented by diagrams of chain complexes of R-modules. Let X ∈ D((Mod-R)I)
be represented by a diagram (Xi | i ∈ I) of chain complexes. Then clearly, Xi ' Xi

as objects of D(R) for any i ∈ I.
We will be especially interested in the homotopy colimit construction in the

case when the small category I is directed. In this situation, we call hocolimi∈I a
directed homotopy colimit. Because the direct limit functor lim−→i∈I = colimi∈I
on the category of chain complexes of R-modules is exact, we have for each object
X ∈ D((Mod-R)I), represented by a diagram (Xi | i ∈ I) of chain complexes, the
isomorphism hocolimi∈I X ' lim−→i∈I Xi in D(R). In particular, we have for any
n ∈ Z the following isomorphism on cohomologies

Hn(hocolim
i∈I

X ) ' lim−→
i∈I

Hn(Xi).

For more details, we refer to [Šť14, Proposition 6.6].

1.5. Definable coaisles. We now assume that T is an underlying subcategory of
a compactly generated derivator, that is, a strong and stable derivator D such
that the underlying category D(?) (and by [La18, Lemma 3.2], consequently also
any of the categories D(I) for any small category I) is compactly generated. This
implies that T is a compactly generated triangulated category, in which we can
compute homotopy colimits and limits.

Definition 1.4. We say that a subcategory C of T is
• closed under directed homotopy colimits if for any directed small

category I and any coherent diagram X ∈ D(I) such that Xi ∈ C for all
i ∈ I we have hocolimi∈I X ∈ C,

• closed under pure monomorphisms if for any pure monomorphism
Y → X such that X ∈ C we have Y ∈ C.

Following [SŠV17], we call a t-structure (U ,V) homotopically smashing if the
coaisle V is closed under directed homotopy colimits. We point out here that any
aisle is closed under arbitrary homotopy colimits, and any coaisle is closed under
arbitrary homotopy limits, this is [SŠV17, Proposition 4.2].

We are now ready to state the result from [La18] characterizing definable sub-
categories of T by their closure properties.

Theorem 1.5. ([La18, Theorem 3.11]) A subcategory C of T is definable if and only
if C is closed under products, directed homotopy colimits, and pure monomorphisms.

We will be especially interested in the situation when a coaisle of a t-structure is
a definable subcategory. The following result shows that in this case the existence
of the triangles from condition (ii) is automatic.
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Theorem 1.6. ([AMV17, Proposition 4.5]) Let V be a definable subcategory of T
closed under extensions and cosuspensions. Then the pair (⊥0V,V) is a t-structure.

Putting the last two results together, we have a nice intrinsic characterization of
the notion of a definable coaisle.

Corollary 1.7. A subcategory V of T is a definable coaisle if and only if V is
closed in T under extensions, cosuspensions, products, directed homotopy colimits,
and pure monomorphisms.

2. Cosilting objects and t-structures induced by them

In this section we recall the results of [MV18] and [La18], which show that
definability of coaisles is closely related to cosilting theory. For any object C ∈ T ,
we define the following two subcategories of T :

⊥≤0C = {X ∈ T | Hom T (X,C[i]) = 0 ∀i ≤ 0}, and
⊥>0C = {X ∈ T | Hom T (X,C[i]) = 0 ∀i > 0}.

An object C of a triangulated category T is cosilting provided that the pair t =
(⊥≤0C,⊥>0C) forms a t-structure in T . In this situation, we say that the t-structure
t is a cosilting t-structure, and it is induced by the cosilting object C. Among
the consequences of the definition (see [PV18, Proposition 4.3]) is that any cosilting
object C is a (weak) cogenerator in T , that C ∈ ⊥>0C, and that any cosilting t-
structure is non-degenerate in the following sense: .

Definition 2.1. A (U ,V) t-structure in a triangulated category T is called non-
degenerate provided that

⋂
n∈Z U [n] = 0 and

⋂
n∈Z V[n] = 0.

Now we are ready to state the following result due to Laking.

Theorem 2.2. ([La18, Theorem 4.6]) Let T be an underlying triangulated category
of a compactly generated derivator, and consider a non-degenerate t-structure t =
(U ,V) in T . Then the following conditions are equivalent:

(i) t is induced by a pure-injective cosilting object C,
(ii) the subcategory V is definable,
(iii) the t-structure t is homotopically smashing,
(iv) the subcategory V is closed under coproducts, i.e. t is a smashing t-structure,

and the heart H := U ∩ V[1] is a Grothendieck category.

Since any t-structure induced by a cosilting object is non-degenerate, we have
also the following reformulation:

Corollary 2.3. Let T be an underlying triangulated category of a compactly gen-
erated derivator, and let t = (U ,V) in T . Then the following conditions are equiv-
alent:

(i) t is induced by a pure-injective cosilting object C,
(iii) the t-structure t is non-degenerate and V is definable.

Now we confine to the case of T = D(R) for a ring R. We say that a subcategory
V of D(R) is co-intermediate if there are integers m ≤ n such that D≥n ⊆ V ⊆
D≥m, where

D≥k = {X ∈ D(R) | H l(X) = 0 ∀l < k}.
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We say that a cosilting object C ∈ D(R) is a bounded cosilting complex if C is
isomorphic to a bounded complex of injective R-modules in D(R). As an example,
any large n-cotilting R-module (in the sense of [GT12, §15]) is a bounded cosilting
complex when considered as an object of D(R). Then [MV18] shows that any
bounded cosilting complex of D(R) is pure-injective, and we have the two following
characterization of the t-structures induced by bounded cosilting complexes:

Theorem 2.4. ([MV18, Theorem 3.14]) Let R be a ring, and V a subcategory of
D(R). Then the following conditions are equivalent:

(i) V is the coaisle of a t-structure induced by a bounded cosilting complex,
(ii) V is definable, co-intermediate, and closed under extensions and cosuspen-

sions.

2.1. Module-theoretic cosilting torsion-free classes. We start by a well-known
construction due to Happel, Reiten, and Smalø. To do this, we must first recall the
notion of a torsion pair in a module category. Let R be a ring. A torsion pair
in Mod-R is a pair (T ,F) of subcategories of Mod-R such that HomR(T ,F) = 0
and both the subcategories are maximal with respect to this property. We call T
a torsion class and F a torsion-free class. It is well-known that a subcategory
T of Mod-R is a torsion class (belonging to some torsion pair) if and only if T is
closed under extensions, coproducts, and epimorphic images. Dually, torsion-free
classes are characterized by the closure under extensions, products, and submod-
ules. Finally, a torsion pair is hereditary if T is closed under submodules, or
equivalently, F is closed under taking injective envelopes. We call a subcategory of
Mod-R definable if it is closed under products, pure submodules, and direct limits.
In particular, a torsion-free class is definable if and only if it is closed under direct
limits. We refer the reader to [Pr09] as a main reference for the theory of definable
subcategories in the setting of a module category.

Then we define the Happel-Reiten-Smalø t-structure (U ,V) induced by the
torsion pair (T ,V) to be the pair of subcategories of D(R) given as

U = {X ∈ D(R) | Hn(X) = 0 ∀n > 0 and H0(X) ∈ T },
and

V = {X ∈ D(R) | Hn(X) = 0 ∀n < 0 and H0(X) ∈ F}.
By [HRS96], this construction induces an injective assignment from the class of
torsion pairs in Mod-R to the class of t-structures in D(R). Clearly, the coaisle V
of any Happel-Reiten-Smalø t-structure satisfies D≥1 ⊆ V ⊆ D≥0. Conversely, any
t-structure with coaisle satisfying the latter property is Happel-Reiten-Smalø, see
[Po07, Lemma 1.1.2]. It is an easy task to characterize the Happel-Reiten-Smalø t-
structures which are induced by a cosilting object.

Lemma 2.5. Let R be a ring and (U ,V) a t-structure in D(R). Then the following
conditions are equivalent:

(i) (U ,V) is a cosilting t-structure such that D≥1 ⊆ V ⊆ D≥0,
(ii) (U ,V) is a Happel-Reiten-Smalø t-structure induced by a torsion pair (T ,F)

in Mod-R such that F is closed under direct limits.

Proof. In view of Theorem 2.4, the only thing we need to check is that if (U ,V)
is a Happel-Reiten-Smalø t-structure induced by a torsion pair (T ,F), then V is
definable in D(R) if and only if F is closed under direct limits in Mod-R. By the
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definition of V we have that X ∈ V if and only if H0(X) ∈ F for any X ∈ D≥0. If
X ∈ D((Mod-R)I) for some directed diagram I with Xi ∈ V for all i ∈ I, then we
have H0(hocolimi∈I Xi) ' lim−→i∈I H

0(Xi). Therefore, hocolimi∈I Xi ∈ V provided
that F is closed under direct limits. On the other hand, any I-shaped directed
system of modules in F can be regarded as a coherent diagram in D((Mod-R)I)
with coordinates being stalk complexes from V. Therefore, if V is closed under
directed homotopy colimits then F is closed under direct limits. Finally, since
(U ,V) is non-degenerate, V is definable if and only if V is closed under directed
homotopy colimits by Theorem 2.2. �

Finally, we discuss the connection to the cosilting and cotilting modules. Fol-
lowing [AMV15] and [BP17], an R-module T is cosilting if there is an injective
copresentation

0→ T → Q0
σ−→ Q1,

such that Cσ = Cogen(T ), where Cσ = {M ∈ Mod-R | HomR(M,σ) is surjective}.
A class C ⊆ Mod-R is called cosilting if there is a cosilting module T such that
C = Cogen(T ). It is easy to infer from a result due to Breaz-Žemlička and Wei-
Zhang that cosilting classes are precisely the torsion-free classes closed under direct
limits, in other words, the definable torsion-free classes in Mod-R.

Theorem 2.6. ([BŽ16],[WZ17]) A class C ⊆ Mod-R is cosilting if and only if C is
a definable torsion-free class.

Proof. In [WZ17] it is proved that a torsion-free class is cosilting if and only if it is
a covering class. Any definable subcategory is covering, and [BP17, Corollary 4.8]
shows that any cosilting class is definable. �

Cosilting modules are precisely the module-theoretic shadows of 2-term cosilting
complexes. A cosilting complex is 2-term if it can be represented by a complex
of injective R-modules concentrated in degrees 0 and 1. We say that two cosilting
objects are equivalent if they induce the same t-structure, and that two cosilting
modules are equivalent if they cogenerate the same cosilting class.

Theorem 2.7. ([WZ17, Theorem 4.19]) Let R be a ring. Then there are bijections
between the following sets:

(i) equivalence classes of 2-term cosilting complexes C,
(iii) equivalence classes of cosilting R-modules T = Ker(Q0 → Q1), where

Q0, Q1 are injective R-modules.
The bijection composes of two mutually inverse assignments

C 7→ H0(C), and

T 7→ (· · · → 0→ Q0
σ−→ Q1 → 0→ · · · ).

Proposition 2.8. Let R be a ring and t = (U ,V) a t-structure. Then the following
conditions are equivalent:

(i) t is induced by a 2-term cosilting complex C,
(ii) t is a Happel-Reiten-Smalø t-structure induced by a torsion pair (T ,F),

where F is a cosilting class.
Furthermore, the cosilting class F is cogenerated by the cosilting module H0(C) for
any choice of the equivalence representative C.
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Proof. If (i) holds, then the coaisle of the cosilting t-structure clearly squeezes
between D≥1 and D≥0, and therefore is Happel-Reiten-Smalø by Lemma 2.5. Fur-
thermore, the torsion pair inducing this t-structure necessary has the torsion-free
class cogenerated by the cosilting module H0(C) by [Po17, Proposition 2.16]. Con-
versely, if t is Happel-Reiten-Smalø induced by a torsion pair (T ,F) with F cosilt-
ing, then t is a cosilting t-structure by Theorem 2.6 and Lemma 2.5. Let T be a
cosilting module cogenerating F , and let σ : Q0 → Q1 be a map witnessing that T
is a cosilting module. Then σ is a 2-term cosilting complex by Theorem 2.7, and σ
induces t by [Po17, Proposition 2.16]. �

As a summary, studying the Happel-Reiten-Smalø t-structures induced by a
cosilting object in D(R) boils down to studying definable torsion-free classes in
Mod-R.

2.2. Cotilting modules. We also need to recall the basics on (large) 1-cotilting
modules. Let C be a subcategory of Mod-R. We will use the notation

⊥C = {M ∈ Mod-R | Ext 1
R(M,C) = 0 ∀C ∈ C}, and

C⊥ = {M ∈ Mod-R | Ext 1
R(C,M) = 0 ∀C ∈ C},

and if C = {C} is a singleton, we will drop the curly brackets. An R-module
C is called (1-)cotilting provided C has injective dimension at most one and
⊥C = Cogen(C). It is easily seen that any 1-cotilting module is a cosilting module,
and this is witnessed by any injective coresolution 0 → C → Q0

σ−→ Q1 → 0. The
cosilting class Cogen(C) is in this case called a (1-)cotilting class induced by C.
Clearly, any 1-cotilting class contains all projective R-modules. Conversely, any
cosilting class containing R is a cotilting class by [APŠT14, Proposition 3.14].

3. Definable subcategories in the derived category of rings of weak
global dimension at most one

Recall that a ring R is of weak global dimension at most one if any sub-
module of a flat R-module is flat, or equivalently, that TorR2 (−,−) is a zero functor
Mod-R×Mod-Rop → Ab, which also demonstrates that this is a left-right symmet-
ric property of a ring.

The main aim of this section is to use the Künneth formula to prove that definable
subcategories in the derived category of a ring of weak global dimension at most one
are fully determined by cohomology. We start with a reformulation of the definition
of a definable subcategory in the derived category of a ring. Given a ring R, let
Rop be the opposite ring, so that Mod-Rop is identified with the category of all left
R-modules.

3.1. Determination on cohomology.

Lemma 3.1. Let R be a ring, and let C be a subcategory of D(R). Then the
following are equivalent:

(i) C is definable in D(R),
(ii) there is a set Φ ⊆ Mor(D(R)c) such that

C = {X ∈ D(R) | Hom D(R)(f,X) is injective for each f ∈ Φ},
(iii) there is a set Φ ⊆ Mor(D(R)c) such that

C = {X ∈ D(R) | Hom D(R)(f,X) is zero for each f ∈ Φ},
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(iv) there is a set Φ ⊆ Mor(D(Rop)c) such that

C = {X ∈ D(R) | H0(X ⊗L
R f) is zero for each f ∈ Φ}.

Proof. Let f : C → D be a map in D(R)c, and consider the induced triangle

C
f−→ D

g−→ E
h−→ C[1],

in the triangulated category Dc(R). Applying HomD(R)(−, X), we obtain an exact
sequence

Hom D(R)(D,X)
Hom D(R)(f,X)
−−−−−−−−−−→ Hom D(R)(C,X)

Hom D(R)(h[−1],X)
−−−−−−−−−−−−→

Hom D(R)(h[−1],X)
−−−−−−−−−−−−→ Hom D(R)(E[−1], X)

Hom D(R)(g[−1],X)
−−−−−−−−−−−−→ Hom D(R)(D[−1], X)

of abelian groups. It follows that Hom D(R)(f,X) is surjective if and only if
Hom D(R)(h[−1], X) is zero if and only if Hom D(R)(g[−1], X) is injective. This
establishes the equivalence of (i)− (iii).

Suppose that Φ is a set of maps between objects from Dc(R) such that

C = {X ∈ D(R) | Hom D(R)(f,X) is zero for each f ∈ Φ}.

We define the set Φ∗ of maps in D(Rop) as follows:

Φ∗ = {RHomR(f,R) | f ∈ Φ}.

Recalling that RHomR(−, R) induces an equivalence Dc(R) → Dc(Rop), we have
that Φ∗ is actually a set of maps between objects from Dc(Rop). Then the equiv-
alence of (iii) and (iv) comes from the following standard isomorphism in D(Ab),
natural in C ∈ Dc(R):

RHom(C,X) ' X ⊗L
R RHomR(C,R),

which implies that for any f ∈ Φ we have the following isomorphism of maps in
Ab:

Hom D(R)(f,X) ' H0 RHom(f,X) ' H0(X ⊗L
R RHomR(f,R)).

�

Definition 3.2. Let V be a subcategory of D(R). We say that the subcategory
V is determined on cohomology if the following equivalence holds for each
X ∈ D(R):

X ∈ V ⇐⇒ Hn(X)[−n] ∈ V ∀n ∈ Z.

The characterization (iv) of Lemma 3.1 of definable subcategories using tensor
product will be useful here, and as in the proof of an analogous statement for
localizing pairs in [BŠ17, §3], the Künneth’s theorem will play a crucial role.

Lemma 3.3. Let R be a ring of weak global dimension at most one, let X be any
object in D(R), and let

E
h−→ C

f−→ D
g−→ E[1]

be any triangle in D(R). Then the following conditions are equivalent:
(i) Hn(X ⊗L

R f) is a zero map in Ab,
(ii) the following two conditions hold:

• for all p+ q = n the map Hp(X)⊗R Hq(f) is zero in Ab, and
• for all p+ q = n+ 1 the map TorR1 (Hp(X), Hq(h)) is surjective.
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Proof. We start by making the assumption that f : C → D and h : E → C are
actually (represented by) maps of chain complexes. This is a harmless assumption,
as we can for example replace C by a quasi-isomorphic K-projective replacement
C ′ (these always exist by [Sp88, Corollary 2.8]), then replace f by its image f ′ in
the isomorphism HomD(R)(C,D) ' HomK(R)(C

′, D), and finally replace h by the
mapping cocone of f ′.

Next, let P be a K-projective complex of right R-modules which is quasi-
isomorphic to X. Then the components of P are projective R-modules, and since
R has weak global dimension at most one, all coboundary and cocycle modules of
P are flat R-modules. Therefore, we can use the Künneth’s formula [CE99, §VI
Theorem 3.1], and its naturality [CE99, §IV Theorem 8.1], in degree n for the chain
maps P ⊗R f : P ⊗R C → P ⊗R D and P ⊗R h : P ⊗R E → P ⊗R C, to obtain the
following commutative diagram

0
⊕
p+q=n

Hp(P )⊗ RH
q(E) Hn(P ⊗ RE)

⊕
p+q=n+1

TorR1 (H
p(P ), Hq(E)) 0

0
⊕
p+q=n

Hp(P )⊗ RH
q(C) Hn(P ⊗ RC)

⊕
p+q=n+1

TorR1 (H
p(P ), Hq(C)) 0.

0
⊕
p+q=n

Hp(P )⊗ RH
q(D) Hn(P ⊗ RD)

⊕
p+q=n+1

TorR1 (H
p(P ), Hq(D)) 0

⊕
Hp(P )⊗RHq(h)

Hn(P⊗Rh)

πE

⊕
TorR1 (Hp(P ),Hq(h))

⊕
Hp(P )⊗RHq(f)

Hn(P⊗Rf)

πC

⊕
TorR1 (Hp(P ),Hq(f))

with rows being the short exact sequences provided by the Künneth formula. Also,
the middle column of the diagram is exact, because it is a part of the long exact
sequence on cohomologies induced by the triangle

P ⊗L
R E

P⊗L
Rh−−−−→ P ⊗L

R C
P⊗L

Rf−−−−→ P ⊗L
R D

P⊗L
Rg−−−−→ P ⊗L

R E[1],

and by the fact that P ⊗L
R − : D(Rop) → D(Ab) is represented by the ordinary

tensor product P ⊗R −, because P is K-projective.
Assume first that Hn(X ⊗L

R f) is a zero map. Since P is the K-projective
replacement of X, we have an isomorphism of maps Hn(X ⊗L

R f) ' Hn(P ⊗R f).
Then Hn(P ⊗R f) is a zero map, and the exactness of the rows and commutativity
of the diagram implies that

⊕
Hp(P ) ⊗R Hq(f) and

⊕
TorR1 (Hp(P ), Hq(f)) are

zero maps in Ab, and therefore all of their direct sum components are zero maps.
By the exactness of the middle column, Hn(P ⊗R f) being zero forces Hn(P ⊗R h)
to be surjective. The commutativity of the upper right square then implies that
the map

⊕
TorR1 (Hp(P ), Hq(h)) is surjective, and therefore the component maps

are surjective as well. Because Hp(P ) ' Hp(X) for all p ∈ Z, we have proved
(i) =⇒ (ii).

Now suppose that (ii) holds. Then
⊕

Hp(P ) ⊗R Hq(f) is a zero map, and
therefore Hn(P ⊗R f) factors through the epimorphism πC : Hn(P ⊗R C) →⊕

p+q=n+1 TorR1 (Hp(P ), Hq(C)), say

Hn(P ⊗R f) = ϕ ◦ πC
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for some map ϕ :
⊕

p+q=n+1 TorR1 (Hp(P ), Hq(C)) → Hn(P ⊗R D). Using the
commutativity of the diagram, we can compute the composition of maps as follows

ϕ ◦
⊕

TorR1 (Hp(P ), Hq(h)) ◦ πE = ϕ ◦ πC ◦Hn(P ⊗R h) =

= Hn(P ⊗R f) ◦Hn(P ⊗R h) = 0.

