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Abstract
In this paper we address the problem of approximating functions with discontinuities
via kernel-based methods. The main result is the construction of discontinuous kernel-
based basis functions. The linear spaces spanned by these discontinuous kernels lead
to a very flexible tool which sensibly or completely reduces thewell-knownGibbs phe-
nomenon in reconstructing functions with jumps. For the new basis we provide error
bounds and numerical results that support our claims. The method is also effectively
tested for approximating satellite images.
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Mathematics Subject Classification 65D05 · 65D15 · 41A05 · 41A25

1 Introduction

Radial Basis Function (RBF)methods (refer e.g. to [13,14,29,32]) have become one of
the most popular tools for solving multidimensional scattered data problems. Thanks
to their independence from the mesh and to their easy implementation, they apply in
a variety of fields, such as population dynamics, machine (deep) learning, solution of
PDEs and image registration.
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Even if such meshfree approaches have been extensively studied in the recent
years, especially focusing on the efficiency and stability of the interpolant (cf.
e.g. [3,4,10,16]) not much effort has been addressed to construct robust approxi-
mants for functions with jumps. Indeed, infinitely smooth RBFs, such as Gaussians
and Multiquadrics, theoretically show spectral accuracy, which is no longer pre-
served when interpolating functions with discontinuities. This fact, first observed
in the context of truncated Fourier expansions and later used to characterize non-
physical oscillations in approximating discontinuous functions, is known as Gibbs
phenomenon.

Tomitigate this effect for kernel-based approximation, one can use linear RBFs (see
e.g. [15] for a general overview). This has been done in [20], where the Multiquadric
has been replaced by the linear spline in regions around discontinuities. Alternatively,
post-processing techniques, such as Gegenbauer reconstruction procedure [18] or dig-
ital total variation [28], are well-established tools. Finally, we point out that also the
so-calledVariably ScaledKernels (VSKs) [1] are truly performingwhen reconstructing
functions with gradient discontinuities, as shown also in [27].

Based on the last mentioned paper, and on the considerations about the usage of
discontinuous bases for approximation purposes discussed in [30], here we propose a
novel method which uses discontinuous kernels. The associated basis, constructed by
means of what we call Variably Scaled Discontinuous Kernels (VSDKs), enables us
to naturally reconstruct jump discontinuities (even with the family of Gaussians). The
only drawback of the procedure lies in the fact that the algorithm needs to knowwhere
the discontinuities occur. To this aim, we recall that in [21] a one-dimensional edge
detection method based on RBFs has been constructed and subsequently extended in
[22] to a multidimensional framework by considering one-dimensional slices. More-
over, very recently in [26] an effective edge detector that analyzes the behaviour
of the coefficients of the RBF approximant has been proposed (a similar idea was
previously investigated in [20]). In that paper, a kernel-based discontinuos inter-
polant is empirically applied in the univariate setting. In this work, for edge detection
we consider widely used schemes, such as Canny or Sobel edge detection (cf.
[2,31]).

After providing a theoretical analysis of the scheme in the one dimensional case, we
extend the idea to higher dimensions and provide very general error bounds in terms
of the well-known power function. Extensive numerical experiments are devoted to
show the effectiveness of the method. We also provide the Matlab software, freely
available for the scientific community at

http://www.math.unipd.it/~demarchi/RBF/CAARBF.html
that can be used to reproduce the tests presented in the paper. To conclude, we also
investigate an application to the reconstruction of satellite images, where we deal with
edges of irregular shapes; refer e.g. to [24].

The paper is organized as follows. In Sect. 2, we briefly review the main theoretical
aspects of kernel-based approximation methods and introduce the VSKs. Section 3
presents our method for constructing VSDKs and in Sect. 4 we provide extensive
numerical experiments. Applications to real world data are reported in Sect. 5. Con-
clusions and future works are discussed in Sect. 6.
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2 Kernel-based approximationmethods

LetX = {xi , i = 1, . . . , N } ⊂ Ω be a set of distinct data points (data sites or nodes)
arbitrarily distributed on a domainΩ ⊆ R

d and letF = { fi = f (xi ), i = 1, . . . , N }
be an associated set of data values (measurements or function values) obtained by
sampling some (unknown) function f : Ω −→ R at the nodes xi . We can reconstruct
f by interpolation, that is by finding a functionR : Ω −→ R satisfying the conditions

R(xi ) = fi , i = 1, . . . , N . (2.1)

The interpolation problem (2.1) has a unique solution ifR ∈ span{Φε(·, xi ), xi ∈
X }, where Φε : Ω × Ω −→ R is a strictly positive definite and symmetric kernel
and ε > 0 is the so-called shape parameter. The resulting kernel-based interpolant,
denoted by Rε,X , assumes the form

Rε,X (x) =
N∑

k=1

ckΦε(x, xk), x ∈ Ω. (2.2)

We can write (2.1) by using the matrix Aε ∈ R
N×N which has entries (Aε)ik =

Φε(xi , xk), i, k = 1, . . . , N . Then, letting f = ( f1, . . . , fN )ᵀ the vector of data
values, we can find the coefficients c = (c1, . . . , cN )ᵀ by solving the linear system
Aεc = f . Since we consider strictly positive definite and symmetric kernels, the
existence and uniqueness of the solution of the linear system is ensured.

More precisely, we are interested in the class of strictly positive definite and sym-
metric radial kernels Φε defined as follows.

Definition 2.1 Φε is called radial kernel if there exists a continuous function ϕε :
[0,+∞) −→ R, depending on the shape parameter ε > 0, such that

Φε(x, y) = ϕε(‖x − y‖2), (2.3)

for all x, y ∈ Ω .