But by (ii), the map
⊕

TorR1 (Hp(P ), Hq(h)) is an epimorphism, and so is πE .
Therefore, ϕ = 0, and thus Hn(P ⊗R f) is a zero map. Again, as P is the K-
projective replacement of X, this means that Hn(X ⊗L

R f) is a zero map, proving
the implication (ii) =⇒ (i). �

Theorem 3.4. Let R be a ring of weak global dimension at most one, and let V be
a definable subcategory in D(R). Then V is determined on cohomology.

Proof. Since V is definable, there is by Lemma 3.1 a set Φ of maps from Dc(Rop)
such that V = {X ∈ D(R) | H0(X ⊗L

R f) is zero for each f ∈ Φ}. For each f ∈ Φ,
let f ′ ∈ Dc(Rop) be a map such that there is a triangle of the form

E
f ′−→ C

f−→ D → E[1]

in Dc(Rop). By Lemma 3.3, we have for any X ∈ D(R) and any f ∈ Φ the
equivalence

H0(X ⊗L
R f) is a zero map ⇐⇒

⇐⇒ Hn(X)⊗RH−n(f) is zero and TorR1 (Hn(X), H1−n(f ′)) is surjective ∀n ∈ Z.
Since the latter condition is formulated just by means of the cohomology modules
of X, we see that for any X ∈ D(R) we have the equivalence

X ∈ V ⇐⇒
∏
n∈Z

Hn(X)[−n] ∈ V.

As V is closed under products and direct summands, it follows that V is determined
on cohomology. �

Proposition 3.5. Let R be a ring of weak global dimension at most one. Then
there is a 1-1 correspondence:{

definable subcategories V
in D(R)

}
↔
{

collections {Vn | n ∈ Z} of
definable subcategories of Mod-R

}
.

The correspondence is given by assignments

V 7→ Vn = {Hn(X) | X ∈ V} ∀n ∈ Z,

{Vn | n ∈ Z} 7→ V = {X ∈ D(R) | Hn(X) ∈ Vn ∀n ∈ Z}.

Proof. By Theorem 3.4, any definable subcategory V is determined on cohomology,
and thus V is uniquely determined by a collection of subcategories Vn = {Hn(X) |
X ∈ V}, n ∈ Z. Also, since Vn[−n] ⊆ V for all n ∈ Z, then clearly the classes
Vn are closed under direct products and direct limits by the closure properties
of V. Recall that any pure-exact sequence in Mod-R becomes a pure triangle in
D(R), this follows e.g. from the characterization [La18, Proposition 3.7] of pure
triangles together with [Pr09, Theorem 16.1.16]. Thus, since V is closed under pure
monomorphisms in D(R), it follows that Vn is closed under pure submodules in
Mod-R. Therefore, Vn is a definable subcategory of Mod-R for each n ∈ Z.
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Conversely, let {Vn | n ∈ Z} be any collection of definable subcategories of
Mod-R and let us prove that V = {X ∈ D(R) | Hn(X) ∈ Vn ∀n ∈ Z} is a
definable subcategory of D(R). Let X ∈ D((Mod-R)I) be a coherent diagram of
a directed shape I such that Xi ∈ V for all i ∈ I. In particular, Hn(Xi) ∈ Vn
for all n ∈ Z. Then Hn(hocolimi∈I X ) ' lim−→i∈I H

n(Xi) ∈ Vn for all n ∈ Z, and
thus hocolimi∈I X ∈ V. Similar argument shows that V is closed under products.
Finally, consider a pure monomorphism f : Y → X in D(R) with X ∈ V. For
each n ∈ Z we have that HomR(R[−n], f) ' Hn(f) is a pure monomorphism of
R-modules by [Pr09, 17.3.17]. Therefore, Hn(Y ) ∈ Vn for all n ∈ Z, and therefore
Y ∈ V. Using Theorem 1.5 we conclude that V is a definable subcategory. This
establishes the correspondence. �

3.2. Ziegler spectra. We can reformulate Proposition 3.5 using the Ziegler spectra
of the derived category and of the module category. We refer to [Pr09] for the theory
of Ziegler spectra of module categories. If R is a ring, the natural embedding
Mod-R[−n] ⊆ D(R) for some n ∈ Z induces a closed embedding Zg(R)[−n] →
Zg(D(R)). Clearly,

⋃
n∈Z Zg(R)[−n] forms a disjoint union inside Zg(D(R)). One

can ask for which rings it is true that Zg(D(R)) =
⋃
n∈Z Zg(R)[−n]. Equivalently,

for which rings is it true that every indecomposable pure-injective object inside
D(R) is quasi-isomorphic to a stalk complex. This is not true in general, but it is
known to hold for example for right hereditary or von Neumann regular rings, see
[Pr09, 17.3.22 and 17.3.23]. The following provides a common generalization for
those two results.

Corollary 3.6. Let R be a ring of weak global dimension at most one. Then we
have Zg(D(R)) =

⋃
n∈Z Zg(R)[−n].

Proof. Let V be the definable subcategory of D(R) corresponding to the closed
subset U =

⋃
n∈Z Zg(R)[−n] of Zg(D(R)) (cf. [Pr09, Theorem 17.3.20]). As

Zg(R)[−n] ⊆ U , we see that Mod-R[−n] ⊆ V for all n ∈ Z. But this means
that Vn = {Hn(X) | X ∈ V} = Mod-R for all n ∈ Z, which in turns means that
V = D(R) by Proposition 3.5, and therefore U = Zg(D(R)). �

3.3. Definable coaisles. In the rest of the paper, we will be concerned with the
definable subcategories which are coaisles of t-structures, that is, in view of Corol-
lary 1.7, definable subcategories of D(R) closed under extensions and cosuspen-
sions. We therefore restrict the correspondence of Proposition 3.5 to such definable
subcategories.

Proposition 3.7. Let R be a ring of weak global dimension at most one. The 1-1
correspondence of Proposition 3.5 restricts to another 1-1 correspondence between
the following collections:

(i) definable coaisles V in D(R),
(ii) increasing sequences · · · Vn ⊆ Vn+1 ⊆ · · · of definable subcategories closed

under extensions in Mod-R indexed by n ∈ Z, satisfying the following con-
dition: Whenever f : Vn → Vn+1 is a map with Vn ∈ Vn and Vn+1 ∈ Vn+1

for some n ∈ Z, then Ker(f) ∈ Vn and Coker(f) ∈ Vn+1.

Proof. Let V be a definable coaisle and let {Vn | n ∈ Z} be the sequence of definable
subcategories of modules corresponding to V via Proposition 3.5. Since Vn[−n] =
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V ∩Mod-R[−n] by Theorem 3.4, this already implies that Vn is closed under exten-
sions, and that Vn ⊆ Vn+1 for each n ∈ Z. Suppose now that f : Vn → Vn+1 is a
map as in the condition (ii). Then f induces a triangle

Vn[−n− 1]
f [−n−1]−−−−−→ Vn+1[−n− 1]→ Z → Vn[−n]

in D(R). Since Vn ∈ Vn and Vn+1 ∈ Vn+1, we have Vn[−n], Vn+1[−n− 1] ∈ V, and
thus Z ∈ V. Consider the following part of the long exact sequence of cohomologies
induces by the triangle:

0→ Hn(Z)→ Vn
f−→ Vn+1 → Hn+1(Z)→ 0.

The leftmost and the rightmost term are zero, because they are equal to the coho-
mologies of the stalk complexes — namely, Hn(Vn+1[−n− 1]), Hn+2(Vn[−n− 1]).
Since Z ∈ V, then Ker(f) ' Hn(Z) ∈ Vn and Coker(f) ' Hn+1(Z) ∈ Vn+1,
showing that the condition (ii) is satisfied.

Suppose now that {Vn | n ∈ Z} is a collection of definable subcategories of R-
modules satisfying all of the conditions in (ii), and let us show that V = {X ∈
D(R) | Hn(X) ∈ Vn ∀n ∈ Z} is a definable coaisle. We already know by Proposi-
tion 3.5 that V is definable. By Corollary 1.7, it is enough to check that V is closed
under cosuspensions, and extensions. The closure under cosuspensions clearly fol-
lows from Vn ⊆ Vn+1 for each n ∈ Z. Next, suppose that

X → Y → Z → X[1]

is a triangle with X,Z ∈ V, and consider the long exact sequence on cohomologies:

· · ·Hn−1(Z)
f−→ Hn(X)→ Hn(Y )→ Hn(Z)

g−→ Hn+1(X)→ · · ·

By the assumption from (ii), we have that Ker(g) ∈ Vn, and Coker(f) ∈ Vn.
Because Vn is closed under extensions, this implies that Hn(Y ) ∈ Vn using the
short exact sequence

0→ Ker(g)→ Hn(Y )→ Coker(f)→ 0.

Therefore, Hn(Y ) ∈ Vn for all n ∈ Z, and thus Y ∈ V. �

Convention 3.8. Given a coaisle V in D(R), we will from now on always implicitly
use the notation Vn = {Hn(X) | X ∈ V} for the essential image of the n-th
cohomology functor of V in Mod-R.

Remark 3.9. A similar condition to (ii) of Proposition 3.7 appears in a slightly
different formulation in [SvR12], where sequences of subcategories of the module
category determining a coaisle of a t-structure over a hereditary ring are called
“reflective co-narrow sequences”. In our setting, the reflectivity is ensured by the
definability of the members of the sequence.

3.4. Compactly generated coaisles. Under some extra conditions, we are also
able to prove a useful criterion for deciding whether a definable coaisle is compactly
generated, meaning by this that the associated t-structure is compactly generated.

Proposition 3.10. Let R be a ring of weak global dimension at most one, and let
V be a definable coaisle in D(R). Consider the two following conditions:

(i) V is compactly generated,
(ii) Vn is closed under taking injective envelopes for all n ∈ Z.
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If R is commutative, then (i) ⇐⇒ (ii). If R is right semihereditary, then (ii) =⇒
(i).

Proof. Let us start by assuming (ii). For each n ∈ Z, let Cn be the closure of
the class Vn under submodules. One can argue the same way as in [HŠ17, Lemma
5.6] that Cn is a definable torsion-free class closed under injective envelopes. In
particular, there is a hereditary torsion pair (Tn, Cn) for each n ∈ Z. Using [Hr16,
Lemma 2.4], it follows that there is for each n ∈ Z a set In of finitely generated
ideals such that Cn = {R/I | I ∈ In}⊥0 . Put V ′ = {R/I[−n] | ∀I ∈ In ∀n ∈
Z}⊥0 , which defines a coaisle of a t-structure. If R is right semihereditary, then
R/I[−n] is a compact object in D(R) for any finitely generated ideal I. If R is
commutative, then V ′ can be written as a right orthogonal to a set of suspensions
of Koszul complexes (see [Hr18, Lemma 5.4]). In both cases, V ′ is a compactly
generated coaisle, and therefore is determined on cohomology by Theorem 3.4. Let
(V ′n | n ∈ Z) be the sequence of definable subcategories of Mod-R associated to V ′
via Proposition 3.7. We will show that Vn = V ′n for all n ∈ Z. The subcategory
V ′n =

⋂
i≥n

⋂
I∈In Ker Exti−nR (R/I,−) of Mod-R is closed under injective envelopes

for all n ∈ Z. Therefore, both the subcategories Vn and V ′n are closed under injective
envelopes, and by the construction they contain the same injective objects. For any
module M ∈ Vn, we consider the minimal injective coresolution

0→M → E0 → E1 → E2 → · · · .
By induction, it follows that Ek ∈ Vn+k for all k ≥ 0, and therefore Ek ∈ V ′n+k for
all k ≥ 0. But that implies M ∈ V ′n, and thus Vn ⊆ V ′n. A symmetrical argument
shows that V ′n ⊆ Vn for all n ∈ Z, proving that V = V ′ by Proposition 3.7.

Finally, suppose that R is commutative, and that V is a compactly generated
coaisle. Because Vn[−n] ⊆ V, we have that Vn is closed under injective envelopes
by [Hr18, Lemma 3.3]. �

Remark 3.11. The semiheredity imposed on the ring R in the last part of Propo-
sition 3.10 can be weakened to the following condition: R is right coherent and any
finitely presented cyclic R-module has a finite projective dimension. Indeed, this is
enough to ensure that any finitely presented cyclic module R/I is compact as an
object of the derived category.

At this point we are ready to answer Question A in the affirmative for any (not
necessarily commutative) von Neumann regular ring. In particular, the telescope
conjecture holds for these rings, generalizing [St14, Theorem 4.21] and the corre-
sponding result in [BŠ17].

Corollary 3.12. Let R be a von Neumann regular ring. Then any definable coaisle
in D(R) is compactly generated. In particular, the Telescope Conjecture holds for
R.

Proof. Recall that over any von Neumann regular ring, the injective envelopes
coincide with the pure-injective envelopes. Therefore, any definable subcategory
of Mod-R is closed under injective envelopes by [Pr09, Theorem 3.4.8]. Since R is
semihereditary, the rest follows from Proposition 3.10. �

3.5. Definable coaisles induced by homological epimorphisms. There is a
general construction described in [AHH19, §5] which assigns a definable coaisle to
a double-infinite chain of homological ring epimorphisms based in a ring of weak
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global dimension at most one. We refer the reader to loc. cit. for more details.
Recall that a homological ring epimorphism is an epimorphism λ : R → S in
the category of rings, such that TorRi (S, S) = 0 for all i > 0. Equivalently, this
means that the forgetful functor Mod-S → Mod-R induces a fully faithful functor
D(S) → D(R). By a chain of homological ring epimorphisms we mean an
Z-indexed chain

(1) · · · ← Sn−1
µn−1←−−− Sn

µn←−− Sn+1 ← · · ·
of ring epimorphisms such that there are homological ring epimorphisms λn : R→
Sn, and such that µn−1λn = λn−1 for all n ∈ Z. This in particular implies that
µn : Sn+1 → Sn is a homological epimorphism for each n ∈ Z. A subcategory B
of Mod-R is called bireflective if it is closed under products, coproducts, kernels,
and cokernels. Equivalently, it is a subcategory B of Mod-R such that the inclusion
B ⊆ Mod-R admits both the left and the right adjoint, called the reflection and
coreflection, respectively. Recall that two ring epimorphisms λ : R → S and
σ : R→ S′ are in the same epiclass if there is a ring isomorphism ι : S → S′ such
that σ = ιλ. Then we have the following result:

Theorem 3.13. ([BŠ17, Proposition 4.2]) Let R be a ring of weak global dimension
at most one. Then the assignment

(λ : R→ S) 7→ Mod-S ' Im(−⊗R S) ⊆ Mod-R

induces a bijection between the following sets:
(i) epiclasses of homological ring epimorphisms λ : R→ S,
(ii) extension-closed bireflective subcategories B of Mod-R.

Using this correspondence, it is not hard to see that if R is of weak global
dimension at most one, then chains of homological ring epimorphisms as in (1), up
to a choice of epiclass representatives, correspond bijectively to chains

· · · Bn−1 ⊆ Bn ⊆ Bn+1 ⊆ · · ·
of extension-closed bireflective subcategories of Mod-R, via the assignment Sn 7→
Bn := Mod-Sn ' Im(−⊗R Sn) ⊆ Mod-R. To this data, we assign a subcategory V
of D(R) as follows:

V = {X ∈ D(R) | Hn(X) ∈ Cogen(Bn) ∩ Bn+1 ∀n ∈ Z}.

Proposition 3.14. ([AHH19, Proposition 5.4]) Let R be a ring of weak global
dimension at most one. Then for any chain of homological ring epimorphisms over
R, the subcategory V of D(R) defined above is a definable coaisle.

Proof. We include a sketch of the proof from [AHH19] here for convenience. It is
enough to check the conditions of Proposition 3.7 for the chain of subcategories
Vn := Cogen(Bn) ∩ Bn+1. First recall that any bireflective subcategory of Mod-R
is definable. By [Pr09, 3.4.15], also Cogen(Bn) is definable for any n ∈ Z, and
therefore Vn is definable for any n ∈ Z. Let λn : R → Sn be a homological ring
epimorphism corresponding to the bireflective subcategory Bn. Since R is of weak
global dimension at most one, the character dual En := HomZ(Sn,Q/Z) of Sn as a
right R-module is of injective dimension at most one. Since En is an injective cogen-
erator of the category Bn, it follows that Ext1

R(M,En) = 0 for anyM ∈ Cogen(Bn).
Therefore, the class Cogen(Bn) = Cogen(En) is closed under extensions. Together,
Vn is a definable subcategory of Mod-R closed under extensions.
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Let now f : M → N be a map such thatM ∈ Vn and N ∈ Vn+1, and let us show
that Ker(f) ∈ Vn and Coker(f) ∈ Vn+1. Consider the induced exact sequences:

0→ K →M → I → 0, and

0→ I → N → C → 0,

where K = Ker(f), C = Coker(f), and I = Im(f). Then clearly K ∈ Cogen(Bn),
and I ∈ Cogen(Bn+1). Also, as I is an epimorphic image of M ∈ Bn+1, it follows
by a diagram chasing argument that the reflection I → IBn+1

∈ Bn+1 of I with
respect to the subcategory Bn+1 is an isomorphism, and thus I ∈ Bn+1. Since K is
the kernel of the morphism M → I between two objects in Bn+1, then K ∈ Bn+1.
Thus, K ∈ Vn. The Four Lemma implies that the reflection C → CBn+1 is a
monomorphism, and therefore C ∈ Cogen(Bn+1). Finally, as C is an epimorphic
image of N ∈ Bn+2, it follows again that C ∈ Bn+2. �

Remark 3.15. In other words, we have an assignment from the chains of homo-
logical epimorphisms over R to definable coaisles in D(R). It is straightforward
to extend the notion of epiclass to introduce an equivalence relation of chains of
epimorphisms, and then the induced assignment is easily checked to be injective. In
general however, this assignment is not surjective, and there are definable coaisles
which do not arise in this way. For the case of valuation domains, this will be
discussed in Section 9.

4. Valuation domains and the module-theoretic cosilting classes

From now on we will focus on commutative rings of weak global dimension at
most one. We will do most of the investigation in the local case, that is, over a
valuation domain. A posteriori, this will be enough to fully answer Question A
even in the global case. In this section, we start by studying the definable coaisles
in the Happel-Reiten-Smalø situation, which in the light of Section 2 amounts to
studying the cosilting classes in the module category. The main aim of this section
is to build on the results from [Ba07] and [Ba15] and establish for any valuation
domain a bijective correspondence between cosilting classes and certain systems of
formal intervals in the Zariski spectrum.

4.1. Valuation domains. A commutative domain R is a valuation domain if
the ideals of R are totally ordered. We gather some basic properties of valuation
domains which we will use freely throughout the paper. Given a prime ideal q
of a commutative ring R, we let Rq denote the localization of R at q, and more
generally, Mq = M ⊗R Rq the localization of an R-module M at q.

Lemma 4.1. (i) Valuation domains are precisely the local commutative rings
of weak global dimension at most one.

(ii) Any idempotent ideal in a valuation domain is a prime ideal.
(iii) If p ⊆ q are primes of a valuation domain R, then p is an Rq-module.
(iv) Whenever S ⊆ Spec(R) is a non-empty subset with no maximal element

with respect to ⊆, then
⋃
S is an idempotent prime.

(v) For any prime p ∈ Spec(R), either p is idempotent or pRp is a principal
ideal in Rp.

Proof. (i) See [Gl89, Corollary 4.2.6].
(ii) Obvious.
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(iii) Obvious.
(iv) This is [BŠ17, Lemma 5.3].
(v) See [FS01, §II, Lemma 4.3 (iv) and (d), p.69].

�

4.2. Torsion, annihilators, divisibility, and socle. Let R be a commutative
ring and q a prime in Spec(R). For any R-module M and an element m ∈ M ,
let AnnR(m) = {r ∈ R | rm = 0}, and similarly we put AnnR(M) = {r ∈ R |
rM = 0}, both these define ideals of R. There is a torsion pair (Tq,Fq) in Mod-R,
where Tq consists of all modules M such that AnnR(m) contains an element from
R \ q for any m ∈ M . This torsion pair is hereditary, that is Tq is closed under
submodules and Fq is closed under taking injective envelopes. Modules from Tq
will be called q-torsion, and modules from Fq are q-torsion-free. We denote the
torsion functor induced by this torsion pair by Γq : Mod-R → Tq, and the torsion-
free counterpart by Fq : Mod-R → Fq. Recall that Γq is a left exact functor,
while Fq preserves monomorphisms and epimorphisms, a fact which we will use
freely throughout the paper. We call an R-module M q-divisible provided that
M = sM for all s ∈ R \ q. Recall that an R-module M is an Rq-module if M is
both q-torsion-free and q-divisible.

It will be useful to recall that given an R-module M and a prime ideal q ∈
Spec(R), we have the natural identifications Γq(M) = Ker(M

can−−→ M ⊗R Rq) and
Fq(M) ' Im(M

can−−→ M ⊗R Rq). Also, note that Coker(M
can−−→ M ⊗R Rq) = 0 if

and only if Fq(M) is q-divisible if and only if Fq(M) ∈ Mod-Rq.
Given a prime ideal p and a module M , we define the p-socle of M to be the

submodule Socp(M) = {m ∈M | rm = 0 ∀r ∈ p} of M .

4.3. Systems of intervals of Spec(R). Let R be a valuation domain. By an
interval in Spec(R) we mean a formal interval χ = [pχ, qχ], where pχ ⊆ qχ are
primes from Spec(R). We consider intervals together with a partial order < defined
as follows: for intervals χ = [pχ, qχ] and ξ = [pξ, qξ] we have χ < ξ if and only if
qχ ( pξ. Any interval denoted by a greek letter will have boundaries denoted like
above, e.g. θ = [pθ, qθ] etc. In other occasions, we will denote intervals just by their
boundaries, that is, by writing just [p, q] for a couple of primes p ⊆ q of Spec(R).

Definition 4.2. Following [Ba15], we impose the following conditions on a set X
of intervals of Spec(R):

(i) (disjointness) The system is disjoint, that is, whenever χ, ξ ∈ X are two
distinct intervals such that pχ ⊆ pξ then qχ ( pξ.

(ii) (idempotency) For any χ ∈ X we have pχ = p2
χ.

(iii) (completeness) For any non-empty subset Y ⊆ X , there is an interval
µ ∈ X such that pµ =

⋃
χ∈Y pχ, and there is an interval ν ∈ X such that

qν =
⋂
χ∈Y qχ.

Let us call a system of intervals satisfying these conditions an admissible sys-
tem. We remark that as a consequence of the definition, any admissible system X
together with the above defined partial order < forms a totally ordered set (X , <)
such that any non-empty subset Y of X has a supremum and an infimum.

4.4. From intervals to cosilting classes. Recall that given an ideal I, we define
the prime ideal attached to I as I# = {r ∈ R | rI ( I}. By Q we always
denote the quotient field Q(R) of the valuation domain R. It will be also useful to
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extend the definition of an attached prime to any submodule of Q. If J ⊆ Q is an
R-submodule, then J# = {r ∈ R | rJ 6= J} =

⋃
r∈Q\J r

−1J .

Notation 4.3. For any interval χ in Spec(R), we write 〈χ〉 = 〈pχ, qχ〉 for the set
of all ideals I of R satisfying pχ ⊆ I ⊆ I# ⊆ qχ.

Lemma 4.4. Let X be an admissible system, let Λ be a cardinal and let {Iλ, λ ∈ Λ}
be a set of ideals such that for each λ ∈ Λ there is χλ ∈ X with Iλ ∈ 〈χλ〉. Then:

(i) there is ξ ∈ X such that
⋂
λ∈Λ Iλ ∈ 〈ξ〉,

(ii) there is ξ ∈ X such that
⋃
λ∈Λ Iλ ∈ 〈ξ〉.

Proof. (i) Denote I =
⋂
λ∈Λ Iλ. Obviously, we have

⋂
λ∈Λ pχλ ⊆ I ⊆

⋂
λ∈Λ qχλ . By

the completeness, there is ξ ∈ X with qξ =
⋂
λ∈Λ qχλ . It is then enough to prove

that pξ ⊆ I and I# ⊆ qξ, which we do by distinguishing two cases:
Case I: There is λ ∈ Λ such that qξ = qχλ . Then we have pξ ⊆ I ⊆ qξ, and we are

left to show that I# ⊆ qξ. Then we can assume without loss of generality
that Iλ ∈ 〈ξ〉 = 〈pξ, qξ〉 for all λ ∈ Λ. Therefore, for any r ∈ R \ qξ and any
i ∈ I, r−1i ∈ Iλ for all λ ∈ Λ. It follows that r−1i ∈ I for any i ∈ I, and
thus r 6∈ I# for all r ∈ R \ qξ, proving that I ∈ 〈ξ〉.

Case II: There is no λ ∈ Λ such that qξ = qχλ . By the disjointness of X , we have
that necessarily ⋂

λ∈Λ

p χλ = I =
⋂
λ∈Λ

q χλ ,

and thus, in particular, I is a prime ideal, and whence I = I# by [FS01, p.
70], which establishes that I ∈ 〈pξ, qξ〉.

(ii) Completely analogous. �

Next, we explain what exactly it means for an ideal I that I# ⊆ q for some
prime q.

Lemma 4.5. Let I be a proper ideal of R. Then I# is a prime ideal and the
following conditions are equivalent for any q ∈ Spec(R):

(i) I# ⊆ q,
(ii) I is an Rq-module,
(iii) R/I is a q-torsion-free R-module, i.e. Γq(R/I) = 0.

Proof. That I# is a prime ideal is clear.
(i) ⇔ (ii): For a given q ∈ Spec(R), the canonical map f : I → Iq is injective

since it is the restriction of the canonical map R → Rq. Therefore I is an Rq-
module if and only if f is surjective, which amounts to say that for each y ∈ I and
each s ∈ R \ q, there exists a y′ ∈ I such that sy′ = y. That is, if and only if the
equality sI = I holds, for all s ∈ R \ q, if and only if I# ⊆ q.

(ii)⇒ (iii): Clear.
(iii) ⇒ (i): The canonical map R/I → (R/I)q is injective since its kernel is

Γq(R/I) = 0. This amount to say that (I : s) = I, for all s ∈ R \ q, where
(I : s) = {a ∈ R : sa ∈ I}. It follows that R \ q ⊆ R \ I and so Rs 6⊆ I, which
implies that I ⊆ Rs due to the totally ordered condition of the lattice of ideals of
R. If now y ∈ I and we write y = sa, with a ∈ R, then a ∈ (I : s) = I and so
I = sI. That is, we have s ∈ R \ I# for all s ∈ R \ q, and hence I# ⊆ q. �
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Lemma 4.6. Let X be an admissible system of intervals on Spec(R). Then the
class

CX = {M ∈ Mod-R | ∀0 6= m ∈M ∃χ ∈ X : AnnR(m) ∈ 〈χ〉}

is cosilting.
Furthermore, an R-module M belongs to CX if and only if for each non-zero

element m of M there is χ ∈ X such that pχm = 0 and mR is qχ-torsion-free. In
particular, if I is a proper ideal of R then R/I ∈ CX if and only if I ∈ 〈χ〉 for some
χ ∈ X .

Proof. First, we remark that the equivalence of the two descriptions of the class CX
in the statement follows from Lemma 4.5.

We will check that C = CX is closed under subobjects, direct products, exten-
sions, and direct limits.

(a) Subobjects: Obvious.
(b) Products: Follows from Lemma 4.4(i).
(c) Extensions: Suppose that

0→ X → Y
π−→ Z → 0

is an exact sequence with X,Z ∈ C, and let y ∈ Y be a non-zero element,
and let I = AnnR(y). Restricting π to the cyclic submodule yR yields an
exact sequence of the form

(2) 0→ J/I → R/I → R/J → 0,

where J/I,R/J ∈ C. Let K = AnnR(J/I) =
⋂
m∈J/I AnnR(m). By the

definition of C and by Lemma 4.4(i), there are χ and ξ such that J ∈ 〈χ〉
and K ∈ 〈ξ〉. We show that necessarily ξ ≤ χ. Indeed, K = {r ∈ R | rJ ⊆
I} ⊆ J# ⊆ qχ, and since K ⊆ qξ, we have the desired inequality. Since
pξ = p2

ξ ⊆ JK ⊆ I ⊆ J ∩ K ⊆ qξ, it is enough to show that I# ⊆ qξ.
In view of Lemma 4.5, it is enough to show that R/I is qξ-torsion-free. If
Γqξ(R/I) of R/I is non-zero, than by uniseriality of R/I it has to intersect
J/I non-trivially, and thus Γqξ(J/I) 6= 0. Since J/I is uniserial, it can be
written as a directed union

⋃
λ∈ΛR/Kλ of cyclic submodules, in particular,

K =
⋂
λ∈ΛKλ. Since Γqξ(J/I) 6= 0, there is an s ∈ (R\qξ) such that R/Kλ

contains a non-zero element killed by s for any λ from a cofinite subset of
Λ. As s 6∈ qξ, and K =

⋂
λ∈ΛKλ, and J/I ∈ C, there is λ ∈ Λ such that

Kλ ⊆ K#
λ ⊆ sR, and thus R/Kλ cannot contain a non-zero element killed

by s by Lemma 4.5, a contradiction. Therefore, I# ⊆ qξ, and I ∈ 〈ξ〉 as
desired.

(d) Direct limits: We already know that C is closed under submodules and
products, and thus C is closed under direct sums. It is then enough to show
that C is closed under pure epimorphic images. Let π : N �∗ M be a
pure epimorphism with N ∈ C, and let m ∈ M be non-zero element with
annihilator I. For each i ∈ I, there is the natural surjection σi : R/iR →
R/I. As R/iR is finitely presented, the composition πσi : R/iR → M
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admits a factorization through π:

N M

R/iR R/I

π

σi

⊆

Therefore, for each i ∈ I there is an ideal Ji such that Ji is an annihilator
of an element of N , and iR ⊆ Ji ⊆ I. Then I =

⋃
i∈I Ji, and because

Ji ∈ 〈χi〉 for some χi ∈ X by the definition of C, Lemma 4.4(ii) implies
that I ∈ 〈µ〉 for some µ ∈ X .

�

4.5. From cosilting classes to intervals. Here we follow [Ba07] and [Ba15]. We
start with a cosilting class C and assign to it the set G = {I ideal of R | R/I ∈ C}
of all possible annihilators of elements of modules in C. We put K = G ∩ Spec(R).
Note that since C is closed under submodules and direct limits, we can rewrite
K = {p ∈ Spec(R) | κ(p) ∈ C}, where κ(p) = Rp/ p is the residue field of R at p.
Then we define two functions ϕ and ψ by putting for any p ∈ Spec(R):

ϕ(p) = inf{q ∈ K | Rq/ p ∈ C},

ψ(p) = sup{q ∈ K | Rϕ(p)/ q ∈ C}.
Since κ(p) ∈ C for any p ∈ K, and Rϕ(p)/ p ∈ C by the closure of C under direct
limits, it is easily seen that ϕ(p) ⊆ p ⊆ ψ(p).

Finally, we assign to the cosilting class C a system of intervals defined as follows:
XC = {[ϕ(p), ψ(p)] | p ∈ K}.

Remark 4.7. For clarity we rephrase the definition of the admissible system XC
associated to a cosilting class C in perhaps a less opaque way (but relying on the
results of Section 6). We think of the subset

K = {p ∈ Spec(R) | κ(p) ∈ C} = {p ∈ Spec(R) | R/ p ∈ C}
of Spec(R) as the support of the admissible system. Since C is closed under products
and direct limits, it is clear that K is closed under intersections and unions of non-
empty subsets. However, the support K does not contain sufficient information
about C because it is unable to recover which cyclic modules belong to C in general.
Nevertheless, it will turn out that it is enough to consider which uniserial modules of
the form Rp/ q, for prime ideals p ⊆ q, belong to C. In this light, XC can equivalently
be defined as follows. Given prime ideals q, p ∈ K, we define an equivalence relation
∼ on K by setting p ∼ q (and q ∼ p) if and only if p ⊆ q and Rp/ q ∈ C. Then it
follows from Lemma 6.7 (see also Proposition 4.8) that the intervals of XC , viewed
as closed intervals in the totally ordered set (K,⊆), are precisely the equivalence
classes of K with respect to ∼.

Proposition 4.8. The system of intervals XC is an admissible system.

Proof. This is proved for 1-cotilting classes (that is, cosilting classes containing the
projective modules, see §2.2) in [Ba15, Definition 3.7 and Proposition 3.8] and the
references to [Ba07] therein. Note that the proof only uses that C is a definable
torsion-free class, and therefore applies to cosilting classes as well.
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Alternatively, we prove this more generally in Section 6. Indeed, this is a special
case of Corollary 6.11, applied to the Happel-Reiten-Smalø t-structure induced
by the torsion pair (T , C), and setting ϕ = ϕ0, ψ = ψ0. Note that there is no
circularity in our argumentation, as the only part where we need results from this
section in Section 6 is the proof of Proposition 6.16 (the degreewise non-density
condition). �

Lemma 4.9. Let C be a cosilting class, and I a proper ideal. Then R/I ∈ C if and
only if there is an interval χ ∈ XC such that I ∈ 〈χ〉.

Proof. This is proved in precisely the same way as [Ba15, Lemma 3.6]. �

Lemma 4.10. ([Ba07, Lemma 3.1]) Let R be a valuation domain. Then any sub-
category C of Mod-R closed under submodules, pure epimorphisms, direct limits,
and extensions is the smallest subcategory containing the cyclic modules in C closed
under the listed operations. In particular, any definable torsion-free class in Mod-R
is uniquely determined by the cyclic modules it contains.

Proof. Let C be a cosilting class. Since C is closed under submodules and directed
unions, it is uniquely determined by the finitely generated modules it contains.
By [FS01, §I, Lemma 7.8], any finitely generated R-module admits a finite pure
filtration by cyclic modules. Since definable subcategories of Mod-R are closed
under pure epimorphisms, this shows that C is uniquely determined by the cyclic
modules it contains. �

4.6. The correspondence. Now we are ready to state the classification of cosilting
classes in the module category of a valuation domain.

Theorem 4.11. Let R be a valuation domain. Then there is a 1-1 correspondence{
admissible systems X

in Spec(R)

}
↔
{

cosilting classes C
in Mod-R

}
given by the mutually inverse assignments

X 7→ CX , and

C 7→ XC .
In this correspondence, the 1-cotilting classes C correspond to those admissible sys-
tems X which contain an interval of the form [0, q] for some q ∈ Spec(R).

Proof. The two assignments are well defined by Lemma 4.6 and Proposition 4.8.
Two cosilting classes coincide if and only if they contain the same cyclic modules,
this is Lemma 4.10. Together with Lemma 4.9 and Lemma 4.6, this shows that
C = CXC for any cosilting class C. On the other hand, we have XCX = X for any
admissible system X by Lemma 4.6 and Lemma 4.9.

A cosilting class C is 1-cotilting if and only if it contains R (see §2.2), which by
Lemma 4.9 occurs if and only if there is an interval in XC which contains the zero
prime ideal, which means that it is of the form [0, q] for some prime q. �

5. Density and homological formulas

In this section we provide an alternative description of cosilting classes in Mod-R
for a valuation domain R using the Tor functor with certain uniserial modules. This
will be useful in the description of definable coaisles in D(R).
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5.1. Maximal immediate extensions of valuation domains. Here, we follow
[FS01, §II]. A valuation domainR ismaximal if it is linearly compact in the discrete
topology. A ring map R → S between two valuation domains is an immediate
extension if the following two conditions are satisfied:

(i) the assignments I 7→ SI and J 7→ J ∩ R are mutually inverse bijections
between the sets of ideals of R and S, respectively, and it restricts to a
bijection between Spec(R) and Spec(S) ([FS01, p. 59]), and

(ii) if m is the maximal ideal of R, then canonical map R/m → S/mS is an
isomorphism of fields.

We recall ([FS01, §II, Theorem 1.9]) that for any valuation domain R, there is a
maximal immediate extension R → S, i.e. an immediate extension such that
the only immediate extension of S is the trivial one. This is always a faithfully flat
ring extension (see [FS01, §II, Exercise 1.5], together with condition (i)) with the
following properties:

Fact 5.1. (i) S is a maximal valuation domain ([FS01, §II, Theorem 6.7]),
and an immediate extension R → S is a maximal immediate extension if
and only S is a maximal valuation domain,

(ii) for any uniserial module M , the module M ⊗R S is a pure-injective R-
module ([FS01, p. 445]);

(iii) Rq ⊗R S ' SqS for any q ∈ Spec(R), this follows from ([FS01, §II, Lemma
1.6]);

(iv) in particular, the quotient field Q(S) of S is equal to QS;
(v) for any proper ideal I, the module Q/I ⊗R S ' Q(S)/IS is injective in

Mod-S ([FS01, §IX, Theorem 4.4]).

The maximal immediate extension is not uniquely determined as a ring homo-
morphism, but it is always isomorphic to the pure-injective envelope of R as an
R-module ([FS01, §XIII, Proposition 5.1]). Next we remark some properties of
maximal immediate extensions with respect to localization.

Lemma 5.2. Let R be a valuation domain and R → S a maximal immediate
extension. Let p ⊆ q be primes of R, and denote by U = Rq/ p. Then:

(i) U is a valuation domain and the natural map R→ U is a ring epimorphism,
(ii) U ⊗R S ' SqS/ pS is a maximal valuation domain,
(iii) U → U ⊗R S is a faithfully flat ring homomorphism.
(iv) Q(U)⊗R S = Q(U ⊗R S) as ring extensions of R.

Proof. (i) Obvious.
(ii) See e.g. [Co10, Proposition 5].
(iii) Since S is a flat R-module, U ⊗R S is a flat U -module. Since R → S is

a faithfully flat ring homomorphism, and R → U is a ring epimorphism,
clearly (U ⊗R S)⊗U M = 0 implies M = 0 for any U -module M .

(iv) The quotient field of U = Rq/ p is Rp/ p, while Q(U⊗RS) = Q(SqS/ pS) =
SpS/ pS. Therefore, Q(U)⊗R S = Q(U ⊗R S).

�

Finally, we remark an important property of maximal valuation domains.

Lemma 5.3. Let R be a maximal valuation domain with maximal ideal m and
quotient field Q. The module Q/m is an injective cogenerator in Mod-R
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Proof. By Fact 5.1(v), Q/m is an injective R-module. Since Q/m contains the
unique simple R-module, it is an injective cogenerator in Mod-R. �

5.2. Uniserial modules over valuation domains. Recall that an R-module is
called uniserial if its lattice of submodules is totally ordered. Over a valuation
domain R with quotient field Q = Q(R), any module of the form J/I is uniserial,
where I ⊆ J ⊆ Q are R-submodules of the quotient field. Uniserial modules of this
form are called standard. In general there can be uniserial modules not isomorphic
to a standard uniserial module, see [FS01, §X.4]. However, over a maximal valuation
domain, every uniserial module is standard ([FS01, §X Proposition 3.1]). A very
important fact for us is that definable subcategories of the module category of a
valuation domain are completely determined by the standard uniserial modules
they contain. This follows from a result due to Ziegler [Zi84], reproved by algebraic
methods by Monari-Martinez [MM84], which shows that the indecomposable pure-
injective modules over a valuation domain R are up to isomorphism precisely the
pure-injective envelopes of the standard uniserial modules over R. Note also, that
given a standard uniserial R-module J/I, its pure-injective hull can be expressed
explicitly — it is additively equivalent to JS/IS, where R → S is any maximal
immediate extension of R, see [FS01, §XIII, Corollary 5.5].

Lemma 5.4. Let R be a valuation domain and C a definable subcategory of Mod-R.
Then C is determined uniquely as a definable subcategory of Mod-R by the standard
uniserial modules it contains.

Proof. By [FS01, §XIII Theorem 5.9], an R-module M is indecomposable pure-
injective if and only if it is a pure-injective hull of a standard uniserial module. By
[Pr09, Corollary 5.1.4], any definable subcategory is uniquely determined by the
indecomposable pure-injectives it contains. Finally, an R-module M belongs to a
definable subcategory of Mod-R if and only if its pure-injective hull does ([Pr09,
Theorem 3.4.8]), which concludes the proof. �

Let [p, q] be an interval in Spec(R). We will be especially interested in two kinds
of standard uniserial modules — Rq/ p and Rp/ q. While Rq/ p is an epimorphic
ring extension of R, the role of Rp/ q is clarified by the following observation:

Lemma 5.5. Let R be a valuation domain and S its maximal immediate extension.
Let [p, q] be an interval in Spec(R). Then the module (Rp/ q)⊗R S is an injective
cogenerator in the category Mod-((Rq/ p)⊗R S ), and therefore it is a cogenerator
in Mod-(Rq/ p).

Proof. Denote U = Rq/ p, let Q(U) = Rp/ p be the quotient field of U and let
m(U) = q / p be the maximal ideal of U . By Lemma 5.2 we know that Q(U)⊗R S
is the field of quotients of the valuation domain U ⊗R S and clearly m⊗RS is
its maximal ideal. Also by Lemma 5.2, U ⊗R S is a maximal valuation domain.
Therefore, Lemma 5.3 implies that (Rp/ q)⊗RS ' (Q(U)/m(U))⊗RS is an injective
cogenerator in Mod-U .

Finally, since U → U ⊗R S is a faithfully flat extension by Lemma 5.2, any U -
module embeds into an (U ⊗R S)-module. Therefore, (Rp/ q)⊗R S is a cogenerator
in Mod-U . �

Now we will be interested in computing the Ext-orthogonal to the modules of
the form (Rp/ q) ⊗R S. The following lemma is proved in [Ba07, Lemma 6.6] for
the case in which R is already maximal.
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Lemma 5.6. Let p = p2 ⊆ q be a couple of prime ideals, and let I be an ideal.
Then Ext1

R(R/I, (Rp/ q)⊗R S) = 0 if and only if either

(i) p ⊆ I, or
(ii) I# ⊆ p and I 6' Rp.