From (2.3) it follows that ifΦε is radial, then it is completely identified by the function
ϕε and we can indifferently use Φε or ϕε for denoting the interpolant in (2.2).

To Φε we associate a real pre-Hilbert space HΦε(Ω) with reproducing kernel Φε

HΦε(Ω) = span{Φε(·, x), x ∈ Ω},

equipped with the bilinear form (·, ·)HΦε (Ω). We then define the native spaceNΦε(Ω)

of Φε as the completion of HΦε(Ω) with respect to the norm || · ||HΦε (Ω), that is
|| f ||HΦε (Ω) = || f ||NΦε (Ω) for all f ∈ HΦε(Ω) (for details see the monographs [14,
32]).

The accuracy of the interpolation process is usually expressed in terms of the
power function. Let Aε(X ) be the interpolation matrix related to the set of nodes
X and to the kernel Φε. Also let Aε(Y ) be the matrix associated to the augmented
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set Y := {x} ∪ X , x ∈ Ω . The power function is a positive function obtained by
the ratio of two determinants (cf. [5,11])

PΦε,X (x) :=
√

det(Aε(Y ))

det(Aε(X ))
. (2.4)

The following pointwise error bound, that uses the power function and the norm of
f in the native space, holds (see e.g. [14, Th. 14.2, p.117]).

Theorem 2.1 Let Φε ∈ C(Ω × Ω) be a strictly positive definite kernel and X =
{xi , i = 1, . . . , N } ⊆ Ω a set of distinct points. For all f ∈ NΦε(Ω)

| f (x) − Rε,X (x) | ≤ PΦε,X (x)|| f ||NΦε (Ω), x ∈ Ω.

Note that this theorem bounds the pointwise error in terms of the power functionwhich
depends on the kernel and on the data points but is independent of the function values.

2.1 From RBF toVSK interpolation

As well-known, the choice of the shape parameter ε is a crucial computational issue
for RBF interpolation. If it is not properly chosen we might see instability effects.
To overcome such problems for the Gaussian kernel, a solution is provided by the
so-called RBF-QR method which is truly effective (see e.g. [17,23]). An alternative,
which can be applied to any kernel, is the use of Variably Scaled Kernels (or VSKs),
introduced in [1]. We also notice, that VSK have been successfully used to reconstruct
functions with gradient discontinuities in [27].

Starting from this idea,we analyse the case of jumpdiscontinuities andwe introduce
a new family of kernels that we call Variably Scaled Discontinuous Kernels or simply
VSDKs.

ConsideringVSKs, the classical tuning strategy of finding the optimal shape param-
eter might be substituted by the choice of a scale function which plays the role of a
density function. More precisely (cf. [1, Def. 2.1]):

Definition 2.2 LettingI ⊆ (0,+∞) andΦε a positive definite radial kernel onΩ×I
depending on the shape parameter ε > 0. Given a scale function ψ : Ω −→ I , we
define a VSK Φψ on Ω as

Φψ(x, y) := Φ1((x, ψ(x)), ( y, ψ( y))), (2.5)

for x, y ∈ Ω .

Defining then the map Ψ (x) = (x, ψ(x)) on Ω , the interpolant on the set of nodes
Ψ (X ) := {(xk, ψ(xk)), xk ∈ X } with fixed shape parameter ε = 1 takes the form

R1,Ψ (X )(Ψ (x)) =
N∑

k=1

ckΦ1(Ψ (x), Ψ (xk)), (2.6)
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with x ∈ Ω, xk ∈ X .
From now on we take ε = 1, as in [1, Def. 2.1]. Hence, if otherwise state, we omit

to indicate the shape parameter.
Byanalogywith the interpolant in (2.2), the vector of coefficients c = (c1, . . . , cN )ᵀ

in (2.6) is determined by solving the linear system Aψ c = f , where (Aψ)ik =
Φψ(xi , xk) and f is the vector of data values.

Once we have the interpolant RΨ (X ) on Ω × I , we can project back on Ω the
points (x, ψ(x)) ∈ Ω × I . In this way, we obtain a VSK interpolant Vψ on Ω that
is, using (2.5),

Vψ(x) :=
N∑

k=1

ckΦψ(x, xk) =
N∑

k=1

ckΦ(Ψ (x), Ψ (xk)) = RΨ (X )(Ψ (x)). (2.7)

The error and stability analysis of this varying scale process on Ω coincides with the
analysis of a fixed scale kernel onΩ ×I . For details and analysis of these continuous
scale functions, we refer the reader to [1].

3 Variably scaled discontinuous kernels

We introduce the VSDKs by considering the one dimensional case and observing that
the extension to the multidimensional case is almost straightforward, as we will show
later in Sect. 3.2.

Let Ω = (a, b) ⊂ R be an open interval and let ξ ∈ Ω . We consider the discontin-
uous function f : Ω −→ R

f (x) :=
{
f1(x), a < x < ξ,

f2(x), ξ ≤ x < b,

where f1, f2 are real valued smooth functions such that lim
x→a+ f1(x) and lim

x→b− f2(x)

exist finite and

f2(ξ) 
= lim
x→ξ

f1(x) .

Our aim consists in approximating the function f on the set of nodes X ⊂ Ω .
Unfortunately the presence of jumps is the cause of oscillations in the reconstructing
process.

To approximate f on X we take interpolants of the form (2.7) and we consider
discontinuous scale functions in the interpolation process.