Proof. If R is a maximal valuation domain, this is precisely [Ba07, Lemma 6.6].
For general valuation domain, we have

Ext 1
R(R/I, (Rp/ q)⊗R S) ' Ext 1

S(S/IS, (Rp/ q)⊗R S)

by flatness of S over R. Using the maximal case, this means that the vanishing of
Ext1

R(R/I, (Rp/ q)⊗R S) occurs if and only if one of the following conditions hold
over S:

(i’) S p ⊆ SI, or
(ii’) (SI)# ⊆ S p and SI 6' SS p.

The condition (i′) is clearly equivalent to (i). It is easy to see that (SI)# = S(I#),
and thus (SI)# ⊆ S p is equivalent to I# ⊆ p. If I ' Rp, then clearly SI ' SS p '
Rp ⊗R S. Conversely, if SI ' SS p, then there is t ∈ S such that SI = tSS p.
By [FS01, §II Lemma 1.6], there is an element r ∈ R and a unit e ∈ S such that
t = re. Therefore, SI = rSS p, and thus I = SI ∩ Rp = tRp. This proves that (ii)
is equivalent to (ii′). �

5.3. Density and gaps of admissible systems. Let (X,<) be a totally ordered
set. A non-degenerate interval x < y in X is called dense if for any x ≤ s < t ≤ y
there is an element z ∈ X with s < z < t. If X admits a minimal element 0 and a
maximal element 1, we say that X is dense if the interval 0 < 1 is dense. We say
that X is nowhere dense if it contains no dense intervals. We say that a subset
Y ⊆ X is dense in X if for any interval x < y in X there is z ∈ Y such that
x < z < y. Say that an element y ∈ X covers an element x ∈ X if x < y and there
is no element z ∈ X such that x < z < y.

If R is a valuation domain and X an admissible system in Spec(R), we say that
X is nowhere dense if the totally ordered set (X , <) is such. We say that X is
dense everywhere if (X , <) is dense and if X contains an interval of the form
[0, q] and an interval of the form [p,m].

Let X be an admissible system of intervals of Spec(R). Following [Ba15, Notation
6.7], we introduce first an equivalence relation ∼ on X by setting χ ∼ ξ if either
χ = ξ or whenever the interval χ < ξ (or ξ < χ) in (X , <) between the two intervals
is dense. Using the completeness we see that each equivalence class C ∈ X/ ∼ of X
under ∼ has a minimal element [p, q] and a maximal element [p′, q′]. This defines
an interval τC = [p, q′] associated to C for each C ∈ X/ ∼. We let X̄ denote the
set of intervals {τC | C ∈ X/ ∼}. It is not hard to check that X̄ is a nowhere dense
admissible system on Spec(R).

Also, we let H(X ) be the collection of all equivalence classes from X/ ∼ with
more than one element. Note, that this set corresponds naturally to the set of all
maximal dense intervals in (X , <). We also consider each equivalence class C as a
totally ordered subset of (X , <).

Let Spec∗(R) = Spec(R)∪{−∞, R} be an extension of the spectrum of a valua-
tion domain R, where −∞ will be understood as a formal symbol satisfying −∞ ( I
for any ideal I of R. Let q ( p be two elements of Spec∗(R).
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We say that (q, p) is a gap of the admissible system X if one of the following
conditions is satisfied:

(i) there are intervals [p′, q] < [p, q′] ∈ X such that [p, q′] covers [p′, q],
(ii) q = −∞, and the minimal interval of X is of the form [p, q′], where p 6= 0,
(iii) p = R, and the maximal interval of X is of the form [p′, q], where q 6= m,
(iv) q = −∞ and p = R if X = ∅.
We denote the collection of all gaps of X by G(X ). Observe that G(X ) = G(X̄ ).

The relation between density, gaps, and ideals is the content of the following aux-
iliary result. Given an ideal I and a gap (q, p), we will denote by I ∈ (q, p) the
situation q ( I ( p.

Lemma 5.7. Let R be a valuation domain and X an admissible system in Spec(R).
The for any ideal I of R, one of the following possibilities occurs:

(i) there is an interval [p, q] ∈ X such that p ⊆ I ⊆ q, or
(ii) there is a gap (q, p) ∈ G(X ) such that I ∈ (q, p).

Furthermore, if X is dense everywhere, then G(X ) = ∅, and therefore only (i) can
occur.

Proof. If X is empty then (−∞, R) is a gap, and (ii) is clearly true. Then we can
assume X non-empty. Let us assume that (i) is not true. Then X can be written as a
disjoint union X = A∪B, where A = {χ ∈ X | I ( pχ}, and B = {χ ∈ X | qχ ( I}.
If B is empty, then A is non-empty, and by the completeness A has a minimal
element [pA, qA]. Necessarily I ( pA, and thus (−∞, pA) ∈ G(X ). The case when
A is empty is handled similarly.

Suppose that both A and B are non-empty. By the completeness, there is an
interval of the form [pB , qB ], where pB =

⋃
χ∈B pχ. Since pχ ( I for all χ ∈ B,

we have pB ⊆ I, and thus [pB , qB ] belongs to B, and it is the maximal element
of (B,≤). Similarly, A has a minimal element [pA, qA]. But then [pA, qA] covers
[pB , qB ], and therefore there is a gap (qB , pA) ∈ G(X ) such that qB ( I ( pA.

The furthermore part is clear from the definition of a dense everywhere admissible
system. �

5.4. Cotilting modules corresponding to dense everywhere admissible
systems. For admissible systems which are dense everywhere, the associated 1-
cotilting modules have a rather special form, which will turn important in §6. The
following proof is a generalization of [Ba15, Proposition 5.4].

Proposition 5.8. Let R be a valuation domain and R ⊆ S a maximal immediate
extension. Suppose that X is a dense everywhere admissible system in Spec(R).
Then the module

C =
∏

[p,q]∈X

((Rp/ q)⊗R S)

is a 1-cotilting module associated to the 1-cotilting class CX .

Proof. We show that C is 1-cotilting by proving that Cogen(C) = ⊥C. Since all
the modules of the form Rp/ q are standard uniserial R-modules, it follows from
Fact 5.1 that (Rp/ q) ⊗R S is pure-injective for all [p, q] ∈ X , and thus C is pure-
injective, and therefore of injective dimension at most one. In particular, ⊥C is
closed under submodules, pure epimorphic images, and direct limits (see [GT12,
Corollary 6.21]).
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Claim I: ⊥C = CX : Recall that

CX = {M ∈ Mod-R | ∀0 6= m ∈M ∃[p, q] ∈ X : AnnR(m) ∈ 〈p, q〉},

which is a cosilting class by Theorem 4.11, and even a 1-cotilting class, as R ∈ CX .
To show ⊥C = CX , it is by Lemma 4.10 enough to show that both classes contain
the same cyclic modules. If R/I ∈ ⊥C, then by Lemma 5.7 there is an interval
[p, q] ∈ X such that p ⊆ I ⊆ q. Using Lemma 5.6, I# ⊆ p′ for any interval
[p′, q′] ∈ X with q ⊆ p′, and thus by density of X , necessarily I# ⊆ q, proving that
R/I ∈ CX .

Let R/I ∈ CX , and let us show R/I ∈ ⊥C. Choose [p, q] ∈ X . If p ⊆ I, we apply
Lemma 5.6(i). Assume now that I ( p. Since R/I ∈ CX , then necessarily I# ( p.
Because I ' II# , we infer that I cannot be isomorphic to Rp, and thus R/I ∈ ⊥C
by Lemma 5.6(ii).

Claim II: Cogen(C) ⊆ ⊥C:
Since ⊥C = CX is a cosilting class, it is enough to show that C ∈ CX . This

amounts to checking that (Rp/ q) ⊗R S ∈ CX for any [p, q] ∈ X . As S is a flat
R-module and CX is closed under direct limits, the task finally reduces to showing
that Rp/ q ∈ CX for all [p, q] ∈ X . For any non-zero element x ∈ Rp/ q, we have
AnnR(x) = s−1 q for some s ∈ Rq \ p. Therefore p ⊆ AnnR(x) ⊆ q, and clearly also
AnnR(x)# ⊆ q. Therefore, Rp/ q ∈ CX .

Claim III: ⊥C ⊆ Cogen(C):
By Claim II we know that Cogen(C) is closed under extensions, that is, Cogen(C)

is a torsion-free class. Choose M ∈ ⊥C = CX and let T be its maximal torsion sub-
module with respect to the torsion pair with torsion-free class Cogen(C). Towards a
contradiction, assume that there is a non-zero element t ∈ T , and let I = AnnR(t).
Claim I then implies that I ∈ 〈p, q〉 for some [p, q] ∈ X .

Put T ′ = Socp(T ) = {m ∈ T | pm = 0}. We claim that HomR(T ′, C) = 0.
Since HomR(T,C) = 0, it is enough to show that T/T ′ ∈ ⊥C. Pick m+ T ′ ∈ T/T ′
non-zero, and let J = AnnR(m + T ′) and K = AnnR(m). Since T ∈ CX , there is
[p′, q′] ∈ X with K ∈ 〈p′, q′〉. As m 6∈ T ′ = Socp(T ), and p = p2, clearly K ( p, and
thus q′ ( p. Clearly K ⊆ J . If r ∈ J \K, then rm ∈ T ′, and we have inclusions
p ⊆ AnnR(rm) = r−1K ⊆ K# ⊆ q′, which is a contradiction with q′ ( p. Therefore
J = K, showing that T/T ′ ∈ CX = ⊥C, and thus HomR(T ′, C) = 0.

Consider the localization map f : T ′ → T ′q. The module T ′q is an Rq/ p-module,
and whence is cogenerated by (Rp/ q) ⊗R S due to Lemma 5.5, and therefore be-
longs to Cogen(C). Then also T ′/Ker(f) ∈ Cogen(C), as it is a submodule in T ′q.
Together with HomR(T ′, C) = 0, this forces T ′ = Ker(f), or in other words, T ′ is
q-torsion. But since I ∈ 〈p, q〉, 0 6= t ∈ T ′ \ Γq(T ′) by Lemma 4.5, a contradic-
tion. �

5.5. Description via homology. It will be useful to express the cosilting classes
homologically, using the derived tensor functor with respect to certain uniserial
modules coming from the intervals and gaps. For this, we introduce the following
notation. Let X be an admissible system and (q, p) ∈ G(X ) be a gap. Then we
define a complex

K(q, p) = (· · · → 0→ p
i−→ Rq → 0→ · · · ),

where p is in degree 0, and i is the natural inclusion. In the case where q = −∞, the
symbol Rq will be interpreted as zero, and thus K(−∞, p) is just a stalk complex
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of the prime ideal p concentrated in degree 0. Note that the zero cohomology of
K(q, p)⊗R − is then computed as follows

H0(K(q, p)⊗R −) =

{
TorR1 (Rq/ p,−), if q ∈ Spec(R)

p⊗R−, if q = −∞.
Also, it will be convenient to let Γ−∞ be the identity functor, while F−∞ and

SocR will both stand for the zero functor on Mod-R.

Lemma 5.9. Let R be a valuation domain, and X an admissible system in Spec(R).
Let M be an R-module M and I an ideal of R.

(i) For any interval [p, q] ∈ X we have:
• TorR1 (Rq/ p, R/I) = 0 if and only if either I ⊇ p, or if I ( p then
I# ⊆ p and I 6' Rp.

(ii) For any gap (q, p) ∈ G(X ) we have:
• H0(K(q, p)⊗RM) = 0 if and only if Γq(M) ⊆ Socp(M).

Proof.
(i) This is [Ba15, Theorem 6.11, Claim (i)].
(ii) We start by remarking that p2 = p implies that for any R-module N we have
the equivalence

p⊗RN = 0⇔ pN = 0.

Indeed, consider the canonical exact sequence

0→ TorR1 (R/ p, N)→ p⊗RN → pN → 0,

then immediately we see that p⊗RN = 0 implies pN = 0. Conversely, if pN = 0
then p(p⊗RN) = 0 since TorR1 (R/ p, N) gets killed by p. Since p2 = p, we obtain
p⊗RN = 0.

Note that if q ∈ Spec(R), then H0(K(q, p) ⊗R M) = TorR1 (Rq/ p,M) = 0 if
and only if the natural multiplication map p⊗RM → Mq is injective. We claim
that the kernel of this map is zero if and only if pΓq(M) = 0, or equivalently,
Γq(M) ⊆ Socp(M). Indeed, since q ( p, we have pRq = Rq, and so p⊗RMq '
pRq⊗RMq 'Mq. It follows that the multiplication map p⊗RM →Mq is identified
with the map (p⊗RfM ) : p⊗RM → p⊗RMq, where fM : M →Mq is the canonical
map. By flatness of p, one has that Ker(p⊗RfM ) = p⊗RΓq(M). Finally, it follows
from the first paragraph that p⊗RΓq(M) = 0 if and only if pΓq(M) = 0.

It remains to address the case of q = −∞. ThenH0(K(q, p)⊗RM) = p⊗RM = 0
is equivalent to pM = 0 by the first paragraph again, and the latter can be rewritten
as M = Γ−∞(M) ⊆ Socp(M). �

We are ready to show that any cosilting class in Mod-R is given by derived tensor
product. Notice that G(X ) does not contain a gap of the form (−∞, p) if and only
if the cosilting class does not contain R, which is further equivalent to it not being
a 1-cotilting class. In this case, we express the class as a Tor-orthogonal class,
recovering [Ba15, Theorem 6.11]. For the definition of the set H(X ) we refer the
reader to § 5.3.

Proposition 5.10. Let C be a cosilting class corresponding to an admissible system
X via Theorem 4.11. For each C ∈ H(X ), let YC be a dense subset of C. Then

C =
⋂

(q,p)∈G(X̄ )

KerH0(K(q, p)⊗R −) ∩
⋂

[p,q]∈YC ,C∈H(X )

Ker TorR1 (Rq/ p,−).
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Proof. Recall that

C = CX = {M ∈ Mod-R | ∀0 6= m ∈M ∃χ ∈ X : AnnR(m) ∈ 〈χ〉}.
Denote

C′ =
⋂

(q,p)∈G(X̄ )

KerH0(K(q, p)⊗R −) ∩
⋂

[p,q]∈YC ,C∈H(X )

Ker TorR1 (Rq/ p,−),

and let us prove that C = C′. In view of Lemma 4.10, it is enough to show that C
and C′ contain the same cyclic modules. Let R/I ∈ C. Then there is an interval
[p, q] ∈ C such that p ⊆ I and I# ⊆ q. By Lemma 5.9(ii), H0(K(q′, p′)⊗RR/I) = 0
for any gap (q′, p′) ∈ G(X ). Indeed, either p′ ⊆ p ⊆ I, and thus R/I = Socp′(R/I),
or I# ⊆ q ⊆ q′, and thus Γq′(M) = 0. Let C ∈ H(X ), and let [p′, q′] ∈ YC . If
I ( p′, then also I# ( p′, and thus TorR1 (Rq′/ p

′, R/I) = 0 by Lemma 5.9(i).
For the converse, let R/I ∈ C′. Since R/I ∈

⋂
(q,p)∈G(X̄ ) KerH0(K(q, p) ⊗R −),

we see by Lemma 5.9(ii) and Lemma 5.7 that there is an interval [p, q] ∈ X̄ such
that p ⊆ I ⊆ I# ⊆ q. Then either [p, q] ∈ X , and we are done, or there is C ∈ H(X )
such that [p, q] = τC . Again by Lemma 5.7, there is an interval [p′, q′] ∈ C such
that p′ ⊆ I ⊆ q′. Because YC is dense in C, together with the completeness of C,
there is a sequence of intervals [pα, qα] ∈ YC , α < λ, such that

⋂
α<λ pα = q′. Since

R/I ∈ C′, we have TorR1 (Rqα/ pα, R/I) = 0 for all α < λ. By Lemma 5.9(i), we have
I# ⊆ pα for all α < λ, and therefore I# ⊆ q′. We showed that p′ ⊆ I ⊆ I# ⊆ q′,
and since [p′, q′] ∈ X , we conclude that R/I ∈ C. �

6. From definable coaisles to admissible filtrations

The goal of this section is to associate to a coaisle of a homotopically smashing
t-structure in the derived category of a valuation domain R a sequence of admissible
systems on Spec(R) indexed by the cohomological degrees, in a way which leads to
a bijective correspondence when restricted to definable coaisles.

Definition 6.1. Let V be a coaisle of a homotopically smashing t-structure (so, in
particular, V can be a definable coaisle) in the derived category D(R) of a valuation
domain R. Denote Vn = {M ∈ Mod-R |M [−n] ∈ V}, and let Kn = {p ∈ Spec(R) |
κ(p) ∈ Vn} for each n ∈ Z. Inspired by [Ba07],[Ba15], we define the two following
assignments on prime ideals in the same way as in Section 4.5:

ϕn(p) = inf{q ∈ Spec(R) | Rq/ p ∈ Vn},
ψn(p) = sup{q ∈ Spec(R) | Rϕn(p)/ q ∈ Vn}.

Finally, we define for each n ∈ Z a set Xn = {[ϕn(p), ψn(p)] | p ∈ Kn} of formal
intervals in Spec(R).

In the rest of this section, we will be in the situation of Definition 6.1 over a
valuation domain R and we will show in several steps that X = (Xn | n ∈ Z) forms
a nested sequence of admissible systems on Spec(R).

Lemma 6.2. For any p ∈ Kn we have Rϕn(p)/ p ∈ Vn and Rϕn(p)/ψn(p) ∈ Vn.

Proof. The first claim is proved by noting that Rϕn(p)/ p = lim−→q,Rq/ p∈Vn
Rq/ p, and

by the fact that Vn is closed under direct limits. The second follows similarly from
Rϕn(p)/ψn(p) = lim−→q,Rϕn(p)/ q∈Vn

Rϕn(p)/ q. �

Lemma 6.3. For any p ∈ Kn we have ϕn(p) ⊆ p and ψn(p) ⊇ p.
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Proof. It is enough to show that κ(p) and Rϕn(p)/ p are in Vn whenever p ∈ Kn.
The first claim follows directly from the definition of Kn, while the second from
Lemma 6.2. �

The following lemma follows from an application of a dévissage technique and is
valid for an arbitrary coaisle in the derived category of any commutative ring.

Lemma 6.4. Suppose that p is a prime, X ∈ V, and that HomD(R)(κ(p)[−n], X) 6=
0. Then κ(p) ∈ Vn.

Proof. Recall that

Hom D(R)(κ(p)[−n], X) ' Hom D(R)(κ(p), X[n]) ' HnRHomR(κ(p), X).

By [Hr18, Proposition 2.3](ii), the complex RHomR(κ(p), X) belongs to V. But
RHomR(κ(p), X) also lives in the essential image of the forgetful functorD(κ(p))→
D(R), and thus is isomorphic in D(R) to a complex of vector spaces over the field
κ(p). In particular, RHomR(κ(p), X) is isomorphic in D(R) to a split complex.
Therefore, HnRHomR(κ(p), X)[−n] ∈ V. Since HnRHomR(κ(p), X) is a non-zero
vector space over κ(p), it follows that κ(p)[−n] ∈ V, or in other words κ(p) ∈ Vn. �

Lemma 6.5. Let p ⊆ p′ ( p′′. Then Rp/Rp′ is isomorphic to a direct limit of
copies of Rp/ p

′′.

Proof. Since p′ ( p′′, we have Rp′ ' p′′⊗RRp′ ' lim−→r 6∈p′ r
−1 p′′. Then Rp/Rp′ '

lim−→r 6∈p′ Rp/r
−1 p′′. But since p ⊆ p′, we have Rp/r

−1 p′′ ' Rp/ p
′′ for any r ∈

R \ p′. �

Since the coaisle V is closed under directed homotopy colimits, it follows that
the subcategory Vn = {M ∈ Mod-R | M [−n] ∈ V} = V[n] ∩Mod-R is closed under
directed limits in Mod-R. We will be mostly interested in the case when V is a
definable subcategory of D(R), and in this situation we know by the results of
Section 3.1 that Vn = {Hn(X) | X ∈ V} and that Vn is a definable subcategory of
Mod-R.

Lemma 6.6. The assignments ϕn, ψn are monotone functions Kn → Kn.

Proof. First, we show that ϕn and ψn are functions Kn → Kn, that is, they take
values in Kn. To do this, we need to show that κ(ϕn(p)) and κ(ψn(p)) are in Vn
whenever p ∈ Kn. By Lemma 6.2, we know that Rϕn(p)/ψn(p) ∈ Vn. Note that
there are non-zero canonical maps

κ(ϕn(p))→ Rϕn(p)/ψn(p), and

κ(ψn(p))→ Rϕn(p)/ψn(p).