Let α, β ∈ R, α 
= β and S = {α, β}. We propose the following scale function
ψ : Ω −→ S defined as:

ψ(x) :=
{

α, x < ξ,

β, x ≥ ξ.
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The function ψ is piecewise constant, having a jump discontinuity at ξ as the function
f . Let Φε be a positive definite radial kernel on Ω × S , possibly depending on a
shape parameter ε > 0 or alternatively a variably scaled kernel Φψ on Ω as in (2.5).
We now analyze the function ϕ related to the kernel Φ with the fixed shape parameter
ε = 1, that is

ϕ(‖Ψ (x) − Ψ (y)‖2) = ϕ(‖(x, ψ(x)) − (y, ψ(y))‖2)
= ϕ

(√
(x − y)2 + (ψ(x) − ψ(y))2

)
.

This implies

ϕ(‖Ψ (x) − Ψ (y)‖2) =
{

ϕ(|x − y|), x, y < ξ or x, y ≥ ξ,

ϕ(‖(x, α) − (y, β)‖2), x < ξ ≤ y or y < ξ ≤ x,

since ϕ(‖(x, α) − (y, β)‖2) = ϕ(‖(x, β) − (y, α)‖2).
The so-constructed interpolantVψ : Ω −→ R on the setX = {xk, k = 1, . . . , N }

is a discontinuous linear combination of functions Φψ(·, xk) so defined:
– if a < xk < ξ

Φψ(x, xk) =
{

ϕ(|x − xk |), x < ξ,

ϕ(‖(x, α) − (xk, β)‖2), x ≥ ξ,

– if ξ ≤ xk < b

Φψ(x, xk) =
{

ϕ(|x − xk |), x ≥ ξ,

ϕ(‖(x, α) − (xk, β)‖2), x < ξ.

Therefore, the interpolant Vψ is a linear combination of functions having a disconti-
nuity at ξ . We can easily generalize this procedure for a set of distinct discontinuity
points on Ω; see the next section.

3.1 VSDKs: one dimensional case

To generalize the discussion carried out above, we need the following definition.

Definition 3.1 Let Ω = (a, b) ⊂ R be an open interval, S = {α, β} with α, β ∈
R>0, α 
= β and let D = {ξ j , j = 1, . . . , �} ⊂ Ω be a set of distinct points such
that ξ j < ξ j+1 for every j . Let ψ : Ω −→ S be defined as

ψ(x) :=
{

α, x ∈ (a, ξ1) or x ∈ [ξ j , ξ j+1), where j is even,
β, x ∈ [ξ j , ξ j+1), where j is odd,

and

ψ(x)|[ξ�,b) :=
{

α, � is even,
β, � is odd.
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With this choice of the scale function ψ and similarly to (2.5), we call the kernel Φψ

a VSDK on Ω .

For the analysis of the VSDKs introduced in Definition 3.1 we cannot rely on some
important and well-known results of RBF interpolation. Therefore, before stating
upper bounds for the VSDK interpolants in terms of the power function, we give a
preliminary analysis.

Let Ω and D be as in Definition 3.1 and n ∈ N. We define ψn : Ω −→ I ⊆
(0,+∞) as

ψn(x) :=

⎧
⎪⎪⎨

⎪⎪⎩

α, x ∈ (a, ξ1 − 1/n), or x ∈ [ξ j + 1/n, ξ j+1 − 1/n), j is even,
β, x ∈ [ξ j + 1/n, ξ j+1 − 1/n) j is odd,
γ1(x), x ∈ [ξ j − 1/n, ξ j + 1/n), j is odd,
γ2(x), x ∈ [ξ j − 1/n, ξ j + 1/n), j is even,

ψn(x)|[ξ�+1/n,b) :=
{

α, � is even,
β, � is odd,

(3.1)

where γ1, γ2 are continuous, strictly monotone functions so that

lim
x→ξ j+1+1/n

γ1(x) = γ2(ξ j − 1/n) = β, lim
x→ξ j+1+1/n

γ2(x) = γ1(ξ j − 1/n) = α.

FromDefinition 3.1, it is straightforward to verify that∀x ∈ Ω the following pointwise
convergence result holds

lim
n→∞ ψn(x) = ψ(x).

We point out that for every fixed n ∈ N the kernel Φψn is a continuous VSK, hence it
satisfies the error bound of Theorem 2.1. For VSDKs instead we have the following
result.

Theorem 3.1 For every x, y ∈ Ω , we have

lim
n→∞ Φψn (x, y) = Φψ(x, y),

where Φψ is the kernel considered in Definition 3.1.

Proof Let us consider the map Ψn(x) = (x, ψn(x)) on Ω . We can write

lim
n→∞ Φψn (x, y) = lim

n→∞ Φ(Ψn(x), Ψn(y)) = lim
n→∞ ϕ(‖Ψn(x) − Ψn(y)‖2).

Recalling (3.1), we get

lim
n→∞ ϕ(‖Ψn(x) − Ψn(y)‖2) = ϕ

(
lim
n→∞ ‖Ψn(x) − Ψn(y)‖2

)

= ϕ(‖Ψ (x) − Ψ (y)‖2)
= Φψ(x, y).
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This concludes the proof. 
�
Corollary 3.1 Let HΦψn

(Ω) = span{Φψn (·, x), x ∈ Ω} be equipped with the bilinear
form (·, ·)HΦψn

(Ω) and let NΦψn
(Ω) be the related native space. Then, taking the

limit of the basis functions, we obtain the space HΦψ (Ω) = span{Φψ(·, x), x ∈ Ω}
equipped with the bilinear form (·, ·)HΦψ

(Ω) and the related native space NΦψ (Ω).

Proof If f ∈ HΦψ (Ω), then it can be expressed as a linear combination of basis
functions Φψ(·, x), x ∈ Ω . From Theorem 3.1, we get that for every x ∈ Ω

lim
n→∞ Φψn (·, x) = Φψ(·, x),

and so f is also a linear combination of the functions limn→∞ Φψn (·, x), x ∈ Ω , as
required. 
�

We get an immediate consequence for the interpolant Vψ too.

Corollary 3.2 Let Ω , S and D be as in Definition 3.1. Let f : Ω −→ R be a
discontinuous function whose step discontinuities are located at the points belonging
toD .Moreover, letψn andψ be as in Theorem 3.1. Then, considering the interpolation
problem with nodes X = {xk, k = 1, . . . , N } on Ω , we have

lim
n→∞Vψn (x) = Vψ(x),

for every x ∈ Ω .

Proof Since Vψ is a linear combination of the basis functions, the thesis follows from
Theorem 3.1 and Corollary 3.1. 
�

To provide error bounds, we now only need to introduce the power function for a
VSDK Φψ on the set of nodes X . From (2.4), we know that it is defined as

PΦψ,X (x) =
√

det(Aψ(Y ))

det(Aψ(X ))
.

From Theorem 3.1 and Corollary 3.1, it easily follows that ∀x ∈ Ω

PΦψ,X (x) = lim
n→∞ PΦψn ,X (x).

These results allow to state an error bound for interpolation via VSDKs.

Proposition 3.1 Let Φψ be a VSDK on Ω = (a, b) ⊂ R. Suppose thatX = {xi , i =
1, . . . , N } ⊆ Ω have distinct points. For all f ∈ NΦψ (Ω) we have

| f (x) − Vψ(x)| ≤ PΦψ,X (x)‖ f ‖NΦψ
(Ω), x ∈ Ω.
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Proof For every n ∈ N and x ∈ Ω , since the VSK Φψn is continuous, we know that
(see Theorem 2.1)

| f (x) − Vψn (x)| ≤ PΦψn ,X (x)‖ f ‖NΦψn
(Ω).

Then, taking the limit n → ∞ and recalling the results of this subsection, the thesis
follows. 
�

Proposition 3.1, as the classical bound for the RBF interpolants, limits the error in
terms of the power function and consequently takes into account both the kernel and
data.

3.2 VSDKs: multidimensional case

The VSDKs rely upon the classical RBF bases and therefore in principle they are
suitable to be implemented in any dimension. However, since the geometry is more
complex than in 1D, we need to carefully define the scale function ψ .

Let Ω ⊂ R
d be an open subset with Lipschitz boundary. In our discussion, we

consider step functions f : Ω −→ R such that there exists a disjoint partition P =
{R1, . . . , Rm} of regions having Lipschitz boundaries. That is all the jumps of f lie
along (d − 1)-dimensional manifolds γ1, . . . , γp such that

γi ⊆
m⋃

i=1

∂Ri\∂Ω, ∀i = 1, . . . , p.

Then, a suitable scale function ψ for interpolating f via VSDKs can be defined as
follows.

Definition 3.2 Let Ω ⊂ R
d be an open subset with Lipschitz boundary, S =

{α1, . . . , αm} real distinct values and P = {R1, . . . , Rm} a partition of Ω whose
elements are regions having Lipschitz boundaries. Define ψ : Ω −→ S as

ψ(x)|Ri := αi .

With this choice of the scale functionψ and referring to (2.5), we call again the kernel
Φψ a VSDK on Ω .

Remark 3.1 In Definition 3.2we choose a scale functionwhich emulates the properties
of the one-dimensional function of Definition 3.1. The difference is that the multidi-
mensional ψ could be discontinuous not exclusively at the same points as f , but also
at other nodes. Precisely, if we are able to chooseP so that

p⋃

i=1

γi =
m⋃

i=1

∂Ri\∂Ω,

then f and ψ have the same discontinuities. Otherwise, if
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p⋃

i=1

γi ⊂
m⋃

i=1

∂Ri\∂Ω,

then ψ is discontinuous along
⋃m

i=1 ∂Ri\
(
∂Ω ∪ ⋃p

i=1 γi
)
, while f is not.

The theoretical analysis in the multidimensional case is done along the same path
of the one-dimensional setting. Indeed, we consider continuous scale functions ψn :
Ω −→ I ⊆ (0,+∞) such that ∀x ∈ Ω ,

lim
n→∞ ψn(x) = ψ(x),

and

lim
n→∞Vψn (x) = Vψ(x),

for every x ∈ Ω .
We omit the easy extension of all results discussed in Sect. 3.1 and we state directly

the error bound.

Proposition 3.2 Let Φψ be a VSDK as in Definition 3.2. Suppose that X = {xi , i =
1, . . . , N } ⊆ Ω have distinct points. For all f ∈ NΦψ (Ω) we have

| f (x) − Vψ(x)| ≤ PΦψ,X (x)‖ f ‖NΦψ
(Ω), x ∈ Ω.

Proof Refer to Proposition 3.1 and to the remarks made in this section. 
�

4 Numerical experiments

We consider three strictly positive definite RBFs having different regularities

ϕ1
ε (r) = e−εr , Matern C0,

ϕ2
ε (r) = e−εr

(
15 + 15εr + 6ε2r2 + ε2r3

)
, Matern C6,

ϕ3
ε (r) = e−ε2r2 , Gaussian C∞.