By Lemma 6.4, we have κ(ϕn(p)), κ(ψn(p)) ∈ Vn.
Now we need to show that ϕn and ψn are monotone. Consider p1 ( p2 in Kn.

If p1 ⊆ ϕn(p2), there is nothing to prove in case of ϕn. Otherwise, if ϕn(p2) ( p1

there is an exact sequence

0→ κ(p 1)→ Rϕn(p2)/ p 1 → Rϕn(p2)/Rp1
→ 0.

By our assumption, we have ϕn(p2) ( p1 ( p2, and thus we can use Lemma 6.5 and
infer that Rϕn(p2)/Rp1

is a direct limit of copies of Rϕn(p2)/ p2 ∈ Vn. Therefore, we
conclude that Rϕn(p2)/ p 1 ∈ Vn, and thus ϕn(p1) ⊆ ϕn(p2).
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Finally, we show that ψn is monotone. Consider the exact sequence

0→ Rϕn(p2)/ψn(p 1)→ Rϕn(p1)/ψn(p 1)→ Rϕn(p1)/Rϕn(p2) → 0.

The middle term is in Vn, and the rightmost term is in Vn by a similar argument as in
the previous paragraph, since we can assume ψn(p1) ) p2 (otherwise the monotony
is clear), and apply Lemma 6.5 to prime ideals ϕn(p1) ⊆ ϕn(p2) ( ψn(p1). Then the
leftmost term Rϕn(p2)/ψn(p1) belongs to Vn, because Vn is closed under extensions
and kernels of epimorphisms.

�

Given a couple of intervals χ, ξ in Spec(R), we say that χ is contained in ξ,
denoted χ ⊆ ξ, if pξ ⊆ pχ ⊆ qχ ⊆ qξ. The following Lemma explains the relation
between the intervals of Xn and certain uniserial modules belonging to Vn.

Lemma 6.7. (i) For any [p, q] in Xn we have Mod-(Rq/ p) ⊆ Vn.
(ii) If Rp/ q ∈ Vn for some prime ideals p ⊆ q in Spec(R) then there is an

interval χ ∈ Xn which contains the formal interval [p, q].
(iii) If p, q ∈ Kn and [p, q] ∈ Xn+1 then Rq/ p ∈ Vn.

Proof. (i) Since [p, q] ∈ Xn, we have Rp/ q[−n] ∈ V by Lemma 6.2. Let S be a
maximal immediate extension of R, then also C = Rp/ q⊗RS ∈ Vn, since S is flat
and Vn is closed under direct limits. By Lemma 5.5, C = Rp/ q⊗RS cogenerates
Mod-(Rq/ p). Therefore, there is a coresolution for any M ∈ Mod-(Rq/ p) of the
form

0→M → Cκ0 → Cκ1 → Cκ2 → · · ·

for some cardinals κn, n ≥ 0.
Since V is closed under cosuspensions, extensions, products, and homotopy lim-

its, the truncated complex

· · · → 0→ Cκ0 → Cκ1 → Cκ2 → · · ·

with the first non-zero component situated in degree n belongs to V[n], and therefore
M [−n] ∈ V, which in turn means M ∈ Vn. (The use of homotopy limits comes
from expressing this complex as a countable directed homotopy limit of its stupid
truncations from above.)

(ii) As in the proof of (i), Rp/ q ∈ Vn implies that Mod-(Rq/ p) ⊆ Vn. In particu-
lar, κ(q) ∈ Vn, and thus q ∈ Kn. Then there is an interval χ = [ϕn(q), ψn(q)] ∈ Xn.
By Lemma 6.3, q ⊆ ψn(q). On the other hand, the definition of the map ϕn to-
gether with Rp/ q ∈ Vn ensures that ϕn(q) ⊆ p. Therefore, χ contains the interval
[p, q].

(iii) There is the following exact sequence

0→ Rq/ p→ κ(q)⊕ κ(p)→ Rp/ q→ 0

where the map Rq/ p→ κ(q)⊕ κ(p) is given by the canonical projection and injec-
tion, respectively. Since p, q ∈ Kn, the middle term of the sequence belongs to Vn,
and since the interval [p, q] belongs to Xn+1, we have Rp/ q ∈ Vn+1 by Lemma 6.2.
Therefore, Rq/ p belongs to Vn by Proposition 3.7. �

Lemma 6.8. The system of intervals Xn is disjoint.
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Proof. With respect to [Ba07, Lemma 6.2] and Lemma 6.3 and Lemma 6.6, it is
enough to show that for any n ∈ Z we have the identities

(3) ϕn ◦ ψn = ϕn & ϕn ◦ ϕn = ϕn,

and

(4) ψn ◦ ϕn = ψn & ψn ◦ ψn = ψn.

Fix p ∈ Kn. By Lemmas 6.3 and 6.6, we have ϕn(p) ⊆ ϕn(ψn(p)). On the other
hand, as Rϕn(p)/ψn(p) ∈ Vn by Lemma 6.2, we have ϕn(ψn(p)) ⊆ ϕn(p) by the
definition of ϕn.

By Lemma 6.3, ϕn(ϕn(p)) ⊆ ϕn(p). There is an exact sequence

0→ Rϕn(p)/ p→ Rϕ2
n(p)/ p→ Rϕ2

n(p)/Rϕn(p) → 0.

The leftmost term is in Vn. If we prove that also the rightmost term belongs
to Vn, then also Rϕ2

n(p)/ p ∈ Vn, which in turn implies ϕn(ϕn(p)) = ϕn(p) by the
definition of ϕn. First note that Rϕ2

n(p)/Rϕn(p) is an Rϕn(p)/ϕ
2
n(p)-module. Indeed,

Rϕ2
n(p)/Rϕn(p) is an Rϕn(p)-module, and as it is clearly (R \ ϕ2

n(p))-torsion, it is
annihilated by ϕ2

n(p). Since ϕn ∈ Kn, we have that [ϕ2
n(p), ϕn(p)] is contained in an

interval from Xn. Therefore Lemma 6.7(i) implies that any Rϕn(p)/ϕ
2
n(p)-module

belongs to Vn, and thus in particular, Rϕ2
n(p)/Rϕn(p) ∈ Vn.

Again by Lemma 6.3 and Lemma 6.6, we have ψn(ϕn(p)) ⊆ ψn(p). Using ϕ2
n =

ϕn, we have that Rϕn(p)/ψn(p) ∈ Vn implies the other inclusion.
To finish the proof of (4), we are left with showing that ψn(ψn(p)) = ψn(p).

Since clearly ψn(p) ⊆ ψn(ψn(p)), we have using (3) that applying ϕn on the latter
inequality yields ϕn(p) = ϕn(ψn(p)), and thus Rϕn(p)/ψn(ϕn(p)) ∈ Vn. This yields
ψn(ϕn(p)) ⊆ ψn(p), as desired.

Using [Ba07, Lemma 6.2], we conclude that Xn is a disjoint system. �

Lemma 6.9. The prime ideal ϕn(p) is idempotent for any p ∈ Kn.

Proof. If ϕn(p) is not idempotent, it is well known (see Lemma 4.1) that ϕn(p) =
rRϕn(p) for some element r ∈ ϕn(p). Consider for any n > 0 the exact sequence

0→ Rϕn(p)/ p→ r−nRϕn(p)/ p→ Rϕn(p)/r
nRϕn(p) → 0.

Then the leftmost element belongs to Vn, and since Rϕn(p)/r
nRϕn(p) is isomor-

phic to an (n − 1)-fold extension of Rϕn(p)/ϕn(p) ' κ(ϕn(p)), it also belongs
to Vn. Therefore lim−→n>0

r−nRϕn(p)/ p ∈ Vn. Since r ∈ ϕn(p), the localization
lim−→n>0

r−nRϕn(p) is isomorphic to Rq for some prime ideal q ( ϕn(p). Then the di-
rect limit lim−→n>0

r−nRϕn(p)/ p is isomorphic to Rq/ p. But then Rq/ p ∈ Vn, which
is a contradiction with the definition of ϕn(p). �

In order to prove the completeness condition, we will make an essential use of
the recent deep result [SŠV17, Theorem A], which states that a t-structure in the
underlying category of a strong and stable derivator can be naturally lifted to the
category of coherent diagrams of any shape. In the case of a homotopically smashing
t-structure, this allows in a sense to “commute” the coaisle approximation functor
with a directed homotopy colimit, as in the following proof.

Lemma 6.10. The set Xn satisfies the completeness condition of Definition 4.2.
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Proof. It is enough to show the following claim: for any n ∈ Z and any non-
empty subset A of Kn the primes

⋃
p∈A p and

⋂
p∈A p belong to Kn. Indeed,

once we have this, then given any non-empty subset B of Xn, we let A = {q |
[p, q] ∈ B}. Suppose that B does not have a maximal element, then

⋃
q∈A q =⋃

[p,q]∈B p. Therefore, the claim gives
⋃

[p,q]∈B p ∈ Kn, and so there is an interval
[ϕn(

⋃
[p,q]∈B p), ψn(

⋃
[p,q]∈B p)] ∈ Xn. By Lemma 6.6 and (3), we have p = ϕn(p) ⊆

ϕn(
⋃

[p,q]∈B p) for any [p, q] ∈ B, and thus necessarily ϕn(
⋃

[p,q]∈B p) =
⋃

[p,q]∈B p

by Lemma 6.3. The second part of the completeness condition follows by an anal-
ogous argument.

It remains to prove the claim. Let A be a non-empty subset of Kn and let (Λ,≤)
be a totally ordered set (considered naturally as a small category) such that we
can write A = {pα | α ∈ Λ} in a way that α ≤ β if and only if pα ⊆ pβ for all
α, β ∈ Λ. We put p =

⋃
α∈Λ pα and q =

⋂
α∈Λ pα. We need to prove that κ(p) and

κ(q) belong to Vn.
Let us express κ(p) as the direct limit lim−→α∈Λ

Rp/ pα of the direct system Y =

(Rp/ pα | α ∈ Λ) ∈ (Mod-R)Λ consisting of the natural surjections. Let Y ∈
D((Mod-R)Λ) be the coherent diagram induced by Y ∈ (Mod-R)Λ. By [SŠV17,
Theorem A], there is a t-structure (UΛ,VΛ) in D((Mod-R)Λ), where VΛ (resp. UΛ)
consists of all coherent diagrams of shape Λ with all coordinates in V (resp. U).
Let

∆ : U → Y [−n]
f−→ V → Y [1]

be the approximation triangle in D((Mod-R)Λ) of the coherent diagram Y [−n] with
respect to the t-structure (UΛ,VΛ). For each α ∈ Λ, denote by Uα and Vα the α-th
coordinates of U and V . By passing to a coordinate α ∈ Λ, ∆ induces a triangle

∆α : Uα → Rp/ p α[−n]
fα−→ Vα → Uα[1],

which is the approximation triangle of Rp/ pα[−n] with respect to the t-structure
(U ,V) in D(R).

Note that for any α ∈ Λ, there is a canonical embedding Rp/ pα ⊆ κ(pα).
Let ια : Rp/ pα[−n] → κ(pα)[−n] be a map in D(R) inducing this embedding in
the n-th cohomology. Since κ(pα) ∈ Vn by the assumption, applying the coaisle
approximation functor τV : D(R) → V onto ια yields a commutative diagram in
D(R) as follows:

(5)

Rp/ pα[−n]
ια−−−−→ κ(pα)[−n]

fα

y '
y

Vα
τV(ια)−−−−→ κ(pα)[−n]

Applying the n-th homology functor on (5) yields a commutative diagram in Mod-R:

Rp/ pα
⊆−−−−→ κ(pα)

Hn(fα)

y '
y

Hn(Vα)
Hn(τV(ια))−−−−−−−→ κ(pα)

The latter diagram shows that Hn(fα) : Rp/ pα → Hn(Vα) is a monomorphism for
each α ∈ Λ. By [Gr13, Corollary 4.19], there is a triangle obtained by taking the



38 SILVANA BAZZONI AND MICHAL HRBEK

homotopy colimit of triangle ∆ in D((Mod-R)Λ):

(6) hocolim
α∈Λ

∆ : hocolim
α∈Λ

U → κ(p)[−n]
hocolimα∈Λ f−−−−−−−−→ hocolim

α∈Λ
V → hocolim

α∈Λ
U [1].

Since both U ([SŠV17, Proposition 4.2]) and V are closed under directed homotopy
colimits, we have that (6) is the approximation triangle of κ(p)[−n] with respect to
the t-structure (U ,V). We compute the n-th cohomology of the coaisle approxima-
tion map,

Hn(hocolim
α∈Λ

f) ' lim−→
α∈Λ

Hn(fα),

which together with the previous computation and the exactness of direct limits in
Mod-R shows that Hn(hocolimα∈Λ f) : κ(p) → Hn(hocolimα∈Λ V ) is a monomor-
phism in Mod-R. In particular, we proved that

Hom D(R)(κ(p)[−n],hocolim
α∈Λ

V ) 6= 0.

Since hocolimα∈Λ V ∈ V, Lemma 6.4 shows that κ(p)[−n] ∈ V, and thus κ(p) ∈ Vn.
We prove that κ(q) ∈ Vn using a similar argument. This time we express

κ(q) as the direct limit lim−→α∈Λop Rpα/ q of the direct system Y = (Rpα/ q | α ∈
Λop) consisting of canonical embeddings, which again lifts to a coherent diagram
Y ∈ D((Mod-R)Λop

). We observe that there are monomorphisms Rpα/ q ↪−→∏
β<α∈Λ κ(pβ) given by canonical maps in each coordinate β < α of the product,

and
∏
β<α∈Λ κ(pβ) ∈ Vn using that Vn is closed under products. As in the previous

part of the proof, these embeddings can be used to show that the coaisle approxima-
tion maps Rpα/ q[−n]

fα−→ Vα := τV(Rpα/ q[−n]) induce monomorphisms Hn(fα)
in the n-th cohomology. Repeating the argument with the homotopy colimit to
show that the coaisle approximation map κ(q)[−n]→ hocolimα∈Λ Vα is non-zero in
n-cohomology, we again conclude that κ(q)[−n] ∈ V by Lemma 6.4. �

Putting together Lemma 6.8, 6.9, and 6.10, we obtain:

Corollary 6.11. In the setting of Definition 6.1, the set Xn is an admissible system
on Spec(R) for any n ∈ Z.

The sequence X = (Xn | n ∈ Z) of admissible systems in Spec(R) satisfies two
additional properties that will characterize it as a sequence associated to a definable
coaisle.

Definition 6.12. Let R be a valuation domain. We say that a sequence X = (Xn |
n ∈ Z) of admissible systems on Spec(R) is a nested sequence if Xn is a nested
subsystem of Xn+1 for each n ∈ Z, meaning that for any χ ∈ Xn there is ξ ∈ Xn+1

such that χ ⊆ ξ.
We say that X = (Xn | n ∈ Z) satisfies the degreewise non-density condition

if the following holds:
• For any n ∈ Z and any dense interval χ < ξ in Xn+1, there is an interval
χ < τ < ξ in Xn+1 such that τ does not contain any interval from Xn.

An admissible filtration in Spec(R) is a nested sequence X = (Xn | n ∈ Z) of
admissible systems satisfying the degreewise non-density condition.

Remark 6.13. The condition of τ ∈ Xn+1 not containing any interval from Xn
in the definition of the degreewise non-density condition above can be rephrased
by τ being strictly contained in a gap from G(Xn). Indeed, assume that τ does
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not contain any interval from Xn. Let χ be the maximal interval in Xn such that
χ < τ and ξ be a minimal interval in Xn with ξ > τ , such intervals exist by the
completeness condition satisfied by any admissible system (Definition 4.2). Since Xn
is a nested subsystem of the admissible system Xn+1, we have qχ ( pτ ⊆ qτ ( pξ. If
there was an interval θ ∈ Xn with χ < θ < ξ, then necessarily θ ⊆ τ , a contradiction.
Therefore, (qχ, pξ) is the desired gap in G(Xn) containing the interval τ strictly.

Conversely, the definition of a gap (§ 5.3) implies that if τ is contained in a gap
from G(Xn) then τ cannot contain any interval from Xn. Therefore, the degreewise
non-density condition can be equivalently formulated as follows:

• For any n ∈ Z and any dense interval χ < ξ in Xn+1, there is an interval
χ < τ < ξ in Xn+1 and a gap (q, p) ∈ G(Xn) which strictly contains τ (that
is, q ( pτ ⊆ qτ ( p).

Before proving that the sequence we associated to a definable coaisle is indeed
an admissible filtration, we remark a useful equivalent formulation and one con-
sequence of the degreewise non-density condition. We point the reader to the
definition of the set H(Xn) of maximal dense intervals of Xn in § 5.3.

Lemma 6.14. Let X = (Xn | n ∈ Z) be a nested sequence of admissible systems.
Then the degreewise non-density condition is equivalent to the following:

• For any n ∈ Z and for any maximal dense interval C ∈ H(Xn+1), the
subset

ZC = {τ ∈ C | τ does not contain any interval from Xn}
is dense in C (that is, for any χ < ξ in C there is τ ∈ ZC with χ < τ < ξ).

Proof. This follows easily from the definition of H(Xn+1). Indeed, for any dense
interval χ < ξ in Xn+1 we have χ ∼ ξ, and thus there is C ∈ H(Xn+1) such that
for any χ ≤ τ ≤ ξ we have τ ∈ C. Since ZC is dense in C, we infer that there is
τ ∈ ZC such that χ < τ < ξ, and thus the condition of the Lemma implies the
degreewise non-density condition. For the converse, let χ < ξ be in C, then the
interval χ < ξ is dense by the definition of C, and therefore there is τ in between
χ and ξ belonging to ZC by the degreewise non-density condition. �

Lemma 6.15. Let X = (Xn | n ∈ Z) be an admissible filtration. If χ < ξ is a dense
interval in Xn then there is an interval µ ∈ Xn+1 such that χ, ξ ⊆ µ.
Proof. We define a set

A = {τ ∈ Xn+1 | τ contains an interval from Xn in between χ and ξ}.
Since X is nested, each interval from Xn between χ and ξ is contained in some τ ∈ A.
Our aim is to show that A is a singleton, because then the interval µ ∈ Xn+1 with
A = {µ} has the desired property.

First, we remark that A is clearly non-empty, so it is enough to show that A
does not contain two distinct elements. Suppose that there are intervals τ < θ in
A. The intervals τ and θ are disjoint by the definition of an admissible system. For
any ideal I with qτ ⊆ I ⊆ pθ, there is an interval γ ∈ Xn satisfying pγ ⊆ I ⊆ qγ
and χ < γ < ξ, this follows from Lemma 5.7. Then γ is contained in some interval
δ ∈ A, and necessarily τ < δ < θ. In this way the density of the interval χ < ξ in
Xn implies the density of the interval τ < θ in Xn+1. Since each interval from Xn+1

which lies in between τ and θ contains an interval from Xn by Lemma 5.7 again,
this is in contradiction with the degreewise non-density condition. �
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Proposition 6.16. Let R be a valuation domain. The assignment V 7→ X =
(Xn)n∈Z of Definition 6.1 yields a map

Θ :

{
definable coaisles V

in D(R)

}
→
{

admissible filtrations X
in Spec(R)

}
.

Proof. Let V be a definable coaisle in D(R). Then the sequence of admissible
systems associated to V via Definition 6.1 is clearly nested, because Vn ⊆ Vn+1 for
all n ∈ Z.

The only thing which remains to be proved is that the nested sequence X = (Xn |
n ∈ Z) associated to V satisfies the degreewise non-density condition. Towards a
contradiction, let us assume that there is n ∈ Z and a dense interval χ < ξ in Xn+1

such that every interval τ ∈ Xn+1 with χ < τ < ξ contains some interval τ0 from
Xn.

The density of the interval together with the completeness property satisfied by
admissible systems implies that for each χ < τ ≤ ξ, we can write pτ as the union
pτ =

⋃
χ<θ<τ pθ. By our assumption there is an interval θ0 ∈ Xn contained in θ for

each χ < θ < τ , and therefore the completeness property yields an interval of the
form [pτ , q] in Xn with pτ ⊆ q ⊆ qτ . By a completely dual argument, there is also
an interval of the form [p, qτ ] in Xn for any χ ≤ τ < ξ with pτ ⊆ p ⊆ qτ .

We claim that the module M = Rpξ/qχ belongs to Vn and show that this leads
to the desired contradiction. We prove this in several steps.

Step I. The module
∏
χ≤τ≤ξM ⊗R Rqτ / pτ belongs to Vn for any χ ≤ τ ≤ ξ.

Since Vn is closed under products, it is enough to show that the factors of the
product belong to Vn. First, M ⊗R Rqχ/ pχ ' κ(qχ) ∈ Vn, as there is an interval
[p, qχ] ∈ Xn, and so qχ ∈ Kn. For any χ < τ < ξ, we have M ⊗R Rqτ / pτ '
Rqτ / pτ ∈ Vn by Lemma 6.7(iii), since there are intervals of the form [pτ , q] and
[p, qτ ] in Xn contained both in the interval [pτ , qτ ] ∈ Xn+1. Finally,M⊗RRqξ/ pξ '
κ(pξ) ∈ Vn, as there is an interval [pξ, q] ∈ Xn.

Step II. The natural map η : M →
∏
χ≤τ≤ξM ⊗R Rqτ / pτ is a monomorphism

and Coker(η) ∈ Vn+1.
Let Y = {τ ∈ Xn+1 | χ ≤ τ ≤ ξ}. Note that Y is naturally an admissible

system in the spectrum of the valuation domain U = Rqξ/ pχ, and that Y is dense
everywhere as such. Recall that the idempotency of pχ ensures that the natural
ring homomorphism R→ U is a homological ring epimorphism, and therefore both
the homomorphisms and the extensions in Mod-U can be equivalently computed
over R. Let S be a maximal immediate extension of U . Then Proposition 5.8 yields
that

C :=
∏
τ∈Y

((Upτ / q τ )⊗U S) =
∏
τ∈Y

((Rpτ / q τ )⊗R S)

is a 1-cotilting U -module corresponding to the cotilting class CY = Cogen(C) = ⊥1C
in Mod-U . The module M = Rpξ/qχ is a U -module an clearly belongs to CY .
Consider the universal map ν : M → CHomR(M,C).

Since M ∈ CY = Cogen(C), the map ν is a monomorphism, and by applying
HomU (−, C) we obtain an exact sequence

HomU (ν,C)−−−−−−−→ Hom U (M,C)→ Ext 1
U (Coker(ν), C)→ Ext 1

U (CHomU (M,C), C).
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By the universality of ν, HomR(ν, C) is an epimorphism, and because C is a 1-
cotilting U -module, we also have Ext1

U (CHomR(M,C), C) = 0. Therefore, we can
infer Ext1

U (Coker(ν), C) = 0, and thus Coker(ν) ∈ CY .
As C =

∏
τ∈Y((Rpτ / qτ ) ⊗U S), the map ν is given coordinate-wise by maps

ντ : M → ((Rpτ / qτ )⊗U S)HomR(M,C). Since (Rpτ / qτ )⊗U S is an Rqτ / pτ -module,
the map ντ factors through the natural map M → M ⊗R Rqτ / pτ . Therefore, we
have the following commutative diagram:

0 −−−−→ M
η−−−−→

∏
χ≤τ≤ξM ⊗R Rqτ / pτ −−−−→ Coker(η) −−−−→ 0∥∥∥ f

y g

y
0 −−−−→ M

ν−−−−→ CHomR(M,C) −−−−→ Coker(ν) −−−−→ 0

The map η is a monomorphism, because ν is a monomorphism. The module∏
χ≤τ≤ξM ⊗R Rqτ / pτ belongs to CY , and so does its submodule Ker(f). By

the Snake Lemma, we have Ker(f) ' Ker(g). Because Coker(η) is an extension of
Ker(g) and a submodule of Coker(ν) ∈ CY , we see that Coker(η) ∈ CY . We claim
that this implies that Coker(η) ∈ Vn+1. Indeed, since Coker(η) ∈ CY = Cogen(C) =
⊥1C, then by iterating the natural map to products of C, we get that Coker(η) ad-
mits a Prod(C)-coresolution (see also [GT12, Proposition 15.5(a)]), that is, an exact
sequence of the form

0→ Coker(η)→ C0 → C1 → C2 → · · ·

where Ci is a direct product of copies of C. Since τ ∈ Xn+1 for each χ ≤ τ ≤ ξ,
we have Rpτ / qτ ∈ Vn+1 by Lemma 6.2. As S is a flat U -module, the module
(Rpτ / qτ ) ⊗U S is isomorphic to a direct limit of copies of Rpτ / qτ for any τ ∈ Y,
and therefore (Rpτ / qτ )⊗U S ∈ Vn+1. Since Vn+1 is closed under direct products,
we showed that C =

∏
τ∈Y((Rpτ / qτ )⊗U S) belongs to Vn+1, and thus so does also

the module Ci for each i ≥ 0. Arguing as in the proof of Lemma 6.7(i), we conclude
that Coker(η) belongs to Vn+1.

Step III. The module M belongs to Vn, and this leads to a contradiction.
In Steps I. and II. we showed that M is the kernel of a map

∏
χ≤τ≤ξM ⊗R

Rqτ / pτ → Coker(η) between a module from Vn and from Vn+1, respectively.
Therefore, M belongs to Vn by Proposition 3.7. Now consider the obvious map
M = Rpξ/ qχ → κ(qχ) ⊕ κ(pξ). This map is a monomorphism between modules
from Vn and its cokernel is Rqχ/ pξ, which implies Rqχ/ pξ ∈ Vn+1 by Proposi-
tion 3.7 again. But then Lemma 6.7(ii) yields that there is an interval in Xn+1

which contains [qχ, pξ], a contradiction with the interval χ < ξ in Xn+1 being
dense. �

Remark 6.17. Let us remark what the degreewise non-density condition means in
two “extremal” cases — that of a stable t-structure, and that of the Happel-Reiten-
Smalø t-structure.

• If V is closed under suspension, then the associated admissible filtration X
is necessarily constant, that is, Xn = Xn+1 for all n ∈ Z. The degreewise
non-density then simply means, in view of Lemma 6.15, that Xn is nowhere
dense — cf. [BŠ17, Theorem 5.23].
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• If V belongs to a Happel-Reiten-Smalø t-structure, then

Xn =

{
∅, n < 0

{[0,m]}, n > 0
,

and the only interesting admissible system is X0, for which the degreewise
non-density condition is vacuous. This fits nicely with Theorem 4.11, where
no condition on density was required.

7. Construction of definable coaisles

The purpose of this section is to construct an injective assignment from admissi-
ble filtrations to definable coaisles. Given an admissible filtration X = (Xn | n ∈ Z)
in the spectrum of a valuation domain R, we define the following subcategories of
Mod-R (see Lemma 4.6):

Cn = CXn = {M ∈ Mod-R | ∀0 6= m ∈M ∃χ ∈ Xn : AnnR(m) ∈ 〈χ〉}
and

Dn = {M ∈ Mod-R | F q(M) ∈ Mod-Rq ∀[p, q] ∈ Xn}.
We recall that for anyM ∈ Mod-R we have Fq(M) = Im(M →M⊗RRq), and thus
Fq(M) ∈ Mod-Rq if and only if Fq(M) is q-divisible. Our goal here is to show that
there is a definable coaisle V defined on cohomology by putting Vn = Cn∩Dn+1 for
each n ∈ Z.

We refer the reader to §5.5 for the definition of the complex K(q, p) for a gap
(q, p).

Lemma 7.1. Let M be an R-module, q ∈ Spec(R), and J any ideal of R such that
q ( J . Then Fq(M) ∈ Mod-Rq if and only if (Rq/J)⊗RM = 0. In particular, for
any q ∈ Spec∗(R) we have Fq(M) ∈ Mod-Rq if and only if H1(K(q, p)⊗RM) = 0
for any gap of the form (q, p) for q ( p.

As a consequence, the class Dn is closed under pure submodules, direct limits,
extensions, and epimorphic images.

Proof. This is straightforward for J = R. Since for any ideal J such that q ( J ( R
there is a chain of epimorphisms Rq/sR→ Rq/J → Rq/R for some s ∈ (J \q), it is
enough to check the statement for J being a principal ideal. But for any s ∈ (R\q),
the module Rq/sR is clearly isomorphic to Rq/R, and so this follows from the case
J = R.

For the “in particular” claim, note that H1(K(q, p) ⊗R M) is always zero if
q = −∞, and is equal to (Rq/ p)⊗RM if q ∈ Spec(R). �

Given an admissible filtration X, let us denote shortly Gn = G(Xn) the set of all
gaps of the admissible system Xn. We recall the definition of the set H(Xn) from
§ 5.3, and also use the shorter notation Hn = H(Xn). The elements C of Hn can
be viewed as maximal dense intervals in Xn, and by Lemma 6.14, each C ∈ Hn+1

contains a dense subset ZC consisting of those intervals which do not contain any
interval from the preceding system Xn. Our first step is to describe the classes
Vn homologically. Before that, it will be useful to record the following dichotomy
which follows from the degreewise non-density condition.

Lemma 7.2. Let X = (Xn | n ∈ Z) be an admissible filtration. Then for any
interval χ ∈ Xn, one (and only one) of the following two conditions must be true:
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(i) there is a (possibly not strictly) decreasing sequence ((qα, pα) | α < λ) of
gaps in Gn such that

⋂
α<λ qα = qχ, or

(ii) there is a limit ordinal λ and a strictly decreasing sequence ([pα, qα] | α < λ)
of intervals in ZC for some C ∈ Hn such that

⋂
α<λ qα = qχ.

Proof. Suppose that the first condition is not true. In view of Lemma 5.7, the
condition (i) is not true if and only if there is ξ ∈ Xn such that χ < ξ and the
interval χ < ξ is dense in Xn. Then there is C ∈ Hn such that χ, ξ ∈ C. Let
Z = {τ ∈ ZC | χ < τ < ξ}. From the density of ZC in C it follows that that⋂
τ∈Z qτ = qχ. Therefore we can choose a strictly decreasing sequence τ0 > τ1 >

τ2 > · · · > τα > · · · indexed by some limit ordinal λ such that
⋂
α<λ qτα = qχ, and

whence (ii) holds.
If (ii) holds, then χ belongs to some C ∈ Hn and χ is not maximal in C. Then

there is a dense interval χ < ξ in Xn, and so (i) cannot hold. �

Lemma 7.3. Let M be a module from Cn. Then M ∈ Dn+1 if and only if the two
following conditions hold:

(i) for any gap (q, p) ∈ Gn+1 we have H1(K(q, p)⊗RM) = 0, and
(ii) for any C ∈ Hn+1 and any [p, q] ∈ ZC we have (Rq/ p)⊗RM = 0.

Proof. Let [p, q] ∈ Xn+1. We separate the two different cases as prescribed in
Lemma 7.2.

Case 1: There is a decreasing sequence of gaps ((qα, pα) | α < λ) in Gn+1 such
that

⋂
α<λ qα = q. Then by Lemma 7.1, for each α < λ the condition Fqα(M) ∈

Mod-Rqα holds if and only ifH1(K(qα, pα)⊗RM) = 0. We can express Fq(M) as the
direct limit lim−→α<λ

Fqα(M) where the structure maps are the obvious projections.
If Fqα ∈ Mod-Rqα for all α < λ then the direct limit expression clearly forces
Fq(M) ∈ Mod-Rq.

Case 2: There is C ∈ Hn+1 and a strictly decreasing sequence ([pα, qα] | α < λ)
of intervals indexed by a limit ordinal λ in ZC such that

⋂
α<λ qα = q. Suppose that

the condition (ii) holds. Then Rqα/ pα⊗RM = 0 for each α < λ. Consequently
also Rqα/ pα⊗RFqαM = 0, or equivalently, FqαM = pα FqαM . Writing again Fq =
lim−→α<λ

Fqα(M), we see that Fq(M) = pα Fq(M) for each α < λ. Since we also have⋂
α<λ pα = q, we conclude that Fq(M) is q-divisible, and thus Fq(M) ∈ Mod-Rq.
What remains to be proved is that if M ∈ Cn ∩ Dn+1 and [p, q] ∈ ZC for some

C ∈ Xn+1 then Rq/ p⊗RM = 0. Since [p, q] ∈ ZC there is a gap (q′, p′) ∈ Gn which
strictly contains [p, q], see Remark 6.13. Since M ∈ Cn, the inclusions q′ ( p ⊆ q (
p′ imply that (cf. Lemma 5.9 and Proposition 5.10)

Γq(M) ⊆ Γq′(M) = Soc p′(M) ⊆ Γq(M),

and thus Fq(M) = Fq′(M). Then

Rq/ p⊗RM ' Rq/ p⊗RFq(M) = Rq/ p⊗RFq′(M).

Since q′ ( p and C is dense, there is an interval χ ∈ C such that q′ ⊆ qχ ( p.
Then M ∈ Dn+1 implies that the module Fqχ(M) is qχ-divisible, and thus also its
quotient Fq′(M) is qχ-divisible. But then Fq′(M) = pFq′(M), and so Rq/ p⊗RM '
Rq/ p⊗RFq′(M) = 0.

Altogether, the three paragraphs above establish the desired equivalence. �
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Corollary 7.4. Set Vn = Cn ∩ Dn+1 for all n ∈ Z, then

Cn =
⋂

(q,p)∈Gn

KerH0(K(q, p)⊗R −) ∩
⋂

[p,q]∈ZC ,C∈Hn

Ker TorR1 (Rq/ p,−),

and

Vn = Cn ∩
⋂

(q,p)∈Gn+1

KerH1(K(q, p)⊗R −) ∩
⋂

[p,q]∈ZC ,C∈Hn+1

Ker(Rq/ p⊗R−).

Proof. Since ZC is a dense subset of C for any C ∈ Hn, and because Gn = G(Xn) =
G(X̄n) for each n ∈ Z, Proposition 5.10 implies

Cn =
⋂

(q,p)∈Gn

KerH0(K(q, p)⊗R −) ∩
⋂

[p,q]∈ZC ,C∈Hn

Ker TorR1 (Rq/ p,−).

The rest follows from Lemma 7.3. �

Lemma 7.5. Let 0→ X → Y → Z → 0 be an exact sequence. Then:
(i) If Y ∈ Cn+1 and X is an epimorphic image of some Vn ∈ Vn then Z ∈ Cn+1.
(ii) If Y ∈ Vn and Z ∈ Cn+1 then X ∈ Vn.

Proof. Throughout the proof, we will use the description of Vn of Corollary 7.4.
Let (q, p) ∈ Gn+1 with q 6= −∞. Then H0(K(q, p)⊗R −) ' TorR1 (Rq/ p,−), and

we have an exact sequence

TorR1 (Rq/ p, Y )→ TorR1 (Rq/ p, Z)→ Rq/ p⊗RX → Rq/ p⊗RY.
If Y ∈ Cn+1 then the leftmost term vanishes, and X being en epimorphic image
of some object from Vn ensures that Rq/ p⊗RX = 0. The condition (i) thus
implies TorR1 (Rq/ p, Z) = 0. In the situation of (ii), the rightmost term is zero and
TorR1 (Rq/ p, Z) vanishes, and thus Rq/ p⊗RX = 0.

If (−∞, p) is a gap in Gn+1, then H1(K(−∞, p) ⊗R −) is identically zero and
H0(K(−∞, p), Z) = p⊗RZ always vanishes because Z is an epimorphic image of
Y ∈ Cn+1.

Let [p, q] ∈ ZC for some C ∈ Hn+1. Then we have an exact sequence

TorR1 (Rq/ p, Y )→ TorR1 (Rq/ p, Z)→ Rq/ p⊗RX → Rq/ p⊗RY.
Similarly to the case above, the condition (i) makes the first and third entry of the
sequence from the left vanish, while condition (ii) zeros out the second and forth
term of the sequence, both time using Corollary 7.4.

Putting the conditions together, in (i) we have H0(K(q, p), Z) = 0 for all gaps
(q, p) ∈ Gn and TorR1 (Rq/ p, Z) = 0 for all [p, q] ∈ ZC for all C ∈ Hn+1, and
thus Z ∈ Cn+1 by Proposition 5.10. Under the assumptions of (ii) we obtained
that H1(K(q, p) ⊗R X) = 0 for all gaps (q, p) ∈ Gn+1 and Rq/ p⊗RX = 0 for
all [p, q] ∈ ZC and C ∈ Hn+1. It follows that X ∈ Dn+1. Indeed, since X is a
submodule of Y , X belongs to Cn, and therefore X ∈ Vn by Corollary 7.4. �

Lemma 7.6. Let Vn, n ∈ Z be the classes as above. If f : Vn → Vn+1 is a map
from Vn ∈ Vn to Vn+1 ∈ Vn+1 then Ker(f) ∈ Vn and Coker(f) ∈ Vn+1.

Proof. Consider the induced exact sequences

0→ K → Vn → I → 0,

and
0→ I → Vn+1 → C → 0,
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where K = Ker(f), C = Coker(f), and I = Im(f). Since I ∈ Cn+1, Lemma 7.5
shows that K ∈ Vn. Because I is an epimorphic image of a module Vn ∈ Vn
and Vn+1 ∈ Cn+1, the same lemma establishes that C ∈ Cn+1. Since C is also an
epimorphic image of Vn+1 ∈ Dn+2, also C ∈ Dn+2, and therefore C ∈ Vn+1. �

Lemma 7.7. For each n ∈ Z we have an inclusion Cn ∩ Dn ⊆ Dn+1.

Proof. Let M ∈ Cn ∩Dn and consider an interval [p, q] ∈ Xn+1. We distinguish the
two cases provided by Lemma 7.2.

One possibility is that there is a decreasing sequence ((qα, pα) | α < λ) of gaps
in Gn+1 such that

⋂
α<λ qα = q. Since Xn is a nested subsystem of Xn+1, for each

α < λ there is a gap (q′α, p
′
α) ∈ Gn which contains the gap (qα, pα) (meaning that

q′α ⊆ qα ⊆ pα ⊆ p′α).
The only other possibility is that there is C ∈ Hn+1 and a strictly decreasing

sequence ([pα, qα] | α < λ) of intervals in ZC indexed by a limit ordinal λ such that⋂
α<λ qα = q. Again, in view of Remark 6.13, each [pα, qα] is contained in a gap

(q′α, p
′
α) ∈ Gn.

In both cases, since M ∈ Cn and there is a gap (q′α, p
′
α) ∈ Gn with q′α ⊆ qα ( p′α,

we have
Γqα(M) ⊆ Γq′α

(M) = Soc p′α
(M) ⊆ Γqα(M),

and thus Fqα(M) = Fq′α
(M) for each α < λ. Because M ∈ Dn, Fqα(M) ∈

Mod-Rq′α
⊆ Mod-Rqα for each α < λ. As a conclusion, we infer that Fq(M) =

lim−→α<λ
Fqα(M) ∈ Mod-Rq. �

Proposition 7.8. Let R be a valuation domain. Then there is an assignment

Ξ :

{
admissible filtrations X

in Spec(R)

}
→
{

definable coaisles V
in D(R)

}
,

defined by setting

Ξ(X) = {X ∈ D(R) | Hn(X) ∈ Cn ∩ Dn+1 ∀n ∈ Z}.

Proof. Denote V = Ξ(X). It is enough to check that the classes Vn = Cn ∩ Dn+1

satisfy the conditions of Proposition 3.7. By Corollary 7.4, it is clear that Vn is
closed under direct limits, pure submodules, and extensions for each n ∈ Z. For
the rest of the proof, we fix n ∈ Z and prove all of the other conditions.

First we check that Vn ⊆ Vn+1. By Lemma 7.7, we have Vn = Cn ∩ Dn+1 ⊆
Cn+1∩Dn+1 ⊆ Dn+2. Because the inclusion Cn ⊆ Cn+1 is clear from the description
in Lemma 4.6, this step is established.

If f : Vn → Vn+1 is a map with Vi ∈ Vi for i = n, n + 1, then Ker(f) ∈ Vn and
Coker(f) ∈ Vn+1 by Lemma 7.6

Finally, we need to show that Vn is closed under direct products. Let (Mi | i ∈ I)
be a sequence of modules from Vn. Since Cn is a cosilting class, clearly

∏
i∈IMi ∈

Cn. We need to check that
∏
i∈IMi ∈ Dn+1. Let [p, q] ∈ Xn+1. We again separate

the two cases given by Lemma 7.2.
The first possibility is that there is a decreasing sequence ((qα, pα) | α < λ) of

gaps from Gn+1 with
⋂
α<λ qα = q. Since Xn is a nested subsystem of Xn+1, each

gap (qα, pα) is contained in some gap from Gn. The other possibility is by Lemma 7.2
the existence of C ∈ Hn+1 and a strictly decreasing sequence ([p′α, qα] | α < λ) of
intervals (note the change of notation here) in ZC indexed by a limit ordinal λ such
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that
⋂
α<λ qα = q. Again, in view of Remark 6.13, each [p′α, qα] is strictly contained

in a gap (q′α, pα) ∈ Gn.
In both cases, Mi ∈ Dn+1 implies Fqα(Mi) ∈ Mod-Rqα for each i ∈ I. Also,

becauseMi ∈ Cn for each i ∈ I, the gaps in Gn obtained in the preceding paragraph
with qα ( pα yield in view of Lemma 5.9 that Γqα(Mi) = Socpα(Mi) for all i ∈ I
and α < λ. Therefore, we can compute as follows:∏

i∈I
Γqα(Mi) =

∏
i∈I

Soc pα(Mi) = Soc pα(
∏
i∈I

Mi) ⊆ Γqα(
∏
i∈I

Mi) ⊆
∏
i∈I

Γqα(Mi).