(4.1)

To point out the accuracy of our tests, both in 1D and 2D cases, we refer to the Max-
imum Absolute Error (MAE) and to the Root Mean Square Error (RMSE). Once the
interpolant is constructed, we evaluate it on a grid of S evaluation points {z1, . . . , zS}
so that

MAE = max
1≤i≤S

| f (zi ) − Vψ(zi )|, RMSE =
√√√√ 1

S

S∑

i=1

(
f (zi ) − Vψ(zi )

)2
.
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Further, we also estimate the upper bound for the error by computing the Maximum
of the Power Function (MPF)

MPF = max
1≤i≤S

PΦψ,X (zi ).

In the 2D case we also deal with grey-scale images and thus we consider the
Structural Similarity Index (SSIM), which is a well-known parameter that indicates
the similarity between two images. The SSIM index lies in the interval [0, 1] (the value
1 corresponds to identical images).

The numerical experiments have been carried out with Matlab on an Intel(R)
Core(TM) i5-4200U CPU @ 2.30 GHz processor.

4.1 A toy example

Let Ω = (−1, 1),

f1(x) =
⎧
⎨

⎩

e−x , −1 < x < −0.5,
x3, −0.5 ≤ x < 0.5,
1, 0.5 ≤ x < 1,

and

X =
{
x j = −1 + ( j − 1)

39
, j = 1, . . . , 79

}
.

We evaluate then the interpolant on a grid of equispaced points on Ω with step size
5.00E−4.

First, as described in (2.2), we interpolate the function f1 via classical RBF inter-
polation onX , using the kernel functions reported in (4.1). For such RBFs we select
the optimal shape parameter ε∗ via Leave One Out Cross Validation (LOOCV) (refer
to [13] for a general overview). The resulting interpolants are plotted in Fig. 1.

In Table 1 we report the values of MAE and RMSE with respect to f1 and the
maximum values of the power function evaluated at the same set of nodes. The errors
are similar except for ϕ1

ε that turns out to be more stable. Indeed, as expected, the
corresponding reconstruction is less affected by the Gibbs phenomenon, due to the
poor regularity of ϕ1

ε .
The function f1 presents two discontinuities at ξ1 = −0.5 and ξ2 = 0.5. Taking

into account (3.1), we define the scale function for VSKs as

ψn(x) :=

⎧
⎪⎪⎨

⎪⎪⎩

1, x ∈ (−1, ξ1 − 1/n) or x ∈ [ξ2 + 1/n, 1),
2, x ∈ [ξ1 + 1/n, ξ2 − 1/n),

(nx − ξ1n + 3)/2, x ∈ [ξ1 − 1/n, ξ1 + 1/n),

(−nx + ξ2n + 3)/2, x ∈ [ξ2 − 1/n, ξ2 + 1/n).

(4.2)

Moreover, considering the pointwise limit as n → ∞ ofψn(x)we consider forVSDKs
the discontinuous scale function:
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Fig. 1 The function f1 and the classical interpolants on X obtained using different kernel functions

Table 1 Results of classical
RBF reconstruction for f1

RBFs ϕ1ε ϕ2ε ϕ3ε

MAE 8.98E−01 8.96E−01 8.96E−01

RMSE 6.49E−02 6.94E−02 7.25E−02

MPF 3.14E−01 1.15E−01 2.01E−02

ψ(x) :=
{
1, x ∈ (−1, ξ1) or x ∈ [ξ2, 1),
2, x ∈ [ξ1, ξ2). (4.3)

In Fig. 2, we plot the scale functions ψn for some values of n and ψ .
Finally, for each of the RBFs considered in (4.1) we first take the scale function ψn

and compute the VSK interpolant for f1 by considering increasing values of n (n =
10, 50, 500). Thenwe approximate f1 using theVSDKdetermined byψ (see formulae
(4.2) and (4.3)). The graphical results for the three variably scaled (discontinuous)
kernels are reported in Figs. 3, 4 and 5, while the accuracy indicators are shown in
Tables 2, 3 and 4.
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Fig. 2 The continuous scale functions ψ10, ψ50, ψ500 and the discontinuous one ψ ; see (4.2) and (4.3)

From the figures, we can graphically note how the reconstruction via VSDKs is
indeed the limit of the continuous case. As expected the C0 RBF combined with the
VSKs is not truly affected by the Gibbs phenomenon. Using the other kernels, we
note that such oscillations are progressively reduced as n increases and graphically
disappear when using VSDKs.

From the results reported in this subsection it is evident that the maximum value of
the power function usually decreases as n increases. However, there are no theoretical
results about the fact that the power function for VSDKs assumes smaller values than
the one ofVSKs and this is confirmed numerically. Indeed, in some cases themaximum
value attained by the power function is sensibly higher for VSDKs, even compared to
the classical RBF reconstruction.

4.2 Tests with artificial data

Let Ω = (−1, 1)2. We consider two test functions,
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Fig. 3 VSK and VSDK reconstructions of f1 onX using ϕ1

f2(x, y) =
{
e−(x2+y2), x2 + y2 ≤ 0.6,
x + y, x2 + y2 > 0.6,

f3(x, y) =

⎧
⎪⎪⎨

⎪⎪⎩

2(1 − e−(y+0.5)2), |x | ≤ 0.5, |y| ≤ 0.5,
4(x + 0.8), −0.8 ≤ x ≤ −0.65, |y| ≤ 0.8,
0.5, 0.65 ≤ x ≤ 0.8, |y| ≤ 0.2,
0, otherwise.

We take 1089 Halton points on Ω as interpolation nodes and we evaluate the approx-
imant on equispaced points with mesh size 1.00E−2.

Similarly to the one-dimensional case in Sect. 4.1, we interpolate the functions
f2 and f3 via classical RBF interpolation on the set of nodes X , using the kernel
functions in (4.1) and selecting the optimal shape parameter ε via LOOCV. Finally,
we apply VSDKs and we evaluate the final results.

We start our discussion with the function f2. The resulting standard RBF inter-
polants for f2 are plotted in Fig. 6. As expected, the infinitely smooth Gaussian RBF
introduces huge oscillations, while with functions with low regularity, the Gibbs phe-
nomenon is less evident.

123



Jumping with variably scaled discontinuous kernels (VSDKs) 455

-0.5

0

0.5

1

1.5

2

2.5

3

-0.5

0

0.5

1

1.5

2

2.5

3

-0.5

0

0.5

1

1.5

2

2.5

3

-0.5

0

0.5

1

1.5

2

2.5

3

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1 -1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1 -1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

(a) (b)

(d)(c)

Fig. 4 VSK and VSDK reconstructions of f1 onX using ϕ2

In Table 5 we report the accuracy indicators. We can observe that ϕ1
ε outperforms

the other two kernels in terms of SSIM index. Indeed, the related reconstruction is less
affected by the Gibbs phenomenon, as graphically visible.

Considering the function f2, forVSDKswe need a suitable scale function satisfying
the Definition 3.2. For this purpose, we consider the function ψ2 defined as

ψ2(x, y) =
{
1, x2 + y2 ≤ 0.6,
2, x2 + y2 > 0.6.

(4.4)

We show the final reconstructions using VSDKs with different kernels in Fig. 7,
while in Table 6 we report the values of the considered errors and parameters. We
recover also for the 2D case the pattern already discovered about the fact that VSDKs
reconstruct the jumps without graphically introducing oscillations, also with C∞
RBFs.

Considering now the function f3, we show in Fig. 8 and in Table 7 the results
obtained via classical RBF interpolation.

We can observe a behavior that is similar to what we obtained for f2. Switching to
VSDKs, we consider the scale function ψ3 defined as
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Fig. 5 VSK and VSDK reconstructions of f1 onX using ϕ3

Table 2 Results of VSK and VSDK reconstruction for f1 using ϕ1

Scale functions ψ10 ψ50 ψ500 ψ

MAE 9.03E−01 9.59E−01 1.05E+00 2.97E−02

RMSE 6.47E−02 6.47E−02 2.70E−02 1.43E−03

MPF 2.55E−01 5.53E−01 6.56E−01 1.59E−01

Table 3 Results of VSK and VSDK reconstruction for f1 using ϕ2

Scale functions ψ10 ψ50 ψ500 ψ

MAE 8.96E−01 8.92E−01 8.89E−01 6.08E−06

RMSE 6.96E−02 5.86E−02 2.60E−02 3.34E−07

MPF 5.11E−02 6.40E−02 1.79E−01 5.70E−02

ψ3(x, y) =

⎧
⎪⎪⎨

⎪⎪⎩

1, |x | ≤ 0.5, |y| ≤ 0.5,
2, −0.8 ≤ x ≤ −0.65, |y| ≤ 0.8,
3, 0.65 ≤ x ≤ 0.8, |y| ≤ 0.2,
0, otherwise.

(4.5)
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Table 4 Results of VSK and VSDK reconstruction for f1 using ϕ13

Scale functions ψ10 ψ50 ψ500 ψ

MAE 8.96E−01 8.86E−01 9.92E−01 1.19E−04

RMSE 9.78E−02 5.84E−02 2.51E−02 3.50E−05

MPF 1.21E−02 2.07E−02 3.36E−01 1.96E−02

(a) (b)

(c) (d)

Fig. 6 The function f2 and the classical RBF interpolants onX obtained using different kernel functions

Table 5 Results of classical
RBF reconstruction for f2

RBFs ϕ1ε ϕ2ε ϕ3ε

MAE 1.30E−00 1.72E−00 1.75E−00

RMSE 9.80E−02 1.21E−01 1.53E−01

MPF 1.03E−02 1.11E−00 9.85E−01

SSIM 0.908 0.776 0.541

We point out that the set of discontinuity points of f3 is strictly contained in the set of
discontinuity points of ψ3, which is the case considered in Remark 3.1. We present
the final results in Fig. 9 and in Table 8.
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(a) (b)

(c)

Fig. 7 VSDK reconstructions of f2 onX using the scale function ψ2

Table 6 Results of VSDK
reconstructions for f2

RBFs ϕ11 ϕ21 ϕ31

MAE 1.82E−01 8.20E−05 1.03E−05

RMSE 5.29E−03 1.13E−06 5.70E−07

MPF 3.52E−01 1.43E−02 3.65E−04

SSIM 0.997 0.999 0.999

We can observe that the VSDK reconstructions using ϕ2
1 and ϕ3

1 are not affected by
the Gibbs phenomenon as in the classical RBF reconstructions and they outperform
the reconstruction obtained using ϕ1

1 .
Furthermore, for both the test functions considered in this section, the SSIM with

VSDKs is about 1, which means that graphically there is a high similarity between
the original and reconstructed image.

Concerning the maximum value of the power function for VSDKs, we can note that
for both f2 and f3 it is comparable to the one obtained via standard RBFs. However,
the reader should note that usually it reaches lower values than the ones achieved via
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(a) (b)

(d)(c)

Fig. 8 The function f3 and the classical interpolants on X obtained using different kernel functions

Table 7 Results of classical
RBF reconstruction for f3

RBFs ϕ1ε ϕ2ε ϕ3ε

MAE 1.23E−00 1.56E−00 1.74E−00

RMSE 8.60E−02 9.89E−02 1.09E−01

MPF 9.48E−01 3.80E−00 9.94E−01

SSIM 0.843 0.788 0.751

the classical schemes. This reflects directly on the error (as theoretically proved in
Proposition 3.2).