From this we infer that Fqα(
∏
i∈IMi) '

∏
i∈I Fqα(Mi) ∈ Mod-Rqα . Since

⋂
α<λ qα =

q, we finally conclude that Fq(
∏
i∈IMi) ' lim−→α<λ

Fqα(
∏
i∈IMi) ∈ Mod-Rq. �

Finally, let us check that this construction is well-behaved with respect to the
admissible filtration constructed in Section 6.

Proposition 7.9. The composition Θ ◦ Ξ of the assignments defined in Proposi-
tion 6.16 and Proposition 7.8 is the identity on the set of all admissible filtrations
in Spec(R).

Proof. Let X = (Xn | n ∈ Z) be an admissible filtration, and let Θ(Ξ(X)) =
(X ′n | n ∈ Z) be the admissible filtration associated to the definable coaisle V =
Ξ(X). Because Vn ⊆ Cn, where Cn is the cosilting class corresponding to Xn via
Theorem 4.11, we clearly have that X ′n is a nested subsystem of Xn for each n ∈ Z.
It is enough to show that for each n ∈ Z and each interval [p, q] ∈ Xn, the module
Rp/ q belongs to Dn+1. Indeed, by the construction of Cn = CXn from Lemma 4.6,
the module Rp/ q belongs to Cn for any [p, q] ∈ Xn. If Rp/ q belongs also to Dn+1,
it belongs by definition to Vn, and thus [p, q] is contained in some interval from X ′n
by Lemma 6.7. As X ′n is a nested subsystem of Xn, this means that [p, q] ∈ X ′n.

Let [p′, q′] ∈ Xn+1. Then either [p′, q′] < [p, q], and then Rp/ q = Γq′(Rp/ q), or
[p, q] < [p′, q′], and then Rp/ q is already an Rq′ -module, or finally [p′, q′] contains
[p, q], in which case again Rp/ q is already an Rq′ -module. In all of the cases,
Fq′(Rp/ q) ∈ Mod-Rq′ , showing that Rp/ q ∈ Dn+1. �

Corollary 7.4 suggests that the constructed definable coaisles are given in the
derived category as orthogonal classes with respect to the derived tensor product.
This is indeed the case, and should be seen as the correct generalization of the
module theoretic case of Proposition 5.10 (cf. [Ba15, Theorem 6.11] and also [Hr18,
Proposition 5.10] for a similar type of description in the case of compactly generated
t-structures).

Proposition 7.10. Let R be a valuation domain and X = (Xn | n ∈ Z) an admis-
sible filtration in Spec(R). Let us define the following subset of D(R):

SX = { K(q, p)[n] | n ∈ Z, (q, p) ∈ Gn} ∪
∪ { Rq/ p[n− 1] | n ∈ Z, C ∈ Hn, [p, q] ∈ ZC}.

Then the definable coaisle V = Ξ(X) constructed from X by Proposition 7.8 is
tensor-semi-orthogonal to the set SX in the following sense:

V = {X ∈ D(R) | S ⊗L
R X ∈ D>0 ∀S ∈ SX}.

Proof. Let us denote C = {X ∈ D(R) | S ⊗L
R X ∈ D>0 ∀S ∈ SX} and prove that

V = C. By Proposition 3.7, the definable coaisle V is determined on cohomology.
By an application Künneth formula as in the proof of [BŠ17, Proposition 3.6], also
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the class C is determined on cohomology. It is therefore enough to check that
M [−n] ∈ V if and only if M [−n] ∈ C for any n ∈ Z and any R-module M . Using
that R is of weak global dimension at most one, we observe that M [−n] ∈ C if and
only if

(i) H0(K(q, p)⊗RM) = 0 = TorR1 (Rq′/ p
′,M) for each (q, p) ∈ Gn and [p′, q′] ∈

ZC , ∀C ∈ Hn, and
(ii) K(q, p) ⊗RM and Rq′/ p

′⊗L
RM are zero in D(R) for each (q, p) ∈ Gk and

[p′, q′] ∈ ZC , ∀C ∈ Hk for any k > n.
By Proposition 5.10, condition (i) is equivalent to M ∈ Cn. The condition (ii) says
equivalently that the 0-th and 1-th cohomologies of the complexes K(q, p) ⊗R M
and Rq/ p⊗RM vanish for all the prescribed indexing choices. The vanishing of
0-th cohomology again translates as M ∈ Ck ⊇ Cn, and therefore is vacuous. The
vanishing of the second cohomology is in view of Lemma 7.3 equivalent to M ∈ Dk
for all k > n. By Lemma 7.7, this is equivalent to M ∈ Cn ∩ Dn+1 = Vn, as
desired. �

We finish this section by an example of a definable coaisle constructed from
an admissible filtration whose admissible systems are not all nowhere dense, to
illustrate the degreewise non-density condition. Note that the resulting coaisle is
co-intermediate, and thus corresponds to an equivalence class of bounded cosilting
complexes via Theorem 2.4.

Example 7.11. The following example comes by adjusting [Ba15, Example 5.1].
Let R be a valuation domain with (Spec(R),⊆) order isomorphic to the set P =
[0, 1] × {0, 1} equipped with the lexicographic order (here [0, 1] denotes the closed
real interval), and such that all primes from Spec(R) are idempotent. Such a valua-
tion domain exists — there is a valuation domain R with Spec(R) order isomorphic
to P by [FS01, §II, Theorem 2.5 and Proposition 4.7], and it can be constructed in
a such a way that all primes are idempotent by [FS01, §II, Proposition 5.7 and the
following paragraph]. Let px (resp. qx) be the prime of Spec(R) corresponding to
the element [x, 0] (resp. [x, 1]) of P .

Let Z be a nowhere dense closed subset of [0, 1]. Then we define an admissible
filtration X = (Xn | n ∈ Z) on Spec(R) as follows:

Xn =


∅, n < 0,

{[px, px], [qx, qx] | x ∈ Z}, n = 0,

{[px, qx] | x ∈ [0, 1]}, n = 1,

{[0,m]}, n > 1.

Note that the sequence (Xn | n ∈ Z) is clearly nested. Since Z is closed, X0 satisfies
the completeness condition of Definition 4.2, and therefore forms an admissible
system. The set X1 is easily checked to form a dense everywhere admissible system
(cf. [Ba15, Example 5.1]). The degreewise non-density condition follows directly
from Z being a nowhere dense subset in [0, 1].

8. Bijective correspondence

Now it is time to finally establish that, working over any valuation domain R,
the two sections 6 and 7 provide two mutually inverse assignments for the set of all
definable coaisles in D(R) and the set of all admissible filtrations in Spec(R).
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We already know that the classes Vn coming from a definable coaisle V are
uniquely determined by the standard uniserial modules they contain — this is
Lemma 5.4. The next Lemma shows that in this situation, these uniserial modules
are determined by the associated admissible filtration.

Lemma 8.1. Let R be a valuation domain, and let V be a definable coaisle in D(R).
Let X = (Xn | n ∈ Z) be the admissible filtration associated to V by Definition 6.1.
Suppose that J/I ∈ Vn for some R-submodules I ⊆ J ⊆ Q of the quotient field and
some integer n. Then there are intervals [p, q] ∈ Xn and [p′, q′] ∈ Xn+1 such that
J/I admits a coresolution of the form

0→ J/I →M → N → 0,

where M is an Rq/ p-module and N is an Rq′/ p
′-module.

Proof. Since the case J = I is trivial, we can assume I ( J . By multiplying by a
scalar, we can also assume that I ( R ⊆ J . Since JI#/I ' J/I ⊗R RI# , we have
JI#/I ∈ Vn. For each r ∈ R\I, we have r−1JI#/r−1I ' JI#/I ∈ Vn, and therefore
also lim−→r∈R\I r

−1JI#/r−1I ' J ′/I# ∈ Vn, where J ′ =
⋃
r∈R\I r

−1JI# . Because

RI# ⊆ JI# ⊆ J ′, we have a natural inclusion κ(I#) ⊆ J ′/I#, and therefore
κ(I#) ∈ Vn by Lemma 6.4. In other words, I# ∈ Kn. Let p = ϕn(I#) and
q = ψn(I#), so that [p, q] ∈ Xn.

For all r ∈ R \ I, consider the map fr : J/I
·r−→ J/I given by multiplication

by r. Then Ker(fr) = r−1I/I ∈ Vn. Taking the directed union, we see that
I#/I =

⋃
r∈R\I r

−1I/I ∈ Vn. As p = ϕn(I#), we have Rp/I
# ∈ Vn by Lemma 6.2.

Since also I#/I ∈ Vn, we have that Rp/I ∈ Vn.
Denote K = AnnR(J/I), and let us show that p ⊆ K. Towards a contra-

diction, suppose that there is t ∈ p \K. Because t 6∈ K, necessarily t−1I ⊆ J .
Then Ker(J/I

·t−→ J/I) = t−1I/I ∈ Vn. Since Vn is closed under extensions, also
t−kI/I ' I/tkI ∈ Vn for all k > 0. It follows that Rp/t

kI ' t−kRp/I ∈ Vn for
all k > 0, and therefore by passing to the direct limit over k > 0, Rot/I ∈ Vn
for a prime ideal ot ( tR ⊆ p. Doing this for all t ∈ p \K, and taking the di-
rect limit, we can see that Ro/I ∈ V, where o =

⋂
t∈p \K ot. Then o ⊆ K ⊆ I,

and thus Ro/I
# ' lim−→r∈R\I Ro/r

−1I ∈ Vn, a contradiction with the definition of

p = ϕn(I#). Therefore, indeed p ⊆ K.
We set M = Jq/I. As M = J/I⊗RRq, we have M ∈ Vn. Since I# ⊆ q, M is an

Rq-module. Observe that AnnR(M) = K, and thus by the previous paragraph M
is an Rq/ p-module. Denote N the cokernel of the natural inclusion J/I ⊆ Jq/I,
that is, N ' Jq/J . Let p′ = ϕn+1(I#), and q′ = ψn+1(I#). Since [p, q] ∈ Xn, we
know that p′ ⊆ p and q ⊆ q′. We have U/J# ' lim−→q∈Q\J(q−1Jq/q

−1J) ∈ Vn+1,
where U =

⋃
q∈Q\J q

−1Jq (U = Q in the case J = Q). We want to show that
J# ⊆ q′. Towards a contradiction, assume q′ ( J#. There are two cases. Either
Rq ⊆ U , then consider the exact sequence:

0→ Rq/J
# → U/J# → U/Rq → 0.

The middle term is in Vn+1, and U/Rq is an Rq-module. Since U ⊆ Jq, we have
AnnR(U/Rq) ⊇ AnnR(Jq/Rq) = AnnR(J/R)q ⊇ AnnR(J/I)q = Kq ⊇ K ⊇ p.
Therefore, U/Rq is an Rq/ p-module, and whence U/Rq ∈ Vn+1. It follows that
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Rq/J
# ∈ Vn+1. The other case is U ( Rq, here we consider the exact sequence:

0→ U/J# → Rq/J
# → Rq/U → 0.

We know that U/J# ∈ Vn+1, and that Rq/U is an Rq-module. We know that
J# ⊆ U , and by the assumption, q ⊆ q′ ⊆ J#. Therefore, p ⊆ q′ ⊆ J# ⊆ U =
AnnRq

(Rq/U), and therefore Rq/U is an Rq/ p-module, and thus Rq/U ∈ Vn+1 by
Lemma 6.7(i). It follows again that Rq/J

# ∈ Vn+1.
We showed that Rq/J

# ∈ Vn+1, which is a contradiction with q′ ( J#, since
ψn+1(q) = ψn+1(I#) = q′. Finally, note that AnnR(Jq/J) = RJ# q ⊇ q ⊇ p ⊇ p′.
Because we already proved that q′ ⊇ J#, we see that N = Jq/J is an Rq′/ p

′-
module. �

Corollary 8.2. Let R be a valuation domain and let V, V ′ be two definable coaisles
in D(R). Then Θ(V) = Θ(V ′) implies V = V ′.

Proof. Denote the admissible filtration by Θ(V) = (Xn | n ∈ Z). By Proposi-
tion 3.7, both V and V ′ are determined by the cohomological projections Vn =
Hn(V) and V ′n = Hn(V ′) for all n ∈ Z, respectively. By Lemma 5.4, the classes
Vn and V ′n are fully determined by the standard uniserial modules of the form
J/I they contain, where I ⊆ J ⊆ Q. For any n ∈ Z and any standard uniserial
module J/I ∈ Vn, we have by Lemma 8.1, that there are intervals [p, q] ∈ Xn and
[p′, q′] ∈ Xn+1, and a coresolution

0→ J/I →M → N → 0,

such that M ∈ Mod-(Rq/ p), and N ∈ Mod-Rq′/ p
′. Using Lemma 6.7(i), and the

assumption Θ(V ′) = Θ(V), we see that M ∈ V ′n and N ∈ V ′n+1. As J/I is the
kernel of a map M → N , we infer using Proposition 3.7 that J/I belongs to V ′n. A
symmetric argument shows that any standard uniserial module from V ′n belongs to
Vn for all n ∈ Z. We conclude that Vn = V ′n for all n ∈ Z, and therefore V = V ′. �

Theorem 8.3. Let R be a valuation domain. Then there is a bijective correspon-
dence {

admissible filtrations X
in Spec(R)

}
↔
{

definable coaisles V
in D(R)

}
induced by the mutually inverse assignments Ξ and Θ from Proposition 7.8 and
Proposition 6.16.

Proof. By Proposition 7.8 and Proposition 6.16, both Ξ and Θ are well-defined.
Furthermore, by Proposition 7.9 and Corollary 8.2, these assignments are mutually
inverse. �

In view of Remark 6.17, the classification of smashing subcategories [BŠ17, The-
orem 5.23] and of cosilting modules Theorem 4.11 are special cases of Theorem 8.3.
Also we get the following classification of bounded cosilting complexes as another
consequence. Let us call an admissible filtration X = (Xn | n ∈ Z) bounded pro-
vided that there are integers m < l such that Xm = ∅ and Xl = {[0,m]}, where m
is the maximal ideal.

Theorem 8.4. Let R be a valuation domain. Then there is a bijective correspon-
dence{

bounded admissible filtrations X
in Spec(R)

}
↔
{

bounded cosilting complexes
in D(R) up to equivalence

}
.
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Proof. By Theorem 2.4, a t-structure (U ,V) in D(R) is induced by a bounded
cosilting complex if and only if V co-intermediate and definable. Also, recall that
the equivalence of two cosilting complexes amount precisely to them inducing the
same t-structure. Finally, it is easy to see that a t-structure corresponding to an
admissible filtration X is co-intermediate precisely when X is bounded. In this way,
the correspondence is given by restricting the correspondence from Theorem 8.3.

�

As we will demonstrate in the last section of the paper, there exist pure-injective
cosilting complexes over valuation domains which are not bounded.

8.1. Compactly generated t-structures. The compactly generated t-structures
over an arbitrary commutative ring were classified in [Hr18], generalizing the result
for noetherian rings in [AJS10], in terms of decreasing sequences of Thomason
subsets of the Zariski spectrum of the ring, see [Hr18, Theorem 5.6]. Recall that a
subset X of Spec(R) is Thomason if it is an arbitrary union of Zariski closed sets
V (I) with I finitely generated. When R is a valuation domain, then the Thomason
sets are precisely the sets of the form X = Spec(R) or Xq = {p ∈ Spec(R) | q ( p},
where q is any prime ideal. Indeed, if X 6= Spec(R) then X = Xq, where q is the
greatest element of (Spec(R) \ X,⊆). Conversely, for any q ∈ Spec(R) we have
that Xq =

⋃
r∈R\q V (rR) is a Thomason set. In other words, Thomason sets over

valuation domains correspond to saturated multiplicative sets of elements. In the
following we make explicit the way this result translates for valuation domains in
terms of admissible filtrations.

Proposition 8.5. Let R be a valuation domain and X = (Xn)n∈Z an admissible
filtration in Spec(R). Let V = Ξ(X) be the definable coaisle corresponding to X via
Theorem 8.3 and let (U ,V) be the induced t-structure. Then the following conditions
are equivalent:

(i) the t-structure (U ,V) is compactly generated,
(ii) for each n ∈ Z, the admissible system Xn is either empty or it is a singleton

of the form Xn = {[0, qn]} for some prime ideal qn.

Proof. First, assume (ii). Together with the definition of an admissible filtration,
this means that there is a lower bound N ∈ Z ∪ {−∞} such that

(7) Xn =

{
∅, n < N

{[0, qn]}, n ≥ N.
.

As a consequence, Vn = {0} whenever n < N and Vn consists precisely of those
R-modules which are both qn-torsion-free and qn+1-divisible for any n ≥ N . There-
fore, Vn is closed under injective envelopes for all n ∈ Z. By Proposition 3.10, the
t-structure (U ,V) is compactly generated.

For the converse implication, we use the classification from [Hr18]. Let Φ be the
Thomason filtration Φ on Spec(R) corresponding to U via [Hr18, Theorem 5.6]. By
the definition of a Thomason filtration [Hr18, §3] and the discussion above, there
is a bound N ∈ Z ∪ {−∞} and prime ideals qn, n ≥ N such that

Φ(n) =

{
∅, n < N

Xqn = {p ∈ Spec(R) | qn ( p}, n ≥ N.
.
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Since Φ(n) ⊇ Φ(n+ 1) by the definition of Thomason filtration, we have qn ⊆ qn+1

for each n ∈ Z. Therefore, the formula (7) defines an admissible filtration X =
(Xn)n∈Z. We claim that V = Ξ(X).

By the way the correspondence [Hr18, Theorem 5.6] works, we have the following
description of the aisle:

V = {X ∈ D(R) | RHomR(R/sR,X) ∈ D>n ∀s ∈ R, V (sR) ⊆ Φ(n) ∀n ∈ Z}.

By Proposition 3.5, it is enough to check that the definable subcategories V and
Ξ(X) coincide on cohomology. But clearly, an R-moduleM belongs to Vn if and only
if HomR(R/sR,M) = 0 = Ext1

R(R/tR,M) for each s 6∈ qn and t 6∈ qn+1, which by a
standard computation amounts to M being qn-torsion-free and qn+1-divisible. �

8.2. Application to Question A. A valuation domain R is called strongly dis-
crete if the only idempotent ideal of R is zero. The following results should be
compared with the case of smashing subcategories [BŠ17, Theorem 7.2] and 1-
cotilting modules [Ba07, Corollary 4.6].

Corollary 8.6. Let R be a valuation domain. Then the following conditions are
equivalent:

(i) R is strongly discrete,
(ii) any t-structure on D(R) with a definable coaisle is compactly generated.

Proof. If R is strongly discrete then since 0 is the only idempotent prime ideal of
R, an admissible system X in Spec(R) can only be either empty or of the form
X = {[0, q]} for some prime ideal q. Then any definable coaisle belongs to a
compactly generated t-structure by Theorem 8.3 together with Proposition 8.5.

The converse implication follows from [BŠ17, Theorem 7.2]. �

Recall that valuation domains are precisely the local commutative rings of weak
global dimension at most one. The next natural step is therefore to establish a
global version of Corollary 8.6.

Lemma 8.7. Let R be a commutative ring and (U ,V) a t-structure such that V is
definable. For any prime p ∈ Spec(R), define subcategories

Up = {X ⊗R Rp | X ∈ U}, and

Vp = {X ⊗R Rp | X ∈ V}
of D(R). Then (Up,Vp) is a t-structure in D(Rp), Vp is definable in D(Rp), and
we have the inclusions Up ⊆ U and Vp ⊆ V.

Proof. First, recall that V is closed under directed homotopy colimits, and U is
closed under (any) homotopy colimits by [SŠV17, Proposition 4.2]. Since Rp is a
flat R-module, X ⊗R Rp ∈ V for any X ∈ V, and the analogous statement holds
for the aisles. Therefore, Up ⊆ U and Vp ⊆ V.

It is clear that for any U ∈ Up and any V ∈ Vp,

Hom D(Rp)(U, V ) ' Hom D(R)(U, V ) = 0,

and that Up[1] ⊆ Up. Let X be an object of D(Rp) and consider the approximation
triangle of X with respect to (U ,V) in D(R):

U → X → V → U [1].



52 SILVANA BAZZONI AND MICHAL HRBEK

Localizing this triangle at p, we see by the uniqueness of approximation triangles
that U ∈ Up and V ∈ Vp. This shows that (Up,Vp) is a t-structure in D(Rp).

Finally, let Φ ⊆ Dc(R) be a set witnessing the definability of V, that is,

V = {X ∈ D(R) | Hom D(R)(f,X) is surjective for all f ∈ Φ}.

Then for any Y ∈ D(Rp) we have by the ⊗L
R-RHomR adjunction that there is a

natural isomorphism

Hom D(Rp)(f ⊗R Rp, Y ) ' Hom D(R)(f, Y ),

which means that Y ∈ Vp if and only if HomD(Rp)(f ⊗R Rp, Y ) is surjective for all
f ∈ Φ. Since f ⊗R Rp is a map in Dc(Rp) for any f ∈ Dc(R), this establishes the
definability of Vp in D(Rp). �

Theorem 8.8. Let R be a commutative ring of weak global dimension at most one.
Then the following conditions are equivalent:

(i) there is no p ∈ Spec(R) such that pRp is a non-zero idempotent ideal in
Rp,

(ii) any t-structure on D(R) with a definable coaisle is compactly generated.