In general, for both 1D and 2D, the most promising results are the ones obtained via
VSDKs and the Gaussian function. Indeed, it is well known that C∞ RBFs introduce
the Gibbs phenomenon, which is sensibly reduced via VSDKs.

5 Application to satellite images

The modeling and analysis of data, for instance, coming from distributed measure-
ments of physical quantities and satellite images is a challenging computational issue.
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(a) (b)

(c)

Fig. 9 VSDK reconstructions of f3 onX using the scale function ψ3

Table 8 Results of VSDK
reconstructions for f3

RBFs ϕ11 ϕ21 ϕ31

MAE 1.68E−01 5.71E−04 1.71E−05

RMSE 6.75E−03 9.89E−06 4.84E−07

MPF 3.52E−01 2.39E−02 1.40E−03

SSIM 0.993 0.999 0.999

Because of the huge size that some of these data sets achieve, reduced models such as
the one presented in [24] are strongly advised. Nevertheless, the Gibbs phenomenon
might affect also in this case the accuracy of the approximation. Thus, in this example,
we show how VSDKs can intervene in this direction, sensibly reducing the oscilla-
tions. We consider the satellite image reported in Fig. 10, consisting of soil moisture
data taken byNASASoilMoisture Active Passive (SMAP)mission inApril 2015 [12].
It is composed by a grid of 3856 × 1624 pixels. For dealing with the whole image,
one needs to use reduced models, such as the one investigated in [25]. Moreover, if
one only concentrates on a small portion of the image, e.g. a portion of Europe, the
high resolution is lost (trivially due to zooming). In this case, a reconstruction scheme
is necessary.
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Fig. 10 Example of satellite image measuring the soil moisture

(b)(a)

Fig. 11 The approximation of soil moisture over a portion of Europe via classical RBF reconstruction (left)
and VSDKs (right)

Focusingon aportionof ofEurope,weobtain an image composedby N = 144×191
pixels. After using these data to reconstruct the image, we evaluate it on a finer grid of
evaluation points, composed by 216× 286 pixels. Such a computation can be seen as
a standard zoom, which might introduce Gibbs oscillations. They are indeed visible
if, for instance, we reconstruct the image with the Wendland’s C2 RBF defined by:

ϕ4
ε (r) = (1 − εr)4+(4εr + 1), WendlandC2,

where (·)+ denotes the truncated power function. We consider the Wendland’s com-
pactly supportedC2 RBF because it is well-known that by properly scaling the support
of the basis function, it might lead to sparse interpolation systems and thus it gains
in terms of stability, reducing the usual high condition number of the interpolation
matrix. Despite this ability, the reconstruction via the classical method suffers from
the Gibbs phenomenon, see Fig. 11 (left). Such oscillations are removed by VSDKs;
refer to Fig. 11 (right). This example with real data is also devoted to show that VSDKs
are performing also when the discontinuity is analytically unknown. In this case the
curve defining the discontinuity has been approximated by means of Sobel detection
scheme; see e.g. [31].
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6 Conclusions

In this paper we have presented a robust method for sensibly reducing non-physical
oscillations due to the Gibbs phenomenon. The accuracy of the proposed method has
been studied theoretically and many numerical experiments confirm its effectiveness,
showing that the reconstruction via VSDKs outperforms the standard techniques when
jumps occur.

Future work consists in investigating on the detection of discontinuities when deal-
ing with real data and to extend the current work to other bases [8]. We stress that
the current study might be useful for image reconstruction in the context of Magnetic
Particle Imaging [6,7]. Finally, for smooth RBFs, we should study the behaviour of
VSDKs when rational RBF interpolants are used [9,19].

Acknowledgements This research has been accomplished within Rete ITaliana di Approssimazione
(RITA), partially funded by GNCS-INδAM, the NATIRESCO project BIRD181249 and through the Euro-
pean Union’s Horizon 2020 research and innovation programme ERA-PLANET, Grant Agreement No.
689443, via the GEOEssential project.

OpenAccess This article is licensedunder aCreativeCommonsAttribution 4.0 InternationalLicense,which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Bozzini, M., Lenarduzzi, L., Rossini, M., Schaback, R.: Interpolation with variably scaled kernels.
IMA J. Numer. Anal. 35, 199–219 (2015)

2. Canny, J.F.: A computational approach to edge detection. IEEE TPAMI 8, 34–43 (1986)
3. Cavoretto, R., De Rossi, A.: A trivariate interpolation algorithm using a cube-partition searching

procedure. SIAM J. Sci. Comput. 37, A1891–A1908 (2015)
4. Cavoretto, R., DeMarchi, S., De Rossi, A., Perracchione, E., Santin, G.: Partition of unity interpolation

using stable kernel-based techniques. Appl. Numer. Math. 116, 95–107 (2017)
5. De Marchi, S.: On optimal center locations for radial basis function interpolation: computational

aspects. Rend. Sem. Mat. Univ. Pol. Torino 61, 343–358 (2003)
6. De Marchi, S., Erb, W., Marchetti, F.: Spectral filtering for the reduction of the Gibbs phenomenon

for polynomial approximation methods on Lissajous curves with applications in MPI. Dolomit. Res.
Notes Approx. 10, 128–137 (2017)

7. De Marchi, S., Erb, W., Marchetti, F., Perracchione, E., Rossini, M.: Shape-driven interpolation with
discontinuous kernels: error analysis, edge extraction and applications in magnetic particle imaging
(preprint) (2019)

8. DeMarchi, S.,Marchetti, F., Perracchione, E., Poggiali, D.: Polynomial interpolation viamapped bases
without resampling. J. Comput. Appl. Math. 364, 112347 (2020)

9. De Marchi, S., Martínez, A., Perracchione, E.: Fast and stable rational RBF-based partition of unity
interpolation. J. Comput. Appl. Math. 349, 331–343 (2019)

10. DeMarchi, S., Santin, G.: Fast computation of orthonormal basis for RBF spaces throughKrylov space
methods. BIT 55, 949–966 (2015)

11. De Marchi, S., Schaback, R., Wendland, H.: Near-optimal data-independent point locations for radial
basis function interpolation. Adv. Comput. Math. 23, 317–330 (2005)

123

http://creativecommons.org/licenses/by/4.0/


Jumping with variably scaled discontinuous kernels (VSDKs) 463

12. Entekhabi, D., et al.: SMAP Handbook-Soil Moisture Active Passive s.l. JPL Publication, Pasadena
(2014)

13. Fasshauer, G.E., McCourt, M.J.: Kernel-Based Approximation Methods Using Matlab. World Scien-
tific, Singapore (2015)

14. Fasshauer, G.E.: Meshfree Approximations Methods with Matlab. World Scientific, Singapore (2007)
15. Fornberg, B., Flyer, N.: The Gibbs Phenomenon in Various Representations and Applications, Chapter

The Gibbs Phenomenon for Radial Basis Functions. Sampling Publishing, Potsdam (2008)
16. Fornberg, B., Larsson, E., Flyer, N.: Stable computations with Gaussian radial basis functions. SIAM

J. Sci. Comput. 33, 869–892 (2011)
17. Fornberg, B., Wright, G.: Stable computation of multiquadric interpolants for all values of the shape

parameter. Comput. Math. Appl. 48, 853–867 (2004)
18. Gottlieb, D., Shu, C.W.: On the Gibbs phenomenon and its resolution. SIAM Rev. 39, 644–668 (1997)
19. Jakobsson, S., Andersson, B., Edelvik, F.: Rational radial basis function interpolation with applications

to antenna design. J. Comput. Appl. Math. 233, 889–904 (2009)
20. Jung, J.H.: A note on the Gibbs phenomenon with multiquadric radial basis functions. Appl. Numer.

Math. 57, 213–219 (2007)
21. Jung, J.H., Durante, V.: An iteratively adaptive multiquadric radial basis function method for detection

of local jump discontinuities. Appl. Numer. Math. 59, 1449–1466 (2009)
22. Jung, J.H., Gottlieb, S., Kim, S.: Iterative adaptive RBF methods for detection of edges in two dimen-

sional functions. Appl. Numer. Math. 61, 77–91 (2011)
23. Larsson, E., Lehto, E.,Heryudono,A.R.H., Fornberg,B.: Stable computation of differentiationmatrices

and scattered node stencils based onGaussian radial basis functions. SIAMJ. Sci. Comput. 33, 869–892
(2013)

24. Perracchione, E., Polato, M., Tran, D., Piazzon, F., Aiolli, F., De Marchi, S., Kollet, S., Montzka, C.,
Sperduti, A., Vianello, M., Putti, M.: Modelling and processing services and tools, 2018, GEO Essen-
tial Deliverable 1.3. http://www.geoessential.eu/wp-content/uploads/2019/01/GEOEssential-D_1.3_
final.pdf

25. Piazzon, F., Sommariva, A., Vianello, M.: Caratheodory–Tchakaloff least squares, sampling theory
and applications. In: IEEE Xplore Digital Library, p. 12017 (2017)

26. Romani, L., Rossini,M., Schenone,D.: Edge detectionmethods based onRBF interpolation. J. Comput.
Appl. Math. 349, 532–547 (2019)

27. Rossini, M.: Interpolating functions with gradient discontinuities via variably scaled kernels. Dolom.
Res. Notes Approx. 11, 3–14 (2018)

28. Sarra, S.A.: Digital total variation filtering as postprocessing for radial basis function approximation
methods. Comput. Math. Appl. 52, 1119–1130 (2006)

29. Sarra, S.A.,Kansa,E.J.:MultiquadricRadialBasis FunctionApproximationMethods for theNumerical
Solution of Partial Differential Equations. Tech Science Press, New York (2010)

30. Schaback, R., Wendland, H.: Approximation by positive definite kernels. In: Advanced Problems in
Constructive Approximation, Basel, pp. 203–222 (2003)

31. Sharifi, M., Fathy, M., Mahmoudi, M.T.: A classified and comparative study of edge detection algo-
rithms. In: Proceedings of the International Conference on Information Technology: Coding and
Computing, Las Vegas, USA, pp. 117–120 (2002)

32. Wendland, H.: Scattered Data Approximation, Cambridge Monographs on Applied Computational
Mathematics, vol. 17. Cambridge University Press, Cambridge (2005)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123

http://www.geoessential.eu/wp-content/uploads/2019/01/GEOEssential-D_1.3_final.pdf
http://www.geoessential.eu/wp-content/uploads/2019/01/GEOEssential-D_1.3_final.pdf

	Jumping with variably scaled discontinuous kernels (VSDKs)
	Abstract
	1 Introduction
	2 Kernel-based approximation methods
	2.1 From RBF to VSK interpolation

	3 Variably scaled discontinuous kernels
	3.1 VSDKs: one dimensional case
	3.2 VSDKs: multidimensional case

	4 Numerical experiments
	4.1 A toy example
	4.2 Tests with artificial data

	5 Application to satellite images
	6 Conclusions
	Acknowledgements
	References