Proof. Assume (i), and let (U ,V) be a t-structure with V definable. By (i), Rp

is a strongly discrete valuation domain for each p ∈ Spec(R), and therefore, using
Lemma 8.7, (Up,Vp) is compactly generated for each p ∈ Spec(R) by Corollary 8.6.
By Proposition 3.10, the subcategories (Vp)n of Mod-Rp are closed under injective
envelopes for any p ∈ Spec(R) and n ∈ Z. By the same Proposition, it is enough to
show that Vn is closed under injective envelopes for each n ∈ Z. Let M ∈ Vn, and
let E be the injective envelope of M . For any p ∈ Spec(R), the module Mp belongs
to (Vp)n ⊆ Vn, again using Lemma 8.7 for the last inclusion. The natural map ι :
M →

∏
p∈Spec(R)Mp is a monomorphism. Since R→ Rp is a flat ring epimorphism,

the injective envelope E(Mp) in Mod-Rp is an injective R-module. Therefore, we
can use the injectivity to extend ι to a map ϕ : E →

∏
p∈Spec(R)E(Mp). As ϕ

extends ι, andM is essential in E, it follows that ϕ is a monomorphism. Therefore,
E is a direct summand in

∏
p∈Spec(R)E(Mp). But

∏
p∈Spec(R)E(Mp) ∈ Vn, and

thus E ∈ Vn.
The converse implication follows again from [BŠ17, Theorem 7.2]. �

9. Homological ring epimorphisms versus density

Let R be a valuation domain and X = (Xn | n ∈ Z) an admissible filtration in
Spec(R). We call such a sequence nowhere dense if the admissible system Xn is
nowhere dense for all n ∈ Z. Note that X is a nowhere dense admissible filtration
if and only if it is just a nested sequence of nowhere dense admissible systems.

The aim is to show that the coaisles corresponding to nowhere dense admissible
filtrations via Theorem 8.3 are precisely those arising from a chain of homological
epimorphisms via Proposition 3.14. The starting point is the following classification
of homological ring epimorphism from [BŠ17]:

Theorem 9.1. ([BŠ17, Theorem 5.23]) Let R be a valuation domain. Then there
is a bijection between:

(i) nowhere dense admissible systems X in Spec(R), and
(ii) epiclasses of homological ring epimorphisms λ : R→ S.
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The bijection (ii) → (i) assigns to λ the set of all intervals obtained as follows:
For each maximal ideal n ∈ mSpec(S), the composition map R

λ−→ S
can−−→ Sn is

equivalent to the natural map R→ Rq/ p for some interval [p, q] in Spec(R) with p
idempotent. Then X is the collection of all intervals obtained by going through all
maximal ideals of the commutative ring S ([BŠ17, Proposition 5.5(2)]).

Combining Theorem 9.1 and Theorem 3.13, we see that nowhere dense admissi-
ble systems in Spec(R) correspond to extension-closed bireflective subcategories of
Mod-R. The next step is to compute these subcategories.

Lemma 9.2. Let R be a valuation domain and X be a nowhere dense admissible
system in Spec(R). Then the extension-closed bireflective subcategory Mod-S ' B ⊆
Mod-R corresponding to the homological epimorphism λ : R→ S via Theorem 3.13,
which in turn corresponds to X via Theorem 9.1, can be written as follows:

B = {M ∈ Mod-R | K(q, p)⊗RM is exact for all (q, p) ∈ G(X )}.

Furthermore, we can write B = C∩D, where C is the cosilting class corresponding
to X via Theorem 4.11, and D is the class of those R-modulesM such that Fq(M) ∈
Mod-Rq for each gap (q, p) ∈ G(X ) (cf. §7).

Proof. Put B′ = {M ∈ Mod-R | K(q, p) ⊗R M is exact for all (q, p) ∈ G(X )} and
let us start by showing that B′ is an extension-closed bireflective subcategory in
Mod-R. Since X is nowhere dense, the constant sequence X = (Xn | n ∈ Z) defined
by Xn = X for all n ∈ Z is an admissible filtration, as the degreewise non-density
condition is satisfied trivially. Let V be the definable coaisle corresponding to X via
Proposition 7.8. Since X is constant, Vn = Vn+1 for all n ∈ Z, and by the definition
of V, Vn = C ∩D. Furthermore, Corollary 7.4 together with X being nowhere dense
implies that Vn = B′. By Proposition 3.7, Vn is closed under products, coproducts,
extensions, kernels, and since Vn = Vn−1, also under cokernels. Equivalently, B′ is
an extension-closed bireflective subcategory of Mod-R.

It remains to show that B′ = B, that is, that B′ equals the image of the fully
faithful forgetful functor Mod-S → Mod-R. Let τ : R → T be a homological
epimorphism corresponding to B′ via Theorem 3.13, and let Y be the nowhere
dense admissible system corresponding to τ via Theorem 9.1. Since B′ = B if and
only if the ring epimorphisms λ and τ inhabit the same epiclass (Theorem 3.13),
by Theorem 9.1 it is enough to show that Y = X . For each [p, q] ∈ Y there is a
maximal ideal m of T such that Tm ' Rq/ p. Since T ∈ B′, also Tm ∈ B′, and thus
Rq/ p ∈ B′ = C ∩ D. Since B′ is bireflective, this implies Mod-(Rq/ p) ⊆ B′. Thus
by Lemma 6.7 [p, q] has to be contained in some interval from X , and so Y is a
nested subsystem of X . Now let [p, q] ∈ X . Since Rq/ p ∈ B′, there is a homological
ring epimorphism γ : T → Rq/ p. As Rq/ p is a local ring, there is a maximal
ideal m of T such that γ factorizes as T can−−→ Tm → Rq/ p. Then Tm ' Rq′/ p

′

for some [p′, q′] ∈ Y. Because the latter factorization produces a ring epimorphism
Rq′/ p

′ → Rq/ p, the interval [p, q] ∈ X has to be included in [p′, q]′ ∈ Y. But Y is
a nested subsystem of X , and thus [p, q] = [p′, q′] and consequently, X = Y. �

Lemma 9.3. Let R be a valuation domain, and X0,X1 be two nowhere dense
admissible systems in Spec(R) such that X0 is a nested subsystem of X1. Let B0

and B1 be the extension-closed bireflective subcategories corresponding to X0 and
X1, respectively. Then B0 ⊆ B1.
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Proof. By Lemma 9.2, we have for all i = 0, 1 that

Bi = Ci ∩ Di,

where Ci is the cosilting class corresponding to Xi, and Di consists of those modules
M such that Fq(M) ∈ Mod-Rq for all gaps (q, p) ∈ G(Xi) with q ∈ Spec(R). Since Xi
is nowhere dense for i = 0, 1, the sequence (X0,X1) can extended to an admissible
filtration by setting Xn = X0 for n < 0 and Xn = X1 for n > 1. Let V be the
definable coaisle corresponding to this admissible filtration by Theorem 8.3. Then
we simply observe that

B0 = C0 ∩ D0 = V−1 ⊆ V0 = C0 ∩ D1 ⊆ V1 = C1 ∩ D1 = B1,

which establishes the proof. �

Theorem 9.4. Let R be a valuation domain and V be a definable coaisle in D(R).
Then the two following conditions are equivalent:

(i) the admissible filtration X corresponding to V via Theorem 8.3 is nowhere
dense,

(ii) V arises from a chain of homological ring epimorphisms as in Proposi-
tion 3.14.

Proof. Let us start with a definable coaisle V corresponding in the sense of Theo-
rem 8.3 to a nowhere dense admissible filtration X. By Lemma 9.3, the admissible
filtration X induces a sequence of extension-closed bireflective subcategories

(8) · · · ⊆ Bn−1 ⊆ Bn ⊆ Bn+1 ⊆ · · · ,

and thus, by the discussion in (3.5), a chain of homological epimorphisms. Let

V ′ = {X ∈ D(R) | Hn(X) ∈ Cogen(Bn) ∩ Bn+1 ∀n ∈ Z}

be the definable coaisle induced by this chain via Proposition 3.14. Let X′ be the
admissible filtration corresponding to V ′ by Theorem 8.3. Fix an integer n ∈ Z.
If [p, q] ∈ Xn, then Rq/ p ∈ Bn, which implies that Rp/ q ∈ Bn, and thus Rp/ q ∈
Cogen(Bn) ∩ Bn+1. This means that [p, q] is contained in some interval from X ′n
by Lemma 6.7(ii). On the other hand, let [p, q] ∈ X ′n. Then Rp/ q ∈ Cogen(Bn).
But by Lemma 9.2 and Proposition 5.10, Bn is contained in the cosilting class Cn
corresponding to Xn via Theorem 4.11, and thusRp/ q belongs to Cn. But asRp/ q is
an Rq/ p-module, it also belongs to Dn (as defined in §7, also see Proposition 7.9),
and whence to Vn by Lemma 7.7. This implies that [p, q] is contained in some
interval from Xn again by Lemma 6.7(ii). Using the disjoint property of admissible
systems, we showed that X = X′, and thus V = V ′ by Theorem 8.3. In particular,
V is induced by a chain of homological epimorphisms.

For the converse, let V be a definable coaisle arising from a sequence (8) of
extension-closed bireflective subcategories. For each n ∈ Z, let Xn be a nowhere
dense admissible system corresponding to Bn via Theorem 9.1. First, we claim that
the sequence X = (Xn | n ∈ Z) is an admissible filtration. Since the admissible
systems Xn are nowhere dense, it is enough to show that Xn is a nested subsystem
of Xn+1 for each n ∈ Z. Let µn : Sn+1 → Sn be a homological epimorphism
induced by the inclusion Bn ⊆ Bn+1. If [p, q] ∈ Xn then Theorem 9.1 implies that
there is a ring epimorphism Sn → Rq/ p, and therefore we have a ring epimorphism
ν : Sn+1 → Rq/ p. Let o = ν−1[q / p] ∈ Spec(Sn+1), and let n ∈ mSpec(Sn+1) be
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any maximal ideal of Sn+1 containing o. Then we have a chain of ring epimorphism
as follows:

Sn+1
can−−→ (Sn+1)n

ν⊗R(Sn+1)n−−−−−−−−→ Rq/ p .

By Theorem 9.1, (Sn+1)n is isomorphic to Rq′/ p
′ for some interval [p′, q′] ∈ Xn+1.

Then we have a ring epimorphism Rq′/ p
′ → Rq/ p, which implies that [p′, q′] con-

tains [p, q]. We showed that X is an admissible filtration.
Let V ′ be a definable coaisle corresponding to X via Theorem 8.3. Then V = V ′

by the first part of the proof. �

Remark 9.5. • If R is a valuation domain such that Spec(R) is countable,
then each admissible system is nowhere dense. Indeed, if X is an admissible
system on Spec(R), then X is countable as well. If there was a dense inter-
val ξ < χ in (X ,≤), then the restriction of the order to this interval would
yield a non-trivial countable totally ordered set which is order-complete
and dense. By a classical result of Cantor, any countable dense totally or-
dered set embeds into (Q,≤), a contradiction with the order-completeness.
Therefore, for any valuation domain with a countable Zariski spectrum,
any admissible filtration is nowhere dense, and thus by Theorem 9.4 any
definable coaisle is induced by a chain of homological ring epimorphisms.

• On the other hand, [Ba15, Example 5.1 and Remark 5.2] and Example 7.11
provide examples of definable coaisles over a valuation domain not induced
by a chain of homological ring epimorphisms.

9.1. Compactly generated t-structures revisited. Let R be a valuation do-
main. Proposition 8.5 shows that the admissible filtrations X = (Xn | n ∈ Z)
corresponding to compactly generated t-structures are precisely those such that Xn
is either empty or a singleton consisting of an interval of the form [0, qn] for some
qn ∈ Spec(R). On the other hand, such admissible systems are precisely those cor-
responding to flat ring epimorphisms via Theorem 9.1, since flat ring epimorphisms
over R coincide with the classical localizations by [BŠ17, Proposition 5.4]. In this
way, we obtain the following result:

Theorem 9.6. Let R be a valuation domain and V be a definable coaisle in D(R).
Then the two following conditions are equivalent:

(i) the t-structure (U ,V) is compactly generated,
(ii) V arises from a chain of flat ring epimorphisms as in Proposition 3.14.

9.2. Non-degeneracy and unbounded cosilting objects. The final goal is to
restrict Theorem 8.3 to those definable coaisles, which belong to non-degenerate
t-structures. In other words, to identify those definable coaisles, which are induced
by a pure-injective cosilting object of D(R) (see Corollary 2.3). We will show
that the right part of the non-degeneracy condition can only be achieved if the
coaisle is cohomologically bounded below. On the other hand, we will exhibit in
Example 9.10 a definable coaisle for which the left part of the non-degeneracy
condition is achieved non-trivially. In other words, any coaisle induced by a pure-
injective cosilting complex over a valuation domain is cohomologically bounded from
below, but there are such which are not co-intermediate. In particular, any pure-
injective cosilting complex over a valuation domain is cohomologically bounded
below, but there are pure-injective cosilting complexes which are not bounded
cosilting complexes.
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Lemma 9.7. Let R be a valuation domain and V be a definable coaisle Then⋂
n∈Z V[n] = 0 if and only if there is l ∈ Z such that V ⊆ D>l.

Proof. The “if” statement is trivial, thus we need to show just the “only if” impli-
cation. Let Θ(V) = (Xn | n ∈ Z) be the admissible filtration corresponding to V.
Since

⋂
n∈Z V[n] = 0, for each prime p ∈ Spec(R) there is an integer mp such that

κ(p)[n] 6∈ V for any n > mp. Therefore, if we let Kn = {p ∈ Spec(R) | κ(p)[−n] ∈
V} be the subset of Spec(R) used in Definition 6.1 for each n ∈ Z, we see that⋂
n∈ZKn = ∅.
It is enough to show that there is l ∈ Z such that Kl = ∅. Indeed, then necessarily

Xl = ∅, and thus V ⊆ D>l by Theorem 8.3. Towards contradiction, suppose that
Kn 6= ∅ for all n ∈ Z, and choose for each n > 0 a prime ideal pn ∈ K−n.

We claim that the sequence (pn | n > 0) contains an infinite monotone subse-
quence. This follows by adapting the classical Bolzano-Weierstrass Theorem from
the theory of metric spaces to our situation. Indeed, let B ⊆ Z>0 be the set of all
those positive integers b such that pn ( pb for all n > b. If B is an infinite set,
then the subsequence (pb | b ∈ B) is clearly strictly decreasing, and we are done.
If otherwise B is finite, let b ∈ B be its maximal element. Define an increasing se-
quence k1, k2, k3, . . . of positive integers by the following induction. Set k1 = b+ 1.
For each m > 1, we have by induction that km−1 ≥ k1 > b, and thus km−1 6∈ B.
Therefore, there is km > km−1 such that pkm−1

⊆ pkm . In this way, we have defined
an increasing subsequence (pkn | n > 0), establishing the claim.

Let p be the limit of the monotone subsequence of (pkn | n > 0) obtained in
the previous paragraph, that is, p is either the union or the intersection of such
sequence, depending on whether the subsequence is increasing or decreasing. By
the proof of Lemma 6.10, and since {pkm | m ≥ −n} ⊆ Kn, we have p ∈ Kn for all
n < 0. Therefore, p ∈

⋂
n∈ZKn, which is a contradiction. �

Corollary 9.8. Let R be a valuation domain. Then any pure-injective cosilting
object in D(R) is cohomologically bounded below.

Proof. Let (U ,V) = (⊥≤0C,⊥>0C) be the t-structure in D(R) induced by C. By
Theorem 2.2 and Corollary 2.3, (U ,V) is a non-degenerate t-structure such that V
is definable. Therefore, there is l ∈ Z such that V ⊆ D>l by Lemma 9.7. Since
C ∈ V, the claim follows. �

We conclude the paper with several examples of definable coaisles. Examples
9.9 and 9.11 illustrate that for the second part of the non-degeneracy condition,
it is not enough to consider the “support” sets Kn, and that it is also not enough
to assume that the smallest admissible system containing Xn for all n ∈ Z is the
maximal one, that is {[0,m]}. The promised Example 9.10 exhibits a t-structure
induced by a non-bounded cosilting complex.

Example 9.9. Let R be a valuation domain such that Spec(R) = {0,m} and such
that m = m2. Such a valuation domain can be constructed by the means of [FS01,
§II, Theorem 3.8] with the value group chosen for example as R. Consider the
admissible filtration X defined as follows:

Xn =

{
∅, n < 0

{[0, 0], [m,m]}, n ≥ 0.
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Then X is nowhere dense and corresponds via Theorem 9.4 to a chain of homological
epimorphism of the following form

· · · ← 0← 0← Q×R/m← Q×R/m← Q×R/m← · · ·
We claim that the corresponding t-structure (U ,V) is not non-degenerate. Note
that clearly

⋂
n∈Z V[n] = 0. Set L =

⋂
n∈Z U [n]. Since

L = ⊥ZV = {X ∈ D(R) | Hom D(R)(X,V [i]) = 0 ∀V ∈ V, i ∈ Z},

we have that L = 0 if and only if (⊥ZV)⊥0 = D(R). But clearly V ⊆ D(Q×R/m),
where the derived category of the homological epimorphism R→ Q×R/m is viewed
as a full subcategory of D(R). Since D(Q×R/m) is a coaisle of a stable t-structure
in D(R) (see e.g. [Kr08, 5.9]), we have (⊥ZV)⊥0 ⊆ D(Q×R/m), and hence L 6= 0.
Therefore, we have that

⋂
n∈Z U [n] 6= 0, while

⋃
n∈ZKn = K0 = Spec(R).

Example 9.10. Let R be a valuation domain such that

Spec(R) = {0 = q 0 ( q 1 ( q 2 ( · · · ( q n ( · · · ⊆ m}.
Such a valuation domain can be constructed again with the use of [FS01, §II,
Theorem 3.8], the value group can be chosen as Z(ω) with the lexicographic order,
and since the maximal ideal m is the union of a strictly increasing sequence of
primes, it is necessarily idempotent, see Lemma 4.1(iv). Consider the admissible
filtration X defined as follows:

Xn =

{
∅, n < 0

{[0, qn], [m,m]}, n ≥ 0.

Then X is nowhere dense and corresponds via Theorem 9.4 to a chain of homological
epimorphism of the following form

· · · ← 0← 0← Q×R/m← Rq1
×R/m← Rq2

×R/m← · · ·
We claim that the corresponding t-structure (U ,V) is non-degenerate. Indeed,
clearly

⋂
n∈Z V[n] = 0. Set L =

⋂
n∈Z U [n] and let us show that L = 0. Fix L ∈ L

Since D(Rqn)≥n ⊆ V, then L⊗RRqn = 0 in D(R) for any n ∈ Z. Therefore, Hn(L)
is annihilated by m for all n ∈ Z, and since m is flat, this means that L⊗R m = 0
in D(R). By [Kr08, 5.9], there is a triangle

L⊗R m→ L→ L⊗L
R R/m→ L⊗R m[1],

and therefore L ' L ⊗L
R R/m ∈ D(R/m). But since R/m ∈ V, this implies that

L = 0.
We showed that (U ,V) is non-degenerate, but since Vn ⊆ Mod-(Rqn+1

× R/m)

for all n ≥ 0, (U ,V) is not co-intermediate. Therefore, (U ,V) is induced by a
pure-injective cosilting complex which is not bounded.

Example 9.11. Let R be the same valuation domain as in Example 9.10, and
consider the admissible filtration X defined as follows:

Xn =

{
∅, n < 0

{[0, qn]}, n ≥ 0.

Then X is nowhere dense and corresponds via Theorem 9.4 to a chain of homological
epimorphism of the following form

· · · ← 0← 0← Q← Rq1
← Rq2

← · · ·
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We claim that the corresponding t-structure (U ,V) is not non-degenerate. Set
L =

⋂
n∈Z U [n] and let us show that L = D(R/m) 6= 0. By an argument similar

to Example 9.10, we see that L ⊆ D(R/m). Let X ∈ D(R/m), and let us show
that HomD(R)(X,V) = 0. Then X is quasi-isomorphic to a split complex of R/m-
modules, and therefore we can without loss of generality assume that X is a stalk
complex, say X = R/m(κ)[−n] for some cardinal κ. For any V ∈ V we have
HomD(R)(X,V ) ' HomD(R)(X, τ

≤nV ), where τ≤nV is the soft truncation of V to
degrees ≤ n. Since V ∈ V, we have that τ≤nV ∈ D(Rqn+1

). But X ⊗R Rqn+1
= 0,

and thus HomD(R)(X, τ
≤nV ) = 0.

Then X corresponds to a t-structure which is not non-degenerate, even though
the smallest admissible system containing Xn as a nested subsystem for all n ∈ Z
is clearly the maximal admissible system {[0,m]}.
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